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Abstract.  We prove the unconditional security of a quantum key dis- 
tribution (QKD) protocol on a noisy channel against the most general 
attack allowed by quantum physics. We use the fact that in a previous 
paper we have reduced the proof of the unconditionally security of this 
QKD protocol to a proof that a corresponding Quantum String Oblivious 
Transfer (String-QOT) protocol would be unconditionally secure against 
Bob if implemented on top of an unconditionally secure bit commitment 
schcmc. We prove a lemma that extends a security proof given by Yao 
for a (one bit) QOT protocol to this String-QOT protocol. This result 
and the reduction mentioned above implies the unconditional security of 
our QKD protocol despite our previous proof that unconditionally secure 
bit commitment schemes are impossible. 

1 Introduction and Brief History 

One of the most popular application of quantum physics t o  cryptography is 
quantum key distribution (QKD). In an ideal QKD, Alice and Bob who share 
no secret information initially, share a secret string s at the end. An eavesdrop- 
per, typically called Eve, should learn nothing about the secret string s, except 
perhaps for its length. 

In this paper, we prove the security of a QKD protocol against the most 
general attack allowed by quantum physics. This QKD protocol works with a 
noisy quantum channel, an  imperfect measuring apparatus, but requires a perfect 
source and a faithful classical channel. A channel is faithful if no one can modified 
a message sent in the channel without being detected. The need for a faithful 
classical channel is not a problem because a secret string SO initially shared 
between Alice and Bob can be used to simulate a faithful classical channel by use 
of an  unconditionally secure classical authentification scheme [26]. We assume 
a perfect source to  avoid the technical difficulty associated with many photons 
per pulse. 

Our preliminary version of the protocol uses a raridorn linear code for er- 
ror correction. Random linear codes are very difficult to decode. However, this 
problem can be solved and a version of the protocol using an  efficient error cor- 
rect,ing code and with no requirement for a perfect source will be considered in 
the journal version of this paper. 
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In addition to  QKD, other applications of quantum physics to  cryptography 
have been proposed. The most popular are quantum bit commitment (QBC) 
and quantum oblivious transfer (QOT). We briefly review these protocols since 
we shall refer to  them in our results. In the bit commitment task from Alice to  
Bob, Alice commits a bit b. Later, if Bob asks Alice to  unveil the commitment, 
he receives the bit b. The main point is that  Alice cannot change the value of 6 
and Bob learns nothing about 6 unless Alice unveils it. In the oblivioiis transfer 
task from Alice to  Bob, Alice enters a bit b,  Bob receives a perfectly random bit 
c and he learns the value of b if and only if c = 0. Alice learns nothing about c. 

The first quantum bit conimitrnent protocol ever proposed is due to  Bennett 
and Brassard [ a ] .  The authors themselves knew at the time that this protocol 
is insecure. Other quantum bit commitment protocol have been proposed, but 
none of them could be proven unconditionally secure. In fact, it has been shown 
recently that unconditional security for quantum bit commitment is impossi- 
ble [18, 19, 201. A proof of computational security for a quantum bit commit- 
ment protocol is still possible, but none is currently available. The absence of a 
provably secure bit commitment is unfortunate because all the known quantum 
oblivious transfers are built on top of bit, commitment, that is, they use quantum 
bit commitment as a sub-protocol. 

The first quantum oblivious transfer protocol which would be secure if im- 
plemented on top of a secure bit commitment protocol has been proposed by 
Crkpeau [12]. Its security against most but not all reasonable attacks allowed by 
the current technology has been shown in [ 5 ] .  The first proof that considered the 
most general attack allowed by quantum physics, including the so called coher- 
ent measurements on many photons at a time, has been obtained by Yao [27]. 
Yao’s proof is an important step and provides useful techniques, but it provides 
no security because, as for all the previous proofs [5, 211, it requires a secure bit 
commitment and none has yet been proven secure. 

