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Security in quantum cryptography [1, 2] is continuously challenged by inventive attacks [3–7]

targeting the real components of a cryptographic setup, and duly restored by new counter-

measures [8–10] to foil them. Due to their high sensitivity and complex design, detectors are

the most frequently attacked components. Recently it was shown that two-photon interfer-

ence [11] from independent light sources can be exploited to avoid the use of detectors at the

two ends of the communication channel [12, 13]. This new form of detection-safe quantum

cryptography, called Measurement-Device-Independent Quantum Key Distribution (MDI-

QKD), has been experimentally demonstrated [13–18], but with modest delivered key rates.

Here we introduce a novel pulsed laser seeding technique to obtain high-visibility interference

from gain-switched lasers and thereby perform quantum cryptography without detector vul-

nerabilities with unprecedented bit rates, in excess of 1 Mb/s. This represents a 2 to 6 orders

of magnitude improvement over existing implementations and for the first time promotes the

new scheme as a practical resource for quantum secure communications.
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In Quantum Cryptography, a sender Alice transmits encoded quantum signals to a receiver Bob,

who measures them and distils a secret string of bits with the sender via public discussion [1].

Ideally, the use of quantum signals guarantees the information-theoretical security of the commu-

nication [2]. In practice, however, Quantum Cryptography is implemented with real components,

which can deviate from the ideal description. This can be exploited to circumvent the quantum

protection if the users are unaware of the problem [19].

Usually the most complex components are also the most vulnerable. Therefore the vast majority

of the attacks performed so far have targeted Bob’s single photon detectors [3–7]. MDI-QKD [12, 13]

is a recent form of Quantum Cryptography conceived to remove the problem of detector vulnera-

bility. As depicted in Fig. 1(a), two light pulses are independently encoded and sent by Alice and

Bob to a central node, Charlie. This is similar to a quantum access network configuration [20],

but in MDI-QKD the central node does not need to be trusted and could even attempt to steal

information from Alice and Bob. To follow the MDI-QKD protocol, Charlie must let the two light

pulses interfere at the beam splitter inside his station and then measure them. The result can

disclose the correlation between the bits encoded by the users, but not their actual values, which

therefore remain secret. If Charlie violates the protocol and measures the pulses separately, he

can learn the absolute values of the bits, but not their correlation. Therefore he cannot announce

the correct correlation to the users, who will then unveil his attempt through public discussion.

Irrespective of Charlie’s choice, the users’ apparatuses no longer need a detector and the detection

vulnerability of Quantum Cryptography is removed.

This striking feature of MDI-QKD has fostered intense experimental work and various demon-

strations have been provided so far [13–18]. However, to achieve high-visibility interference at

Charlie’s beam splitter, the light source in previous experiments was set to emit long pulses at

modest clock rates, thus restricting the key rate to less than a hundred bit/s (see Table I).

Here we demonstrate a novel high-rate source of indistinguishable pulses from gain-switched

laser diodes, ideally suited to MDI-QKD. We use a pair of these sources each generating 109

pulses per second, thereby achieving Quantum Cryptography immune to detector attacks at key

rates exceeding 1 Mbps for the first time. This is orders of magnitude higher than in previ-

ous demonstrations and is comparable to the highest values achieved for conventional Quantum

Cryptography [21]. Furthermore we demonstrate operation for channel loss greater than 20 dB,

corresponding to over 100 km of standard fibre. Implementation with real fibre and the effect of a

finite sample have also been considered in the experiment.

To suit MDI-QKD, the light sources in Alice and Bob have to match stringent criteria. They
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FIG. 1. (a) MDI-QKD scheme. Phase-randomised optical pulses are produced by Alice and Bob, set to

the desired polarization and intensity, and sent to Charlie. There, they interfere at the beam splitter (BS),

pass through the polarizing BS’s (PBS’s) and reach the four detectors. Coincidence counts from cH/dV or

dH/cV (cH/cV or dH/dV) are grouped under the label |Ψ−〉 (|Ψ+〉), called ‘singlet’ (‘triplet’) [13]. The

measurement outcomes are publicly announced by Charlie. (b) Experimental MDI-QKD setup. The light

sources, which are essential to the results in this work, are enclosed by the dashed lines in Alice’s and Bob’s

setup. C: circulator; FBG: fibre Bragg grating; POL (INT): polarization (intensity) module.

should emit indistinguishable pulses, to enable high-visibility two-photon interference [11], and at

the same time each pulse should display a random optical phase, to meet a fundamental security

condition [22]. In most demonstrations so far [13, 15–17], light pulses have been carved from a

continuous-wave laser. However, the pulses generated this way have a constant or slowly varying

optical phase thus violating the random phase condition. An external phase modulator can obviate

this problem [15], but at the expense of increasing cost and complexity of the setup. Semiconduc-

tor gain-switched laser diodes can naturally generate short optical pulses (<50 ps) with random

phases [23]. However, the emitted light pulses display a substantial time jitter due to the ran-

dom nature of the spontaneous emission starting the lasing action. Furthermore they have also a

significant spectral width, far exceeding the time-bandwidth limit, due to the frequency chirping

arising from transient variation of carrier density in the active medium. These effects combine

dramatically to reduce the visibility of the interference. As theoretically depicted in Fig. 2(a),

temporal jitter and chirp lead to a poor visibility (upper-right corner of the figure). This has so

far prevented the use of gain-switched laser diodes to achieve high-speed MDI-QKD.

