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We consider discrete-alphabet encoding schemes for coherent-state quantum key distribution. The
sender encodes the letters of a finite-size alphabet into coherent states whose amplitudes are sym-
metrically distributed on a circle centered in the origin of the phase space. We study the asymptotic
performance of this phase-encoded coherent-state protocol in direct and reverse reconciliation as-
suming both loss and thermal noise in the communication channel. In particular, we show that
using just four phase-shifted coherent states is sufficient for generating secret key rates of the order
of 4× 10−3 bits per channel use at about 15 dB loss in the presence of realistic excess noise.

I. INTRODUCTION

Quantum cryptography, or more accurately known as
quantum key distribution (QKD), is based on the laws of
quantum information [1–3] to provide in principle secure
communication between two authorized parties [4, 5], tra-
ditionally called Alice and Bob. In particular these two
parties exchange many signals using a quantum channel
which prohibits an exact duplication of them [6]. This
fact allows the remote parties to quantify and bound
the amount of information that a potential eavesdrop-
per (Eve) may intercept, so that they can still extract
and share a secret key. Such key may then be used for
data encryption by means of the one-time pad [7].

Since the first QKD protocol [8], many advances have
been made including theoretical proofs, proof-of princi-
ple experiments and in-field tests. Despite these efforts,
the performance of any point-to-point QKD protocol can-
not surpass the fundamental repeater-less PLOB bound
established in Ref. [9] based on the relative entropy of en-
tanglement of the channel (see Ref. [10] for a review, and
Ref. [11] for an extension to repeaters and arbitrary net-
works). However, it is also true that continuous-variable
(CV) QKD [12] has a key rate performance which is not
far from this ultimate bound when we assume ideal recon-
ciliation and detectors with high efficiency. Furthermore,
another advantage of CV systems [13] relies on the use
of cheap room temperature equipment, easily integrable
in the current telecommunication infrastructure.

In recent years, we have witnessed the introduction
of many protocols based on a CV encoding, e.g., ex-
ploiting a Gaussian modulation of the amplitude of
Gaussian states. These protocols were designed for
squeezed states [14, 15], coherent states [16, 17], ther-
mal states [18–21], and also extended from one-way
to two-way quantum communication [22–26] or reduced
to one-dimensional encoding [27]. In addition, proto-
cols such as in Ref. [28–30], assuming measurement-
device-independence (MDI) [31, 32] as a counter-measure
against detectors’ side-channel attacks, have extended
the concept of CV-QKD to end-to-end network imple-
mentations [33]. For most of these protocols, not only

experiments were shown [28, 34–41], but also their se-
curity analysis has been gradually refined to incorporate
finite-size effects [42–44] and composable aspects [45–47].

We know that Gaussian encoding may be subject to
a reduced performance due to the reconciliation codes.
This issue can be easily fixed by resorting to a discrete-
alphabet encoding, e.g., coherent states with fixed energy
but discrete shifting of their phase as in Ref. [48]. Nev-
ertheless, the study of these protocols has been mainly
restricted to the case of a pure-loss channel. In Ref. [49–
51] a bound for the secret key rate has been calculated
for two or four coherent states in a thermal loss chan-
nel. However, this was based on a Gaussian approxima-
tion [52] of the alphabet, which rapidly becomes loose
when the energy of the states increases. Also note that
Refs. [53, 54] studied binary and ternary modulation pro-
tocols in the presence of collective attacks.

In this work, we consider a multi-letter protocol where
the letters are encoded in different phases of a coherent
state with fixed energy, so as to form a symmetric con-
stellation of coherent states equidistant from the origin
of the phase space. For this phase-encoded protocol, we
compute the secret key rate in direct and reverse recon-
ciliation assuming a thermal-loss channel, i.e., the pres-
ence of an entangling cloner collective attack [12, 55].
This is the most realistic collective Gaussian attack [56]
since it encapsulates the most essential aspects of a typ-
ical communication line. Although the Gaussian at-
tacks have been proven to be optimal only in the case
of a protocol with Gaussian encoding, notice that in the
regime where the multi-letter protocol approximates the
Gaussian-encoding protocol we can certainly assume the
same optimal attack. In the other regimes, where the
approximation is not exact, we expect, because of conti-
nuity arguments, that the optimal attack will be a per-
turbation to the Gaussian counterpart.