Now, we are back to  QKD. The security of a QKD protocol against most but 
not all reasonable attacks allowed by the current technology has been established 
in [3,4]. In [17], we have reduced the unconditional security of any QKD protocol 
of a certain kind to  a proof that a corresponding String-QOT protocol would 
be unconditionally secure if implemented on top of an unconditionally secure 
bit commitment scheme. The QKD protocols of the appropriate type are in one 
to one correspondence with corresponding String-QOT prot,ocols. The standard 
QOT protocol in Ya,o’s proof turns out to  be associated with a QKD protocol of 
the appropriate type. Therefore, the unconditional security of this QKD protocol 
is obtained from the above reduction. However, there are two problems with this 
protocol. First, the QOT protocol in l’ao’s proof is a standard one bit QOT, 
therefore only one secret bit is returned in the QKD version. One can repeat the 
protocol n times to  obtain a secret string of length n, but an initial secret key SO 

is required to  simulate a faithful classical channel and, therefore, each execution 
of the protocol uses more secret bits t,han it returns back! Second, the QOT 
protocol in Yao’s proof, and thus thc corresponding QKD protocol, requires a 
noiseless quantum channel and a perfect source. 
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In this paper, we pursue the original idea of [17] and extend Yao’s proof to a 
String-QOT protocol associated via the above reduction with a “strong” QKD 
protocol. Therefore, we have t,he unconditional security of this QKD protocol. 
This QKD protocol returns a secret string s that is longer than the required 
initial string SO. .Also, it works in a noisy quantum channel. Note that our proof 
for this QKD protocol considers any kind of errors in Bob’s apparatus because 
we give full control over both the channel and the apparatus to  a dishonest Bob 
in String-QOT. 

It  is shown in IS] that the securit,y of any OT protocol implies the security of 
a String-OT protocol. In particular, the security of the QOT protocol in Yao’s 
proof implies the security of a String-QOT protocol. However, the security of the 
resulting String-QOT protocol does not imply the security of a QKD protocol via 
the above reduction because i t  is not of the required type. Yao did not mention 
the possibility of generalizing his proof to  a String-QOT case. I t  should be said 
that Yao was not aware of the above rediictiori (or did not believe it) at the time 
he wrote his paper [27] .  Yao has announced in [27] that in the journal version of 
his paper the QOT protocol will work on a noisy channel but our String-QOT 
protocol has been design to work on a noisy channel without much additional 
effort. 

2 Related results 

The main problem that one must adress in the design of a QKD protocol is 
that Alice and Bob must exhange quantum systems, let say photons, and there 
is no way to distinguish interaction of these photons with the environment and 
interaction of these photons with Eve’s meamring apparatus. Therefore, Eve can 
always succeed to entangle her measuring apparatus with the exchanged photons 
without being detected. Later, if t,hese photons are used to define the shared key, 
Eve can obtain information about this key. However, using privacy amplification 
techniques, one can make this informa.tion arbitrarily small. For example, in the 
QKD protocol considered in this paper, a classical string w’ E ( 0 ,  l}N is stored 
in N photons travelling from Alice to Bob. Because Eve can obtain information 
about w’, privacy amplification is used to distil from w’ a shorter but secret 
string b = h(w’) .  Privacy amplification is an essential part of any QKD protocol. 
Privacy amplification in the QOT protocol of Ya,o’s proof corresponds to the fact 
that the secret bit is the exclusive or of all the bits of w’. 

Much after the BB84 protocol of [a] have been proposed, Ekert suggested a 
scheme in which EPR pairs are created and the photons in each pair are split 
between Alice and Bob [15]. In this EPR scheme, no information is stored in 
the photons before they are sent, therefore one would hope that no information 
can be extracted by Eve. However, Eve r:ari still entangle her apparatus with 
the photons and it has been shown that the kind of attacks that could m70rk 
against the BB84 scheme correspond t,o attacks that would work against this 
EPR scheme [9]. This result highly suggested that EPR pairs might not be useful 
for quantum cryptography. 
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However, recently Deutsch, Ekert and al. proposed another EPR-based pro- 
tocol with a new element, an entanglement purzfication procedure also called 
in this context a quantum privacy amplification procedure [14]. Entanglement 
purification [lo] allows Alice and Bob to generate, from any supply of pairs of 
photons with non-zero entanglement, a smaller set of maximally entangled EPR 
pairs whose entanglement with any outside system, including Eve’s apparatus, 
is arbitrarily low. Deutsch, Ekert and al. reasonnably argue that their protocol 
is unconditionally secure against the most general attack allowed by quantum 
physics. An interesting point is that privacy amplification is done a t  the quan- 
tum level, and one can hope that this kind of privacy amplification procedure 
is more efficient. On the other hand, working prototypes for protocol that use 
simple quantum coding schemes already exist [24, 25 ,  22 ,  23, 161, whereas the 
technology required for this EPR-based protocol is not yet available. 

Let us emphasis that in a security proof for a QKD or a String-QOT protocol 
one must consider carefully the criteria to reject or accept an execution of the 
protocol. This criteria always exists for a given lower bound on the lenght of the 
shared key or string. In the case of our String-QOT protocol, Alice must detect 
less than bn errors. One must show that this criteria implies that  the cheater 
cannot succeed. This analysis is difficult in the case of the most general attack 
allowed by quantum physics and to our knowledge, only Yao’s paper [27] deals 
rigorously with this issue. 