Here we propose a novel technique based on pulsed laser seeding to produce low-jitter close-to-

transform-limited phase-randomized light pulses from gain-switched lasers. A master laser injects

photons into the cavity of a second slave laser through an optical circulator, see Fig. 1(b). The

lasing action of the slave laser is then initiated by stimulated emission from the light of the master

laser rather than by its own spontaneous emission, thus reducing the uncertainty in its emission
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TABLE I. Key rates in existing MDI-QKD experiments and comparison with this work. Letters A-D

correspond to Refs. [14–17], respectively. Low source clock rate (2nd column) and large pulse width (3rd

column) have been used in previous experiments to achieve high-visibility two-photon interference. In

one case (B, lower line) a single laser has been employed for both users. Obtaining high visibility from

two independent light sources at 1 GHz clock rate and 35 ps pulse width is a major challenge, solved in

this work, and can dramatically increase the key rate of MDI-QKD. SSPD: superconducting single photon

detector; SD: self-differencing; APD: avalanche photo diode.

time. Furthermore, the competition between the cavity modes of the slave laser is immediately

resolved by the presence of the master laser’s light, thus narrowing the bandwidth of the emitted

pulses. The combined effect increases the visibility of the interference between the two narrow

pulses emitted by the users’ slave lasers. Moreover, the pulsed laser seeding guarantees that the

phase of each slave laser is inherited from its own master laser. Due to the fact that the master

laser is gain-switched, the master pulse, and hence the slave pulse, has a random optical phase [23].

The improvement in the interference visibility achieved via the pulsed seeding technique is visible

from Fig. 2(a), where time jitter, bandwidth and visibility of the light sources are experimentally

measured and compared against the theoretical prediction. Without pulsed seeding, time jitter and

bandwidth of the source amount to 12.3 ps and 63 GHz, respectively, leading to a poor visibility

of 25% and therefore to low key rates. With pulsed laser seeding, on the contrary, they become

as small as 4.4 ps and 15 GHz, respectively. For these values we expect an interference visibility
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FIG. 2. (a) Theoretical contour plot of the two-photon interference visibility versus emission time jitter

(horizontal axis) and bandwidth (vertical axis) of the pulses. The arrow shows how pulsed laser seeding

improves the measured time jitter and bandwidth (empty circles), thus enhancing the interference visibility.

The dashed black line depicts the maximum measured visibility. (b) Intensity data points and corresponding

probability distribution from first-order interference between two consecutive pulses emitted by a seeded

laser. The profile of the distribution suggests that the pulses have a random phase [23].

of 48.5%, in good agreement with the experimentally measured value of 48.2% and close to the

theoretical maximum of 50% [24]. The phase randomisation of the pulses emitted by the seeded

slave laser is confirmed in Fig. 2(b), where the intensity probability distribution has the typical

profile expected from the interference of two pulses with random relative phase [23].

We performed a series of MDI-QKD experiments using the setup in Fig. 1(b). The results are

summarized in Fig. 3 and detailed in [25] (see also Table I). The data points represented by the

solid squares are obtained by using variable attenuators to reproduce the attenuation of standard

single mode fibres (0.2 dB/km). The leftmost point corresponds to a rate of 1.257 Mbit/s, a record

in terms of key rate mediated by two-photon interference. The rightmost point corresponds to

about 4 kbit/s over 21 dB attenuation, which is still sufficient to generate a 256-AES key more

frequently than every 100 ms [26].

Following the analysis in Ref. [27], we consider how the statistical fluctuations of a finite data

sample can affect the secure key rate. With the empty square point in Fig. 3, we report the finite-

size key rate of the system for a 2.33 dB attenuation channel. It amounts to 366 kbit/s and is

obtained by gathering the counts from the triplet and singlet states. The finite-size dependence on
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FIG. 3. MDI-QKD key rates versus total attenuation (lower axis) and equivalent fibre distance (upper axis)

of the quantum channel. Solid squares refer to the key rates obtained by varying the channel attenuation

in the setup. The empty star is for the rate obtained using two 25-km reels of single mode fibre. The

empty square represents the rate after the finite size of the data sample is taken into account. In this case,

the total sample size is ∼ 2.4 × 107, acquired in 12,000 seconds. For comparison, we also add the highest

observed finite-size key rate to date for conventional QKD (empty triangle) [21]. The pie-chart contains

the distribution of coincidence counts among the four possible outcomes of Charlie’s measurement, for the

2.33 dB loss case. With reference to Fig. 1(a), S1, S2, T1 and T2 indicate the coincidence counts of detectors

cH/dV, dH/cV, cH/cV and dH/dV, respectively.

the channel attenuation is observed to have a similar slope as that in the asymptotic regime.

