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Quantum ion-acoustic waves
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The one-dimensional two-species quantum hydrodynamic model is considered in the limit of small
mass ratio of the charge carriers. Closure is obtained by adopting an equation of state pertaining to
a zero-temperature Fermi gas for the electrons and by disregarding pressure effects for the ions. By
an appropriate rescaling of the variables, a nondimensional parameterH, proportional to quantum
diffraction effects, is identified. The system is then shown to support linear waves, which in the limit
of small H resemble the classical ion-acoustic waves. In the weakly nonlinear limit, the quantum
plasma is shown to support waves described by a deformed Korteweg–de Vries equation which
depends in a nontrivial way on the quantum parameterH. In the fully nonlinear regime, the system
also admits traveling waves which can exhibit periodic patterns. The quasineutral limit of the system
is also discussed. ©2003 American Institute of Physics.@DOI: 10.1063/1.1609446#
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I. INTRODUCTION

Quantum transport models have received great atten
in recent years mainly due to their relevance for describ
quantum effects in plasmas and in microelectronic devic
For quantum plasmas,1 recent applications include quantu
plasma echoes,2 the expansion of a quantum electron gas in
vacuum,3 quantum plasma instabilities,4,5,6 the self-
consistent dynamics of Fermi gases,7 and quantum Penros
diagrams.8 For microelectronics, the ongoing miniaturizatio
process makes classical transport models~e.g., the drift-
diffusion model! unable to capture the main physics of
variety of systems such as the resonant tunneling diode
ultra-integrated devices. This motivates the developmen
quantum transport models for charged particle systems.9

Specifically, in this work we focus on the quantum h
drodynamic ~QHD! model for plasmas in semi
conductors,7,10–14The QHD model consists of a set of equ
tions describing the transport of charge, momentum, and
ergy in a charged particle system interacting through a s
consistent electrostatic potential. The QHD model
constructed in terms of macroscopic variables only, nam
the density and velocity fields, the stress tensor and the e
trostatic potential. Mathematically, the QHD model gener
izes the fluid model for plasmas, thanks to the inclusion o
quantum correction term, the so-called Bohm potential. T
extra term can appropriately describe negative differen
resistance in resonant tunneling diodes.10 Negative differen-
tial resistance is based on resonant tunneling, a quan
driven phenomena which classical transport models can

a!Electronic mail: ferhaas@exatas.unisinos.br
b!Electronic mail: garcia@exatas.unisinos.br
c!Electronic mail: goedert@exatas.unisinos.br
d!Electronic mail: giovanni.manfredi@lpmi.uhp-nancy.fr
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take into account. The advantages of the QHD model o
kinetic descriptions such as the Wigner–Poisson system9 are
its numerical efficiency,15,16the direct use of the macroscop
variables of interest such as momentum and energy, and
easy way the boundary conditions are implemented. T
Wigner–Poisson kinetic model, for instance, is a numerica
expensive integrodifferential system for which the definiti
of the boundary conditions is a subtle matter.17 The weakness
of the QHD model, of course, rests in its inability to take in
account kinetic effects like Landau damping, driven by re
nant wave–particle interaction. Despite the overall simpl
cation, the QHD model can be used, for instance, to desc
resonant tunneling diodes,10,18,19and, in a modified formula-
tion, ultrasmall high electron mobility transistors.20 In addi-
tion, quantum transport models similar to the QHD mod
have been used in superfluidity21 and superconductivity,22 as
well as in the study of metal clusters and nanoparticl
where they are generally referred to as time-depend
Thomas–Fermi~TDTF! models.23 Finally, hydrodynamic
formulations have been employed since the early days
quantum mechanics.24

The present work is concerned with two-species qu
tum plasmas described by the QHD model. Often tw
species plasmas are composed of lighter particles~electrons!
and more massive particles~ions!. This motivates the ap-
proximationme /mi'0, whereme andmi are the masses o
electrons and ions, respectively. For classical plasmas,
approximation gives rise to the ion-acoustic mode, who
weakly nonlinear properties are described by t
Korteweg–de Vries~KdV! equation. The KdV equation is
obtained from a singular expansion in powers of a sm
parameter proportional to the field amplitude.25 Classical
nonlinear ion-acoustic waves are obtained as traveling-w
solutions for the reduced model in whichme /mi'0. In the
quantum case, the proper framework to analyze ion-acou
8 © 2003 American Institute of Physics
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3859Phys. Plasmas, Vol. 10, No. 10, October 2003 Quantum ion-acoustic waves
waves is provided by the two species QHD model. It is
purpose of this work to analyze this system, following t
steps carried out in the case of classical ion-acoustic wa
The relevance of quantum effects for plasmas and semi
ductor devices justifies this approach.