The purpose of quantum cryptography is not only to prove the security of 
protocols. We also want to  design more efficient, protocols and see how efficient 
are these protocols in theory and in practice. Biham and More have obtained 
the exact theoretical efficiency of the QKD protocol of [l] against a restricted 
but still reasonnable type of attacks [8]. Furthermore, it is reasonnable to  believe 
that we could eventually prove that the security parameters required against this 
restricted type of attack is not too far from the security parameters required 
against the most general attack. 

3 Some algebra 

Typically, a quantum protocol involves many systems and each system is as- 
sociated with its own Hilbert space 3-1 also called a state space. For example, 
the polarization of a photon is associated with a two dimensional Hilbert space. 
The inner product of X evaluated on (I$), 11))) E R2 is denoted ($I$). For every 
vector 14) E 3-1, let I4)t : U -+ G be be the linear functional on 3-1 which, when 
evaluated on any vector I$) E 3-1, simply returns the inner product (@I+). For 
obvious reason, I@)+ is more conveniently denoted (41. In terms of matrices, one 
represents a vector I$) E 3-1 as a column matrix. The operation “t” on a matrix 
is simply the transpose conjugate, therefore ( $ 1  is represented by a row matrix. 

The space of linear functionals on 3-1 is denoted U t .  It is called the dual 
of U .  The inner product of 31 is also an operation on the Cartesian product 
3it x 3-1. This operation can be generalized to any Cartesian product of the form 
GI x . . . x G,, where each space Gz occurs only once and is either a state space 



state I$) is /lA4,1$)l12, the square of the norm of MvI@). The final state Iu) can 
be anything because just at the end of the measurement one is free to  store the 
residual quantum information into the final state [v) of his choice. If 0 = {[&)}  
is a basis of R, a measurement in the basis R is simply the measurement that 
associate to Such a measurement is called an orthogonal measurement,. 

Now, let us generalize to incomplete measurement the above definition. The 
most general measurement on 3-1 is a set of outcome k where every outcome k 
is associated with an operator on 3-1. The difference with a complete mea- 
surement is that Mk is in general a sum Mk = C,  l.u)(&l rather than only a 
rank one operator M k  = lk) (& I. The only requirement on the operators h l k  is 
that  Ck MlAdl; = I. The image of M k  c,an be any sufficiently large state space 
Rk, because just at  the end of the measurement one is free t o  store the residual 
quantum information into the system of his choice. For example, the quantum 
information can be send from the state space of a photon into the state space of 
an atom. The probability of k given an initial state I$) is ( l A / r k l 4 ) [ 1 * .  

Every measurement M on a state space 3-1 that returns an outcome k can 
be refined by executing another measurement M' on Rk . The new measurement 
M' may depend upon k .  Let Ad;, be the operation on 7-Ik associated with the 
outcorrle u of M'. The operation on the original space 7-t associated with the 
overall outcome ( u ,  k) is simply M V , k  = M L A / l .  

If a quantum preparation contains a pure state Iqa) with probability p , ,  
t,hen one may conveniently represent this preparation by the operator p = 
Cap, /$a)($,). The idea is that the probability of v given the preparation 
represented by p is simply (&7jlp/&j). This works even if the initial states 
are not orthogonal. Note the important fact that  two distinct preparations may 
correspond to a same density operator. Even for an incomplete measurement on 
a given preparation, one may use the density operat,or p of this preparation to  
compute the probability of an outcome k. We have that Pr (K = k ( p )  = Tr(IIkp), 
where l T k  = M:Mk. This trace is linear on 17k and linear on p.  Therefore, it, 
is often advantageous to work with l?k and p rather than with A,fk and I$&). 
The matrix representation of the operator p in the basis is defined by 

/I)+ and 
11) corresponds to one photon polarized a t  O",  45", 90" and -45' degrees respec- 
tively. Note that + and x corresponds to the bases {lo),, I I)+} and { 10) x ,  11) } 
respectively. For every B E {+, x } ' ~  a.nd every w E (0, l}n, /$'w,o) denotes the 
product state (wl )o l . .  . Jw,)on. For any set of positions E = {n,. . . ,YN}, let 
w(E] be the string given by w[E]i  = wY,, 1 5 i 5 N ,  and let I ~ J ~ , ~ [ E ] )  be the 
product state I P U ~ ~ ) B , ,  . . . / Z U ~ ~ , ) ~ , ~  for the photons with position in E .  

