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Quantum kinetic theory for dynamical spin polarization
from QED-type interaction
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We investigate the dynamical spin polarization of a massless electron probing an electron plasma in
locally thermal equilibrium via the Moller scattering from the quantum kinetic theory. We derive an axial
kinetic equation delineating the dynamical spin evolution in the presence of the collision term with
quantum corrections up to O(#) and the leading-logarithmic order in coupling by using the hard-thermal-
loop approximation, from which we extract the spin-polarization rate induced by the spacetime gradients
of the medium. When the electron probe approaches local equilibrium, we further simplify the collision
term into a relaxation-time expression. Our kinetic equation may be implemented in the future numerical

simulations for dynamical spin polarization.
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I. INTRODUCTION

In off-central heavy ion collisions, a large global angular
momentum is produced, which may result in the spin
polarization of the quark gluon plasma (QGP) from spin-
orbit coupling and yield the spin polarization or spin
alignment of emitted hadrons [1-4]. Such phenomena have
been observed in recent STAR and ALICE experiments
[5-8]. Based on the modified Cooper-Frye formula for spin
polarization dictated by thermal vorticity in global equi-
librium [9,10], the global spin polarization of A (and A)
hyperons at intermediate energies can be described by
many transport models [11-16]. See also Ref. [17] for the
nonequilibrium kinetic-theory approach and Ref. [18] with
the inclusion of corrections in local equilibrium. There have
been further measurements for the spin polarization of A
hyperons in collisions at low energies [19,20] and related
studies in theory [21-24]. Moreover, there are also theo-
retical studies attempting to explain the spin alignment of
vector mesons [25-29] and the proposal for modifications
on the yields of hadrons with different spin due to
vorticity [30].

However, the theoretical description with the global
equilibrium assumption of local spin polarization in the
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longitudinal direction does not match the experimental result
measured in Au-Au collisions at /syy = 200 GeV by
STAR [6]. The models based on hydrodynamics and trans-
port theories predict an opposite trend of the longitudinal
spin polarization as a function of the azimuthal angle
[31,32]. The contradiction is also known as the “sign
problem” for local spin polarization. It is realized that the
spin polarization in global equilibrium may not resolve the
problem and further corrections beyond global equilibrium
should be considered. There have been several studies to
address this issue [33-44]. In particular, the so-called
thermal shear correction in local equilibrium, obtained from
the linear response theory [45,46], statistical field theory
[47], and chiral kinetic theory (CKT) for massless fermions
[48], could yield substantial contribution to the longitudinal
spin polarization. The inclusion of this shear correction may
successfully describe the experimental measurement with
certain approximations as shown by hydrodynamic simu-
lations [40,41]. Nonetheless, the numerical results could be
sensitive to the chosen parameters and adopted approxima-
tions [42-44,49]. The shear corrections have also been
studied in the helicity polarization [50], which could provide
a baseline for the local polarization led by vorticity and a
probe for the initial axial chemical potential [51,52].
Furthermore, when considering the local-equilibrium con-
dition, the dissipative corrections pertinent to interaction
should also be involved. More discussions and details can be
found in recent reviews [53-58].

Nowadays there are two primary approaches to
explore dynamical spin polarization and the dissipative
effects. One is the spin hydrodynamics based on the
conservation laws [57,59-83] (see also Ref. [84] for a
review). One can construct spin hydrodynamics using the
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entropy principle [59-63], the effective Lagrangian theory
[64,65], the kinetic-theory approach [66—69,84-86], and
quantum field theory [70-72,83]. In general, the spin
hydrodynamics is a macroscopic effective theory including
spin effects and the conservation of angular momentum as
an extension of standard relativistic hydrodynamics. The
other is quantum kinetic theory (QKT) as a microscopic
spin transport theory in connection to underlying quantum
field theories [87-98] (see Refs. [56,99,100] for recent
reviews). The QKT is an extension of the CKT for massless
fermions [101-119]. It can be consistently derived from the
covariant Keldysh formalism and Wigner-function method
from quantum field theory.