The paper is organized as follows. In Sec. II, we pres
the QHD model for a two species one-dimensional system
charged particles in the electrostatic approximation. Pres
effects are neglected for the more massive ions, wherea
electrons are described by an equation of state approp
for a zero-temperature Fermi gas. Specifically, our mo
should be relevant when the following ordering on the te
peratures is satisfied:

TFi,Ti,Te!TFe . ~1!

Only the electron Fermi temperature is included in o
model, while the other three temperature effects are
glected.

Introducing a suitable rescaling of dependent and in
pendent variables, we derive a system of partial differen
equations depending on two parameters only, namelyH and
me /mi . H is a measure of quantum diffraction effects. Ta
ing the limit me /mi'0, we obtain a reduced model in whic
electron inertia is negligible. This reduced model is the m
concern of the remaining part of this paper. Linear waves
the reduced model are shown to be described by a dispe
relation which, in the limit of smallH, reduces to the dis
persion relation for classical ion-acoustic waves~with the
ion-acoustic velocity replaced by a quantum ion-acoustic
locity!. In Sec. III, we go beyond the linear limit by employ
ing the same singular expansion used for weakly nonlin
classical ion-acoustic waves.25 These weakly nonlinear quan
tum ion-acoustic waves are described by a deform
Korteweg–de Vries equation, whose properties are con
ered in detail. In Sec. IV, the fully nonlinear case is analyz
considering traveling-wave solutions. These solutions sat
a system of ordinary differential equations not soluble
closed form. However, analysis of the characteristic ex
nents of the resulting dynamical system indicates the p
sible existence of periodic patterns confirmed by numer
simulations. In Sec. V, we consider quasineutral solutio
and show that the ions obey a nonlinear Schro¨dinger equa-
tion, with quantum effects appearing at leading order in
mass ratio. Section VI is devoted to the conclusions.

II. REDUCED MODEL AND LINEAR WAVES

We consider a two-species quantum plasma syst
composed of electrons and ions. In this situation, the o
dimensional QHD model consists of the continuity and m
mentum balance equations for both electrons and i
coupled to the Poisson’s equation for the self-consistent
tential,

]ne

]t
1

]~neue!

]x
50, ~2!

]ni

]t
1

]~niui !

]x
50, ~3!
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]ue

]t
1ue

]ue

]x
5

e

me

]f

]x
2

1

mene

]pe

]x

1
\2

2me
2

]

]x S ]2Ane/]x2

Ane
D , ~4!

]ui

]t
1ui

]ui

]x
52

e

mi

]f

]x
1

\2

2mi
2

]

]x S ]2Ani /]x2

Ani
D , ~5!

]2f

]x2 5
e

«0
~ne2ni !. ~6!

Here, ne ,ue ,me ,2e ~resp. ni ,ui ,mi ,e) are the electron
~resp. ion! density field, velocity field, mass, and charg
while «0 and \ are the dielectric and scaled Planck’s co
stants. We are considering a one-dimensional system in
electrostatic approximation with potentialf. Finally, pe

5pe(ne) is obtained from an equation of state for the ele
tronic fluid. For simplicity, pressure effects are disregard
for ions.

Common choices forpe are the isobaric (pe5const),
isothermal (pe;ne), and isentropic (pe;ne

g , g5const
Þ1) laws. For definiteness, we assume that the electr
obey the equation of state pertaining to a one-dimensio
zero-temperature Fermi gas,7,26

pe5
mevFe

2

3n0
2 ne

3. ~7!

Here, n0 is the equilibrium density both for electrons an
ions, andvFe is the electronic Fermi velocity, connected
the Fermi temperatureTFe by mevFe

2 /25kBTFe , wherekB is
the Boltzmann’s constant. The choice of Eq.~7! is not an
essential ingredient in what follows, and other equations
state could well be employed. However, Eq.~7! is relevant to
the physics of ordinary metals, metal clusters and nano
ticles, for which the electron Fermi temperature is genera
much higher than room temperature.

Notice that the model~2!–~7! includes two different
quantum effects:~1! quantum diffraction and~2! quantum
statistics. Quantum diffraction is taken into account by t
terms proportional to\2 in Eqs.~4! and~5!. These contribu-
tions may be interpreted alternatively as quantum press
terms or as quantum Bohm potentials. In other applicati
in semiconductor physics, the Bohm potential is respons
for tunneling and differential resistance effects.10 The quan-
tum statistics is included in the model via the equation
state@Eq. ~7!#, which takes into account the fermionic cha
acter of the electrons.