To replicate a real deployment scenario, we replace the channel attenuation with two single

mode fibre spools of 25 km each. We employ two dispersion compensation modules designed for

20 km to cancel the broadening of the pulses due to the chromatic dispersion in the fibre. We

also compensate the temporal drift of the arrival time of the pulses at Charlie’s beam splitter due

to temperature variations. We find that the distilled key rate (empty star in Fig. 3) is almost

identical to the one obtained from the channel attenuation, proving that fibre-induced effects can
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be effectively mitigated. All the points in Fig. 3 have been numerically simulated along the lines

of Refs. [28, 29] to confirm the results and optimize the system.

To illustrate the progress entailed by these results, we report in Fig. 3 with an empty triangle

the state-of-the-art point [21] of finite-size decoy-state QKD, for a distance of 50 km under similar

detection conditions as in the present experiment. Quite impressively, the QKD key rate is only

one order of magnitude higher than the corresponding MDI-QKD asymptotic rate, the difference

being largely accountable to the non-unitary efficiency of the single photon detectors.

These results prove that MDI-QKD can distribute keys at rates similar to conventional Quantum

Cryptography and promote it as a practical solution to serve real-world secure communications.

METHODS

Experimental setup

Alice and Bob consist of two independent pulsed laser seeding-enabled light sources producing

phase-randomised 35 ps-long laser pulses at 1550 nm at the repetition rate of 1 GHz. Variable

optical band pass filters with 20 GHz bandwidth are aligned to remove any spurious emission.

Fibre Bragg gratings are added to pre-compensate for the pulse broadening in the fibre experiment.

Polarization and intensity of the pulses are set as required in the protocol and power meters are

used to monitor the average photon fluxes. This lets each user prepare weak coherent states in

one of four polarization states: H, V (rectilinear basis, or Z) or D, A (diagonal basis, or X). The

Z basis is used to distil the key bits, while the X basis is used to test the noise on the quantum

channel. Alice and Bob select the intensity of the states among four possible values, or “classes”:

s (signal), u (decoy 1), v (decoy 2), w (vacuum). This is different from previous protocols [13],

where three intensity settings rather than four were used, and allows for higher key rates [30].

For the class s, they assign a polarization state from the Z basis, either H or V . For the other

classes, they assign a polarization state from the X basis, either D or A. The intensity is in the

range of 0.7 photons/pulse for the Z basis and between 0 and 0.08 photons/pulse for the X basis.

The users send the resulting states to Charlie, with probabilities ps = pZ = 1 − pX = 45/48 and

pu = pv = pw = pX/3. In Charlie, the beam splitter output ports are spliced to the polarizing

beam splitter input ports to ensure polarization alignment to the rectilinear basis and reduce losses.

Four InGaAs self-differencing avalanche photodiodes are gated at 1 GHz and synchronised to the

arrival time of the photons with 1 ns intrinsic deadtime. Under these conditions the detectors have
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an effective active window of around 100 ps and are able to measure up to 500 Mcps [31]. Their

efficiency is kept close to 30% for the whole duration of the experiment. For attenuation levels

up to 16 dB it is advantageous to operate detectors at room temperature (20 ◦C), to reduce the

afterpulse probability, while for larger attenuation values it is beneficial to operate them at 0 ◦C,

to produce a smaller dark count rate. At 20 ◦C and 0 ◦C, the afterpulse probability amounts to

6.5% and 8.6%, respectively, and the dark count probability per gate is 6.50×10−5 and 2.64×10−5,

respectively. Temporal overlap between the pulses is initially achieved by maximizing the single

counts within the detection window of the gated detector. This is then fine-tuned by directly

measuring the interference visibility in the matched Z basis.

Pulsed laser seeding

Each user is endowed with two gain-switched lasers, one of which acts as the master and the other as

the slave. The two lasers are driven by square waves at 1 GHz through their AC port. An electrical

delay allows to vary the timing between the two driving signals. The DC level of the master laser

is set below the threshold ensuring a random phase, but is sufficiently high to have little turn-on

delay and produce ∼250 ps pulses. That of the slave is set low enough to assure that no lasing

is possible in the absence of the master laser photons. With seeding photons from the master

laser, the slave laser produces pulses around 35 ps wide and close to the time-bandwidth product

limit. In Fig. 2(a), the time jitter and frequency bandwidth of the pulses are measured using a

fast sampling oscilloscope and an optical spectrum analyser. To test the visibility of the setup we

perform a two-photon interference experiment using superconducting single photon detectors. The

photon count rate was tuned to give ∼ 106 counts/s per detector. Data was acquired for 50 seconds

using a time window of 350 ps around the central peak resulting in a visibility value of 0.482. For

the data presented in Fig. 2(b), we use an asymmetric Mach-Zehnder interferometer with an added

delay of 1 ns in one arm connected to the output of a seeded slave laser. The interference intensity

between subsequent pulses is measured using a PIN photodiode and an oscilloscope. The histogram

presented is the result of an acquisition of 105 points.
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SUPPLEMENTARY INFORMATION

A. Protocol

To increase the final key rate, we adopt an optimised protocol, similar to the one described in [1].