To understand the dynamical spin polarization in QKT, it
is inevitable that we incorporate the quantum corrections
on collisions. In recent years, there have been intensive
studies along this direction [83,89,91,93-95,120-125].
Nevertheless, most of studies consider effective models
rather than the gauge theory for simplicity. In
Refs. [83,91,120], only part of the collision term giving
rise to spin relaxation is computed in weakly coupled
quantum chromodynamics (QCD). As a toy model for
studying dynamical spin polarization in the QGP,' our work
here is to investigate the quantum-electrodynamics (QED)-
type interaction by considering 2-2 scattering process for
massless fermions in the absence of on-shell photons. In
our theoretical setup, we emit a probe electron to interact
with an electron plasma in thermal equilibrium and study
the spin polarization of the probe. We calculate collision
kernels of QKT up to the leading-logarithmic order in
electric coupling ¢ and to O(h) as the leading-order
quantum correction using the hard-thermal-loop (HTL)
approximation following the procedure in Ref. [91].
Such quantum corrections result in the spin-polarization
rate pertinent to the gradient terms of the medium in local
equilibrium, which includes thermal vorticity, shear
strength, and the gradient of the ratio of a chemical
potential to temperature. When the probe electron is close
to local equilibrium, we further derive a simplified collision
term using the relaxation-time approximation (RTA) with
the (inverse) relaxation times in operator form.> A similar
study of massive fermions in the Nambu—Jona-Lasinio
(NJL) model has been reported in Ref. [95], whereas
only the result with a medium in global equilibrium is
considered.

'In principle, the ultimate goal is to study the strange quark
probing QGP composed of massless quarks and gluons in
equilibrium. Nevertheless, there have not been sufficient under-
standing for the quantum corrections of polarized gluons even in
thermal equilibrium (see Refs. [121,122,126,127] for some recent
studies for polarized photons and QKT). Technically, it is also
more involved to work with QKT for massive fermions.

There has been a similar approach for studying chiral
effects of neutrino transport by CKT in core-collapse super-
novae [128,129].

This paper is organized as follows: In Sec. 11, we briefly
review the Wigner-function approach and derivation of
the master equations giving rise to the QKT based on the
Keldysh formalism for the massless fermions with the
power-counting scheme in [91]. In Sec. III, we introduce
the general setup for our QKT of an electron probe
interacting with the medium and expatiate how we handle
the collision term. In Sec. IV, we compute the collision
kernel up to the leading-logarithmic order by using the
HTL approximation and assuming the medium is in local
equilibrium. From the collision term with quantum cor-
rections, the spin-polarization rate is found. A brief
summary and discussions are presented. In Sec. V, we
further derive the simplified kinetic equation assuming the
electron probe is near local equilibrium by using the RTA
and extract the interaction-dependent relaxation times in
operator form. We finally conclude our results and make an
outlook in Sec. VI. Some critical steps in derivations are
presented in Appendices.

We adopt the Minkowski spacetime metric, ¢ = g,, =
diag(+1,—1,-1,-1), and the Dirac matrices y* in the
Weyl basis. We introduce 6, = (1,6) and &, = (1, -0)
with ¢; the Pauli matrices and y5 = iy%'y?y>. The Levi-
Civita symbol is chosen as €% = —¢j3 = +1. We
denote A(,,) =A,, +A,, and Ay, = A, —A,,. We have
also used the notation for the projector A" = ¢ — u'u"
and @ (p) = ¢ — w'u” + p'| p* with u* being the fluid
velocity, p/{ = A®p, and P = p/\ /\/=p L 1.

II. QUANTUM KINETIC THEORY
FOR MASSLESS FERMIONS

We start from the standard QED Lagrangian for massless
fermions in the Weyl basis,

L =y, 5ihD,y, + yyo"ihD g, (1)

where D, = 0, + igeA,/h and the left- and right-handed
fermions are disentangled. We will set ¢ = —1 for electrons
in the following context. Taking the ensemble average, we
define the lessor and greater two-point Green function for
Weyl fermions,

TR Y) = (U0 ] (we/r(x)),
DY) = (U0 )y r(@y] (), (2)
where U(x,y) = exp (—%fyx dz-A(z)) represents the

gauge link to maintain the gauge invariance. We then
introduce the Wigner transformation

s d4Y PV oS Y Y
SEulpiX) = [z sT(x+3.x-1). )
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where X = % and Y = x —y. We will then focus on the

right-handed fermions and the formalism for left-handed
fermions can be analogously derived. Based on the Dyson-
Schwinger equation and Dirac equation, one can derive the
Kadanoff-Baym equations up to O(%), which includes the
leading-order quantum correction [100,109,130],

1 in
o <p,, + ZihA,,) S5 = l? (3587 —3285).  (4)

1. in o<
(pﬂ —zzhAﬂ> Sgot = —E(SI?ZR - SzZz),  (5)

where A, = dx, + eF,, 0, and Xz and Zp denote the
lesser and greater self-energies for right-handed fermions.’
Here we have dropped the one-particle potential and real
parts of retarded self-energy and Wigner function since
they do not directly affect the collisional effect of our
interest [109]. Also, we will hereafter neglect background
electromagnetic fields by taking F,, = 0.

