
ARTICLE OPEN

Quantum key distribution with setting-choice-independently

correlated light sources
Akihiro Mizutani1,2, Go Kato3,4, Koji Azuma5,4, Marcos Curty6, Rikizo Ikuta1, Takashi Yamamoto1, Nobuyuki Imoto1, Hoi-Kwong Lo7 and

Kiyoshi Tamaki5,8

Despite the enormous theoretical and experimental progress made so far in quantum key distribution (QKD), the security of most
existing practical QKD systems is not rigorously established yet. A critical obstacle is that almost all existing security proofs make
ideal assumptions on the QKD devices. Problematically, such assumptions are hard to satisfy in the experiments, and therefore it is
not obvious how to apply such security proofs to practical QKD systems. Fortunately, any imperfections and security-loopholes in
the measurement devices can be perfectly closed by measurement-device-independent QKD (MDI-QKD), and thus we only need to
consider how to secure the source devices. Among imperfections in the source devices, correlations between the sending pulses
and modulation fluctuations are one of the principal problems, which unfortunately most of the existing security proofs do not
consider. In this paper, we take into account these imperfections and enhance the implementation security of QKD. Specifically, we
consider a setting-choice-independent correlation (SCIC) framework in which the sending pulses can present arbitrary correlations
but they are independent of the previous setting choices such as the bit, the basis and the intensity settings. Within the framework
of SCIC, we consider the dominant fluctuations of the sending states, such as the relative phases and the intensities, and provide a
self-contained information-theoretic security proof for the loss-tolerant QKD protocol in the finite-key regime. We demonstrate the
feasibility of secure quantum communication, and thus our work constitutes a crucial step towards guaranteeing the security of
practical QKD systems.

npj Quantum Information             (2019) 5:8 ; https://doi.org/10.1038/s41534-018-0122-y

INTRODUCTION

Quantum key distribution (QKD)1 is one of the most promising
applications of quantum information processing, and it is now on
the verge of global commercialisation. Nonetheless, there are still
several theoretical and experimental challenges2 that need to be
addressed before its wide-scale deployment. One such challenge
is the lack of practical security proofs that bridge the gap between
theory and practice. In the security proof of QKD, one typically
assumes some mathematical models for Alice and Bob’s devices.
However, if these models do not faithfully capture the physical
properties of the actual QKD devices, the security of the systems is
no longer guaranteed. In fact, such discrepancies between device
models assumed in security proofs and the properties of actual
devices could be exploited by Eve to attack both the source3,4 and
the detection apparatuses in refs 5–12. It is therefore indispensable
for realising secure QKD to develop security proof techniques that
can be applied to actual devices.
One possible approach to close this gap is to use device-

independent QKD.13–16 Its main drawback is, however, that it
delivers a quite low secret key rate with current technology, and it
still requires some device characterisations. Note that device-
independent QKD is known to be vulnerable to memory attacks.17

See also ref. 18 for experimentally feasible countermeasures

against this type of attacks. An alternative solution is to use
measurement-device-independent (MDI) QKD,19 which guaran-
tees the security of QKD without making any assumption on the
measurement device. That is, MDI-QKD completely closes the
security loophole in the detection unit. This technique still
requires, however, that certain assumptions on the source device
are satisfied.
Unfortunately, the status of the security proofs with practical

light sources is not fully satisfactory since most of the existing
security proofs do not consider any imperfections (other than
multiple photon emission) of the source devices. For instance,
finite-key security analyses with a single-photon source20–22 and
those with a coherent light source23–25 consider an unrealistic
scenario in which there are no noises or imperfections in the QKD
devices. As a result, the states of emitted pulses are identical and
independent and the optical modulations are perfect, i.e., the
phase modulation values are {0, π/2, π, 3π/2} and the intensity of a
pulse is modulated exactly as prescribed by the protocol. A few
finite-key security analyses26,27 consider the imperfections, where
in ref. 27 nearest neighbour intensity correlations are accommo-
dated, and in ref. 26 imperfect IID (independent and identically
distributed) phase modulation errors are accommodated.
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Among the imperfections in the source, one of the crucial
problems is the presence of correlations among the sending
pulses. We categorise these correlations into two types: the first
type is setting-choice-independent correlation (SCIC) where the
correlation is independent of Alice’s choices of settings such as
the bit, the basis, and the intensity settings, and the second type is
setting-choice-dependent correlation (SCDC) where the correla-
tion is dependent on Alice’s setting choices. For instance, the
former case (SCIC) may arise when the temperature in the laser
drifts slowly over time due to thermal effects, where such drift
could depend on how long we have operated a device and the
ambient temperature of the room. Another example may be
found in modulation devices which are operated by power supply
fluctuating in time. On the other hand, the latter case (SCDC)
occurs when the ith sending state could depend on the previous
setting choices that Alice has made up to the (i− 1)th pulse. That is
to say, secret information encoded in the previous quantum
signals sent by Alice could be leaked to subsequent quantum
signals sent by Alice. In other words, subsequent signals could act
as side channels for previous signals. Recently, the SCDC between
intensities of different pulses has been observed experimentally.27

Also, the authors of ref. 27 conducted a security analysis which is
valid for the restricted scenario where only the nearest neighbour
intensity correlation is considered. More in general, however, the
ith state could be dependent on all the previous setting choices
that Alice has made. This general correlation seems to be very
hard to deal with theoretically, and even if we would have a
theoretical countermeasure against it, the characterisation of the
device might be highly non-trivial. Fortunately, it would be
reasonable to assume that the SCDC could be eliminated if the
modulation devices are initialised each time after Alice emits a
pulse. For instance, before Alice sends the (i+ 1)th pulse, she
applies a random voltage to the modulation devices several times
until the setting-choice information up to the ith pulse which is
stored in the device is deleted. This potential solution may
decrease the repetition rate of the source, but this could be
overcome by multiplexing several sources, for instance by
employing integrated silicon photonics.28–30 With this reasonable
solution, we are left with rigorously dealing with SCIC.
In this paper, we consider the dominant fluctuations of the