We perform an asymptotic security analysis based on
infinitely-many uses of the channel [57]. While our anal-
ysis is for arbitrary N number of phases, we specify the
results for the case of N = 4 which well approximates the
continuous limit N → ∞ when the energy of the states
is sufficiently low.
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II. PROTOCOL

Consider a discrete alphabet with N letters, randomly
drawn by Alice. Each letter k is encoded into a coherent
state with amplitude ak = zeiφk , where z is a fixed ra-
dius in phase space (it is just the square root of the mean
number of photons) and the phase is given by φk = 2π

N k.
We call each realization C(z,N) of this encoding scheme
a “constellation”. As an example, a four-state constella-
tion is shown in Fig. 1. The coherent state is prepared
on mode A which is sent through a thermal-loss chan-
nel, whose output B is detected by Bob. In a practical
realization of the protocol, this measurement is an het-
erodyne detection [58].
As already mentioned, the thermal-loss channel de-

scribes the effect of an entangling cloner collective at-
tack [55]. In each use of the channel, Eve’s modes e and
E are prepared in a two-mode squeezed vacuum (TMSV)
state with variance ω ≥ 1, so that n̄ = ω−1

2 is the mean
number of photons in each thermal mode [12]. Mode E
interacts with Alice’s mode A via a beam splitter with
transmissivity τ , which characterizes the channel losses.
Eve’s output mode E′ and kept mode e are then stored
in a quantum memory which is measured at the end of
the protocol. Note that for n̄ = 0 Eve is injecting a
vacuum mode, so that the channel becomes a pure-loss
channel [9, 12]. In this case, the output modes E′ and B
are described by coherent states with attenuated ampli-
tudes.

FIG. 1: Alice prepares mode A in one of the four coherent
states of the constellation C(z, 4) with radius z and sends
it to Bob through a thermal-loss channel dilated into an
entangling-cloner attack. In particular, the beam splitter has
transmissivity τ , characterizing the channel loss, and the vari-
ance ω ≥ 1 of Eve’s TMSV state provides additional thermal
noise to the channel. Eve’s output modes are stored in a
quantum memory measured at the end of the protocol, i.e.,
after the entire quantum communication and Alice and Bob’s
classical communication. At the output of the channel, Bob
applies an heterodyne detection to mode B. An upper bound
on the performance of the parties can be computed by assum-
ing that also Bob has a quantum memory that he measures
at the end of the entire communication process.

III. DIRECT RECONCILIATION

We start by presenting the analysis of the protocol in
direct reconciliation [16], where Bob infers Alice’s input.

This analysis is first given for the pure-loss channel, con-
sidering an upper bound for the key rate (assuming a
quantum memory for Bob) and then a realistic key rate
(where Bob applies heterodyne detection). We then gen-
eralize the realistic key rate to a thermal-loss channel,
presenting the specific results for N = 4 coherent states.

A. Pure loss channel

1. Upper bound for the secret key rate

In this section, we assume that Bob has a quantum
memory so that he may apply an optimal joint detection.
This gives an upper bound to the actual performance
of the protocol. This analysis provides simple results
that allow us to give an insight on the performance with
respect to different constellation parameters z and N . In
particular, we may show the conditions where N = 4
coherent states allow the parties to achieve essentially
the same performance as N → ∞ coherent states.
Because Alice is sending coherent states |ak〉 with the

same probability pk = 1/N , the average state before the
channel is given by

ρA =
1

N

N−1
∑

k=0

|ak〉〈ak|. (1)

It is clear that this state is parameterized by N and z. In
Fig. 2, we have plotted the von Neumann entropy S(ρA)
of ρA for different N over the radius of the encoding
scheme z. Recall that

