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Quantum kinematics of bosonic vortex loops

Gerald .4. Goldin* Robert Owczarek, ~ David H. Sharp,$

Abstract

Poisson structure for vortex filaments (loops and arcs) in 2D ideal incompressible fluid

is analyzed in detail. Canonical coordinates and momenta on coadjoint orbits of the area-

preserving diffeomorphism group, associated with such vortices, are found. The quantum space

of states in the simplest case of “bosonic” vortex loops is built within a geometric quantization

approach to the description of a quantum fluid. Fock-like structure and non-local creation and

annihilation operators of quant urn vortex filaments are introduced.

1 Introduction

In the papers [1, 2], Goldin, Menikoff, and Sharp analyzed from the point of view of geometric

quantization the problem of quantizability of particular vortex structures that exist in superfluid

helium. The geometric quantization approach is based on consideration of the symmetry group of the

system. Unitary irreducible representations of this group provide us with the appropriate quantum

space of states. An idealized picture of superfluid helium we adopt also in this paper assumes that the

superfluid consists of an incompressible and nonviscous fluid, which could be treated as a classical

fluid, and a number of vortices for which classical description is not sufficient. The vortices are

collective excitations of the fluid. Their quantum description should respect the classical symmetry

of the fluid. Since the configuration space and simultaneously the symmetry group for an ideal

incompressible fluid is G = S.Lli~f(.ZW), (n = 2, or 3), the group of area-, or volume- preserving

diffeomorphisms, for n = 2 or n = 3, respectively, (the diffeomorphisms are additionally assumed to

become trivial at infinity), the problem of quantizabilit y is equivalent to the problem of construction

of appropriate irreducible unitary representations of G, connected with coadjoint orbits describing

particular vortex structures.

Irreducibility of the representations is mathematically described in the language of polarizations

of the orbits. The polarization means roughly division of the coordinates of the coadjoint orbits,

which are the reduced phase spaces of the system, into canonical coordinates and momenta. When

the polarization is established, the canonical coordinates give rise to the quantum configuration space.

Quantum physical states of the system depend then only on the “coordinates,” which constitute a

quantum configuration space of the system, or on the conjugated “momenta.” The surprising result
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of the papers [1, 2] was elimination of point vortices in 211, and vortex filaments in 3-0 from the list

of admissible quantum objects. Instead, it was found there that the polarization exists for coadjoint

orbits describing vortex loops, dipoles and arcs in 2~, and for vortex ribbons and tubes in 3-n.

Similar results for the 311 case obtained Owczarek in [3, 4], within a different approach based on

field theoretic interpretation of knot theory [5], [6], and inspired by Peradzyfiski [7]. Owczarek used

also the topological degrees of freedom of the knotted and linked vortices to discuss their role in

thermodynamics of critical superfluid helium [8], anticipated by Goldin, Menikoff, and Sharp in [2].

Let us mention that the fact that vortex ribbons are better suited for quantization than the

vortex filaments was also observed by Brylinski [9] who was studying the symplectic structure on the

orbits associated with vortex filaments in 317. He proved a theorem which states that vortex ribbons

describe manifolds, which are Lagrange manifolds with respect to the standard symplectic structure.

He stated it could be a starting point for geometric quantization of such vortex structures but he

did not follow this way, concentrating rather on further discussion of vortex filaments, which are not

feasible in this context.

I.Jnitarity of the representations can be established only when there is known appropriate quasi-

invariant measure on the quantum configuration space. Showing existence of such a measure and

its construction are difficult mathematical problems. We believe such measures exist in the physi-

cally interesting situations, and we assume their existence in the cases of vortex structures allowing

quantization. Knowledge of the measures is not of vital importance for describing kinematics of the

system, as in the given paper. However, one can expect they are very important in considerations

involving quantum dynamics of the system.

The facts about quantizability of the vortex structures reminded above lead to possibility of

appearance of interesting effects on the quantum level, associated with complicated topology of the

quantum configuration spaces, like “internal statistics” of the individual 2D vortex loops, anyonic

statistics for systems of the vortex loops, their combinations, and topological effects connected with

knottedness and linkedness of vortex loops in 3~. These problems will be discussed systematically

in our future papers.

We should mention here a recent interesting paper by Speliotopoulos [13], in which the author

constructs creation and annihilation operators for vortices in superfluid helium within a heuristic

approach, starting from the rule of quantization of vorticity. In his approach he was not using

the geometric quantization framework. He treated the vortices as point-like excitations. In the

first approximation he postulated the one-vortex Hamiltonian to be harmonic, H = CC*C,where

c*, c are one-vortex creation and annihilation operators. Then, to avoid some singularities in the

corresponding wave function, he modified the creation and annihilation operators. This modification

he interpreted as transition from the point vortices to the vortex patches. However, the vortex

patches are homogeneous and not feasible for geometric quantization [1].

In this paper quantum kinematics of vortex filaments is discussed. Similar questions were ad-

dressed and answered for systems of rmnrelativistic point particles, which were classified successfully

long ago in terms of associated representations of the group of diffeomorphisms [10, 11]. In partic-

ular, anyons were for the first time described at rigorous mathematical level within this approach

[11]. Recently, Goldin and Sharp proposed in [12] a general construction of the field creation and

annihilation operators as intert winers of the representations of diffeomorphism groups. They con-

structed explicitly field operators in the case of anyons, showing appearance, in a natural way, of q-

commutation rules for the operators. The rules follow from the type of the representations used and

are not assumed from the beginning.
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In this paper we analyze first in detail the Poisson structure on the coadjoint orbits associated with

the vortex loops and introduce canonical coordinates and momenta on the orbits. Next, we construct

the Fock-like space of states and field operators of creation and destruction in the simplest case of

“bosonic” vortex loops. The field operators depend on non-local arguments which are unparametrized

loops. This formal construction is not completely explicit due to the lack of knowledge of the quasi-

invariant measure on the space of unparametrized loops. In this case we showed the measure should

satisfy a multiplicative property with respect to addition of new loops in order to get a hierarchy of

representations.

The plan of the paper is as follows. In the second section we remind basic material on canonical

symplectic structure on coadjoint orbits of the diffeomorphism groups and establish notation. In

the third section the Poisson structure of vortex loops is discussed in detail. In the fourth section a

formal construction of the Fock space, and of the creation and annihilation operators is presented. In

the Appendix we prove some formulas given in the second section, and present for convenience of the

reader some material on application of differential forms in hydrodynamics of ideal incompressible

fluids.