(P)a,ut = (@alPl$aJ). 
In accordance with t,he BB84 coding scheme, the states lo)+, 

5 The String-QOT protocol and its security 

The QOT protocol considered by Yao in [27] is a variant of the QOT protocol 
which has been first proposed by Crepeau [ll, 121 and improved later in [5, 131. 
We consider the natural generalization of this single bit QOT protocol to a 
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string QOT. In this String-QOT protocol, n is the number of photons sent in 
the protocol, b is the string sent by Alice, m is the lenght of 6 ,  r is the number 
of redundant bits needed for error correction, and N = 1 . 2 4 ~ ~ 1  is the lenght of 
the string shared between Alice and Bob before privacy amplification. 

STRING-QOT(b) 

1. Alice picks a random uniformly chosen (T + m) x N boolean matrix f where 
N = 1.24nJ. The T first rows define a matrix g used for error correction and 
the m following rows define a matrix h used for privacy amplification (see 
step 7). 

2. Bob picks a random uniformly chosen e = 6 ,  . . .en E {+, x } ”  and makes a 
quantum commit of all 4, to Alice. 

3. Alice picks a random uniformly chosen w E (0, l}”, a random uniformly 
chosen 0 E {+, x } ~ ,  and sends to Bob n photons in the state I&,,,g). 

4. Bob measures every photon i in basis 6 , ,  record the results 8, and makes a 
quantum commit of all n bases 8% to Alice. 

5. Alice picks a random uniformly chosen subset R C (1,. . . ,n} and tests the 
commitment made by Bob a t  positions i E R. If more than 6n positions 
i E R reveal 8, = e, and w, # w2, then Alice stops the protocol; otherwise, 
the test result is accepted. 

6. Alice announces the string 8. Let To be the set of all i with 8, = e,, and let 
TI be the set of all i with 0, # 6 , .  Bob chooses a set Eo & To - R, a set 
El 2 TI - R, where IEol = /Ell = N ,  and announces {Eo, E l }  in random 
order to Alice. 

7. Alice chooses at  random a set E, E {Eo, El}. For error correction, she an- 
nounces the matrix g and the string s = gw[E,]  For the computation of b,  
she announces the matrix h and the string a = 6 CE (hw[E,]). 

8. If c = 0, Bob obtains w[E,] by correcting the errors in 8[E,] ,  then he 
computes the intermediary string t = hw[E,] and obtains the string b via 
6 = a @ t .  If c = 1, Bob obtains no information about t and, thus, no infor- 
mation about b. 

Yao’s QOT protocol is exactly as above, except that T = 0, rn = 1 and el = 
(1,1,. . . ,1) E GF(2)N  are fixed, that is, there is no error correction and there 
is only one secret bit t = t l  which is the exclusive or of all the bits in ~ [ E o ] .  

The QKD version is identical to the String-QOT protocol, except that Bob 
announces Eo to  Alice rather than {Eo, El} and Alice always chooses c = 0. In 
this paper, we shall only consider attacks that correspond to  attacks that may 
be executed by Eve in the QKD version. Clearly, Eve has no control over the set 
EO (and E l ) ,  so we shall assume that Bob constructs Eo and El as specified in 
the protocol. The case in which there is no restriction on EO and El is not more 
difficult, but we don’t need it to obtain the security of the QKD protocol. 

As usual in statistic, a random variable is represented by an upper case letter, 
whereas the value taken by such a variable is represented by a lower case letter, 
for instance, the bit c is the value taken by a random variable C. 
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Let ’IT be Bob’s view at the end of the protocol. Let Pass be the binary 
random variable that takes the value 1 if and only if the test result is accepted. 
To obtain the security of the above protocol against Bob, for any attack where 
Eo and El are honestly choosen, we show that there exists a factor of security < > 0 such that I ( B ;  VIPass = 1 A C = 1) x Pr(Pass = 1) 5 2-cn. 

6 Bob’s view 

We must determine what kind of information Bob can obtain about b. Let US 

assume that the possible values ( b ,  w, 0) of ( B ,  W,  0)  are stored in orthonormal 
states ( b ,  w, 8 ) ~ .  The entire view of Bob can be seen as the outcome of a mea- 
surement executed on Ib, w, 8 ) ~ l $ ~ , e ) .  This measurement is not executed by Bob 
alone. For instance, the announcement of 8 by Alice is part of this measurement: 
it corresponds to the extraction of the information 8 from the state Ib,w,d)c. 
Furthermore, we shall generously assume that at the end, after that  Bob has 
finished his attack, Alice announces w[&] to Bob. 