The QHD model is amacroscopicmodel, describing the
behavior of macroscopic quantities like density and curre
For the derivation of the QHD model from amicroscopic
point of view, one can consider a pair of Wigner equatio
satisfied by the one-particle Wigner functions for electro
and ions, coupled to the Poisson’s equation. The Wig
function plays the same role, in quantum kinetic theory,
the role played by the classical distribution function in cla
sical kinetic theory. In this context, the Wigner equation
the quantum analog of the Vlasov equation describing co
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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3860 Phys. Plasmas, Vol. 10, No. 10, October 2003 Haas et al.
sionless classical plasmas. To proceed from kinetic to fl
models, a sensible approach is that of taking moments of
Wigner equation for the two species quantum plasma,7 ex-
actly in the same way as in gas dynamics or classical pla
physics. Taking the zeroth and first order moments only,
obtain the QHD model with the Bohm potential and a pr
sure term as shown in Eqs.~2!–~5!. Second order moment
take into account heat transport, which we disregard h
after postulating the equations of state for the electron
ion pressures. These pressure terms provide closure o
transport equations, and are dictated by the statistical p
erties of the charge carriers. For a pure quantum-mechan
state, the pressure terms are zero: this is in agreement
our understanding of ‘‘pressure’’ as a result of velocity d
persion around the mean velocity of the fluid. The press
terms chosen here@Eq. ~7! for the electrons and zero pressu
for the ions# are obtained by neglecting the ion Fermi tem
perature and assuming a zero-temperature Fermi distribu
for the electrons, in the spirit of the ordering shown in E
~1!. For the electrons, consider the pressure function

pe5meS E f ev
2dv2neue

2D , ~8!

where f e5 f e(x,v,t) is the one-particle electron Wigne
function, as in Eq. ~13! of Ref. 7. Defining a one-
dimensional local zero-temperature Fermi distribution for
equilibrium Wigner function@ f e5ne(x,t)/(2vFe(x,t)) for
uv2ue(x,t)u,vFe(x,t); f e50 otherwise#, we obtain

pe5
mene~x,t !vFe

2 ~x,t !

3
. ~9!

Here, we allow for a local~nonconstant! Fermi velocity
vFe(x,t). Quantum statistics prevent the collapse of all el
trons in a state with velocityue(x,t). This is manifested in a
nonzero Fermi velocity. In a one-dimensional plasma,
Fermi velocity is linearly dependent on the equilibrium de
sity, vFe5p \ n0 /(2me). Assuming this linear relation to b
valid also for near equilibrium situations, we obtain

vFe~x,t !5
vFe

n0
ne~x,t !. ~10!

Substituting this last result in Eq.~9!, we get the equation o
state~7!. Notice that the steps in the derivation of this equ
tion of state are all dependent on dimensionality.

In conclusion, the equation of state for electrons w
found assuming a local zero-temperature Fermi distribut
a choice dictated by the spin 1/2 statistics for these partic
The Bohm potential, on the other hand, does exist even f
pure quantum-mechanical state, and has nothing to do
the statistical properties of the system. The Bohm poten
accounts for such typical quantum effects as tunneling. I
broad sense, we refer to these particularities arising from
wave-like nature of the charge carriers as ‘‘quantum diffr
tion effects.’’ For more details on the mathematical deriv
tion of the QHD model, we refer to Refs. 7 and 10–14.
Downloaded 06 Jun 2005 to 200.188.166.79. Redistribution subject to AIP
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The ion motion also includes in principle a Bohm pote
tial term. However, in the following, we shall give an arg
ment for neglecting quantum diffraction effects for ions,
view of their large mass.

The electron dynamics can be simplified by using ge
eral thermodynamics arguments, since the electrons re
equilibrium faster than the ions due to their smaller mass
order to show this, let us introduce the following rescalin

x̄5vpix/cs , t̄ 5vpit,

n̄e5ne /n0 , n̄i5ni /n0 , ~11!

ūe5ue /cs , ūi5ui /cs , f̄5ef/~2kBTFe!.

Here, vpe and vpi are the corresponding electron and io
plasma frequencies,

vpe5S n0e2

me«0
D 1/2

, vpi5S n0e2

mi«0
D 1/2

, ~12!

whereasn0 is the equilibrium density. Also,cs is a quantum
ion-acoustic velocity, obtained by replacing the usual el
tron temperatureTe by 2TFe in the expression for the clas
sical ion-acoustic velocity,

cs5S 2kBTFe

mi
D 1/2

. ~13!

This definition will be justified later in this work. In addition
we introduce the nondimensional quantum parameter,

H5
\vpe

2kBTFe
. ~14!

Note thatH2 is proportional to ther s parameter of the elec
tron gas, which is the Wigner–Seitz radius in units of t
Bohr radius;r s takes on values in the range 2–6 for metal
electrons.