It makes use of four intensity settings rather than three to decouple the data basis Z from the

test basis X. This allows a large photon flux in the Z basis, in the range of 0.7 photons/pulse,

thus resulting in a high count rate, in the order of tens of millions counts per second for short

distances. It also allows a small photon flux in the X basis, which is optimal for the parameter

estimation based on decoy states [2, 3]. Moreover, we perform decoy state estimation through a

numerical routine based on linear programming, detailed below. This increases size and stability of

the resulting key rate. All the relevant experimental settings and rates for this protocol are given

below in Tables II, III, IV, V.

The steps of the protocol are as follows:

Preparation: Alice and Bob prepare phase-randomised weak coherent states with mean photon

number µi (Alice) and µj (Bob). The mean photon number µl, l = {i, j}, is randomly chosen

among four possible values [1]: s (signal), u (decoy 1), v (decoy 2), w (vacuum). When µl = s, the

users randomly assign a polarization state from the Z basis, either H or V . When µl 6= s, they

randomly assign a polarization state from the X basis, either D or A. They send the resulting

state to Charlie with probabilities ps = pZ = 1− pX = 45/48 and pu = pv = pw = pX/3.

Detection and announcement: Charlie performs a Bell measurement on the incoming states. In

every run, if at least two detectors click, Charlie publicly announces which detectors clicked. From

the announcement, the users draw the successful events, defined as the coincidence counts from



12

two detectors associated to orthogonal (H/V ) polarizations. When more than two detectors are

announced, the users draw all pairwise detector events compatible with the announcement. With

reference to Fig. 1, a coincidence count from detectors cH/dV or cV/dH (cH/cV or dH/dV) is

assigned to the singlet state |ψ−〉 = 1/
√
2(|HV 〉 − |V H〉) (triplet state |ψ+〉 = 1/

√
2(|HV 〉 +

|V H〉)) [4].

Sifting: Alice and Bob announce the bases (Z or X) for all the successful events. They perform

sifting by keeping the results whenever they have used identical bases and discard the others. Bob

performs a bit flip of all his measured bits, except when the matching basis is X and the successful

event is a triplet [4].

Key distillation: From the sifted bits, Alice and Bob quantify the gains Q
(k)
ZZ , Q

(k)
XX and the error

rates E
(k)
ZZ , E

(k)
XX separately for each basis and for the triplet (k = T ) and singlet (k = S) states.

From the X-basis quantities the users estimate the single photon gain q
(k)
X and the error rate e

(k)
X

using the decoy state technique. They then use q
(k)
X to infer a lower bound on q

(k)
Z . The final

key rate R of the system is determined by the rate equations: R = R(T ) + R(S); R(k) = q
(k)
Z [1 −

h(e
(k)
X )] − fECQ

(k)
ZZh(E

k
ZZ), where k = {T, S}, h is the binary entropy function and fEC = 1.16

quantifies how close to the Shannon limit the error correction (EC) performs.

Post-processing: The users run error correction, privacy amplification and all the due post-

processing to obtain the final key and secure the overall communication. In this protocol, only

results from the rectilinear basis are error-corrected and privacy-amplified. Diagonal basis results

are used only for the estimation of the single photon quantities and do not contribute to the raw

keys.

B. Distillation procedure

In the described protocol, the users distill two separate key rates, one for the singlet (|Ψ−〉) and

one for the triplet (|Ψ+〉) state. The final key rate is given by the sum of the two contributions.

Here, we aim to explain the distillation procedure that links the raw count rates to the final key

bits. It can be applied to the singlet and triplet data sets separately or to the data set obtained by

gathering the data from the two states in a single group. This makes the index k redundant and

we drop it from the following discussion. We can then rewrite the key rate equation given above

in a more explicit way:

R = p2Z
(
sie

−si
) (
sje

−sj
)
y1,1Z

[
1− h

(
e1,1X

)]
− fECQ

si,sj
ZZ h

(
E

si,sj
ZZ

)
. (1)
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In Eq. (1), Q
si,sj
ZZ and E

si,sj
ZZ are the gain and the error rate, respectively, measured in the rectilinear

basis (see Table III) when Alice (index ‘i’) and Bob (index ‘j’) send weak coherent states with mean

photon numbers (or “classes”) si and sj , respectively. We note that according to our protocol, the

‘s’ class is selected whenever the basis Z is chosen, so the probability ps to prepare s coincides

with pZ . The key bits are extracted from the s class only, whereas the classes u, v and w are used

to perform the decoy state estimation [2, 3]. Because independent weak coherent states are used,

the probability that the users simultaneously emit a single photon is the product of two Poisson

distributions, which appears in the first pair of brackets in Eq. (1). The quantity y1,1Z is the single

photon yield in the Z basis, i.e., the probability that Charlie declares a detection given that Alice

and Bob sent out single photon signals. This quantity is not measurable without true single photon

sources and has to be estimated using the decoy state technique. Similarly, the quantity e1,1X is the

single photon error rate, i.e., the probability that the users detect an error from Charlie’s declared

data given that they sent out single photon signals, and has to be estimated using the decoy state

technique.