Let us analyse the operation Mu associated with a view v. At step 4 the 
measurement operates only on I$lu,e) and returns 5: we consider the classical 
computation of w as part of the measurement execut,ed by a dishonest Bob. The 
corresponding operation on the photons is denoted M c .  .4t step 5, R is chosen 
by Alice and announced to Bob, but this has no effect on the initial state. At 
step 6 Alice announces 8. The corresponding operation on the initial state is of 
the form Me,& = PO M c  where PO is the projection l0)(0(c which corresponds to 
the announcement of 6. 

Let P, and P, be respectively the projection that corresponds to the an- 
nouncement of s and a, that is, P, projects on the span of the states Iw[E,])c 
such that S = s and P, projects on the span of the states Ib, w[E,] )C such that  
A = T(w[E,]) @ b = a. Note that, because Bob could have some initial infor- 
mation about b, the condition A = a may actually provide information about 
t = b @ a. Finally, let P, be the projection I w[&] ) (  w[&] (C  which corresponds 
to  the announcement of w[E,]. 

Note that Bob has no advantage in measuring the photons at step 6 (because 
he creates Eo and El honestly). So the operation A ~ G  on the photons at step 
5 remains the same at step 6. At  step 7, Alice announces the information for 
privacy amplification and error correction, but this is under Alice’s control and 
operates only on the classical part of the initial state. Certainly, at step 8, Bob 
is free to  execute on the residual state of the photons the complete measurement 
of his choice. The final operation on the initial state Ib, w, 8)cl&,,e) is of the 
form itl, = PcIv)(q4,( where Iv)(&,I operates on I $ w , ~ )  a,nd Pc is the projection 
P,P,P,Pe on the classical part l b , w , d ) ~ .  

7 The small distance property 

In this section, we want to firid a property on A[, that can be proven using 
the fact that Bob must pass the test. Of course, we also want a property that 
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implies t,hat Bob has no information when c = 1. We recall that no more than 
6n positions i for which 8, = ei and wi # I& are tolerated in the test. 

Let us consider an example in which Bob stores some photons and measures 
them only after that  the bases have been announced by Alice. Let E = 86. Bob 
cannot store much more than en  photons, because otherwise he will not pass the 
test: half of the photons are used for the test, half of these tested photons will 
be in the correct basis and half of these will create an error. Consider the case 
where Bob stores exactly e n  photons. Let F be the set of stored photons and 
F the set of non stored photons. To pass the test, Bob measures the non stored 
photons using the commited string of bases B[F] and obtains &[PI. After that he 
has learned all the classical information that Alice announces, Bob measures the 
stored photons in the correct bases B[F] and obtains w [ F ] .  The value ( 6 , 8 , B )  
is fixed in the final view u and the corresponding final operation Iv)(&,] on the 
photons is such that I&) = I $ , , ~ [ . E ’ ] ) ~ $ J ~ , ~ [ F ] ) .  We don’t care about the final 
state Iw). 

In which way the dishonest vect,or I&) = ~$I,,,[F])I$~,o[F]) is close from 
the honest vector I&,) = I$Cl,,g)? If we expand the state I$Cl,,j[.E’])I$w,o[F]) in 

only if we have a[F] = G[p’] .  In particular, we must have d(a ,6)  5 en. Of 
course, Bob could choose the photons that he stores at  random and in view 
of the previous outcomes. In this case, ure cannot expect that, for some fixed 
set F, a[P] = G [ F ]  implies A, = 0. However, i t  is reasonnable to expect that 
A, # 0 implies d ( a , G )  5 en. That is, the state I&,) must be in the span of the 
st,ates I$,,&) with d(a ,6 )  5 €72. This is exactly the property that is called the 
low weight property by Yao [27]. In Yao’s proof, E = 1/40. The test of the QOT 
protocol in ’s’ao’s proof tolerates no error at  all: b = 0. However, Yao’s proof 
works exactly in the same way even when 6 > 0 in the QOT protocol. In section 
10 we shall briefly scketch an alternative proof that shows that, for all practical 
purposes, this property holds. 