S(ρ) := −Tr(ρ log2 ρ) = −
∑

j

nj log2 nj , (2)

where nj are the eigenvalues of a generic state ρ (see Ap-
pendix A for more details on how to compute this entropy
via a preliminary Gram-Schmidt procedure). The en-
tropy S(ρA) is larger as we increase the number of states
in the circle. For any given N , the entropy saturates to
a constant value after a certain value of the radius z. We
also consider the limit of N → ∞ (see Appendix B for
the calculation of the corresponding average state).
After a pure-loss channel with transmissivity τ ∈ (0, 1),

Bob’s average state will be

ρB =
1

N

N−1
∑

k=0

|
√
τak〉〈

√
τak|. (3)

Assuming that Bob accesses a quantum memory and
may perform a collective optimal detection of all the out-
put modes, his accessible information is bounded by the
Holevo information [12]

χ(B : {ak}) = S(ρB)−
1

N

N−1
∑

k=0

S(|ak〉〈ak|). (4)
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FIG. 2: The von Neumann entropy S(ρA) of the Alice’s av-
erage state ρA for different number N over the radius z of
the constellation circle (solid lines). We plotted also the en-
tropy of the continuous uniform distribution (N → ∞) of the
constellation states (dashed line).

In particular, since a coherent state is a pure state its
von Neumann entropy is zero, which simplifies Eq. (4)
into χ(B : {ak}) = S(ρB). In order to calculate the von
Neumann entropy of the mixture ρB, we express the N
coherent states in terms of a Gram-Schmidt orthonormal
basis (see details in Appendix A).
In the same fashion, we calculate the Holevo informa-

tion of the eavesdropper, who can keep in a quantum
memory the other output E′ of the beam splitter. Then
Eve’s average state will be given by

ρE′ =
1

N

N−1
∑

k=0

|
√
1− τak〉〈

√
1− τak| (5)

and her accessible information by

χ(E′ : {ak}) = S(ρE′). (6)

Therefore, we get the optimal secret key rate

R = χ(B : {ak})− χ(E′ : {ak}) = S(ρB)− S(ρE′). (7)

In Fig. 3 we plotted this optimal rate for N = 4 as a
function of the transmissivity τ and for different values of
the radius z. We see that there is an optimal intermediate
value for z, so that it cannot be too small (so that all the
coherent states are too similar to the vacuum), neither
too large (so that all the coherent states become almost-
perfectly distinguishable). Then, we also show that the
optimal performance for the N = 4 protocol is very close
to that of the continuous-alphabet protocol N = ∞ for
the relevant values of the radius z. In Fig. 4, we see that
the rate is maximized by a specific value of z for any
given value of the transmissivity.
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FIG. 3: The optimal secret key rate of Eq. (7) for N=4 is
plotted over the transmissivity τ for different values of the
radius z of the constellation. We can see that for values z < 1
the rate decreases as z is decreasing (blue lines) while for the
z > 1 the rate decreases as z increases till it gets to zero for
z = 106 (green lines). We also plotted the optimal secret key
rate for the continuous uniform distribution of states (black
dashed lines). We see that for z < 0.6 the two rates become
almost identical. This corresponds to a saturation point for
the 4-state protocol , so that it makes no difference to use
four coherent states or an infinite number.
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FIG. 4: We plotted the optimal rate (upper bound) as a
function of the radius z with fixed transmissivities τ =
0.6, 0.7, 0.8, 0.9. We can observe that there are certain val-
ues that maximize the rate for a given transmissivity.

2. Realistic secret key rate

Contrary to the previous discussion, the realistic situa-
tion is dictated by the limitations in the current technol-
ogy. In this case, Bob does not use a quantum memory
and an optimal collective measurement but individual
heterodyne detections, with a continuous (complex) out-
come b. Therefore, in order to calculate the secret key
rate, we need to consider the corresponding mutual in-
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FIG. 5: Realistic secret-key rate (bits/use) over the attenua-
tion (decibels) in direct reconciliation for N = 4 and z = 0.1.
We plot the rate for a pure-loss channel (upper solid line) and
a thermal-loss channel with mean photon number n̄ = 0.01
(middle dashed line) and n̄ = 0.1 (lower solid line).