sending state, such as the relative phase26,31–33 and the
intensity26,27,34,35 within the framework of SCIC, and we provide
an information-theoretic security proof in the finite-key regime. In
particular, we consider the loss-tolerant QKD protocol36 that is a
BB84 type protocol which, unlike the standard BB84 protocol,37

has the advantage of being robust against phase modulation
errors. The loss-tolerant protocol is highly practical and has been
experimentally demonstrated in both prepare & measure
QKD32,38,39 and MDI-QKD in ref. 33. Our main contribution is to
explicitly write down all the assumptions that we impose on QKD
systems, and by using only these assumptions we give a self-
contained security proof, which enhances implementation secur-
ity of QKD. Our numerical simulations of the key generation rate
show that provably secure keys can be distributed over long
distances within a reasonable number of pulses sent, e.g. 1012

pulses.
The paper is organised as follows. In the Results section, we

introduce the assumptions on the devices and the protocol
considered. Also, we present a formula for the key generation
length of the protocol. This formula depends on the parameters
that need to be estimated; the estimation results for these
parameters are shown in this section. In the final part of the
Results section, we present our numerical simulation results for
the key generation rate. Here, we assume realistic intervals for the
actual phases and intensities under the framework of SCIC, and we
show that secure communication is possible within a reasonable
time frame of signal transmission, say 1012 signals.

RESULTS

Here, we introduce the assumptions on Alice and Bob’s devices
and the protocol we consider throughout this paper. To describe
the assumptions, we use a shorthand notation Xi:= Xi, Xi−1, …, X1

for a sequence of random variables fX jgij¼1 and X0:= 0. In what
follows, we first summarise the assumptions we make on the
sending devices as well as those on the measurement devices,
and then we move on to the description of the protocol.

Assumptions on Alice’s transmitter

(A-1) Assumption on the sending state ρ̂iðθi ; μiÞBi
(A-1-i) Coherent-state assumption: Alice employs a coherent

light source with a Poissonian photon number distribution in any
basis, bit and intensity setting. Here we denote by ci 2 C :¼
f0Z ; 1Z ; 0Xg Alice’s bit and basis choice for the ith pulse, and by
ki 2 K :¼ fk1; k2; k3g Alice’s intensity setting choice for the ith

pulse. The method introduced in this paper is general and can be
applied to many different protocols. To simplify the discussion,
however, we consider the loss-tolerant three-state protocol36 with
two decoy states.
(A-1-ii) Single-mode assumption: The ith signals are in a single-

mode. The single-mode condition means that each ith emitted
signal can be mathematically characterised by a single creation
operator. This creation operator can, however, be different for
different pulses.
(A-1-iii) Phase-encoding assumption: Alice uses phase encod-

ing, i.e., she encodes the ith bit and basis information into the
relative phase θi between two pulses, a signal and a reference
pulse. This assumption is for ease of discussion, and our proof can
be applied to other encodings, such as a polarisation encoding.
(A-1-iv) Perfect phase randomisation assumption: A common

phase δ ∈ [0, 2π) of signal and reference pulses is perfectly
randomised.
(A-1-v) Same intensity assumption on signal and reference

pulses: The intensities of the signal and the reference pulses
are equal to μi/2 where μi denotes the ith actual value of the
intensity generated by Alice’s source. Note that this assumption is
not mandatory. Even if the intensities of the ith signal and
reference pulses differ, the security proof can be established by
introducing an additional filter operation in the security proof as
explained in ref. 36.
(A-1-vi) No side-channel assumption: There are no side-

channels in Alice’s source and Eve can only manipulate Bob’s
system B with her arbitrary prepared ancilla.
With above six assumptions (A-1-i)-(A-1-vi), given the phase and

the intensity, the ith sending state ρ̂iðθi ; μiÞBi to Bob in system Bi

can be described as

ρ̂iðθi; μiÞBi ¼
1

2π

Z 2π

0

P̂ eiðδþθiÞ ffiffiffiffiffiffiffiffiffi

μi=2
p

�

�

�

E

Si
eiδ

ffiffiffiffiffiffiffiffiffi

μi=2
p

�

�

�

E

Ri

h i

dδ: (1)

Here, we define P̂½j�i� :¼ j�ih�j, the subscripts Si and Ri

respectively represent the optical modes of the ith signal and

reference pulse, and eiθ
ffiffiffi

μ
p�

�

�

SiðRiÞ denotes a coherent state in

mode Si(Ri), i.e., eiθ
ffiffiffi

μ
p�

�

�

SiðRiÞ¼ e�μ=2
P1

n¼0ðeiθ
ffiffiffi

μ
p ÞnjniSiðRiÞ=

ffiffiffiffi

n!
p

with

jniSiðRiÞ being a Fock state with n photons in mode Si(Ri). Eq. (1) can

be rewritten as

ρ̂iðθi; μiÞBi ¼
X

1

ni¼0

pðnijμiÞP̂ ϒ̂
iðθi; niÞ

�

�

�

Bi

h i

; (2)

where pðni jμiÞ :¼ e�μi ðμiÞni=ni! and the n-photon state
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P̂½jϒ̂iðθi ; niÞiBi � of the ith signal is defined as

P̂½jϒ̂iðθi; niÞiBi � :¼
N̂ni

Bi ρ̂
iðθi ; μiÞBi N̂ni

Bi

tr N̂ni

Bi
ρ̂iðθi ; μiÞBi

� � ; (3)

where N̂ni

Bi
:¼Pni

k¼0 P̂ jni � kiSi jkiRi
� �

.

In the following, we first explain our correlation model for the
source device, and we make assumptions on how the phases
fθigNsent

i¼1 and the intensities fμigNsent

i¼1 are determined in the source
device, where Nsent denotes the number of pulse pairs (signal and
reference pulses) sent by Alice. See Fig. 1 for a schematic
explanation of our correlation model of the source device. For
illustration purposes, we exemplify in Fig. 2 setting-choice-
dependent correlation (SCDC) that is not taken into account in
our security analysis.