Let us formulate the low-weight property in terms of Ad, and the set E,. 
We consider E, because it contains the relevant positions. Let E 5 (1,. . . , n} 
be any set of positions and E be some small posit,ive number. Let d ~ ( a , a ’ )  = 
#{i E E I ai # a:}. If E = (1,. . . ,n} ,  then d ~ ( a , a ’ )  is the usual Hamming 
distance. We denote FV1 [E, en] the space generated by the states J $ J ~ , ~ )  where 
~ E ( ( Y ,  l- i) 5 en. We denote Wo[E, ~ n ]  the space generated by the states I$,,e) 
where d ~ ( a , z )  > €72. We denote Pj[E,en] the projection on Wj[E,en]. 

Let PO = Po[E,,m] and PI = Pl[E,,m]. A vector I$) in the state space of 
the photons has the En-small distance property if and only if Pol$) = 0. In other 
words, it must be in W1[EC,m]. The operation A!,, has the En-small-distance 
property if and only if, for every ( b ,  w, e ) ,  MlIP0 Ib, w, ~9)c l$~ ,o )  = 0. The small- 
distance property corresponds to what Yao calls the low-weight property in [27]. 
Note that the small distance property concerns only the positions in E, whereas 
Yao defines the low weight property in terms of all the positions. This difference 
is not so important: it is clear that lVl [{ 1, . . . , n } ,  en] is a subspace of lV,[E,, en], 
so ’s’ao’s low-weight property implies the small distance property. 

the basis { I + W , ~ ) } ,  we obtain I!b~,g[FI)I~,,e[FI) = c, M+,,,) where A, # 0 
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8 Using the small distance property 

We now show that if the small distance property holds and c = 1, then u provides 
no information at all on b. This corresponds t o  a. generalization of lemma 1 in 
Yao’s paper [27] .  

Lemmal. Let  Ck be the span of the rows of the  matrix f seen as  vectors in 
G F ( 2 ) N .  Let d x i\r be the minimal distance of Ck. If en < 9, c = 1 and Ad, 
has  the en-small distance property, t h e n  the  outcome u provides no information 
a t  all on the string b. 

Proof. The basic idea is to show t,liat, for a fixed u such that c = 1, the prob- 
ability of V = v given B = b, denot,ed p ( v ) b ) ,  is the same for all b. For every 
(w‘,O’), let p(v(b,w‘,B’) = P r ( V  = ?JIB = b A W = w A Q = 0’). We have that 
p ( v l b )  = 4-” cw,,o, p(w)b ,  w’, 0‘). Let P v , b  be the set, of pair (w’, 0‘) such that 

Pclb, to’ ,  B‘)c # 0.  (1) 

Equation (1) must hold if we want to have p ( v ) b ,  w’, 0’) # 0. Since, we are only 
interested in (w’,d’) that cont.ributes to  p(vlb), in what follows we may assume 
that (1) always hold, that is, we only consider the pair (w’,B’) in Pv,b. 

We obtain t,hat Pc operates as the identity operator on Ib, w‘, 0 ’ ) ~ .  Further- 
more, one may easily check that (1) implies that we can express the en-small 
distance property on A4, via the following equation. 

( 4 U t ~ O I d ~ ~ L J , O ~ )  = 0. (2) 

Because of these two f x t s ,  from hereafter we can ignore the classical part of t,he 
initial state in our computation. 

Equation (1) implies w’[&] = w[&], 0’ = 0, g~u[E , ]  = s and hw[E,] = t = 
b @ a. The two last constraints can be written in one equation f ‘w[E,] = 5 where 
z is the concatenation of s and t .  The only degree of freedom is p = 7d[Ec] 
restricted by f,O = z. Let C, = { P  E (0, l } N  1 f P  = x}. There is a one-to-one 
correspondence between ,8 E C, and (w’, 0‘) E P v , b .  Let p(vIp)  = p(w1b,?u’,d’) 
and Iq!!p,e) = Ignoring the classical part of the initial state, using (2) we 
obtain ~ ( 4 3 )  = I(dvI$o)I2 = I(~,IPo + SI4o)I2 = I(&V’~~V‘JD)I~. 