It is convenient for the follow-up computations by
parametrizing S5 = 6”55 and Z,% = G”Zfﬂ. Note that the
decomposition of self-energies is different from the decom-
position of the Wigner function and hence we denote Zf"
here. Perturbatively solving Eq. (4) up to O(#), one obtains
the solution of Wigner functions,

S¥"(p.x) = 2zsgn(n - p)3(p*)[p" f2(p.x)
+hS( (0,17(p.x) = CrulfRD],  (6)

where S’(‘:) = e’ p,n,/(2n - p) corresponds to the spin
tensor depending on a timelike frame vector n* with n> = 1
and Cg,[f3] = Ziu fa- Z,i f5. Here n* originates from
the choice of a spin basis and does not affect the physical

quantities. Also, f%( p, x) denote the lesser/greater distri-
bution functions for right-handed fermions, which follow
the relation f3(p,x) + fz(p,x) = 1. The sign of energy
sgn(n - p) is involved to incorporate both the particle and
antiparticle, while we will omit the part for antiparticles
in the later computations. The dynamics of fz(p,x) is
dictated by the kinetic equation,

d-S5=Xr-Sz—% - Ss. (7)

Similarly, we can derive the Winger function and kinetic
equation for left-handed fermions,

*Roughly speaking, Xz and Xy are proportional to the
emission and absorption rates of the medium that contribute to
the gain and loss of the probe, respectively. In the 2 to 2
scattering, as will be elaborated later, X3 is proportional to the
distribution functions of one outgoing particle and two incoming
particles and vice versa for X7.

S7*(p.x) = 2zsgn(n - p)3(p*)[p" 17 (p.x)

w S s
— 1S (0.f5(px) = CL D] (8)

and

0-S; =XZ5-5] — Xz -Sr. 9)
In a physical system when both right- and left-handed
fermions coexist, it would be more convenient to rewrite
Egs. (6)—(9) in terms of the axial-vector basis. That is,

we may construct the Wigner functions in Eq. (2) with
massless Dirac fermions y = (y;,wg)T such that®

S5 = VS#y, + ASHySy,. (10)

The vector and axial-vector components are now related to
Sf /R by the relation

Spa=Vi+ A7 Si,=Vi-A: (1)
A similar expression is also applied to self-energies,
=5 = 5+ 5 (12)
where
TRu =Xy, 25, I, =%y, - X5, (13)
Accordingly, Eqgs. (6) and (9) can be rewritten as
<
VE#(p) = 2zsgn(n - p)8(p?)fv(p)
+ S0, 7 — 55 f 3 + Ev.f
+ TV~ Z ) (14)

and

AS#(p) = 2zsgn(n - p)6(p) [ 15 (p)
+hSW (0, f5 =55 f5 + 5, (p)fy
+ 35,5 A (15)

where we introduce the vector-charge distribution function

> = (f%+/3)/2 and the axial-charge distribution func-
tion ff = f,% - ff) /2, which now follow the relations,
fi+fi=0and fy + f; = 1. For convenience, we may
sometimes denote yy; 14 =XV/A where y can be distribution

*Other components in the basis of Clifford algebra vanish in
the massless case.
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functions, Wigner functions, or self energies if not speci-
fied. On the other hand, Eqgs. (7) and (9) become

0-V<=Cy=3j- V> -5 - V<-3;- A" +3;- A%, (1)
and
0-A<=Cy=3%; A" =55 - A<—35- V" +35;-V<. (17)

Following the power-counting scheme in Ref. [91], we
may assume the chirality imbalance comes from quantum
corrections and hence approximate W ~ O(h°) and
Af ~ O(h"), which imply fy ~O(R°) and f, ~ O(h").
Similar power counting should also be applied to the self-
energies, 2, ~ O(R°), &4 ~ O(h'). We will only keep the
terms up to the leading order of quantum corrections of
O(h) in our following discussions. Given the formalism,
our main task now is to derive the self-energies Xy, in the
2 to 2 scattering process.