2 Kirillov-Kostant- Souriau symplectic struct ure on coad-

joint orbits

In this section we remind basic mathematical structures in the classical theory of ideal incompressible

fluids. Our purpose is convenience of the reader (many conventions are present in the existing

literature) and of the authors (who also are victims of the numerous conventions). As the guide

through this material the authors chose the newest textbook in the area by Arnold and Khesin [14].

Our notation is a compromise between the one used in our previous publications on the subject and

the one used in this book. We derived a number of formulas once more and present the derivations

for the same purpose of convenience. Some transformations are presented in the Appendix. First, we

remind the general formula of the Kirillov-Kostant-Souriau (KKS) symplectic structure on coadjoint

orbits of a Lie group G. Then we specify the groups to be S.Di~~(El”) (n = 2, or 3), which are the

proper groups for discussing incompressible hydrodynamics.

Let for a general Lie group G, G will be its Lie algebra, and ~“ its dual with respect to some

pairing < “, 0>: ~“ x G + ill. Let [“,”] denotes the commutator (Lie bracket) in g. One should keep

in mind that for finite dimensional groups G the dual of the Lie algebra Q, G*, is isomorphic as a

vector space to ~, but for infinite dimensional groups ~“ is much bigger than ~ and they are by no

means isomorphic.

The left translation of the group G acting on itself is defined for every element g of G as L~ : G +

G such that Lg[h) = gh. Since -Lgl~,(h) = (glg,)h = gl(g,h) = (L,l o L,,)(h), then L,,,, = L,l o L,,

and the left translation is a left action on G. The right translation of a group G acting on itself

is defined for every element g of G as l?~ : G + G such that l?~(h) = hg. Since ~~,~,(h) =

h(glgz) = (hgl)gz = (.li~, o ll~l)(h), then 12~1~, = 13g, o I&, and the right translation is a right

action. The adjoint action of a group G on itself, or the inner automorphism of the group G is the

composition Ad~ = +1 o L~, Ad~ : G + G. The name automorphism is justified by the formula

Ad~(lz1h2) = g(/z1h2)g-1 = g(hlg-1gh2)g-1 = (ghlg-1)(gh2g-1) = Ad~(h1)Ad~(h2) showing that

indeed Ad~ is an automorphism acting in the group G. Of course Adg1~2(h) = (g1g2 ) h(g1g2)’1 =

91(92~9;1 )9;1 = (Adg, o Ad,,)(h), so that Ad, is a left action on G.

3
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Let us remind that when there is defined a map F : M + M of a manifold ill into itself, its

derivative .F*IZ at the point z c A/ifis a linear operator from T“&l to T“(Z)III, l?. /$ : TZA4 + TF(ZJAZ.

The Lie algebra ~ of a Lie group G is usually identified as a vector space with the tangent space to

G at its unity. Since the action Ad~ does not move the unity of G, the derivative of this action at

the unity maps the tangent space, and because of that also the vector space of the Lie algebra, ~,

into itself. This action is usually also denoted Ad~ for each g E G, but it acts now from ~ to ~. The

definition reads for each g c G: Ad~ : ~ + ~, Ad~f = (Ad~* IJ$, ~ c ~ := TeG. Since Ad~ acting on

G satisfies Ad~,~2 = Ad~l o Ad~2, the same is true for the Ad~ acting on G and therefore Ad~ defines

a representation of G in the vector spa,ce G.

Let us consider then a curve g(t) in G, such that g(0) = e c G, -$ ~=og(t) = ( E g. Let

us introduce the adjoint representation of the Lie algebra in itself ad = Ad*e : G + Endg,
d

@ = z ~=oA@t),@ : G+ g.
The commutator in the vector space of the Lie algebra ~ = TeG is the operation [.,.] : ~ x ~ + ~

defined using the adjoint action of ~ on itself, by [~, q] = adtq

The commutator defined this way satisfies the standard axioms of the Lie algebra: it is linear in

both arguments, it is antisymmetric, and it satisfies the Jacobi identity.

Now, let us work out the formula for the KKS form on coadjoint orbits of G. Given duality

<“, ” > between g“— the dual of ~, and g, one can define the coadjoint action of g on g“ as the

dual of the adjoint action:

This action is the infinitesimal version of the coadjoint action of the group G on ~“:

which is a right action:

< A~1g2P,[ > = c p,A&mt >=< P, (Ad,, o A%)(t) >=

= < p, Ad~, (Ad~2(~)) >=< Ad;, (p), Ad~2(~) >=

= < A~2(Ad;, (P)))c >=< w;, 0 q,)(P)>t > (3)

The definition of the (KKS) symplectic form reads:

where:

peg”

, &* (p) (resp. qG*) is ‘the value of a vector field & (resp. qg.) associated to an element f E ~ ( resP.

v c G), at the point p E g“ (p determines the coadjoint orbit).

With every p c ~“ is associated a coadjoint orbit of G, the one which is passing through p:

O,:= {ac$(p) : g E G} (5)

In the context of hydrodynamics one considers the groups of the type G = SllZf~(M), where Al

is a manifold equipped with a volume element, usually AL!= l?i2 or lR3 with the standard Euclidean
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volume element and SlX~~(l14

lkf. For A4 not compact the di

consists of volume preserving smooth (Cm) diffeomorphisms of

eomorphisms are usually additionally assumed to become trivial

sufficiently quickly at infinity. The group action is defined as +1452 = +1 042 for any 41,42 c G.

With this convention we also follow the book [14], instead of our previous papers, where the order of

composition was the opposite one. Our convention was leading to the commutator in the Lie algebra

~ being equal to the standard commutator of vector fields. The convention of [14], and used also in

some other important publications on geometric approach to classical hydrodynamics, e.g. in [15],

leads to the commutator in the Lie algebra, which adds the minus sign to the commutator of vector

fields. The Lie algebra of G, ~, consists of vectors tangent to G at identity e of G. These vectors

can be identified with divergenceless vector fields on ikf, the space of which we denote SVect(.M).

The vector fields vanish quickly at infinity, as a result of diffeomorphisms becoming trivial at infinity.

Let us establish what are the general Ad and ad actions in this case. The left group action in G is

~~1 (#z)= 4142 = #l O#Z. Correspondingly, Rd, (42)= #20#1, Then (Add)(+) = #+#-1 = ~o+oqi-l.