Now, we would like t,o restrict our analysis to  the photons with position in 
E,. One may insert the projection P = I~w,e[E,])(+,,s[Ec] I in front of the 
state I+o,e) because this projection is inplicit in the definition of this state. One 
obtains p(vI/3) = I($vIPlPJ~p,~))2. These two projections commute, so we obtain 

and J+p,s) = ~y‘,,,s[E,]))~~,e) where both 14;) and I q p , ~ )  are states for the pho- 
tons with position in E,. Finally, we obtain that p(vlP) = l {&![P~I~p ,e ) l2  = 
I(&l4p,8)1* where I & , )  = Pllq5p) has t,he En-small-distance property. Now, let us 
consider the density operators 

d 4 P )  = 1 ~ ~ ~ 1 ~ 1 1 ~ ~ , 0 ~ 1 2  where 14;) = P t 4 u ) .  Note that I#;) = l ~ w , B [ ~ c l ) l ~ : )  
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where k = N - r - m. IVe shall show that these density operators cannot be 
distinguished by any state 14) that has the en-small distance property. In section 
9, it is shown that, in the context E, = El, for every /3 E C,, the matrix 
representation of p3. in Bob’s basis {IG,,e) I a E ( 0 ,  l}N) is given by 

if (a  a’) @ C,I { y- 1 otherwise (P*)o,clc = rh’ x 

For every pair of distinct strings z,z’ E (0, l}m+-r, we have that ( A P ) ~ , - <  = 
( P ~ ) ~ , ~ ,  - ( P ~ ~ ) ~ , ~ ~  # 0 if and only if (a  @ a’) E C$ and, for every AD E Czes~, 
Ap 0 (a  @ a‘) = 1. We only need to use the fact that a neccessary condition 
for # 0 is that (0 @ a‘) belongs to the dual Ck and is different from 
0.  Therefore, a necessary condition for (Ap)esa$ # 0 is that d(a,a‘) > dn. 
Therefore, for every ( c u , ~ ’ )  such that> ( L I ~ ) ~ . ~ !  # 0, one of l $ J a , 0 )  or I$J,,,e) 
belongs to Wo[E,  €721. We obtain 

(4iAPId) = C(AP)a,a( ioIG,,j ) iGo(, i  14) = 0 
a.u’ 

This concludes the proof. 0 

9 The density matrices 

In this section, we consider only the phot,ons with positions in El = E,. Therefore 
8 is the opposite of 8, that is, ( V i )  8, # 0,. We temporarily remove the tilde over 
the symbol I). It is as if we considered the general situation where N photons 
are sent from Alice to Bob in a string of bases 8 E {+ 
the matrix representation of the density operators 

in the opposite basis { \ $ a , J ) } .  This computation in 
nz = 1 has been done independently by Mor [7j and 

, x } ~  and we wa.nt to  find 

the easy case r = 0 and 
the author of this paper. 

Actually, Mor considered the case in which the states l0)e. and I l )e ,  are not 
necessarily orthogonal. The case with no restriction on r and m has been done 
after we saw [7] for the case r = 0 and m = 1 and get some additional insight 
from it. In this paper, we are only interested in the orthogonal case. Sometime 
after we finished our work, hlor did in a different context, independently and 
using another approach an analysis of the non orthogonal case [8]. 

Before we begin with the computation, we need some basic tool. For ev- 
ery vector ,L3 E G F ( 2 ) N ,  the mapping p’ cs p’ e p on GF(2)“ corresponds 
to a unitary transformation Uo on the state space of the photons defined via 
Uol+p,e} = / $ ~ ~ p , e ) .  One may easily check that,  for every position i where 
,13, = 1, the transformation Uo maps lo),, into itself and )1)6, into - / l ) d , .  
So, if there is an even number of positions i where a, = PI  = 1 ,  we have 
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Uo\!b,,,j) = b b n , b ) ,  otherwise, we have U L ~ / t b n , j )  = -)I,),,#). In terms of the oper- 
ation 0 on the wctor space GF(2)n3  we have 

For every ,f3 E C, , we have C, = CO @ d. Therefore, for every p E C,, 

where we have used U t  - lJ0. For any operatlor p and any ,!?, one may easily 
0 . -  check that, in Bob's basis, 

Therefore, the main task to accomplish is the computation of the matrix repre- 
sentation of the density operator po in Rob's basis. 

Let k = IV-m-r and {a,,.  . . , O k }  be a basis of CO. For every j  = 1,. . . , k ,  let 
C(j) be the span of {PI , .  . . , P I }  and p ( J )  = 2 - 3  C/3EC,,I I $ ~ , Q ) ( ~ ~ , o I .  Note that 
po = p ( k )  and CO = C(') .  We shall show by induction on j ,  that  for j = 0 , .  . . , k ,  

The case j = 0 can be easily computed: do) = (0) and 
assume that it holds for j and obtain it for j + 1. Because 
p3+1), we have that 