(A-2) Assumption on the correlation: setting-choice-independent
correlation (SCIC). The correlation model we consider is setting-
choice-independent correlation (SCIC), which means that the
internal state of the source device which determines the ith

sending state is arbitrarily correlated with the previous internal
states of the source device but it does not depend on the previous
setting choices made by Alice. We denote by gi the classical
random variable representing the ith internal state of the source
device; it determines the correspondence between the setting
choices (ci and ki) and the output parameters from the source
device (θi and μi). We suppose that gi depends on the past internal
state of the source device gi−1 and is independent of the past
setting choices and output parameters. Note that since the
output parameters (θi and μi) have the information of the setting
choices (ci and ki), we also need to impose the independence of gi

from θi−1 and μi−1. Hence, if we denote the ith setting choices and
output parameters by

Pi :¼ ðθi; μi; ci; kiÞ; (4)

the SCIC model can be mathematically expressed in terms of a
probability distribution satisfying for any Pi�1 and gi−1 the
following

pðgijgi�1; Pi�1Þ ¼ pðgijgi�1Þ: (5)

For example, suppose that gi is a temperature Ti of the source
device of the ith pulse emission, and ρ̂ðθi ; μiÞ is determined once
Ti, ci and ki are fixed. Now, imagine a situation where θi and μi tend
to deviate from ideal values when Ti gets higher. Then, if a
temperature Ti is correlated with previous temperatures Ti−1, sets
of sending states fρ̂iðθi; μiÞgci ;ki for different i are also correlated.
But, Eq. (5) excludes a situation where Ti depends on Pi�1. This
excludes, for instance, that if the previous setting choice is ci−1=
0Z, T

i gets increased, but otherwise does not. With the constraint in
Eq. (5), the sets of sending states fρ̂iðθi ; μiÞgci ;k i for different i are
correlated, but each ith setting choice information is only encoded
to the ith sending pulse.

(A-3) Assumption on the random choice of ci and ki. We assume
that conditioned on the past realisation Pi�1 and gi, then ci and ki

are independent of each other and also independent of Pi�1 and
of gi, which is expressed by the following condition

pðci ; ki jgi; Pi�1Þ ¼ pðciÞpðkiÞ: (6)

(A-4) Assumption on the independence of θi and μi. We suppose
that the phase θi (intensity μi) only depends on the setting choice
ci (ki) and on gi. Mathematically, this means that the probability
distributions satisfy

pðθi; μijci ; ki ; gi; Pi�1Þ ¼ pðθijci ; giÞpðμi jki; giÞ: (7)

(A-5) Assumption on unique determination of θi and μi. The phase
θi (intensity μi) is uniquely determined given gi and the setting
choice ci (ki) as θici ;gi ðμiki ;gi Þ, that is, θ

i (μi) is a function of ci (ki) and
gi. This is expressed as

pðθijci ; giÞ ¼ δðθi ; θici ;gi Þ; pðμijki ; giÞ ¼ δ μi; μiki ;gi
� �

; (8)

where δ (x, y) denotes the Kronecker delta. Note that Eq. (8) does
not impose any restriction on fgigNsent

i¼1 since there exists the
information of θi and μi somewhere in the source device, and we
can take the parameters fgigNsent

i¼1 such that fgigNsent

i¼1 uniquely
determine the correspondence between fcigci 2C and fθici ;gigci 2C ,
and fk igki 2C and fμiki ;gigki 2C .
For our security analysis, we define the random variable

associated to tagged events as follows.

(D-1) Definition of a tagged random variable. For the internal
state of the source device gi, we define the untagged set Gi

unt as

Gi
unt ¼ fgij8ci 2 C; 8ki 2 K; θici ;gi 2 Rc

i

ph; μ
i
ki ;gi 2 Rk

i

intg; (9)

and if gi 2 ð=2ÞGi
unt , we call the ith pulse the untagged (tagged)

signal, which we denote by ti= u (t). In the above definition of the
untagged set, Rc

i

ph and Rk
i

int respectively denote a possible interval
of the phase for ci and a possible interval of the intensity for ki.

(A-6) Assumption on the intervals for the phase and intensity. The
ith interval of the phase Rc

i

ph is assumed to be given by

R0Zph ¼ θL0Z ; θ
U
0Z

h i

; R1Zph ¼ θL1Z ; θ
U
1Z

h i

; R0Xph ¼ θL0X ; θ
U
0X

h i

(10)

for all instances i, where R0Zph , R
1Z
ph and R0Xph do not overlap each

other and the parameters fθLcgc2C and fθUc gc2C must satisfy

� π
6 <θ

L
0Z

� 0, 0 � θU0Z<
π
6,

5π
6 <θL1Z � π, π � θU1Z<

7π
6 ,

π
3 <θ

L
0X

� π
2, and

Fig. 1 A phase randomised coherent light source with SCIC (with

Nsent= 3). The internal states of the source device fgigNsent

i¼1 that

determine fθigNsent

i¼1 and fμigNsent

i¼1 are setting-choice-independently
correlated [see assumption (A-2)]. In each trial, Alice inputs ci and ki

to the source device, and depending on these choices and gi, the
phase θi and the intensity μi are determined. Importantly, the

internal states of the source device fgigNsent

i¼1 can be arbitrary
correlated with each other. Note that the secret information
contained in previous signals (namely, ci−1 and ki−1) is not leaked
to subsequent signals. This avoids the side channel problem

Fig. 2 This figure exemplifies SCDC that is forbidden in our security
assumptions (with Nsent= 3). It shows that the ith internal state of
the source device gi depends on the previous outcomes θi−1 and μi
−1. In this case, the secret information contained in the previous
quantum signals (namely, ci−1 and ki−1) could be leaked to the ith

quantum signal sent by Alice. In other words, the ith sending signal
could act as a side channel for the previous (i− 1)th signals
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π
2 � θU0X<

2π
3 . Also, the ith interval of the intensity Rk

i

int has the form

Rkint ¼ ½μ�k ; μþk �; (11)

for all instances i, and we suppose that the following three
conditions are satisfied: μþk3<μ

�
k2
, μþk2 þ μþk3<μ

�
k1

and μþk1 � 1. Note

that these conditions are needed in the decoy-state method that
is used for the parameter estimation (see Sec. IV in the
Supplemental material for details).