Using the new variables and dropping bars to simpl
the notation, we obtain from Eqs.~4! and ~5!,

me

mi
S ]ue

]t
1ue

]ue

]x D5
]f

]x
2ne

]ne

]x

1
H2

2

]

]x S ]2Ane/]x2

Ane
D , ~15!

]ui

]t
1ui

]ui

]x
52

]f

]x
1

me

mi

H2

2

]

]x S ]2Ani /]x2

Ani
D . ~16!

The small electron inertia forces the electron fluid
attain equilibrium almost immediately. Hence, neglecting
left-hand side of Eq.~15! due tome /mi!1, integrating once
and considering~for instance! the boundary conditionsne

51, f50 at infinity, we obtain

f52
1

2
1

ne
2

2
2

H2

2Ane

]2

]x2Ane. ~17!

In general an arbitrary irrelevant gauge function of time c
be added to the right-hand side of~17!, but we will not
consider this possibility since it does not affect the elec
field. Equation~17! gives the electrostatic potential in term
 license or copyright, see http://pop.aip.org/pop/copyright.jsp



c
e
io
le
tia

y
n

n
re

e

d
h
he
tu

-
e

es
to
a
c
c-

ec
n

the

he
the
on

-
lec-
of

he

of

lec-
nic
al

rent
y as
es

ion
e

he
m

n-

ode

3861Phys. Plasmas, Vol. 10, No. 10, October 2003 Quantum ion-acoustic waves
of the electron density and its derivatives. If quantum diffra
tion effects are negligible (H50), the charge density can b
obtained from the potential through an algebraic equat
This is very much like in the classical case, where the e
tron dynamics is often simplified by assuming an exponen
law between the electron density and the potential~Boltz-
mann factor!. Here, however, even forH50 there will be no
exponential law, since the electron equilibrium is given b
Fermi–Dirac distribution and not by a Maxwell–Boltzman
one. It should be noted that the limitH→0 does not repre-
sent the classical approximation\→0, sinceH;1/\. The
limit H→0 may be approached in high density regimes a
just indicates that quantum diffraction effects are dis
garded, although quantum statistical effects~Fermi–Dirac
statistics! are still taken into account in the choice of th
equation of state, Eq.~7!.

In the ion momentum balance equation~16!, the quan-
tum diffraction term may also be disregarded due tome /mi

!1. This may be viewed as a result from the fact that the
Broglie wavelength is inversely proportional to mass. T
larger the de Broglie wavelength in comparison with t
typical dimensions of the system, the larger are the quan
diffraction effects.

Using the rescaling~11! and discarding terms propor
tional to me /mi in Eq. ~16!, the ion conservation of charg
and momentum and Poisson’s equations become

]ni

]t
1

]~niui !

]x
50, ~18!

]ui

]t
1ui

]ui

]x
52

]f

]x
, ~19!

]2f

]x2 5ne2ni . ~20!

Equations~18!–~20!, together with Eq.~17!, provide a re-
duced model of four equations with four unknown quantiti
ni , ui , ne , andf. This reduced model is the basic system
be examined in the following. The only remaining free p
rameter isH, which measures the effects of quantum diffra
tion. Physically,H is essentially the ratio between the ele
tron plasmon energy and the electron Fermi energy.

After solving the reduced system of equations, the el
tron fluid velocity field may be obtained from the electro
continuity equation,

]ne

]t
1

]

]x
~neue!50, ~21!

supplemented by appropriate boundary conditions.
The reduced model~17!–~20! supports linear waves

around the homogeneous equilibrium,

ne5ni51, ui50, f50. ~22!

For normalized wave frequencyv and wave numberk, the
dispersion relation for these linear waves is

v25
k2~11H2k2/4!

11k2~11H2k2/4!
. ~23!
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For small wave numbers this givesv.k, or, reintroducing
the original physical variables, a wave propagating at
quantum ion-acoustic velocitycs as given in the definition
~13!. Equation~23! describes the quantum counterpart of t
classical ion-acoustic mode, with a new expression for
acoustic velocity and a correction from quantum diffracti
effects. Accordingly, we call this new solution thequantum
ion-acoustic mode. Like in the case of the classical ion
acoustic waves, this mode describes oscillations of both e
trons and ions at low frequency. At the opposite limit
small wavelengths, Eq.~23! gives oscillations at the ion
plasma frequencyvpi . ~Notice, however, that the QHD
model does not apply for small wavelengths.7! Figure 1
shows the dispersion relation obtained from Eq.~23! for
three different values of the parameterH. Notice that the
asymptotic valuev51 is reached faster the larger are t
quantum diffraction effects.

In the following, we investigate the basic properties
the nonlinear solutions for the reduced model~17!–~20!.