The result of this action on @ is a new diffeomorphism of Al. Let us establish the induced Ad action

of # in g = T~G = SVect(M). Let +: be a one-parameter subgroup in G connected with a vector

field z(x), x c Ill, on the manifold Al. The Ad# acts on +: by Add (tj~) = #oTJ~o q5-1. Its differential,

taken at e, is, accordingly to the chain rule, equal to

, or, in coordinates:

(Ad(qi)v)~ (z)=
[(a%)’vk)O’4(x)= a%)’ ,=4-1,.)V’(+-1(X)) =8[:IX)I,V’(4-l(X))

(7)

It means the matrix lld is given at x by:

and at ~-l(x) by:

(8)

(9)

Since the vector fields on M are identified as physical velocity fields of the fluid, this is the rule of

act ion of diffeomorphisms in the space of velocity fields. This transformat ion rule has its counterpart

as adjoint action of the diffeomorphisms on the stream functions. Since we do not want to introduce

here the full apparatus of differential forms which is very convenient in discussion of hydrodynamics

on general manifolds (they can be curved and of any dimension), we discuss this issue only for the case

of Al = 1112or llt3, as it was done in our previous publications [1, 2]. However, some elements of the

general case we discuss in the Appendix. Stream functions are introduced due to divergencelessness

of the velocity fields, divti = O. ln lR3 the stream function is introduced by z = —curl~u, and in l/?2

by u = _CU~l~ti, Vi = a~ij(xu),j, ~ij is the usual antisymmetric symbol, e12 = 1.

Let us turn the reader’s attention to the difference in sign in comparison with the previous

publications. The change is made in order to follow the

that the stream function is not uniquely defined. One

5
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or a constant (1112). In the 2.D case, which is of special interest in this paper, one can integrate XG

out of Z, by introducing w = V12JXU= (V2, --vI) = Z1 , and then integrating ti along any trajectory

from infinity to i, Xu = J: wdj. It is easy to see that the integral does not depend on the trajectory

and that Xu satisfies the required conditions of the stream function. An interesting and convenient

relation that satisfies such a x is

X{zl ,tiz} = ~2x ‘m (lo)

where{., .} denotes the standard commutator of vector fields {fil, ti2} = [UIV)ZQ – (EzV)O1. This

relation one can easily obtain from the identity:

applied to ii = ik, ~ = til, divtil = div iJ2= O.

The nonuniqueness in the definition of the stream function leads to some complication in estab-

lishing the rule for the adjoint action of the diffeomorphism group. One can prove only that the

proposed transformation leads to the p:roper action on the velocity fields. The proper transformation

rules for x in 1113and x in lR2 are:

, so

x:(z)= ?[4-l(N/jzi X.i (d-’(x))

(12)

(13)

, and in 211

x;($) = xi (K’(4) (14)

The calculations showing that such transformation rules for the stream functions under adjoint action

of the diffeomorphism group lead to the proper adjoint action on the velocity fields are given in the

Appendix. We also present there some elements of the approach through differential forms to the

description of hydrodynamics, in particular to the stream function.

The dual of g , g“, is not isomorphic to ~, which is a standard feature of infinite-dimensional

vector spaces, and consists of generalized (co-) vector fields (in general, components of the generalized

vector fields are distributional). The duality between G and G* is given by the pairing:

(15)

I’vforeover, after introducing the stream function Xv the formula (15) can be written in 3D in the

form:

(16)

where ti (5) = curl A(i) is a generalized vorticit y field, and where we used the identity:

/ ()ii z . curl&( ~)d3x = / ()~B36 % . curlii(Z)d3x
IR3

(17)

valid for any vector fields in IR3 vanishing at infinity.
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The question is: what are the concrete forms for the actions in the case of G = SDi~~(l?l”),

@ = sVect*(~), n = 2,3?

The proper definition of the adjoint action of G on ~ should be such that infinitesimalized it

should give the adjoint action of g on g. These requirements satisfies the action given by (6), (7).

With such definition of the adjoint action, let us consider the one-parameter subgroup ~~ of G

which is the solution of the ODE:

d#~(z)
– ii ($f(z))

dt –

describing the vector field u(x) c SVect (E?”). Then, the adjoint action of the l-parameter subgroup
.-

reads:

(18)

Expanding ~ in the vicinity of t = O, ~ = id+ tu~~ + .. .. where the dots mean terms of higher

degree in t, and its inverse (fi)-l = id – fu~~ + .. . one gets after some manipulations :

(Ad(#})v)~ = v~ - t [(iiV)ti - (tiV)ti]~ + .. . (19)

, where dots denote terms of higher order in t.

As a result:

[ii, U]= ad(ti)ti = $ [Ad(fi)ti] = ; [v – t{u, v] + . . .] = -{U, V}
t=o t=o

(20)

so that the commutator in the Lie algebra ~ is equal to minus the commutator of vector fields, as

was explained in the above discussion.

Now, let us establish the explicit form of the coadjoint action and of the symplectic form. Let us

concentrate on the 3.D case, because the 2D vector fields can be embedded in the 3D space so that

the formulas for the 3D case will be applicable also in the 2D situation. Let us take as p < ~“ an

element A(z) c SVec-t(lKT)* (a generalized velocity field) and as ~, q c ~ two divergenceless vector

fields til (z), Z2(Z). Then the formula for the KKS form on the coadjoint orbit through A(z), taken

at this point, reads:

Next, using the identity:

{ii,(z), ii,(a)} = -CUT1[?2,(Z) x Z,(i)] (22)

which is valid for divergenceless vector fields, and using (17) , we obtain the formula:

%(z)(ULG*(A(Z))>u2,L7*(4~)))= ~R3cu~z~(~)o[~1(~)x %@)]d3z (23)

Defining the generalized vorticit y field ti(z) E ~“ as G(Z) := curi~(~), one gets the formula:

.
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3 Poisson structure for vortex loops and arcs in lR2 from

KKS symplectic form

Let us turn now to the case of a coadjoint

use further the common name filament for

orbit associated with a vortex loop or arc in lR2. Let us

either a loop or an arc.

The vorticity field can be written for the case of a vortex filament in

/
O(i) = F2K *22a 6(Z – cz(Q))6(y – c,(a))

lR2 as:

(25)

where ~(a) is a parametrized filament in ll?2, and ~ is proportional to the total vorticit y for this

filament. The parametrized filament is a map ~ : [0, 27r] ● a j C(a) G ll?2, a E [0, 27r]. Therefore,

the KKS symplectic form reads:

(26)Q~(E)(u,,g*(A(i)),u2,G*(~(7)))

=
/

~, dx dy

, where CZ(Q), CY(Q) are z and y components of C(a) in lR2, respectively, 6CZ(a) and 6Cy(a)

infinitesimal changes in Cc(a), Cy (a).