(A-7) Assumption on the number of tagged signals. We define the

good set GNsent

good of gNsent as that whose number of tagged events

ntag :¼ jfijgi=2Gi
untgj is upper bounded by a constant number Ntag

as

GNsent

good :¼ gNsent jntag � Ntag

	 


: (12)

We suppose that the probability of gNsent not being an element

of GNsent

good is upper bounded by pfail, which is expressed as
X

gNsent =2GNsent
good

pðgNsentÞ � pfail:
(13)

Assumptions on Bob’s measurement unit

(B-1) Assumption on basis-independent detection efficiency. We
denote by M̂yi ;bi

	 


yi2f0;1;;g the ith POVM (positive operator-valued
measure) for Bob’s measurement in the basis bi 2 B :¼ fZ; Xg,
where M̂0;bi M̂1;bi

� �

represents the POVM element associated to
the detection of the bit value yi= 0 (1) in the basis bi, and the
element M̂;;bi represents the failure of outputting a bit value. We
suppose that whether a detection occurs or not for each pulse pair
does not depend on the chosen measurement basis bi; this
condition is represented as

M̂; :¼ M̂;;Z ¼ M̂;;X : (14)

(B-2) Assumption on the random choice of the measurement
basis. We assume that Bob measures each incoming signal in a
basis bi 2 B chosen independently of the previous basis choices
and measurement outcomes. This condition is expressed in terms
of the probability distribution as

pðbijbi�1; yi�1Þ ¼ pðbiÞ: (15)

(B-3) Assumption on no side-channels. We suppose that there are
no side-channels in Bob’s measurement device.
Let us remark that our security model allows the use of

threshold detectors; this simply implies that Bob’s Z and X basis
measurements are not necessarily measurements on a qubit
space. Note also that any error in the detection apparatus (say, for
example, modulation errors) can be accommodated in our security
proof as long as the assumptions stated in (B-1)-(B-3) are satisfied.

Protocol description

We describe the protocol of which we prove the security. See
Fig. 3 for a typical setup of the actual protocol. In particular, we
consider the loss-tolerant protocol in ref. 36. Also, we suppose that
Alice uses the decoy-state method40–42 with one signal and two
decoys, and we consider asymmetric coding, i.e., the Z and X bases
are chosen with probabilities pAZ :¼Pci¼0Z ;1Z

pðciÞ and
pAX :¼ pðci ¼ 0XÞ, respectively. In addition, we assume that the
secret key is generated from those events where both Alice and
Bob select the Z basis regardless of their intensity settings.
Next, we show in detail how the protocol runs. In its description,

|A| represents the cardinality of a set or length of a bit string
depending on whether A is a set or a bit string, respectively. The
protocol is composed of the following steps:

(Step 0) Device characterisation and protocol parameter choice.
First, Alice characterises her source to determine the value of the
parameters Rcph, R

k
int for all c 2 C and k 2 K, Ntag and pfail. Also,

Alice and Bob decide the secrecy parameter εs given by Eq. (19),
the correctness parameter εc, the upper bound on Nsent which we
shall denote by N, and the quantity Ndet that is associated to the
termination condition.
After this characterisation step, Alice (Bob) repeats the following

step 1 (step 2) and both Alice and Bob repeat step 3 for i= 1,...,
Nsent until the condition in the sifting step is met. Note that we
adopt the iterative sifting procedure with a basis independent
termination condition, which has been recently analysed in ref. 43.
In this procedure, after each quantum transmission round, Bob
announces whether or not the received signal produced a
detection click in his measurement apparatus. And, in the case
of a detection click, both Alice and Bob announce their basis
choices, and Bob also declares his measurement outcome except
for the event where both of them selected the Z basis. Then, the
quantum communication part of the protocol terminates when
the basis independent termination condition is satisfied.

(Step 1) Preparation. For each i, Alice randomly selects the
intensity setting ki 2 K with probabilities pk1 :¼ pðki ¼ k1Þ, pk2 :¼
pðki ¼ k2Þ and pk3 :¼ pðki ¼ k3Þ, and the basis ai 2 B with
probabilities pAZ and pAX ¼ 1� pAZ . Afterward, if a

i
= Z she chooses

the bit information with probability 1/2; otherwise, she chooses ci

= 0X. Finally, she generates the signal and reference pulses
according to her choice of ki and ci, and sends them to Bob via a
quantum channel.

(Step 2) Measurement. Bob measures the incoming signal and
reference pulses using the measurement basis bi 2 B, which he
selects with probabilities pBZ :¼ pðbi ¼ ZÞ and pBX :¼ pðbi ¼ XÞ. The
outcome is recorded as {0, 1, ⊥, ;}, where ⊥ and ; represent,
respectively, a double click event, i.e., the two detectors click, and
a no click event. If the outcome is ⊥, Bob assigns a random bit to
the event. Note that this random assignment is not mandatory.
Indeed, Bob can always choose a particular bit value, say 0, for the
double click events. This deterministic procedure also preserves
the basis-independence detection efficiency condition described
in Eq. (14). As a result, Bob obtains yi ∈ {0, 1, ;}. The outcomes 0
and 1 will be called a detection event.