Decoy state estimation

We perform the decoy state estimation using a constrained optimization numerical routine similar

to Ref. [5]. The first step is to estimate a lower bound for the quantity y1,1Z in Eq. (1), to lower bound

the key rate R. This is a typical constrained minimization problem, where y1,1Z is the objective

function and the constraints are given by the counts acquired in the experiment. However, instead

of minimizing y1,1Z , we minimize y1,1X , i.e. the single photon yield in the X basis. In the asymptotic

limit, this is justified by the equality y1,1Z = y1,1X . In the finite-size case, we can use the fact that,

provided that the sample in the X basis is smaller than the one in the Z basis, the lower bound

to y1,1X also represents a lower bound to y1,1Z [6]. The condition about the sizes of the two samples

in the bases Z and X is fulfilled in our experiment, due to the higher photon flux used in the Z

basis.

For the objective function y1,1X , the constraints are given by the coincidence counts in the X

basis. By dividing the coincidence counts in the X basis (see Table IV below) by the number of

pulses sent by the users in the X basis (see following section), we can obtain the quantities Q
µi,µj

XX ,

which can be plugged in the following equation [4]:

Q
µi,µj

XX =
∞∑

m=0

∞∑

n=0

(
µmi
m!

e−µi

)(
µnj
n!
e−µj

)
ym,n
X .
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Here, m and n indicate the number of photons emitted by Alice and Bob, respectively. When µi

and µj run over u, v and w, we obtain 9 independent equations, representing the constraints of the

problem. We can rewrite the constraints as:

Q
µi,µj

XX eµieµj =
∞∑

m,n=0

µmi
m!

µnj
n!
ym,n
X

=

K∑

m,n=0

µmi
m!

µnj
n!
ym,n
X +

K∑

m=0

∞∑

n=K+1

µmi
m!

µnj
n!
ym,n
X +

+

∞∑

m=K+1

K∑

n=0

µmi
m!

µnj
n!
ym,n
X +

∞∑

m,n=K+1

µmi
m!

µnj
n!
ym,n
X

From the above equation, the following bounds can be obtained:

K∑

m,n=0

µmi
m!

µnj
n!
ym,n
X ≤ eµieµjQ

µi,µj

XX , (2)

K∑

m,n=0

µmi
m!

µnj
n!
ym,n
X ≥ eµieµj

[
Q

µi,µj

XX −
(
1− Γ (1 +K,µi)

K!

Γ (1 +K,µj)

K!

)]
, (3)

where Γ (a, b) =
∫
∞

b
ta−1e−tdt is the incomplete gamma function. Eqs. (2), (3) represent a total

of 9 + 9 = 18 constraints. However, as it can be seen from Table IV, the counts obtained from

the classes vw, wv and ww are much fewer than those from the other classes, leading to larger

statistical fluctuations. In this case, we found it advantageous to combine the counts from these

classes and rewrite the associated constraints in a single cumulative constraint (see also [7]). This

reduces the total number of constraints for the above-described problem to 7 + 7 = 14. Finally, in

addition to Eqs. (2), (3), we also set the condition that the yields are probabilities, i.e., ym,n
X ∈ [0, 1]

for every m,n.

For the single photon error rate we adopt a procedure similar to the one just described. This

time, we need to maximize the quantity e1,1X . The constraints are given by the following equa-

tions [4]:

Q
µi,µj

XX E
µi,µj

XX = e−µie−µj

∞∑

m=0

∞∑

n=0

µmi
m!

µnj
n!
ym,n
X em,n

X ,
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which leads to the following bound:

Q
µi,µj

XX E
µi,µj

XX eµieµj =

∞∑

m=0

∞∑

n=0

µmi
m!

µnj
n!
ym,n
X em,n

X

= y0,0X e0,0X +
∞∑

n=1

µnj
n!
y0,nX e0,nX +

∞∑

m=1

µmi
m!

ym,0
X em,0

X +
∞∑

m=1

∞∑

n=1

µmi
m!

µnj
n!
ym,n
X em,n

X

=
1

2
y0,0X +

1

2

∞∑

n=1

µnj
n!
y0,nX +

1

2

∞∑

m=1

µmi
m!

ym,0
X +

∞∑

m=1

∞∑

n=1

µmi
m!

µnj
n!
ym,n
X em,n

X

≥ 1

2
y0,0X +

1

2

K∑

n=1

µnj
n!
y0,nX +

1

2

K∑

m=1

µmi
m!

ym,0
X +

J∑

m=1

J∑

n=1

µmi
m!