Therefore, the KKS form on the coadjoint orbit characterized by C(a) can be written as

following 2-form:
r27r

(27)

are

the

JQqm) = K o da 6Cz(a) A 6CJa) (28)

From geometric point of view it is justified to consider instead of parametrized filaments the filaments

that are unparametrized. An unparametrized filament is the image of the map C(a) whereas a

parametrized filament is a map C : [0, 2m] > a ~ ~(a) E lR2. For the unparametrized filaments the

only parametrization is the natural one, with respect to the arclength parameter s, intrinsic to them.

Such vortex filaments underlie a description which applies their internal characteristics only, i.e. their

shape. The remaining information about the vortex filament is coded in the vorticity distribution

along it. As a result we use the equivalent description of vortex filaments, in which a parametrized

vortex filament is substituted by a pair (I’, y) consisting of an unparametrized vortex filament r and

vorticity distribution function ~, which can be expressed as a function of the arclength parameter

s. One expects that the canonical coordinates on the coadjoint orbits will be expressed in terms of

these quantities. Therefore, it is desirable to write down all the formulas in terms of these quantities.

There are two reasons in favor of such a description. One is purely geometric and was mentioned

above. Namely, this description is based on intrinsic characteristics of vortex filaments and not on

the properties of the surrounding of the filaments. The other argument goes further into physics and

is based on the remark from [1] that unparametrized filaments, I’(s), should be canonical coordinates

on the coadjoint orbits.

Let the function ~(s) be defined by

‘y(s) := : (29)

8



Let us calculate action of the symplectic form on two vector fields in the intrinsic coordinates,

using internal tangent and normal components of the vector fields. In these coordinates Zi(i) =

(u;,(z), ui.(~)), i = 1,2, where u;,(z) is the tangent and Ui.(i) is the normal to the curve component

of the vector field ti(~), taken at the point z of the filament.

Let us calculate the action of the symplectic form on the pair of vector fields til(~), iiz(i):

In these coordinates the symplectic form reads:

Let us find a function ~(s) such that df = ~(s)ds. Obviously, ~(s) = J; -y(s’)ds’ =: ~(s), where the

zero in the lower limit of the integral can be taken arbitrarily.

Then:

%s),r(s) = ~@ ~?(s)A$r(s) (32)

which is the canonical form of the symplectic structure.

Now, we will calculate the Poisson bracket for the coadjoint orbit in the case of a vortex filament,

in both systems of coordinates. First, let us consider the parametrization of the coadjoint orbit by

Cz(a), CV(a). Let us take two functions on the coadjoint orbit: F(C(a)), G(C(a)). The Poisson

bracket for these two functions is defined by the formula

{F, G}(C(CY)) = %(.)(% XG) (33)

, where XF, XG are the vector fields associated to the functions F, G, accordingly to the formula:

ixF(f)G(a)) = –d~(c(~)) (34)

Again, we used the convention from [14].

In general

[
d$’(c(a)) = ~2” da ~;~a) CK’z(a) + ~;fa) M7v(a)

x Y 1

The expression for the vector field associated to F(C(a)) can be written as:

x~ = /[
b 62=‘ax~’(a)q~)+‘F,Y(a) ~cg(a)

o 1

(35)

(36)

6where ~ —l$cz(a)>my(a) are defined as the dual basis to 6CZ (a), 6Cy(a), in the sense of the following

formulas:



As the next step, we would like to express the components of the vector field XF by (derivatives

of) the function I’(C(a)).
-.

then, from comparison with the expression for d$’(c(a)) we get:

As a result:
2’lT

XF =J[
($F 6

da ~- ––—
SF 6

0 K ($Cv(a)6cz(a)+ 6cz(a)6c,(a)1

(39)

(40)

(41)

Finally, we get the expression for the Poisson bracket of two functions on the coadjoint orbit:

Then, applying similar procedure as when we used coordinates C.(a), CY(a), we obtain the

following formula for the Poisson bracket in coordinates ~(.s), I’(s):

{~, G}(XS), r(s)) = f~;(.J,r(.J(XF, XG) =

/[

15F 6G 6F 15G—— -~ ds —— – ——
6r(s) 6T(s) 6?(s)m(s) 1

(43)
K

The coordinates ~(s), I’(s) are then canonical coordinates and momenta of the coadjoint orbit.

The formula agrees with the result of [1] concerning the polarization of the orbits. The quantum

configuration space is then the space of un.parametrized filaments I’(s). The little group is the

subgroup of the group of area- preserving diffeomorphisms that consists of those diffeomorphisms

which preserve the filament as a set, and which could change arbitrarily the accumulative vorticity

distribution ~(s), preserving only the total vorticity of the loop.

Let us consider an example of calculation of the Poisson bracket for a concrete pair of functions

on the coadjoint orbit. The relation ix~ (u) = –dF defines the vector field XF on the coadjoint orbit,

associated to a function F on the orbit. The Poisson bracket on the orbit is defined by;

{F, G}:= U(XF,XG) (44)

Assuming that the vector fields XF, XG can be identified with vector fields Xz, X“ associated to the

vector fields ii, fi in lZ12 (elements of the Lie algebra of SDi~~(l?12 ) the symplectic structure for a

vortex filament is given by:

kl(x~,x~) = K /2=dQ[(~10c)(~20c)-(~20c)(~10c)l(~) (45)
(3
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This integral will be rewritten in a convenient 2D filament local system of coordinates associated

wit h the loop and defined in its neighborhood.

This system of coordinates can be introduced as follows: At every point of the filament there

are assigned the tangent and normal vectors to the curve at this point. As a a result we have two

vector fields defined on the curve: one is the field of the tangent vectors to the filament, the other

one is the field of normal vectors to the filament. These two fields can be parallelly transported

in the plane, treated as a Euclidean space, to a neighborhood of the curve, defining two vector

fields in this neighborhood. One should consider the family of integral curves of these vector fields.

The coordinates for a point in this neighborhood are then defined as follows. One coordinate is

the arclength coordinate along the integral curve of the “normal” vector field, with zeroth value on

the filament. Let us call this coordinate x 1. The second coordinate is defined as the value of the

arclength parameter on the filament at the point of intersection of the filament with the integral

curve of normal vector field passing through this point, or, in the case of an arc, its value on the

prolonged arc. This coordinate is called s, following its notation for the filament. The local system

of coordinates is then (Z1, s ). The symplectic structure on the coadjoint orbit connected with the

vortex filament can be formally rewritten in terms of the above introduced coordinates as:

k)(x~,x~)= K
/-/ ()~’~~(’)~* qo,Ltot](47(++)~2(4 – ~’(+w]

where d’z = c@ds, l[o,L~O~lis the characteristic function of the sector [0, LtOt], i.e.