formation between Alice and Bob. Let us define the vari-
ables XA = {ak, pk} with pk = 1/N and XB = {b, p(b)}.
Then, we consider

I(XA : XB) = H(XA)−H(XA|XB), (8)

where H is the Shannon entropy and H(...|...) the condi-
tional Shannon entropy. Recall that

H(XA|XB) =

∫

p(b)H(XA|XB = b)d2b. (9)

It is clear that H(XA) = log2N . In order to calcu-
late the probability distribution p(ak|b), i.e., the prob-
ability that the state |ak〉 was sent through the chan-
nel given that Bob measured the amplitude b. The
probability that Bob measures b given that the coher-
ent state |αk〉 was sent through the channel is given by

p(b|ak) = 1
π e

−|b−√
τak|2 . Therefore, we can apply Bayes’

rule to obtain

p(ak|b) =
1

Nπp(b)
e−|b−√

τak|2 , (10)

where p(b) = 1
N

∑N
k=0 p(b|ak). With all these elements

we can compute the asymptotic rate R = I(XA : XB)−
S(ρE′) which is plotted in Fig. 5 for N = 4.

B. Thermal loss channel

We now consider the more general case of a thermal-
loss channel, i.e., the presence of an entangling-cloner
attack. Let us write Eve’s TMSV state in the Fock ba-
sis [12]

ρEe(λ) = (1− λ2)

∞
∑

n=0

(−λ)(k+l)|k〉〈l| ⊗ |k〉〈l|, (11)

with λ = tanh
[

1
2arcosh(2n̄+ 1)

]

, where n̄ is the mean
number of thermal photons. Let us apply the beam split-
ter operation to Alice’s mode A and Eve’s mode E, with
annihilation operators âA and âE , respectively. This is
given by [12]

U(θ) = exp
[

θ
(

â†AâE − âAâ
†
E

)]

, (12)

where θ = arcos(
√
τ). Therefore, the global output state

of Bob (mode B) and Eve (modes e and E′), is given by

ρBE′e(θ, ak, λ) = U(θ)ΠA(ak)ρEe(λ)U
†(θ), (13)

where ΠA(ak) := |ak〉〈ak|. By tracing out B, we obtain
Eve’s state

ρEve|k := ρE’e(θ, ak, λ) = TrB[ρBE′e(θ, ak, λ)]. (14)

The average state of Eve is given by the convex sum

ρEve(θ, z, λ) =
1

N

N
∑

k=0

ρEve|k. (15)

Therefore, the Holevo information is given by

χ(Eve : XA) = S(ρEve)−
1

N

N
∑

k=0

S(ρEve|k). (16)

The entropy of the state ρEve|k does not depend on k,
i.e., the phase of the amplitude of the coherent state that
Alice has sent. Thus Eq. (16) can be simplified to

χ(Eve : XA) = S(ρEve)− S(ρEve|k), (17)

for any k. In order to calculate the mutual information,
we follow the reasoning of Section IIIA 2 with the differ-
ence that Bob’s probability distribution is given by

p(b|ak)(n̄) = Tr[Π(b)ρ(
√
τak, (1− τ)n̄)Π†(b)], (18)

where Π(b) := |b〉〈b| and ρ(
√
τak, (1− τ)n̄) is a displaced

thermal state with amplitude
√
τak and mean photon

number (1− τ)n̄. We find (see Appendix C)

p(b|ak)(n̄) =
exp

[

|b−√
τak|2

1+(1−t)n̄

]

π(1 + (1− τ)n̄)
. (19)

Using the Bayes’ rule we can derive p(ak|b)(n̄) and com-
pute Alice and Bob’s mutual information via the formula
in Eq. (8). Altogether, we then compute (numerically)
the direct reconciliation secret-key rate

R(n̄) = I(XA : XB)(n̄)− χ(Eve : XA). (20)