III. WEAKLY NONLINEAR SOLUTIONS

The reduced model of Eqs.~17!–~20! is the quantum
counterpart of the classical reduced model in which the e
tron dynamics is simplified by assuming that the electro
fluid is at thermodynamic equilibrium. For the classic
model one can find coherent structures~solitons!. It is there-
fore relevant to investigate the existence of such cohe
structures in the quantum case. We proceed as closel
possible the derivation of weakly nonlinear classical wav
for an electron–ion plasma using singular perturbat
methods.25 Introduce the following expansion around th
equilibrium:

ni511e ni11e2 ni21¯ , ~24!

ui5e ui11e2 ui21¯ , ~25!

ne511e ne11e2 ne21¯ , ~26!

where e is a small nonzero parameter proportional to t
amplitude of the perturbation. In passing, notice that fro
Eq. ~17! the above expansion implies the following expa
sion for f:

FIG. 1. Normalized dispersion relation for the quantum ion-acoustic m
with H50 ~solid line!, H51.5 ~dashed line!, andH53 ~dotted line!.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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f5eS ne12
H2

4

]2ne1

]x2 D1
e2

2 H ne1
2 12ne2

1
H2

2 Fne1

]2ne1

]x2 2
]2ne2

]x2 1
1

2 S ]ne1

]x D 2G J 1¯ . ~27!

In addition, we use the following rescaling of space and ti
variables:

j5e1/2~x2t !, t5e3/2 t. ~28!

With the new independent coordinates, the perturbation
pansion~24!–~26! and the corresponding expansion~27! for
the potential, we transform the ion continuity equation~18!,
the ion momentum balance equation~19!, and Poisson’s
equation~20! into a set of three equations in the form of
power series ine. The resulting system can be written as

]

]j
~ui12ni1!1eS ]ni1

]t
1

]

]j
~2ni21ui21ni1ui1! D5O~e2!,

~29!

]

]j
~ne12ui1!1eF]ui1

]t
2

]ui2

]j
1ui1

]ui1

]j
2

H2

4

]3ne1

]j3

1
1

2

]

]j
~ne1

2 12ne2!G5O~e2!, ~30!

ni12ne11eS ni22ne21
]2ne1

]j2 D5O~e2!. ~31!

These equations are to be satisfied to all orders ine. The
zeroth order terms plus the hypothesis thatui1 andni1 vanish
asj→0 gives

ne15ni15ui1[U~j,t!, ~32!

defining a new functionU(j,t). Equation~32! shows that
the mode is quasineutral up to first order.

Taking into account Eq.~32! and the first order terms in
Eqs.~29!–~31!, there follows

]U

]t
1

]

]j
~2ni21ui21U2!50, ~33!

]U

]t
1

]

]j S 2ui21ne21U22
H2

4

]2U

]j2 D50, ~34!

]2U

]j2 5ne22ni2 . ~35!

Eliminating ne2 , ni2 , andui2 from ~33!–~35!, we obtain a
quantum deformation for the Korteweg–de Vries equatio

]U

]t
12U

]U

]j
1

1

2 S 12
H2

4 D ]3U

]j3 50. ~36!

Quantum diffraction is responsible for the term proportion
to H2. We call Eq. ~36! the deformed Korteweg–de Vries
equation~dKdV!.

Notice that the coefficients of the Korteweg–de Vri
equation can be arbitrarily fixed through a rescaling of
form j→aj, t→bt, U→cU, wherea, b, andc are appro-
priate constants. However, for a fixed choice of units, cha
ing H may affect the nature of the solutions in a fundamen
Downloaded 06 Jun 2005 to 200.188.166.79. Redistribution subject to AIP
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way, as the coefficient of the last term in Eq.~36! is
H-dependent. For example, the basic feature of the K
equation is the balance between dispersion and nonline
effects, with as ultimate result the appearance of soliton
lutions. This basic property of the KdV equation is destroy
in the dKdV equation in the fine tuning caseH52. In this
situation, the loss of a dispersive term eventually yields
formation of a shock, as in the case of a one-dimensio
force-free ideal and neutral classical fluid.

For HÞ2, soliton solutions still exist, but with a differ
ent character forH greater or smaller than 2. For the sake
brevity, we limit ourselves to the one-soliton solution,

U~j,t!5
3c

2
sech2SAc

2

~j2ct!

~12H2/4!1/2D , ~37!

propagating at phase velocityc. Some comments about th
solution~37! are in order. First, notice that for 0<H,2 the
velocity c must be positive. On the other hand, forH.2, c
ought to be negative, otherwise the soliton solution~37!
would be destroyed. Although quantum effects have no
fluence on the absolute amplitude of the soliton, forH
smaller or greater than 2 the soliton exhibits compression
expansion. To see this quantitatively, defines as the distance
at whichU equals half its maximum absolute amplitude,

uU~ uj2ctu5s!u53ucu/4. ~38!