%&i] =
{

1, .9G [0,L~oJ

O, other s

(46)

(47)

LtOt— is the total length of the filament. Let us establish now the equation which should be satisfied

by the vector field XF on the coadjoint orbit, associated to a function F on this orbit. Let us assume

it is also of the form Xz for some vector field ii on lR2. We should take into account the relation

(42) above. Let us contract both sides of (42) with a vector field Xv, where u denotes an arbitrary

vector field on II?’, and take the value of the resulting function at the point of the coadjoint orbit

which is the vortex filament. The right hand side of (42) then becomes:

(m’(xz)lc= X“($’)lc= $ F(floc) (48)
6=()

where ~~ is the one-parameter group of diffeomorphisms connected with the vector field Z:

(49)

The left hand side of (42) becomes just w(Xti, XO) [C which is:

u(x~,x~)lc = /$ // ()Cl’xJ(’)2+ qo,~,ot](s)’y(s) [U’(2+’(%)– U’(x)?J’(z)] (50)

The equation (42) becomes therefore:

‘//d2x6(1)(x%I,&d(s)V(s) [U1(X)V2(X) - U2(X)V1(X)] = -$ F’(EOC) (51)
6=0

11



Now, let us establish the form of the vector field Xti for a particular but quite enlightening choice of

the functions F. Namely, let us take JY~(C) = C~(/3)j=l,z, it means to a filament C : [0, 27] s a w

C(a) E lR2 contained in the coadjoint orbit, the functions assign the first (~) (j = 1), or the second

(Y) (j =2) component of ~(a) at a particular point of the filament associated to a = ~. Calculation

of the RHS of (51) in these two cases gives easily:

d
(52)F&$ o c) = VW(P))

z e=l)

The RHS of (51) can be also written for the function F~ as:

//d2$~’(~)~’1’(~L)~’1’(s - S(P1)) (53)

The resulting equations:

K// ()d2~@) TL ~[o,.ikt](s)~(s) [ZJ%)V2(Z) – U2(Z)VW]

= //d2xv~(z)6~11(z&)6(1)(s -s(~l)) (54)

are solved, in particular, if the subintegral functions are just equal

~@!~L)~[o,Ltot] (s)~(s) [U’(z) z?’(x) - U2(Z)V1(X)]

(55)= v@(l@~)6(l)(s – s(@l))

For s E [0, L~~t] one can solve this equation if

K-/(s) [ZP(o, S)V2(0, s) – U2(0, S)V1(O,S)] = v~(o, S)$l)(s – s(p)) (56)

is satisfied. Since z is an arbitrary vector field in D?’, ti~(O,s), j = 1,2, are arbitrary vector fields on

the filament. Then we have for j = 1

Ul(o, s)

U’(o, s)

,andforj=2

(57)

d(o,s) = 1 $1)(s – ~(P))
KY(S)

U’(O,s) = o (58)

Let us make two remarks:

1. In both cases the vector field ii is distributional, so that from the formal point of view it does

not belong to the Lie algebra ~. Using instead of 6’s some models of them, one can regularize

the vector field Z, which we do below.

12
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2. One should realize that the solution we get describes the vector field ii on the filament and not

in its neighborhood. Nevertheless, one can extend the vector field on this neighborhood in a

smooth and otherwise quite arbitrary way.

Now we are ready to calculate the Poisson bracket for the functions:

F(c) = C’(p,), G(C) = C2(/3z), (59)

defined on the coadjoint orbit connected with the vortex filament.

We introduce two vector fields U1 and U2 in the plane, components of which on the filament are

given by the formulas found above. Namely:

U:(O,s) = o

1 W(S – S(p,))U;(o, s) = –— (60)
q(s)

U;(O,s) = 1 6(1)(s – 5(A))
q(s)

U;(O,s) = o (61)

The Poisson bracket of F and G is then given by:

{~> G}!c = ~(~F’,xG)]o = LG(XU’,XU2)]C

= KJ2%Y [U;(c(a))qqcl)) -Ww)ww)]

= ~JL’0t~57(s)*~(’)(5 -5(Pl))*~(’)(5- s(P2))

1
/–

L~O~d~
8(’)(s – @))6(2@ – 4P2))=—

t$o ~(s)

1
~7[&J(s(pJ – s(/f?2))—_— (62)

This result supports the formal expression we have got for the Poisson bracket, in which the

functional derivatives - should be treated as Frech6t derivatives.

In order to make this formal derivation more exact, it means one in which we deal with the proper

elements of the Lie algebra (not distributional ones), let us introduce instead of the functions F~

considered above, their smoothed versions:

(63)

where c$~)(a — /3) ia a model of the Dirac 6, it means a family of functions such that a weak limit

of 6.(a) as a ~ O is ii(a). Repeating the derivation of the Poisson bracket, one arrives at the result,

forj = 1:

U;(o,s) = o

U:(o,s) = J+p(s – s(h))
q(s)

(64)

13



and for j = 2

U;(o, s) = 1 6yys – s(b))
K-f(s)

U;(O, s) = o

We substitute the result to the above formula for the Poisson bracket:

{~,G}lc = K~2” da [u;(C(Q))U:(C(CY))- u:(WZ))U:WY))]

where

F(c) = J2”dcdp(a! – p,)c’(a)

f’27r
G(C) = ~, &Y6y@ – /?2)c@)

Then

1 6W(S – s(pl))—{F,G}lc = ~~2” ds’y(s)~~ . 1 6!)(S – S(pz))
K~(S)

(65)

(66)

(67)

(68)

Let us observe that both 6~l)(s – s(/?l)) and 6!)(s – s(/?2)) have compact supports containing points

s (@l) and s (P2), respectively. Whenever ,& j{ /32 there exists a small enough such that the supports

of these two functions have no overlap, leading to {$’, G} \C= O. Only when /?l = ~2 we can not make

this Poisson bracket to be zero by taking small enough a. One can easily see that the limit a ~ O—

gives the previously obtained result, for Poisson bracket

4 Fock

In this section

space for bosonic vortex

we construct the Fock space of states for

for I’l(C) = Cl(~l), and F2(C) = C2(@2).

loops

vortex loops. We do it in the simplest case

of bosonic loops. Despite its relative simplicity, this case. is quite rich and general. It will serve

as the fundamental construction in our further studies concerning vortex structures in a quantum

ideal fluid, which will be discussed in our future publications. The consideration is rather formal

due to the lack of knowledge of the quasi-invariant measure on the configuration space necessary to

introduce unit ary representations. Nevertheless, as we discussed in the introduction, t ill we consider

only kinematics and not the dynamics of the theory, this lack of measure should not have important

influence.