In Fig. 5, we plot this secret key rate over the attenua-
tion for a protocol with N = 4 and z = 0.1. In particular,
we see that the performance obtained in the presence of
thermal noise n̄ = 0.01 is not so far from the performance
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FIG. 6: Protocol for N = 4 in direct reconciliation. Upper
panel: Key rate is optimized over z ∈ (0, 2) and plotted versus
attenuation. We assume a pure loss channel (solid line) and a
thermal loss channel with n̄ = 0.1 (dashed line). Lower panel:
We plot the optimal value of z versus attenuation, for the pure
loss case (solid line) and the thermal loss case (dashed line).

achievable in the presence of a pure-loss channel. In other
words, the four-state protocol is sufficiently robust to the
presence of excess noise. In Fig. 6, we optimize the rate
with respect to the radius z for both pure loss and ther-
mal loss channels. In the lower panel, we can see the dif-
ference between the two optimal radii corresponding to
the two cases. In Fig. 7, we also see incremental changes
in the security threshold of the protocol by increasing
the number of encoding states, e.g. from N = 4 to 10,
assuming a thermal loss channel. In order to estimate
the excess noise ǫ we assume a variation of the original
protocol [59]. As expected, we also have that direct rec-
onciliation restricts the use of the protocol to low loss.
The case is different for reverse reconciliation that we
study below.

IV. REVERSE RECONCILIATION

As before, for the sake of simplicity, we start by con-
sidering the case of a pure-loss channel in reverse recon-
ciliation [34] and then we extend the results to the pres-
ence of thermal noise. We just need to re-compute Eve’s
Holevo bound (now with respect to Bob’s outcomes).
More specifically, we need to re-compute Eve’s condi-
tional entropy.
Eve’s state conditioned to Bob’s outcome b is

ρE′|b =
N−1
∑

k=0

p(ak|b)|
√
1− τak〉〈

√
1− τak|, (21)

where p(ak|b) is given in Eq. (10). We can then com-
pute S(ρE′|b) which is now depending on b. Using this
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FIG. 7: We plot the security thresholds in direct reconcilia-
tion, i.e., maximum tolerable excess noise ǫ versus transmis-
sivity τ for N = 4 (red line), N = 7 (blue dashed line) and
N = 10 (green line).
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FIG. 8: Realistic secret key rate (bits/use) over the attenua-
tion (decibels) in reverse reconciliation for N = 4 and z = 0.1.
We have plotted the rate for a pure-loss channel (upper black
line) and a thermal-loss channel with excess noise ǫ = 0.001
(lower red line). Both these rates coincide with the corre-
sponding rates achievable by a Gaussian protocol modulating
coherent states with variance VM = 0.02.

quantity, we may write the secret-key rate

R = I(XA : XB)− S(ρE′) +

∫

d2bp(b)S(ρE′|b). (22)

This rate is plotted in Fig. 8 for the four-state protocol
N = 4 and radius z = 0.1.
Let us now consider the presence of thermal noise. In

this case, Eve’s conditional state is given by

ρE′e|b =
N−1
∑

k=0

p(ak|b)(n̄)ρEve|k, (23)
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where ρEve|k is given in Eq. (14) and p(ak|b) comes from
Eq. (19). Therefore, we may derive S(ρE′e|b) and calcu-
late the secret-key rate

R(n̄) = I(XA : XB)(n̄)− S(ρEve) +

∫

d2b p(b)(n̄)ρE′e|b,

(24)

where p(b)(n̄) := 1
N

∑N−1
k=0 p(b|ak)(n̄). Numerically, we

compute this rate by truncating the Hilbert space to a
suitable number of photons, which is of the order of ≃
10 − 15 photons for the specific regime of parameters
considered.
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FIG. 9: Realistic secret key rate (bits/use) over the attenu-
ation (decibels) in reverse reconciliation over the attenuation
(decibels) for N = 4 and z = 1. We have plotted the rate
for a pure-loss channel (lower solid line) and a thermal-loss
channel with excess noise ǫ = 0.01 (lower dashed line). The
corresponding secret key rate for the protocol with Gaussian
modulation (VM = 2) has also been plotted for the case of
pure-loss channel (upper solid line) and thermal-loss channel
with excess noise ǫ = 0.01 (upper dashed line). We see that,
for this regime of energies, the rate of the four-state protocol
does not coincide with the rate of the Gaussian protocol.