The characteristic distances is a measure of the spreading
the soliton. Solving from Eq.~37!, we obtain

s.1.25S 12H2/4

c D 1/2

. ~39!

For H,2 ~and c.0), quantum effects compress th
soliton, as is apparent from Eq.~39!. For H52 the soliton
collapses, which is in accordance with the nonexistence
the dispersive term in the dKdV equation in this fine tuni
case. In the fully quantum caseH.2 (c,0), the soliton
starts spreading again asH increases. The ultimate effect o
quantum diffraction is the complete smearing out of the s
ton. Also notice that in the caseH,2 we have bright soli-
tons (U.0) propagating with a phase velocityc.0,
whereas in the fully quantum case (H.2) we have dark
solitons (U,0) propagating with a negative phase veloci

Finally, we remark that for simplicity we have consid
ered only one-soliton solutions for the dKdV equatio
Multi-soliton solutions may be easily constructed.

IV. ARBITRARY AMPLITUDE SOLUTIONS

In this section, we investigate the stationary solutions
the system~17!–~20! by assuming all quantities to depen
only on the similarity variable,

z5x2Mt, ~40!

where M is a dimensionless constant. For these traveli
wave solutions, Eqs.~18!–~19! give the first integrals

J5ni~ui2M !, ~41!

E5 1
2 ~ui2M !21f. ~42!
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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Eliminating the ion velocity yields

ni5
uJu

&~E2f!1/2
, ~43!

which expresses the ion density in terms of the electrost
potential. Defining

ne[A2 ~44!

and using Eqs.~17!, ~20!, and~43!, we obtain the system

d2A

dz2 5
A

H2 ~211A422f!, ~45!

d2f

dz2 5A22
uJu

&~E2f!1/2
. ~46!

The formal limit H50 is singular in the sense that in th
case Eq.~45! becomes an algebraic equation forA (ne) in
terms off.

The system~45!–~46! is a pair of second order ordinar
differential equations describing the stationary modes of
quantum plasma, depending on the parametersJ, E, andH.
The structure and nonlinearity feature of this equation, ho
ever, prevent any hope for exact solution. Despite this, i
possible to construct an exact conservation law by apply
the following reasoning. Let us introduce the~complex!
change of variables,

Ā5 iA, f̄5f/H, z̄5z/H. ~47!

In these variables, the system~45!–~46! takes on the Hamil-
tonian form,

d2Ā

dz̄2
52

]W

]Ā
,

d2f̄

dz̄2
52

]W

]f̄
, ~48!

in terms of the pseudopotentialW5W(Ā,f̄) given by

W5
Ā2

2
2

Ā6

6
1&uJu~E2Hf̄ !1/21HĀ2f̄. ~49!

The last term in Eq.~49! is the only term responsible for th
coupling in Eqs.~45!–~46!. If that term were missing, we
would have a pair of noninteracting nonlinear oscillators.

From the Hamiltonian formulation~48! there follows
immediately the energy-like first integral,

I 5
1

2
S dĀ

dz̄
D 2

1
1

2
S df̄

dz̄
D 2

1W~Ā,f̄ !, ~50!

which, expressed in terms of the original variables, gives
exact constant of motion,

I 52
H2

2 S dA

dz D 2

1
1

2 S df

dz D 2

2
A2

2
1

A6

6

1&uJu~E2f!1/22A2f. ~51!

Unfortunately, the level surfaces ofI are never convex, a
fact that prevents its use as a Lyapunov function for
stability analysis of the critical points of the system. Ho
ever, some further insight about the stability of the syst
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can be obtained by linearization around the spatially hom
geneous solutions of Eqs.~45!–~46!. These equilibria are
found by setting the right-hand sides of Eqs.~45!–~46! to
zero together with takingdA/dz5df/dz50. There are two
possible homogeneous solutions,

A05@E1 1
2 6~@E1 1

2#
22J2!1/2#1/4, ~52!

f05 1
2 @E2 1

2 6~@E1 1
2#

22J2!1/2#, ~53!

which we refer to as high and low density equilibria@plus
and minus sign in~52!–~53!, respectively#. Both equilibria
can exist if and only if

E11/2>uJu. ~54!

Otherwise the homogeneous solutions become complex.
The linear stability regimes can be assessed by assum

A5A01a, f5f01b ~55!

and retaining only terms up to first order ina and b. By
doing this we obtain the following linear system, for lo
density regimes,

d2a

dz2 5
2A0

H2 ~2A0
3a2b!, ~56!

d2b

dz2 52A0a2
uJub

2&~E2f0!3/2
. ~57!