(Step 3) Sifting. Bob declares over an authenticated public
channel whether or not he obtained a detection event. If yes,
Alice and Bob announce their basis choices, and Alice identifies if

Fig. 3 Description of the actual protocol with a typical measure-
ment setup. In the ith trial (with 1 ≤ i ≤ Nsent), Alice’s source device
emits two consecutive coherent pulses: a signal and a reference
pulse. Alice first inputs the basis and bit information ci 2 C and the
intensity setting ki 2 K that she selects probabilistically. Let θi and μi

denote the relative phase between the signal and the reference
pulses and the total actual intensity of both pulses, respectively. On
the receiving side, Bob uses a 50:50 beamsplitter (BS) to split the
received pulses into two beams. Afterward, he applies a phase shift
0 or π/2 to one of them according to his basis choice bi= Z or bi= X,
respectively. The pulses are then recombined at a 50:50 BS. A click in
the detector D0 (D1) provides Bob the bit yi= 0 (yi= 1)
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the event can be assigned to the following sets for all k 2 K:
SZ;Z;k;det :¼ fijai ¼ bi ¼ Z; k i ¼ k; yi≠;g. Moreover, if ai ≠ Z or bi ≠
Z, Alice asks Bob to also announce his measurement outcome, and
Alice identifies if the event can be assigned to the following sets
for all c 2 C, k 2 K, b 2 B and y ∈ {0, 1}:
Sc;k;det;y;b :¼ fijci ¼ c; k i ¼ k; bi ¼ b; yi ¼ yg. Then, Alice checks if
the following termination condition is satisfied for a prefixed Ndet:
Sdet :¼ jSdetj � Ndet for the set Sdet ¼ fijyi≠;g. Once this
termination condition is met after sending Nsent pulses, the results
associated to the set SZ;Z;det :¼ ∪ k2KSZ;Z;k;det form Alice and

Bob’s sifted keys κsift
A and κsift

B . That is, the length of these sifted

keys is jκsiftA j ¼ jκsiftB j ¼ jSZ;Z;detj. If the termination condition is
not met after sending N pulses, then Alice and Bob abort the
protocol.

(Step 4) Parameter estimation. Alice calculates a lower bound for
the parameter SZ;Z;n¼1;u;det :¼ jSZ;Z;n¼1;u;detj, where SZ;Z;n;u;det :¼
fijai ¼ bi ¼ Z; ni ¼ n; ti ¼ u; yi≠;g is a subset of SZ;Z;det com-
posed of those elements where Alice emitted an untagged n-
photon state. We call a lower bound on SZ,Z,1,u,det as SLZ;Z;1;u;det,

which is given by Eq. (21). Also, she calculates an upper-bound
NU
ph;Z;Z;1;u;det on the number of phase errors Nph,Z,Z,1,u,det for the set

SZ;Z;1;u;det, whose quantity is given by Eq. (24). If the upper bound
eUphjZ;Z;1;u;det :¼ NU

ph;Z;Z;1;u;det=S
L
Z;Z;1;u;det on the phase error rate eph|Z,

Z,1,u,det:= Nph,Z,Z,1,u,det/SZ,Z,1,u,det satisfies e
U
phjZ;Z;1;u;det � eUphjZ;Z;1;u;det,

where eUphjZ;Z;1;u;det corresponds to the phase error rate associated

with a zero secret key rate [see Eq. (20)], Alice and Bob abort the
protocol. Otherwise, they proceed to step 5.

(Step 5) Bit error correction. Through public discussions, Bob
corrects his sifted key κsift

B to make it coincide with Alice’s key κsiftA

and obtains κcorB jκcor
B j ¼ jSZ;Z;detj

� �

.

(Step 6) Privacy amplification. Alice and Bob conduct privacy
amplification by shortening κsift

A and κcor
B to obtain the final keys

κfinA and κfin
B of size jκfin

A j ¼ jκfin
B j ¼ ‘ with ‘ given by Eq. (20).

Secret key generation length

We present a formula to compute the secret key generation
length ‘ that guarantees that the protocol introduced above is
εsec-secure. According to the universal composable security
framework,44,45 we say that a protocol is εsec-secure if it is both
εc-correct and εs-secret where εsec= εc + εs.

46 We say that the
protocol is εc-correct if pðκfin

A ≠κfin
B Þ � εc holds. Also, we say that

the protocol is εs-secret if

1

2
jjρ̂finAE � ρ̂idealAE jj � εs (16)

holds in terms of the trace norm, where ρ̂finAE ¼
P

κfin
A
pðκfin

A Þjκfin
A ihκfin

A j � ρ̂Eðκfin
A Þ is a classical-quantum state

between Alice’s final key and Eve’s system after finishing the
protocol and ρ̂idealAE is an ideal state in which Alice’s key is uniformly
distributed over 2jκ

fin
A
j values and decoupled from Eve’s system. We

suppose that the following two conditions for the random
variables SZ,Z,1,u,det and Nph,Z,Z,1,u,det are satisfied

pðSZ;Z;1;u;det < SLZ;Z;1;u;detjSdet ¼ NdetÞ � εZ ; (17)

pðNph;Z;Z;1;u;det >NU
ph;Z;Z;1;u;detjntag � Ntag; Sdet ¼ NdetÞ � εPH (18)

regardless of Eve’s attack. In this case, for any εPA > 0, by
setting24,47

εs ¼
ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εPA þ εPH
p þ εZ ; (19)

it can be shown that the protocol is εc-correct and εs-secret if the

final key length ‘ satisfies

‘ � ‘SCIC :¼ SLZ;Z;1;u;det 1� h
NU
ph;Z;Z;1;u;det

SLZ;Z;1;u;det

 !" #

� log2
2

εPA
� λECðεcÞ;

(20)

where h(x) is the binary entropy function, and λEC(εc) is the cost of
error correction to achieve εc-correctness. Note that the expres-
sions of SLZ;Z;1;u;det and NU

ph;Z;Z;1;u;det are given in Eqs. (21) and (24),
respectively.