In the approach to quantum systems based on the diffeomorphism groups, initiated and developed

by Dashen, Sharp, Goldin, and Menikoff [10, 16, 17], the states of a system are described by represen-

tations of the diffeomorphism group. The states are functional defined on the configuration space,

with values in a complex vector space,, The general form of representations of the diffeomorphism

group can be written as follows:

(69)

In this formula, I’ is an element of the configuration space (which can be very weIl a set of N

objects). Next, # is any diffeomorphisrn (in the case of superfluid helium it belongs to the subgroup

14



SDZff(lR”), n = 2 or 3, of the full

which should satisfy the relation

diffeomorphism group). The X4( I’) denotes a unitary cocycle,

X+,fxhu’)= X+,(r)xd, (4217) (70)

in order that V(#) be a representation ( V(@l o 4$2) = V(@2) o V(g51) ). As a source of cocycles

serve unitary representations of the subgroup of the full diffeomorphism group that consists of the

diffeomorphisms preserving the configuration r as a set. For this subgroup the cocycle condition

becomes the representation condition, as one can easily see. The cocycles describe statistics in

nonrelativistic quantum theory as was shown in [10]. The square-root expression
v-

*(r) in the

formula (69) should be included in order that V(4) be unitary with respect to the measure p. The

derivative % (I’) is the Radon- Nikodym derivative of the measure transformed by ~ with respect to

the original one, taken at 17. It is worth to mention that the Radon-Nikodym derivative should satisfy

rather obvious condition -(r) = *(r)*(r) in order that v(#) be a representation. This

general formulation of a quantum theory works very well in the case of nonrelativistic point particles,

including bosons, fermions, and anyons [10, 11, 18].

We would like to generalize the construction to include also extended objects. In particular,

we would like to describe this way quantum vortices in an ideal fluid (hopefully this construction

applies to vortices in superfluid helium). For such structures (as was established in [1] and confirmed

by considerations from the third section of the present paper) the configuration space consists of

unparametrized. loops. Particular configurations are then muItiloops, it means sets consisting of

some specified numbers of unparametrized loops.

The configuration space can be split into a set-theoretic sum of subspaces, each of which consists

of multiloops with a specified number of component loops. There is a corresponding splitting of the

full Hilbert space ‘H into component subspaces ~N characterized by fixed numbers of loops. This

is similar to what we get in the case of point particles. The new element when one deals with the

extended objects is further splitting of the subspace of the configuration space with fixed number

of objects into pieces invariant with respect to the action of diffeomorphisms. These are topological

sectors discussed in [19]. There is the corresponding spIit ting of the Hilbert spaces fijv.

In the case of point particles, creation and annihilation operators of the particles are usually

introduced. In the approach based on the diffeomorphism groups these operators are intertwines of

the corresponding represent ations of the groups. The cocycles introduce the statistics by implying

corresponding commutation relations for the creation and annihilation operators. In particular, q-

commutators for crest ion and annihilation operators result from appropriate e cocycles for the case

of anyons [12]. In the paper [12] was proposed also a general scheme for obtaining creation and

annihilation operators as intertwines of the representations. The scheme should work also for the

case of nonrelativistic extended objects, such as the vortices in superfluid helium. Let us construct

the representations and the operators in the case of bosonic vortex loops, it means in the case where

all cocycles are assumed to be trivial (identically equal to one).

Since all cocycles in the case of bosonic vortex loops are identically equal to 1, the complications

due to the different topological sectors in subspace of the configuration space of multiloops with fixed

number of loops, do not appear. The only element which changes in the way that influences the full

theory is the number of loops. For this reason this case is formally very similar to the case of bosonic

point particles. Nevertheless, in this case the arguments of the creation and annihilation operators

are unparametrized loops rather than points in the physical space.
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Thewave functions ofthisquantunl theory arecomplex-valued functionals of themultiloops. The

representation of the diffeomorphism group is defined as follows:

4
dpjN)

[v(#)qN({rl,..., rN}) = w({4r1,...,#rN}) m({rl,..., rN}) (71)

with {l’1, ..., I’N} being a multiloop consisting of N unparametrized loops. Here ~r ~ denotes the nat-

ural action of the diffeomorphism # on the loop 17j, with j being any integer from the set {1,2, .... N}.

Let us define then the operators @“c(I’) : fiN ~ ?lN+l and +(r) : fiN+~ ~ fiAI:

[WYWW’l, ....ho) := w+l(lrl, ....b, r}) (72)

[@*(r)V]N({rh ...

N ,.
,rN}) :=’ ~6(r, rj)~N_l({rl, ....rj. ....rN}) (73)

j=l

where 6(1’, I“) is formally ‘defined for functions on the configuration space consisting of single un-

parametrized loops by:

/@(r’)~(r>r’)~(r’) = ~(r) (74)

Since we do not know the quasi-invarian.t measure on the space of loops, this formal definition

can not be written more explicitly. Straightforward calculation gives the commutation relations for

the creation and annihilation operators defined above:

[40’)7W_”)]=0, [**(r), wml = O, [+(r), ti*r)l = xr, r’) (75)

Necessary conditions for the operators +(I’), @*(I’) and representations V(4) to form a hierarchy

are intertwining properties of the form proposed in [12]:

VN+l(#)@*(h) = #*( VNQl(@)h)VN(#) and (76)

VN(~)@(h) = tj(VN=l(#)h)VN+ l(#)

where ~(h) = J dp(17)h(I’)~(1’) and +“(h) = J dp(I’)h(I’)@*(I’) are creation and annihilation oper-

ators averaged with respect to h E tiNm. These intertwining properties lead to some interesting

conditions on the quasi-invariant measure: A condition on the quasi-invariant measure which is

sufficient to satisfy the intertwining properties of @(I’), @*(I’) reads:

dp~N)
Vj c {1,..., N}

dp$N-l) dp~)

@({r17...7r~7 r~})r~}) = dp@_~)({rl> ‘..,ti~> ....rN})~({r~}) (77)

Iteration of this formula leads to the following multiplicative property of the Radon-Nikodym

derivative of the measure p:

dp~N) N d (1)

‘N}) = ~~1 &({rj})dp(N)({rl, ”””~ (78)

This is the condition which, when satisfied by the quasi-invariant measure, ensures existence of

a hierarchy of representations of the diffeomorphism group. The representations from the hierarchy

16



.

are indexed by the numbers of loops. The simplest example of such a measure is the one which is a

product measure. Namely for a multiloop {1’1,..., rjV} it is the product of the one-loop measures:

d/L(N)({rl, . ...rN}) = d#)({h})...L(l)({rN})N}) (79)

However, we are actually interested in more general measures which should distinguish among the

cases with nonoverlapping and overlapping vortex loops. Such measures should depend on the areas

of overlapped regions (for complicated overlaps there could be many such regions). Let the areas are

01,..., /$. Since the diffeomorphisms are area-preserving, the quantities /%, .... Pr are all preserved

by the diffeomorphisms. One of us discussed in [19] the problem of quasi-invariant measures on the

spaces of loops. He considered the general properties which should be satisfied by such measures.