We have used expressions~52!–~53! whenever useful for
notation. Notice thatE2f0.0 wheneverJÞ0 according to
Eqs. ~53! and ~54!. Hence, for definiteness we consider t
caseJÞ0 so that there is no singularity on the right-ha
side of Eq.~57!. In accordance with Eqs.~52! and ~54!, a
nonzero ionic currentJ also implies that the low density
solution will have necessarilyA0Þ0.

The linear stability properties of Eqs.~56!–~57! are de-
termined by assuming solutions of the forma
5a0 exp(kcz), b5b0 exp(kcz), for constanta0 , b0 , andkc .
Nontrivial solutions are obtained for characteristic eigenv
ueskc given by

kc
25

1

2A0
2 @r22s6~@r21s#224r2!1/2#, ~58!

where we have introduced the following parameters:

r5
2A0

3

H
, s5

A0
2uJu

2&~E2f0!3/2
. ~59!

Equation~58! shows the existence of four characteris
eigenvalues for the linearized motion around both homo
neous equilibria. There is a large range of possible equi
rium configurations according to the various parameters
tering the expression forkc . We restrict ourselves to
consider purely oscillatory motion, which amounts to the d
termination of the conditions for neutral stability. For neutr
stability, by definition all characteristic eigenvalues a
purely imaginary, which imposeskc

2<0, with the casekc

50 corresponding to marginal stability.
Let us first study the limit of small quantum diffractio

effects in Eq.~58!. For H!1, one obtains
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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kc1
2 54A0

4H222A0
221O~H2!, ~60!

kc2
2 5~12s!A0

221O~H2!. ~61!

This shows that no oscillatory solutions can exist in the lim
H→0, as at least one of the eigenmodes~the one with posi-
tive sign! possesses a real characteristic eigenvalue. No
however, that forH strictly equal to zero, one can reduce E
~56! to a purely algebraic equation and substituting the re
into Eq.~57!. By doing so, only thekc2 eigenvalue survives
which does yield oscillatory solutions whens.1. In sum-
mary, the singular caseH50 does support purely oscillator
solutions, but these are destroyed for small, but finite, qu
tum diffraction effects.

We do not analyze Eq.~58! in its full generality, restrict-
ing ourselves to the basic homogeneous equilibrium

A051, f050. ~62!

According to Eqs.~52!–~53! and ~59!, this corresponds to

E5J2/2, s51/J2, r52/H. ~63!

The condition for purely oscillatory solutions~i.e., kc
2,0)

yields the inequalities,

1,uJu,H/2, ~64!

which require thatH.2, in agreement with the previou
result that no stable solutions exist for smallH.

The oscillations seem to be related to a kind of quant
recurrence, also arising in other quantum plasma phenom
like quantum echoes2 and quantum two-stream instabilities6

Notice that here a space–time recurrence is observed, s
the similarity variablez5x2Mt involves both space an
time coordinates. Numerical integration of the fully nonli
ear system~45!–~46! confirms the existence of such oscill
tory motions. Examples of this behavior are given in Figs
and 3. In Fig. 2, the simulation was initialized by assumi

FIG. 2. Numerical solution of Eqs.~45!–~46! with H57, J51.22, andE
50.744.
Downloaded 06 Jun 2005 to 200.188.166.79. Redistribution subject to AIP
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that the amplitudeA and the potentialf were slightly per-
turbed from the equilibrium~62! at z50, i.e., A(0)511d
and f(0)5d, whered50.05. Figure 3 shows the oscilla
tions far from the equilibrium~62!; in this case,A(0)52 and
f(0)520. The singular character of Eq.~47! at f5E is
manifest in Fig. 4 which shows howA explodes to infinity
whenf→E. This results from the fact that in this limit, in
view of Eq. ~42!, the ion fluid will move at the wave phas
velocity (ui→M ) an effect that will cause the electrons
accumulate in the wave peaks.@In all the simulations,
(dA/dz)(0)5(df/dz)(0)50.]

FIG. 3. Numerical solution of Eqs.~45!–~46! with H53, J512, andE
572.

FIG. 4. Numerical solution of Eqs.~45!–~46! with H57, J51.23, andE
50.756.
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V. QUASINEUTRAL SOLUTIONS

The model used so far to study the propagation of qu
tum ion-acoustic waves is given by Eqs.~18!–~20!, together
with Eq. ~17!. This system can be further simplified by a
sumingquasineutrality, i.e., by neglecting the left-hand sid
of Poisson’s equation~20!, which immediately yieldsni

5ne . This is accurate when the potential is a slowly varyi
function of position, i.e., for small wave numbersk!1 ~in
our dimensionless units!. One can therefore writeni instead
of ne in Eq. ~17!; substitution into the ion momentum con
servation equation~19! yields

]ui

]t
1ui

]ui

]x
52ni

]ni

]x
1

H2

2

]

]x S ]2Ani /]x2

Ani
D . ~65!