Results of parameter estimation

Here, we summarise the estimation results of SLZ;Z;1;u;det and
NU
ph;Z;Z;1;u;det . All the detailed derivations of these quantities can be

found in Secs. IV and V in the Supplemental material, respectively.
First, regarding the estimation of SLZ;Z;1;u;det, we employ the

decoy-state method and we obtain the lower bound on SZ,Z,1,u,det
as

SLZ;Z;1;u;det ¼
μ�
k1

P

k2K pkμ
�
k
e
�μ�

k

μþ
k2

� μ�
k3

� �

μ�
k1

� μþ
k2

� μ�
k3

� �

e
μ�
k2 S�

Z;Z;k2 ;u;det
� gMAðεZ;k2 ;uMA

;pB
Z
;NdetÞ

h i

pk2

8

<

:

� e
μþ
k3 SZ;Z;k3 ;det þ gMA ε

Z;k3 ;u

MA
;pB

Z
;Ndet

� �� �

pk3
�

μþ
k2

� �2

� μ�
k3

� �2

μ�
k1

� �2

e
μþ
k1 SZ;Z;k1 ;det þ gMA ε

Z;k1 ;u

MA
;pB

Z
;Ndetð Þ½ �

pk1

 !)

þ gMAðεZ;1;uMA ; pBZ ;NdetÞ

(21)

except for error probability

εZ :¼
X

k2K
ε
Z;k;u
MA þ ε

Z;1;u
MA þ pfail (22)

for any ε
Z;k;u
MA >0 and ε

Z;1;u
MA >0. Here, we define S�Z;Z;k2;u;det :¼

SZ;Z;k2;det � Ntag and the statistical fluctuation term in the Modified
Azuma’s inequality (see Sec. III in the Supplemental material) is

given by gMAðε; q; nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnεðlnε�18nqÞ
p

�lnε

3 .
Second, we present the estimation result of the number of

phase errors Nph,Z,Z,1,u,det for the untagged single-photon emission
events in κsift

A . Before describing its expression, we first review
briefly the main idea for deriving the number of phase errors. Our
analysis is based on the security proofs26,31,36 of the loss-tolerant
protocol. These methods26,31,36 require to estimate the number of
single-photon detection events that Bob would have obtained if
he had measured some virtual states in a basis (the X basis)
complementary to the key generation basis (namely, the Z basis).
Importantly, it turns out that the number of single-photon
detection events can be written as a linear combination of those
fSc;n¼1;u;det;y;Xgc2C;y 2f0;1g, which will be defined soon, of the actual

states sent by Alice. To obtain the numbers of these detection
events, we use the detection events fSc;k;det;y;b¼Xgc2C;k 2K;y 2f0;1g
including basis mismatched events (i.e., the detection events
where Alice and Bob’s basis choices are different). By employing
these observed number of detection events, we can estimate the
number of single-photon detection events of the virtual states
(and therefore the number of phase errors).
In the main text, for simplicity of its expression, we only

describe Nph,Z,Z,1,u,det with the following restricted phase intervals
(with 0 ≤ θ < π/6):

R0Zph ¼ ½�θ; θ�; R1Zph ¼ ½π � θ; π þ θ�; R0Xph ¼ π

2
� θ;

π

2
þ θ

h i

: (23)
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Note that the expression of Nph,Z,Z,1,u,det with the general phase
intervals in Eq. (10) should be referred to Sec. V B in the
Supplemental material. Under the assumption of Eq. (23),
NU
ph;Z;Z;1;u;det can be written as a linear combination of the

parameters S0c;1;u;det;y;X , which are bounds on the cardinality of

the sets Sc;1;u;det;y;X ¼ ijci ¼ c; ni ¼ 1; ti ¼ u; bi ¼ X; yi ¼ yÞ
	 


, as

NU
ph;Z;Z;1;u;det ¼

pA
Z
pB
Z
ð1þ sinθÞ
2

P

1

y¼0

P

c2C
Γ
U
y;c

S0
c;1;u;det;y�1;X

þ sgnðΓUy;cÞgAðNdet;ε
c;1;u;y;X
A

Þ
pðcÞpB

X

þ gA Ndet; ε
ph;Z;1;u
A

� �

:

(24)

Here, we define the statistical fluctuation term of the Azuma’s

inequality48 as gAðx; yÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2x ln 1=y
p

and the functions fΓUy;cgy;c31
as Γ

U
0;0Z

¼ sinθ
sinθþcos32θ

ð0 � Γ
U
0;0Z

<
ffiffiffi

2
p

� 1Þ, Γ
U
0;1Z

¼ Γ
U
0;0Z

, Γ
U
0;0X

¼
1�sinθ

cos2θ�sinθ 1 � Γ
U
0;0X

<1
� �

, Γ
U
1;0Z

¼ cosθ
cosθ�sin32θ

1 � Γ
U
1;0Z

<3þ
ffiffiffi

6
p� �

,

Γ
U
1;1Z

¼ Γ
U
1;0Z

and Γ
U
1;0X

¼ � 1�sinθ
1þsinθ ð�1 � Γ

U
1;0X

<� 1=3Þ. Regarding
S0c;1;u;det;y;X , we take the following upper or lower bounds on

Sc;1;u;det;y;X :¼ jSc;1;u;det;y;X j, depending on the sign of ΓUy;c , such that

Nph,Z,Z,1,u,det takes its upper bound:

S0c;1;u;det;y;X ¼
SUc;1;u;det;y;X if Γ

U
y;c>0;

SLc;1;u;det;y;X if Γ
U
y;c � 0;

(

(25)

with

SUc;1;u;det;y;X :¼
Sc;k2 ;det;y;X þ gMA ε

c;k2 ;u;y;X

MA
;pB

X
;Ndet

� �� �

e
�μ�

k3

pk2
�

S�
c;k3 ;u;det;y;X

� gMA ε
c;k3 ;u;y;X

MA
;pB

X
;Ndet

� �

h i

e
�μþ

k2

pk3

e
�μ�

k2
�μ�

k3 μ�
k2

� e
�μþ

k2
�μþ

k3 μþ
k3

´

P

k2K
pkμ

þ
k e

�μþ
k þ gMA ε

c;1;u;y;X
MA ; pBX ;Ndet

� �

(26)

and

SLc;1;u;det;y;X :¼
μ�
k1

P

k2K
pkμ

�
k
e
�μ�

k

μþ
k2

� μ�
k3

� �

μ�
k1

� μþ
k2

� μ�
k3

� �

e
μ�
k2 S�

c;k2 ;u;det;y;X
� gMA ε

c;k2 ;u;y;X

MA ;pBX ;Ndet

� �

h i

pk2

8

<

:

� e
μþ
k3 Sc;k3 ;det;y;X þ gMA ε

c;k3 ;u;y;X

MA
;pB

X
;Ndet

� �� �

pk3

�
μþ
k2

� �2

� μ�
k3

� �2

μ�
k1

� �2

e
μþ
k1 Sc;k1 ;det;y;X þ gMA ε

c;k1 ;u;y;X

MA
;pB

X
;Ndetð Þ½ �

pk1

 !