We can assume, going along his proposals, that the measure for a multiloop {1’1,..., rN} consisting

of N loops with r distinguished regions of overlap with the areas @l, ...,,& can be expressed as:

d/J(N)({rl, . . . . b}) = f(pl, ...&)d#)({rl})...d@({hT}) (80)

, where ~ is a general function of @l, ..., 9T yet to be specified. One can assume that for @l = ... = & =

0, f(/% , .“”Br) = ~o It is easY to Prove that for a measure satisfY@ this condition the Radon-NikodYm

derivative also satisfies the multiplicative property:

dp~N)
~({rl, ....rN}) =

——

dp(N)({q!J’l, ... . @N})

dp(N)({I’~,..., N})})

f(+.bl, . . ., &&)dP(l)({@’,}). . .dp(’)({dh})
f(Pl> ...) &)dp(l)({rl}) . . . dp(lJ({rN})

f(h>... >p,) dpq{$m)} dP(l)({@N)} =

f(A>.. ->~,) dp(l)({r~}) . . . . . dp(l)({rN)}

N @l)

rI,=1 ~({ri}) (81)

It would be desirable to establish the general form of the N-loop measure in terms of l-loop

measures which would sat isfy the multiplicative property for the Radon- Nikodym derivative. Never-

theless, we have shown above quite general and physically relevant examples of such relations.

5 Summary and Outlook

In this paper the Poisson structure for coadjoint orbits associated with 2D vortex filaments has

been found and analyzed. In particular, the canonical coordinates and momenta have been intro-

duced. These are: unparametrized filaments, and integrated vorticity function, respectively. Since

unparametrized filaments serve as canonical coordinates for the system, this result confirms results

of [1] obtained using the polarization considerations.

We showed the construction of the quantum space of states, in the general case of vortex loops

with bosonic statistics. Bosonic statistics in this case occurs by our taking all unitary cocycles

characterizing the representations identically equal to one. This construction is rather formal because

we do not know the appropriate e quasi-invariant measure.

It is worth to mention that similar constructions should be valid also in the case of other nonrela-

tivistic extended objects appearing in the form of loops, e.g. bosonic nonrelativistic strings. Further

steps in our studies will be: on the one side extension of the kinematical results to other vortex
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structures of physical interest, including vortex dipoles in 2D and vortex ribbons and tubes in 3D, on

the other side introduction of dynamics to the systems of vortices: writing the Hamiltonian in terms

of the canonical coordinates and momenta, then writing quantum Euler equations for vortices, and

finally, using the Hamiltonian, description of thermodynamics of the systems. The role of topological

degrees of freedom of the vortices should become apparent in this approach. These problems will be

discussed in our future publications.
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Appendix

In this appendix we show first that the transformation rules for the stream functions in 311 and in

2D given in the text lead to the proper transformation rules for velocites, which are the elements of

the algebra SVect(lZP), n = 2,3, i.e. quickly vanishing divergenceless vector fields on lRn, n = 2,3.

We do it within two approaches. In the first approach we show these facts by straightforward naive

calculations. In the second one we do this in. a geometric framework, using differential forms.

In 3D Add acts in ~= SVect(lR3) by: g= SVect(lR3) 3 o(Z) H Adq$(ti(z)) 6 SVect(~3) =!i7,

(/ld@)ti = (D@) o (b-’, (82)

[(Ad#)ij~ (z)= W1(&l($))~k(~-l($)) = ~ ~d~;;%)l’vk(~-’(%)) (83)
9

Our claim is that if the transformation rule for the action of Add on the stream function Xfi is

(Adq$)~fi = [D4-1]~ ~. o ~-’, then the transformation of u under Add will be of the above form.

Proofi

By definition u = –curl~a, v’ = –c ~z~d[x~. OUT transformation rule for z under the action of Add

is

[(A4$)W’(x)= i~(~) = .-f@--- “(_ ~lmn

(5q+-”’(z)][
o 77? [XW-’(4)])

~[d-’(x)l
(84)

Our claim is that this expression (84) should be equal to

Our notation means that d’#~ o #-]1 is a function of i, for which at 2 we have the value
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In coordinates the proposed transformation rule reads:

or

XL= [f%(#-l)”]xno #-l (87)

x;(x) = ~[4-l(x)]”&_&n X744’-%)) (88)

Let us substitute this form of XL (x) to (85) and check if this is equal to (84). The equality proves

our thesis.

We have:

_cjlm
=

g [P(x)]n ~ [x. (P(X))] - Cj’mdzfxm [H$)]nxn (f’(x))

_ejlm
=

g [#-’($)]n & [x. (4-1($))]

We use further the identity

(89)

(90)

Let us then compare, without loss of generality, instead of (84) and (85) these same equations

‘[~-’ (z)]* . Thenbut contracted with – ~Z,

and

(91)
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(92)

,where we applied the fact that det [~-] = 1 for any volume-preserving diffeomorphism ~. We realize

that changing appropriately the names of indices the equality

(93)

is satisfied, and this proves correctness of the proposed transformation rule for the stream function

~. ❑

Now, we prove an analogous transformation rule for the stream function in 2D:

, where X’ = (Ad#)X. In 2D Add acts in ~ ==SVect(lR2) by:

(Ad#)ti = UO@-’, [(Ad@)@(~) = Z~(@-l(r)) (96)

The fact we prove now states that if x transforms under Ad# as (94), then E transforms accordingly

to the above given rule (96).

Proofi

The transformation rule follows when we realize that the 2D diffeomorphisms are expressible as

special kinds of 3D diffeomorphisms, which are trivial in the third dimension:

As a result the matrix of derivatives D4 has the form:

(97)

(98)

In the 3D language x is the third component of the 3D stream function X, so that the appropriate

block of the matrix D4 acting on x is the one with “ 1“. The same is true for the matrix D4-I.