In Fig. 8, we plot the reverse reconciliation secret
key rate over the attenuation for the four-state protocol
N = 4 with radius z = 0.1 and excess noise ǫ = 0.001 [59].
We can see that the protocol is sufficiently robust to ex-
cess noise, achieving a rate of 6 × 10−4 bits per channel
use for attenuation values of about 20 dB. In this regime
of energy, the performance of the protocol coincides with
that of a Gaussian protocol modulating coherent state
with modulation variance VM = 2z2 (and performing
heterodyne detection on the channel output). On the
contrary, for larger energies, e.g., for a constellation ra-
dius z = 1, the rate of the four-state protocol does not
coincide with its Gaussian counterpart, as also illustrated
in Fig. 9. Here the four-state protocol can achieve a rate
of the order of 4× 10−3 bits per channel use for attenu-
ation values of about 15 dB and excess noise ǫ = 0.01.

V. CONCLUSION

In this work, we have investigated finite-alphabet
coherent-state QKD protocols, where the encoding is per-
formed by randomly choosing the phase of the coherent
states so that they are iso-energetic and symmetrically
distributed around the origin of the phase space. Consid-
ering an optimal scenario where Bob may access a quan-
tum memory and the channel is pure-loss, we have ana-
lyzed the conditions under which the use of four states
can approximate a continuous alphabet. Our analysis
is asymptotic, i.e., we assume the limit of infinite signal
states exchanged by the remote parties, so that it does
not account for finite-size effects and composable aspects.
Nevertheless, this is the first study of these types of pro-
tocols in the presence of realistic thermal-loss conditions,
without assuming Gaussian approximations. In partic-
ular, we assume an entangling cloner attack, which, as
the dilation of the thermal loss channel, is describing a
typical communication line. In reverse reconciliation, we
find that the four-state phase-encoded protocol is suffi-
ciently robust to loss and noise, so that it may be used to
extract secret keys at metropolitan mid-range distances
(e.g. around 75 km).
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Appendix A: Orthonormal basis for N coherent

states

Suppose that we have N coherent states described by
amplitudes ak for k = 0, 1 . . .N−1. Since these states are
non-orthogonal we can have a matrix V that describes
their overlaps, which are given by

Vij = 〈ai|aj〉 = exp

[

−1

2

(

|ai|2 + |aj |2 − 2a∗i aj
)

]

. (A1)

For a constellation of states as described before and after
the attenuation due to the propagation through a pure-
loss channel, the overlaps for Bob are given by

V B
ij = 〈

√
τai|

√
τaj〉 = exp

[

τz2
(

ei
2π

N
(j−i) − 1

)]

, (A2)
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while for Eve we may write

V E
ij =〈

√
1− τai|

√
1− τaj〉 =

= exp
[

(1− τ)z2
(

ei
2π

N
(j−i) − 1

)]

. (A3)

Then, according to the Gram-Schmidt procedure, we can
derive an orthonormal basis {|i〉} = {|0〉, |1〉, . . . |N − 1〉}
for the subspace spanned by these N coherent states. As
a result, each state will be expressed as a superposition
of this basis vectors as

|ak〉 =
k

∑

i=0

Mki|i〉 (A4)

where the Mki can be computed by the algorithm

Mk0 = V0k,

Mki =
1

Mii

(

Vik −∑i−1
j=0 M

∗
ijMkj

)

if 1 ≤ i < k,

Mki = 0 otherwise,

Mkk =

√

1−∑k−1
i=0 |Mki|2 for k > 0.

Then the density matrix ρ(ak) = |ak〉〈ak| is given by

ρ(ak) =

k
∑

i,j=0

Mk,iM
∗
k,j |i〉〈j|, (A5)

and the average state takes the form

ρ =
1

N

N−1
∑

k=0

ρ(ak) =
1

N

N−1
∑

k=0

k
∑

i,j=0

Mk,iM
∗
k,j |i〉〈j|. (A6)

Diagonalizing the previous state, we then compute its
von Neumann entropy.