9

>

=

>

;

þ gMA ε
c;1;u;y;X
MA ; pBX ;Ndet

� �

;

(27)

where S�c;k;u;det;y;X :¼ Sc;k;det;y;X � Ntag. Finally, we calculate the

failure probability εPH associated to the estimation of

NU
ph;Z;Z;1;u;det in Eq. (18), as εPH ¼ ε1PH þ ε2PH, and we define ε1PH :¼
P1

y¼0

P

c2C ε
c;1;u;y;X
A þ ε

ph;Z;1;u
A for any εc;1;u;y;XA >0 and ε

ph;Z;1;u
A >0. ε2PH,

on the other hand, is composed of the failure probabilities
associated to the estimation of fSc;1;u;det;y;Xgy2f0;1g;c2C , and ε2PH has

the form ε2PH ¼Py¼0;1

P

c2C ε
c;1;u;y;X with εc;1;u;y;X ¼

P

k¼k2;k3
ε
c;k;u;y;X
MA þ ε

c;1;u;y;X
MA or εc;1;u;y;X ¼Pk 2C ε

c;k;u;y;X
MA þ ε

c;1;u;y;X
MA

depending on whether we use the upper bound given by Eq.
(26) or the lower bound given by Eq. (27).

Simulation of the key rate

We show the numerical simulation results of the key rate for a
fibre-based QKD system. In the simulation, we assume that Bob
uses a measurement setup with two single-photon detectors with
detection efficiency ηdet= 10% and dark count probability per
pulse pdark= 10−5. These parameters are set to be the same as
those in ref. 49. The attenuation coefficient of the optical fibre is
0.2 dB/km and its transmittance is ηch= 10−0.2l/10 with l denoting
the fibre length. We denote the channel transmission rate

including detection efficiency by η:= ηchηdet. The overall mis-
alignment error of the measurement system is fixed to be emis=

1%. In addition, we assume an error correction cost equals to
λECðεcÞ ¼ 1:05 ´ jκsift

A jhðebitÞ þ log2ð1=εcÞ, where ebit is the bit
error rate of the sifted key ðκsift

A ; κsift
B Þ. Moreover, we suppose that

the intervals of the intensity fluctuation in Eq. (11) are given by
Rkint ¼ ½μkð1� rkÞ; μkð1þ rkÞ� for k∈{k1, k2} and Rk3int ¼ ½0; 10�3� with
μk denoting the expected intensity (we suppose that μk3 ¼ 0) and
where rk represents the deviation of the actual intensity from the
expected value. For the intervals of the phase fluctuation Rc

i

ph in Eq.
(23), we take the experimental value of phase modulation error
from ref. 32 and we set θ= 0.03 rad. Note that the phase
fluctuation ±0.03 rad is the largest experimental value observed
in ref. 32 in a protocol that uses the three states {0, π/2, 3π/2} (see
table III in ref. 32). Note also that the authors of ref. 32 measured a
different quantity from the one we need here. More precisely,
ref. 32 assumes that each sending pulse is IID and measured the
fixed deviation due to imperfect encoding. In contrast, we allow
each pulse to be different (non-IID case) and we are interested in
the deviation of each pulse from the mean. In our simulation, we
simply assume that the result in ref. 32 gives us some reasonable
estimation on the deviation θ. In Fig. 4, we consider the three
cases: (I) Ntag= 0 and pfail= 0, (II) Ntag= Nsent × 10−7 in the upper

Fig. 4 The key rate (per pulse) in logarithmic scale versus fibre
length for the case with the phase fluctuation of ±0.03 rad [namely,
θ= 0.03 in Eq. (23)] for any choice of ci 2 C and the intensity

fluctuation of ±3% for the choice of ki ∈ {k1, k2} and Rk3int ¼ ½0; 10�3�
for the weakest decoy setting ki= k3. In solid lines, we assume (I)
Ntag= 0 and pfail= 0, and in the dashed lines, we assume (II) Ntag=

Nsent × 10−7 in the upper figure and (III) Ntag= Nsent × 10−6 in the
lower figure and pfail= 0. The secrecy and correctness parameters
are εs= εc= 10−10 and for each set of solid and dashed lines, the
total number of signals sent by Alice is Nsent∈ {1010, 1010.5, 1011,
1011.5, 1012} from left to right. The rightmost solid and dashed lines
respectively correspond to the asymptotic key rate of the cases (I)-
(III) where no statistical flucuation terms in NU

ph;Z;Z;1;u;det and SLZ;Z;1;u;det
are taken into account. The experimental parameters are described
in the main text
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figure and (III) Ntag= Nsent × 10−6 in the lower figure and pfail= 0.
The case (I) means that all the phases and the intensities lie in
their intervals, and the case (II) [the case (III)] means that the
number of tagged events is upper bounded by Nsent × 10−7 in the
upper figure [Ntag= Nsent × 10−6 in the lower figure].
Regarding the numbers of detection events SZ,Z,k,det and Sc,k,det,y,

b, we generate these quantities by assuming the following specific
setup. In particular, for the ith trial, we consider that Alice sends
Bob pairs of coherent states through the fibre of the form