µnj
n!
ym,n
X em,n

X . (4)

In the third line we set e0,0X = e0,nX = em,0
X = 1

2 and in the last line we have dropped some non-

negative terms from the sum. From the last line of Eq. (4), we carry on only the terms corresponding

to J = 1 and drop all the remaining ones. Because the dropped terms are non-negative, we can

write:

Q
µi,µj

XX E
µi,µj

XX eµieµj ≥ 1

2
y0,0X +

1

2

K∑

n=1

µnj
n!
y0,nX +

1

2

K∑

m=1

µmi
m!

ym,0
X + µiµjy

1,1
X e1,1X . (5)

This can be rewritten as:

e1,1X ≤ 1

µiµjy
1,1
X

(
Q

µi,µj

XX E
µi,µj

XX eµieµj − 1

2
y0,0X − 1

2

K∑

n=1

µnj
n!
y0,nX − 1

2

K∑

m=1

µmi
m!

ym,0
X

)

≤ 1

µiµjy
1,1
X

(
Q

µi,µj

XX E
µi,µj

XX eµieµj − 1

2
y0,0X − 1

2

K∑

n=1

µnj
n!
y0,nX − 1

2

K∑

m=1

µmi
m!

ym,0
X

)
, (6)

where in the last line we have indicated with y1,1X the lower bound to y1,1X obtained in the previous

yield minimization problem. Eq. (6) represents a set of 9 constraints. As mentioned for the single

photon yield optimization problem, the data sets obtained from the classes vw, wv and ww are

much smaller than the others, so it is beneficial to gather them. We write explicitly the constraints

for the least significant classes:

e1,1X ≤ 1

y1,1X

× 1

vw

(
Qvw

XXE
vw
XXe

vew − 1

2
y0,0X − 1

2

K∑

m=1

vm

m!
ym,0
X − 1

2

K∑

n=1

wn

n!
y0,nX

)

e1,1X ≤ 1

y1,1X

× 1

wv

(
Qwv

XXE
wv
XXe

wev − 1

2
y0,0X − 1

2

K∑

m=1

wm

m!
ym,0
X − 1

2

K∑

n=1

vn

n!
y0,nX

)

e1,1X ≤ 1

y1,1X

× 1

w2

(
Qww

XXE
ww
XXe

2w − 1

2
y0,0X − 1

2

K∑

m=1

wm

m!
ym,0
X − 1

2

K∑

n=1

wn

n!
y0,nX

)
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By adding the three inequalities above we obtain the following cumulative constraint:

e1,1X ≤ 1

3y1,1X

[
1

vw

(
Qvw

XXE
vw
XXe

vew − 1

2

K∑

m=0

vm

m!
ym,0
X − 1

2

K∑

n=1

wn

n!
y0,nX

)
+

+
1

wv

(
Qwv

XXE
wv
XXe

wev − 1

2

K∑

m=0

wm

m!
ym,0
X − 1

2

K∑

n=1

vn

n!
y0,nX

)
+

+
1

w2

(
Qww

XXE
ww
XXe

2w − 1

2

K∑

m=0

wm

m!
ym,0
X − 1

2

K∑

n=1

wn

n!
y0,nX

)]
. (7)

The 7 constraints given in Eqs. (6) and (7) have to be added to the 14 specified for the yields

in Eqs. (2) and (3) (including the mentioned cumulative constraint), thus providing a total of 21

constraints for the maximization of e1,1X . In addition to these constraints, we also specify in the

problem the range of the quantities ym,n
X , which is the closed interval [0, 1].

Finite size key rate

To derive the secure key rate in the presence of the statistical fluctuations of the finite sample, we

follow the approach in Ref. [8] (see also [9] for a detailed analysis of this subject). We assume that

the statistical fluctuations obey a Gaussian distribution [10]. Therefore it is possible to set the

desired failure probability ε of the estimation procedure by solving the equation 1−erf
(
n/

√
2
)
= ε,

where n is the (not necessarily integer) number of standard deviations adding up to form the

statistical error of the measured value. We find it convenient to set n = 7 and obtain ε =

2.56× 10−12. Because in our decoy state estimation we use 21 constraints, this choice assures that

the overall failure probability of the estimation of the parameters is less than 5.4× 10−11.

We then consider the fluctuation function:

F (x, n) =
n√
x
, (8)

where x represents the size of the considered data sample. This function is used to make the

constraints in the optimization problems for y1,1X and e1,1X looser. For example, the inequality in

Eq. (2)

K∑

m,n=0

µmi
m!