Therefore, we are left with the transformation rule for x under the action of Add defined above,

which ends the proof. •I

Let us discuss now the notion of a stream function, and the transformation rule for it under the

action of Adq5 in the differential forms framework.

Let us discuss first the general case of incompressible, ideal hydrodynamics on a manifold M, not

just on a Euclidean space LR2 or lR 3. Nl should be equipped with the volume form, preserved by

the diffeomorphisms, vol. This is an n-form on Al, where n is the dimension of M. The condition of
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preservation of the volume form of M by the special group of diffeomorphisms we are interested in

can be written as

~“vol = Vol (99)

where @ is the pull-back of differential forms, induced from the natural action of ~ on A/f, ~ : M ~ M.

For a l-parameter subgroup of diffeomorphisms ~ associated with a vector field v on M this condition

reads

U *VO1= Vol (loo)

Differentiation of this formula with respect to i! at t = O gives

Lwvol = O (101)

where Lfi is the Lie derivative. Since for a general vector field 6 on AL?(it means not necessarily

~olume-preserving) LVVO1is some n-form on ikf, this form must be proportional at every point of Al

to the standard volume n-form vol, so that

Level = J%Oi (102)

where ~ is a function on J/f. This way we can define the operator divti as just this function f. For u

~orresponding to volume-preserving diffeomorphisms divfi = O, as we expected. One can understand

better this definition of the operator divti, if one observes what it means in the Euclidean case.

Namely, in this case, in local coordinates Z1, X2, .... L-cmthe volume form reads vol = dxl Adx2A... Adxn,

where dxl, dx2, .. .. dxn is an orthonormal local cobasis. The Lie derivative with respect to ti(~) = vi%

of the volume element then reads:

Lti(voz) = Lfi(dxl A dx2 A .. . A dr”) (103)

= Lti(dxl) A dx2 A ... Adxn +dxl ALC(dx2) A . .. Adxn...

+dxl A dx2 A . . . A LO(dxn) (104)

due to the fact that Lti is a O-differentiation in Q(M) (Cartan algebra of differential forms on M).

Then, due to the Cartan formula Lo = d o iu + i~ o d:

Lti(dx;) = (d Oic)(dxi) + (i. Od)(dx;)

= d(ifidxi) + io(ddx;)

= d(dxi(ti)) + O

( :(x’))=d(ti(zi)) = d Vj

=
d (v’6ij) = ‘(v’) = #dxj

and

(105)

(%)z an
8v1dxj Adx2/j... Adx”+dx1AwL,(vol) = ~ dx~A... Adxn+dx~Adx2AdAd xn.. Adxn-~A=dx~ (106)

In every summand survives only the term in which the number j is missing among the others dxi.

Therefore:
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I@(d) =

=

(%.)1 a.12
—dx~ Adz2 A ... Adxn +-dx~ A ~dx~ A . .. Adxn + .. .
ox~

au; dxj

+dx~ A dxz A .. . A dxn-~ A —
fj~.1

()

&j

()

~vi

~ dx’l A . . . ~dX” = ~ VOl (107)

In the Euclidean case ~ is the expression for the divergence operator. This way we have illus-

trated the definition of the divergence operator in the general case.

Now, let us go back to the general case, in which VOZis a fixed volume form on a manifold M. For

divergenceless vector fields on M, which constitute the Lie algebra of the group of volume preserving

diffeomorphisms Lti(vol) = O. Applying to this relation the Cartan formula Lz = d o i. + i. o d, one

gets:

O = (d 0 i, + i, 0 d)vol = d(iu(vol)) + io(d(vol)) (108)

Since vol is a differential form of maximal degree, d(vol) = O. Therefore, iti(vol) is a closed (n – l)-

form. Now, to introduce the general notion of a stream function one should make an additional

assumption that the manifold M is simply connected. Then there exists such an (n — 2)- form x on

A/l that

iz(VOi) = d(x) (109)

and x is defined up to a differential of an (n — 3)-form, x ~ x + da. One can define then a stream

function as a class [x] of (n – 2)-forms on M, representatives of which differ by a differential of an

(n – 3)-form, and such that the relation (109) is satisfied. One can observe that this definition works

well for our particular cases of n = 3 and n = 2 and the Euclidian space. Invariance of vol under

diffeomorphisms leads to its invariance under Ad#-action, so that the transformation rule for z under

this action dictates corresponding rule for the form x.

In particular, “in lR3 the stream function is a 3 – 2 = l-form, it means it is a covector, so its

transformation rule should be deducted from the invariance of the scalar product between covectors

and vectors:

~R3x@@)d3x (110)

Under the action of the Adq$, vi(x) changes to:

but

so that

(V’)’(2) = $$W(x))tw-’(x)) = ~[@:;x)lk@w)

~R3x44wd3x =~R3xw’(4d3x

This formula under the change of coordinates defined by:

(111)

(112)

(113)

‘y= (p(x), z = ~(y)
[1

(5&$(y) d’y
d’x = det —

(5’$J
(114)
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becomes:

[1
j~,X~(4(Y))d[$$)]’(Y)w’(y)det % d’y

= JR3x:(d(Y))8[::)li(Y)v~(9)~3Y

= JR3xj(4(y))o[$$)lk(Y)v(Y)~3Y (115)

Changing the name of the variable z to y in the first formula of (113), we get (with exactness to

differentials, which we neglect):

d[+(y)]~
xi(v) = Xi($J(Y)) ~y, (Y) (116)

Substituting back, z=+(y), weget

b’xk
xi($@($))= XL(X)

q(h’(x)]~
(117)

Then, applying to both sides
a[+-’(z)]i

&@ we get:

i?[fj-’(x)]i a[$$-’(x)]~ (9Xk

~zj
xi(#-l(x) = XL(Z) ~xj a[(p(x)]i

axk
= Xj(x)w= Xx+$: = x;(x) (118)

In the matrix form:

2’ = [D;l]TX o +-1 (119)

since

[1

ayi~il i =

j ~ [+(Y)lj
(120)

as it is easy to check. Namely, one should check that lld “ D~l = D~l “ D+ = 1, or, in other words,

that

Since

(121)

(122)

and
dyi d[#(Y)l~ = ~Y’ _ ~:

~[@(Y)l~ @k
~gk

(123)

this is indeed the case. This result on the transformation rule for the stream function ~ in 3D agrees

with the one given above. In 2-D one uses the same arguments as above to derive the transformation

rule for the 2D stream function x knowing the transformation rule for the stream function in 3D.
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