eiðδþθcÞ
ffiffiffiffiffiffiffiffiffiffi

μk=2
p�

�

E

Si
eiδ

ffiffiffiffiffiffiffiffiffiffi

μk=2
p�

�

E

Ri
with θ0Z ¼ 0, θ1Z ¼ π and θ0X ¼

π=2 according to the choices of ki ¼ k 2 K and ci ¼ c 2 C. Note
that this assumption is used just to simulate the experimentally
observed numbers (namely, SZ,Z,k,det and Sc,k,det,y,b), and we do not
require this assumption in the actual experiments. Bob measures
the incoming signals using a Mach-Zehnder interferometer with
two 50:50 BSs and a phase modulator as shown in Fig. 3. More
precisely, he uses the first 50:50 BS to split the received pulses into
two beams, and after that he applies a phase shift 0 or π/2 to one
of them according to his basis choice of bi= Z or bi= X,
respectively, and finally he lets the resulting pulses interfere with
the second 50:50 BS. In this setup, we obtain the following
probabilities:

pðyi ¼ yjci ¼ yZ ; k
i ¼ k; bi ¼ ZÞ ¼ pðyi ¼ 0jci ¼ 0X ; k

i ¼ k; bi ¼ XÞ

¼ 1� e�
ημk
2 ð1� pdÞ

h i

1� pd
2

� �

, pðyi ¼ y � 1jci ¼ yZ ; k
i ¼ k; bi ¼

ZÞ ¼ pðyi ¼ 1jci ¼ 0X ; k
i ¼ k; bi ¼ XÞ ¼

pd 1þe
�ημk

2 ð1�pdÞ
h i

2 for

y∈{0,1}, and pðyi ¼ yjci ¼ xZ ; k
i ¼ k; bi ¼ XÞ ¼ pðyi ¼ yjci ¼

0X ; k
i ¼ k; bi ¼ ZÞ ¼ 1�ð1�pdÞ2e�

ημk
2

2 for y, x ∈ {0,1}. Moreover,

we assume that the bit error rate ebit is given by

ebit ¼
P

y¼0;1 pðyi ¼ y � 1jci ¼ yZ ; k
i ¼ k1; b

i ¼ ZÞ=Px;y¼0;1

pðyi ¼ yjci ¼ xZ ; k
i ¼ k1; b

i ¼ ZÞ þ emis. With these probabilities,
we suppose that the experimentally observed numbers satisfy

SZ;Z;k;det ¼ Nsent

P

x;y¼0;1
pA
Z

2 p
B
Zpk ´ pðyi ¼ yjci ¼ xZ ; k

i ¼ k; bi ¼ ZÞ
and Sc;k;det;y;b ¼ NsentpðcÞpBbpk ´ pðyi ¼ yjci ¼ c; k i ¼ k; bi ¼ bÞ.
With the above parameters, we simulate the key rate ‘SCIC=Nsent

for a fixed value of the correctness and secrecy parameters εc= εs
= 10−10 and we set εZ= 1/2 × 10−10, εPA= εPH= 1/16 × 10−20, and

ε
Z;k;u
MA ¼ ε

Z;1;u
MA ¼ εZ=4 ¼ 1=8 ´ 10�10. We also assume that each

failure probability which is contained in the expression of ε1PH and

ε2PH takes the value ε
c;1;u;y;X
A ¼ ε

ph;Z;1;u
A ¼ 1=26 ´ εPH and

ε
c;k;u;y;X
MA ¼ ε

c;1;u;y;X
MA ¼ 1=26 ´ εPH, respectively, and we set pAZ ¼

pBZ ¼ pk1 ¼ 0:8 and pk2 ¼ 0:1. In the simulation, we perform a
numerical optimisation of the key rate ‘SCIC=Nsent over the two free
parameters μk1 and μk2 . In the solid and dashed lines in Fig. 4, we

respectively plot the key rate of the cases (I), (II) and (III) for the
finite-case when Nsent ∈ {1010, 1010.5, 1011, 1011.5, 1012} (from left to
right). For comparison, the rightmost solid and dashed lines
respectively correspond to the asymptotic key rate of the cases (I),
(II) and (III), where no statistical fluctuation terms in Eqs. (21) and
(24) are taken into account. Our simulation results show the
feasibility of secure key distribution within a reasonable time by
employing practical devices that satisfy our device assumptions.
For instance, if Alice uses a laser diode operating at 1 GHz
repetition rate and she sends Nsent= 1012 signals, then we find
that it is possible to distribute a 1-Mb secret key over a 75-km fibre
link in <0.3 h. This scenario corresponds to the solid blue line (the
fifth solid line from the left) shown in Fig. 4.

DISCUSSION

In summary, we have provided an information-theoretic
security proof for the loss-tolerant QKD protocol which
accommodates the setting-choice-independent correlation
(SCIC) in the finite key regime. Within the framework of SCIC,
the relative phases and intensities of the sending coherent
states fluctuate over time. Once realistic intervals for these
fluctuations (such as for instance ±0.03 rad and ±3%,
respectively) are guaranteed, our numerical simulations have
shown that secure quantum communication is feasible with a
reasonable number of signal transmissions such as for example
Nsent= 1012. Therefore, our results constitute a significant step
towards realising secure quantum communication with prac-
tical source devices. On a more general outlook, we leave three
open questions for the future works.

1. It is an important future work to devise a rigorous
experimental method for characterising the source para-
meters described in Eqs. (10)–(13). Once such a method is
established, characterisations could be conducted on-line or
it would be repeated many times off-line in which we
assume that the property of the source parameters is
unchanged after the characterisation.

2. Another important future work is to prove the security of
MDI-QKD based on our source model of the SCIC framework.
The original proposal of the loss-tolerant protocol36 can also
be applied to MDI-QKD, and the analysis presented in this
paper is an extension of the proof of ref. 36. Therefore, it
should be straightforward to apply our proof to MDI-QKD.

3. In our analysis, in order to take into account setting-choice-
independent correlations, we use the Azuma’s inequality.
One possibility to improve the key rate would be to employ
the improved decoy state analysis developed in ref. 50,
which is known to result in a higher key rate than all the
existing analyses for the decoy state. However, the analysis
in ref. 50 assumes that there are no correlations among
sending pulses, which is a striking difference from our
source model, and it is not clear whether we can apply their
analysis to our source.
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