Notice that in Eq.~65! quantum effects~proportional toH2)
appear to zeroth order in the mass ratio, whereas they
peared to first order in Eq.~16!.

Equation~65!, together with the ion continuity equatio
~18!, form a closed system describing the propagation
quasineutral ion-acoustic waves. Linearizing around the s
tially homogeneous equilibrium, as performed in Sec.
yields the dispersion relation,v25k2(11H2k2/4), which
should be compared to Eq.~23!.

The important feature of this quasineutral regime is t
the ion dynamics has a quantum character, even though
cause of their large mass, they should behave in a comple
classical manner. The reason is that, because of quasine
ity, the ions are instantaneously driven by the electro
which of course do behave quantum-mechanically. This is
interesting phenomenon: a species that is classical whe
its own ~the ions!, may behave as a quantum fluid whe
immersed in a bath of particles with quantum properties~the
electrons!. Notice that quantum effects are relevant for wa
numbers satisfyingHk>1. Combining this inequality with
the condition of validity of the quasineutral modelk!1,
yields thatH must be large in order to observe significa
quantum effects. This condition can be satisfied in me
clusters and nanoparticles.7,23

Finally, the above effect can be made even more ap
ent by rewriting Eqs.~18! and ~65! as a single nonlinea
Schrödinger equation for the pseudo-wave-function;

C i~x,t !5Ani~x,t ! exp~ iSi~x,t !/H !, ~66!

with Si defined implicitly according toui5]Si /]x.7 The re-
sulting equation forC i is

iH
]C i

]t
52

H2

2

]2C i

]x2 1
1

2
uC i u4 C i . ~67!

From this equation, it is obvious that the ions behave
quantum particles in an effective potential of the formuC i u4.

Notice that a model very similar to Eq.~67! has been
used to describe the dynamics of a degenerate gas of ne
Fermi atoms, possibly trapped in an external potential.27 This
equation can also describe the behavior of a Bose–Eins
condensate in one dimension,28 for which it replaces the
usual Gross–Pitaevskii equation. The authors of Ref. 28
show the existence of an exact soliton solution for Eq.~67!,
which has the form of a dip in the spatial density.
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Given the huge amount of theoretical and experimen
work carried out in recent years on Bose–Einstein cond
sates and ultracold Fermi gases, it would be highly intere
ing if ions in metal clusters and nanoparticles could, in c
tain regimes, mimic the behavior of such low-temperatu
atom gases.

VI. CONCLUSION

In this work we have investigated the role of quantu
diffraction in two-species plasmas in which the inertia of o
of the species is negligible. The starting point is the QH
model for transport in charged particle systems. For clos
we postulate a pressureless ion fluid and an electron fl
obeying the equation of state for a zero-temperature o
dimensional Fermi gas. After a convenient rescaling and
glecting the inertia of the lighter charge carriers, we ha
obtained the reduced model of Eqs.~17!–~20!. This reduced
model has proven to be a valuable and sufficiently sim
tool for the examination of linear, weakly nonlinear and ful
nonlinear waves.

Several new features of pure quantum origin have
peared. For the linear waves, we have found a disper
relation that resembles the classical ion-acoustic disper
relation whenH→0. The parameterH is a measure of quan
tum diffraction effects, and is proportional to the ratio b
tween the plasmon energy\vpe and the Fermi energy
kBTFe . For weakly nonlinear waves, singular perturbati
theory gives rise to a deformed KdV equation depending
H. Now three regimes are possible. ForH,2, we observe a
quantum compression of the classical one-soliton solut
For H52, the quantum diffraction exactly matches the cla
sical dispersion term in the KdV equation. Hence, forH
52 there is no soliton at all, but only free streaming, eve
tually producing a shock wave. Finally, forH.2 quantum
effects smear out the classical one-soliton solution. In
fully nonlinear case, we obtain traveling-wave solutions s
isfying the dynamical system~45!–~46!. This dynamical sys-
tem presents strong nonlinearities and does not seem t
soluble in closed form, though it does admit an exact fi
integral as shown in Sec. IV. The linear stability analysis
its fixed points shows the possible existence of periodic
gimes for a restricted range of parameters. Numerical sim
lations confirm the predictions of linear stability analysis.

Finally, we have considered the special case where
ion–electron plasma is quasineutral. In this regime, valid
long wavelengths, the ion dynamics can be described by a
of two hydrodynamic equations that contain quantum effe
to zeroth order in the electron-to-ion mass ratio. Altern
tively, the model can be cast in the form of a nonline
Schrödinger equation, thus making explicit the presence
quantum effects on the ion dynamics. These models clo
resemble those used for the description of ultracold neu
atom gases.
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