Appendix B: Asymptotic state for a continuous

alphabet

Let us express a coherent state in the Fock basis, i.e,

Π(a) := |a〉〈a| = e−|a|2
∞
∑

n,m=0

an(a†)m√
n!
√
m!

|n〉〈m| (B1)

In order to be able to do numerical calculations, we have
to truncate the Fock space and a very good approxima-
tion is given by n ∼ 2|α|2. As a result, in this truncated
Fock basis, the state will be

Πtranc(a) ≃ e−|a|2
2⌊|a|2⌋
∑

n,m=0

an(a†)m√
n!
√
m!

|n〉〈m|. (B2)

For N coherent states in a constellation with radius z,
the average state can be written as

ρ =
e−z2

N

2⌊z2⌋
∑

n,m=0

z(n+m)
∑N−1

j=0 ei
2π

N
(n−m)j

√
n!
√
m!

|n〉〈m|, (B3)

where the non zero terms are the terms with m− n = N
and n = m. For a continuous distribution p(aφ) = 1

2π
of phase-encoded coherent states |aφ〉 with fixed radius
z = |a| and φ = arg(aφ), Eq. (B3) becomes

ρ =
e−z2

2π

2⌊z2⌋
∑

n,m=0

z(n+m)
∫ 2π

0 eiφ(n−m)dφ√
n!
√
m!

|n〉〈m| =

=e−z2

2⌊z2⌋
∑

n=0

z2n

n!
|n〉〈n|. (B4)

Appendix C: Displaced thermal state

A thermal state with mean number of photons n̄ may
be expressed as a convex sum of coherent states |a〉 ac-
cording to the P-Glauber representation as

ρ(n̄) =

∫

p(a, n̄)|a〉〈a|d2a, p(a, n̄) =
1

n̄π
e−|a|2/n̄. (C1)

Applying the displacement operator D(d), which dis-
places a coherent state |a〉 with amplitude a into a co-
herent state |a + d〉 with amplitude a + d, we obtain a
displaced thermal state

ρ(d, n̄) = D(d)ρ(n̄)D†(d) =

=

∫

p(a, n̄)D(d)|a〉〈a|D†(d) d2a =

=

∫

p(a, n̄)|a+ d〉〈a+ d|d2a =

=

∫

p(c− d, n̄)|c〉〈c|d2c (C2)

with p(c − d, n̄) = 1
n̄π e

−|c−d|2/n̄. According to equation
Eq. (B1), we can have a representation of this state in
Fock basis, so that

ρ(d, n̄) =

∫ ∞
∑

n,m=0

p(a− d, n̄)e−|a|2 a
n(a∗)m√
n!
√
m!

|n〉〈m| d2a

(C3)
The state after projecting to a coherent state |b〉 (hetero-
dyne measurement), i.e., Π(b)ρ(d, n̄)Π†(b), will be calcu-
lated as

∫

d2a
∞
∑

n,m,k,l,i,j=0

p(a− d, n̄)e−|α|2 α
n(α∗)m√
n!
√
m!

e−|b|2 b
k(b∗)l√
k!
√
l!
×

× e−|b|2 b
i(b∗)j√
i!
√
j!
|k〉〈l||n〉〈m||i〉〈j| = (C4)

∫

d2a p(a− d, n̄)e−|a|2e−2|b|2
∞
∑

n,m=0

(ab∗)n(ba∗)m√
n!
√
m!

×

×
∞
∑

k,j=0

bk(b∗)j√
k!
√
j!
|k〉〈j|, (C5)
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and, applying the trace operation, we obtain the proba-
bility distribution

p(b|d)(n̄) =
∫

d2a
1

n̄π
e−|a−d|2/n̄e−(|a|2+|b|2−b∗a−ba∗) =

=
1

n̄π

∫

e−|a−d|2/n̄e−|a−b|2d2a =

=
1

(n̄+ 1)π
exp

(

−|b− d|2/(n̄+ 1)
)

. (C6)

Let us write this probability distribution for the thermal
output state of a thermal-loss channel with transmissivity
τ and mean thermal photon number n̄ when applied to an
input coherent state |ak〉 (d :=

√
τak). We find Eq. (19).
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