= GF(2)n .  1\7e 
= C ( J )  U(C(j) @ 

Therefore, using formula 4,  we obtain 

Note that ( p ( J + ' ) ) ,  is either 0 or 2-". We obtain that ( ~ ( 3 + ' ) ) ~ , ~ ,  = 2 - N  if 
and only if ( ~ ( 3 ) ) ~ , ~ 9  # 0 and (a c13 a') o pJtl = 0. So, ( ~ ( ' + l ) ) ~ , ~ ,  = 2 - N  if and 
only if, for every p E C(j+l), (a  @ a') p = 0. This last condition is equivalent 
to (a  CB a') E d3+')'. This concludes the induction. Using our computation 
of po = p( ' ) ) ,  together with formula 3 and 4, we finally obtain that,  for every 
P E cz, 

i f  (a a')  $ C+ ( p T ) a , U '  = 2-'" x ( -1)(""" ' )RJ otherwise 
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10 Proving the small distance property 

Here we briefly explain why, for all practical purposes, the small distance prop- 
erty must hold. A complete proof is found in [27]. 

Let us consider an example where Bob chooses a random bit OK and stores 
all the photons when only when OK = 1. In this case, Bob passes the test with 
a probability a little bit greater than 1/2 and the small distance property holds 
with probability 1/2. The point is that we should not expect that ,  if Bob has a 
significant probability to pass the test, then the small distance property always 
holds. In this example, except with negligible probability, the small distance 
property holds when Bob passes the test. 

Consider another example where Bob commits 8 = +", measures every pho- 
ton in a fixed basis 8' and commits the outcome 2ir of this measurement. The 
fixed basis 8' cannot be too far away from + because otherwise Bob will not pass 
the test. Without loss of generality, assume that the magnitude of +(OjO)p  = 
+(lJ l )s ,  = is close to 1 and the magnitude of +(011)0! = + ( l l O ) e t  = set is close 
to 0. The value 6 is included in 'u and I&) = I$:,;,,p). If we expand I&,) in Bob's 
basis -tn we obtain lqL) = C,($,,+Tl I I / I G , ~ ~ ) ~ $ ~ , + ~ ~ ) .  Note that I ( $ , , + l 1  IQc,el)l = 
ls~~ld(a~') x l d ~ j l ~ - ~ ( ~ > ' ) .  So the magnitude of A, = (4e,+n I$C,Y) is very small 
when d(cy,w) is large. We don't have exactly the small distance property, but 
for all practical purposes we have it. 

The point of these two previous examples is that, in the general case, except 
with negligible probability, if Bob passes the test, then the small distance prop- 
erty almost holds. To prove it, let us define I n f o  as the binary random variable 
that takes the value 0 if and only if 

This random variable is a function of the random values v and w. Note that the 
condition I n f o  = 0 means that for all practical purposes v and w behave as if 
Mv had the en-small distance property. 

Let us pick some value y = lob6. We want to  obtain t,hat if Pr (Pass  = 1) > 
2-Tn then 

Pr(1nfo = 1 1 Pass = 1) _< 2-'" (8) 

where r is some function of y. The difficulty with the variable I n f o  is that it 
concerns the final view of Bob. It would be easier to consider the situation just 
after the test. Therefore, let us consider the ratio 

where p is Alice's preparation and Us,,, = L V l ~ , G J V ~ , ~ .  We shall briefly scketch 
why Pr(Pass  = 1) > 2 - T n  implies that 

(r(Q, R, i i j ) ) ~ ~ , ~ , = ~  I 2--27n (9) 
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This would do the job: expanding the expression ( r (0 ,  R, zij))pass=l and after 
some algebra, one obtains that (9) implies (8). Note that we can ignore the clas- 
sical part I w ) ~  in (9). The density operator on the remaining part is simply, up 
to a factor, the identity operator. This density operator is best considered in 
Bob's basis {lGa,i}} for the photons. Consider the situation where the informa- 
tion Q is first read and next the operation POMG is executed. Let J[E] be the 
binary random variable that takes the value 0 if and only if 1qha,8) E Wo[E, e n ] .  
The numerator and the denominator in the above ratio correspond respectively 
to  Pr(J[E,]  = 0 A I$ = Q A 0 = 0) and Pr (@ = 8 A 0 = 0).  Note that given 
the random variables that  exist before P,PaP, is executed, the I-andom variable 
Puss behaves as the random variable JITo n R]. Equation 9 simply means tha t  
Pr(J[E,] = 0 A J[To n R] = 1) 5 2--2Tn. This is not hard to show by considering 
the classical situation that  we have after that  Q is fixed. This concludes our 
scketchy proof of this section. 

We are grateful to  Gilles Brassard, Claude Crkpeau, Tal Mor and Andrew 
Yao for fruitful discussion. 
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