µnj
n!
ym,n
X ≤ eµieµjQ

µi,µj

XX

in the finite-size scenario becomes:

K∑

m,n=0

um

m!

vn

n!
ym,n
X ≤ euevQu,v

XX

[
1 + F

(
Nu,v

XXQ
u,v
XX , 7

)]
,
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where Nu,v
XX is the total number of runs where Alice and Bob emitted pulses in the class u and v,

respectively. Because the resulting constraint is looser, the finite-size solution is always worse than

the one in the asymptotic scenario, and the key rate is reduced. This explains why the finite-size

key rate for a channel attenuation of 2.33 dB is about 30% of the asymptotic key rate when the

total size of the sample is ∼ 2.4×107 (see Table IV). The presence of a factor
√
x in the fluctuation

function F , Eq. (8), explicitly shows that it is always best to gather the counts from the singlet

and triplet data sets in a single group to maximize the finite-size key rate. Because the sizes of the

separate triplet and singlet data sets are approximately equal, the size of the total sample is about

twice as large as the separate samples. This, according to Eq. (8), entails a factor
√
2 advantage

in the key rate if the total sample is used.

The key rate obtained by joining the data sets from the singlet and the triplet states amounts

to 366 kbit/s. The number of prepared pulses are Nu,u
XX = Nu,v

XX = Nu,w
XX = Nv,u

XX = Nw,u
XX =

(5× 102)× (4× 109), acquired in 500 seconds, and Nv,v
XX = Nv,w

XX = Nw,v
XX = Nw,w

XX = (1.25× 102)×
(4× 109), acquired in 125 seconds, where N

µi,µj

XX is the total number of runs where Alice and Bob

simultaneously emitted pulses in the class µi and µj , respectively.
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C. Key rates

Channel attenuation/distance
Key rate

[kbit/s]

2.33 dB (11.65 km) 1256.5

2.33 dB (11.65 km) | Finite size 366.3

6.15 dB (30.75 km) 325.8

9.82 dB (49.10 km) 98.2

50 km (9.65 dB) | Real fibre 98.4

15.97 dB (79.85 km) 15.9

20.98 dB (104.9 km) 4.2

TABLE II. Key rate R versus channel attenuation (dB) or equivalent distance (km) in a single mode optical

fibre featuring 0.2 dB/km attenuation.

D. Count and error rates in the rectilinear basis

Channel attenuation/distance
Singlet

|Ψ−〉
Triplet

|Ψ+〉
sA = sB

C
(S)
ZZ E

(S)
ZZ C

(T )
ZZ E

(T )
ZZ ph/pulse

2.33 dB (11.65 km) 288399 0.33% 287902 0.35% 0.7

2.33 dB (11.65 km) — Finite size 307574 0.29% 308259 0.25% 0.7

6.15 dB (30.75 km) 139817 0.47% 139345 0.52% 0.7

9.82 dB (49.10 km) 39881 0.61% 39993 0.63% 0.7

50 km (9.65 dB) — Real fibre 53411 0.81% 54058 0.86% 0.7

15.97 dB (79.85 km) 14704 0.95% 14657 1.14% 0.6

20.98 dB (104.9 km) 3238 1.20% 3211 0.97% 0.55

TABLE III. Measured coincidence counts (CZZ) and error rates (EZZ) in the rectilinear basis, separately

for the singlet and the triplet states. Acquisition time is 80 ms for each attenuation/distance value.
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E. Count rates in the diagonal basis

Channel attenuation/distance
Singlet

|Ψ−〉
Triplet

|Ψ+〉
µi = µj

Class u v w u v w ph/pulse

2.33 dB (11.65 km)

u

v

w

223041

84703

71263

92393

14119

9218

80410

9514

5516

225777

85996

72727

93290

14362

9353

80759

9780

5778

0.01

0.002

0.001

2.33 dB (11.65 km) — Finite size

u

v

w

4771407

1774040

1506023

1967827

73783

46317

1693057

47749

27113

4853012

1773149

1510257

1969107

73789

46591

1690185

48136

27348

0.01

0.002

0.001

6.15 dB (30.75 km)

u

v

w

218848

93154

80250

79813

13655

9458

67269

8681

5276

222021

93588

81479

80688

13955

9410

67866

8710

5377

0.016

0.0032

0.0016

9.82 dB (49.10 km)

u

v

w

170331

67118

57570

69123

11298

7397

59436

7674

4694

174234

68020

57787

70675

11749

7526

60709

7831

4759

0.025

0.005

0.0025

50 km (9.65 dB) — Real fibre

u

v

w

239876

88586

74187

98512

14526

9310

85722

9854

5604

244648

89817

74644

98477

14946

9275

85958

9721

5745

0.025

0.005

0.0025

15.97 dB (79.85 km)

u

v

w

226108

88114

74616

82071

11477

7051

69065

6971

3401

225133

87615

75312

83685

11730

7078

70665

7033

3461

0.05

0.01

0.005

20.98 dB (104.9 km)

u

v

w

142656

56455

48101

50799

7057

4391

42995

4233

2237

145584

57492

49104

52744

7308

4578

44096

4322

2211

0.08

0.0155

0.008

TABLE IV. Measured coincidence counts in the diagonal basis (CXX) separately for the singlet and the

triplet states. Acquisition time is 25 seconds per combination, with the exception of the line containing the

finite-size data. There the total sample was acquired in 12,000 seconds.
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F. Error rates in the diagonal basis

Channel attenuation/distance
Singlet

|Ψ−〉
Triplet

|Ψ+〉
µi = µj

Class u v w u v w ph/pulse

2.33 dB (11.65 km)

u

v

w

31.82%

40.17%

44.07%

41.60%

38.39%

41.53%

45.37%

42.21%

43.22%

31.55%

40.67%

44.55%

40.77%

37.68%

41.28%

44.36%

41.95%

42.13%

0.01

0.002

0.001

2.33 dB (11.65 km) — Finite size

u

v

w

33.12%

40.95%

45.79%

41.20%

38.98%

41.30%

44.90%

41.64%

42.61%

32.08%

40.56%

43.93%

41.62%

38.98%

41.63%

45.33%

41.49%

43.39%

0.01

0.002

0.001

6.15 dB (30.75 km)

u

v

w

32.81%

41.56%

45.06%

40.06%

38.22%

42.17%

44.66%

41.25%

43.33%

30.83%

41.06%

45.01%

39.92%

37.46%

39.90%

43.54%

41.00%

41.27%

0.016

0.0032

0.0016

9.82 dB (49.10 km)

u

v

w

32.69%

41.41%

45.17%

41.94%

40.23%

43.75%

45.88%

42.39%

44.91%

32.42%

40.92%

44.90%

41.32%

40.07%

40.95%

44.08%

41.21%

43.12%

0.025

0.005

0.0025

50 km (9.65 dB) — Real fibre

u

v

w

32.72%

39.98%

43.21%

42.87%

39.60%

40.49%

46.10%

43.00%

42.95%

31.45%

40.96%

45.29%

41.25%

37.68%

42.24%

44.68%

42.41%

43.19%

0.025

0.005

0.0025

15.97 dB (79.85 km)

u

v

w

30.39%

39.30%

43.31%

39.77%

34.94%

38.15%

44.48%

37.56%

37.31%

31.71%

41.35%

45.25%

38.75%

34.53%

36.54%

43.13%

36.93%

39.12%

0.05

0.01

0.005

20.98 dB (104.9 km)

u

v

w

32.09%

41.70%

45.32%

40.09%

35.47%

37.94%

44.18%

37.04%

37.33%

30.83%

39.42%

43.24%

39.69%

34.21%

37.27%

44.12%

37.58%

36.27%

0.08

0.0155

0.008

TABLE V. Measured error rates (EXX) in the diagonal basis separately for the singlet and the triplet states.

Acquisition times are as in Table IV.
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G. Theoretical estimation of the visibility

The two-photon interference visibility V (στ ,∆v) obtained from two independent gain-switched

laser diodes is a function of the time jitter τ and of the bandwidth ∆ν of the interfering pulses,

which are reported on the horizontal and vertical axis of Fig. 2(a) in the main text, respectively.

Their values for the slave lasers in our setup, with and without the pulse laser seeding technique,

have been measured and are given as abscissas and ordinates, respectively, of the two empty circles

in the figure. The time jitter is assumed to follow a Normal distribution Nτ (0, στ ) centred at 0.

The visibility is plotted from the expression:

Ṽ (στ ,∆v) =

∫
∞

−∞

dτV (τ,∆v)Nτ (0, στ ) ,

where

V (τ,∆v) =
1

2
exp

[
−τ

2 + 4 (ωij + 2τβ)2 σ4t
4σ2t

]
. (9)

The quantity V (τ,∆v) in Eq. (9) is obtained from the electric fields

ξl(t) =
√
I(t)ei(ωlt+βt2+θl)

emitted by Alice (l = i) and Bob (l = j), which are used to estimate the coincidence counts at Char-

lie’s detectors [11, 12]. The random variable τ in Eq. (9) represents the total time jitter between the

two pulses emitted by the users measured from Charlie’s beam splitter; ωij = 2π (νj − νi) accounts

for the (small) difference in the central frequencies νi and νj of the interfering pulses emitted by Al-

ice and Bob, respectively; σt is the standard deviation of the optical pulses having intensity profile

I(t), assumed be Gaussian, and are related to the measurable full-width-at-half-maximum of the

pulses, ∆t, by the relation σt = ∆t/
(
2
√
2 ln 2

)
. The parameter β accounts for the frequency chirp.

We assume that frequency chirp is the only cause of a bandwidth larger than the one prescribed

by the time-bandwidth product. In this case it can be shown that ∆v = ∆v(0)
√

1 + 16β2σ4t [13].

By measuring σt and the time-bandwidth product of the emitted pulses, it is possible to invert this

relation and determine the parameter β.

[1] Zhou, Y.-H., Yu, Z.-W. & Wang, X.-B. Making the decoy-state measurement-device-independent quan-

tum key distribution practically useful. arXiv 1502:01262 (2015).

[2] Wang, X.-B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys.

Rev. Lett. 94, 230503 (2005).



22

[3] Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504

(2005).

[4] Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev.

Lett. 108, 130503 (2012).
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