III. THEORETICAL SETUP FOR
AN ELECTRON PROBE

Considering a hard-probe electron with 4-momentum p
emitted into an electron plasma in equilibrium, we focus
only on the ¢ channel in the 2 to 2 scattering process,

e (p) + ecq(k) < €7 (p') + egy (K, (18)

which leads to the leading-logarithmic contribution to the
collision term. Since the probe electron and the scattered
electron in the medium are treated as nonidentical particles,
we may neglect the u-channel scattering considered in
Refs. [48,109]. In principle, the Compton scattering should
also yield a comparable contribution in the case for
massless fermions. For simplicity, we assume the absence
of thermalized photons in the plasma and ignore the related
scattering processes. The positrons are also excluded.
We now compute the self-energies shown in Fig. 1,
—Z§(p) _ 62/ v S§(p’)y —ig" —igv/)’
pix " “p=p)>p-p)
< >
x €Ty, Seq(K')7Seq (k)]

x (22)*6W(p + k= p' =K, (19)

where we have introduced

[=] e 20

The Wigner functions in the trace in (19) are taken as an in-
equilibrium case because we mainly discuss the scattering
between the probe and thermalized electrons in a medium.

> /
pv P VP

FIG. 1. The t channel of the 2 to 2 scattering process, where the
Roman indices denote the momenta of electrons and the greek
indices represent the polarization of intermediate photons.

We will discuss an alternative case in Sec. IV C. Instead of
using the resummed propagators of photons, we introduce
the momentum cutoff for the free propagators to obtain
leading-logarithmic results [91,120,131]. Like the initial
state, the final state of the hard probe with momentum p’ is
not necessarily in equilibrium.

The fermionic self-energies can be written in terms of

photonic self-energies Hf,;,

< VA

(@ =Vi(p)GZ(q)), (21)

/

p

X=¢ [ )G

VA

(A2 (p)G

/

(@) = AZ(P)

x G2 (q) + i€,pap VS (P)G5P(q)].  (22)

ZZ,# (p) = —e€

—

where we have defined
¢ =p"—p", (23)

and introduced the photonic two-point Green function Gfﬂ
in one loop,

_ T, (q)
GS ) = Gra(q) ( /; G (q), (24)

3 T 5 (q)
GEl = Gre(g) = =GP (g). (25)

Here, G**(q) denotes the free photon propagator in the
Feynman gauge,

w —ig"”
G"(q) = 7 (26)

The symmetric and antisymmetric components of photonic
self-energies, Hfﬂ can be expressed in terms of Wigner
functions as
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1 < < < =

ST (@) =46 [ [V, ()7, (0 = g VEy () VE (R 200 (p - = p' = ), 27)
Kk

s i AWES S 11\))Z /

5oy (q) = die? / capapVed (K)AZL (k) + AZf (K)Ve ()] 22)*69) (p + k= p' = &), (28)

and we accordingly acquire the vector and axial self-energies for electrons,

s 1 > S (P VVSH (! =3
X =86t [ o VA VR VR ) + Vi

x (22)*6Y (p + k= p' = K)

S54(p) = 8 / L )9 (p + k= p — )V

p Kk (p =P )
— A (Ve (k) - V(') -

where we have only kept the results up to O(%).

IV. COLLISION KERNELS IN HARD-THERMAL-
LOOP APPROXIMATION

A. General discussion on the collision kernel
in the local and global equilibrium

To compute the self-energies, we need to express the 5
and Af in terms of the distribution functions. To avoid the
confusion, we will denote the distribution functions of the
medium as Ny 4 (x, p) to distinguish them from fy 4 (x, p)
as the distribution functions of the probe. Following the
findings in Refs. [48,107], the distribution function for
chiral fermions in the local equilibrium is given by

h 5 -1
NR/11eq(:P) = [exp <ﬂu~p—ﬁuR/L +39,.,5, )> + 1} ,
a1)

where B(x) = T(x)™! is the inverse of temperature,
u = u(x) is the fluid velocity, pg/; (x) are the chemical
potentials for right-/left-handed fermions,

S(p) - A (k)Vef (K) +

2a(K) - VE(P )WV (k) = Vg (k) - AS(p)VE{ (k) = Vi

(kK)Vz(K) - VS(p)].

(29)

AL KWV (k) - VE(p')

>

(k)VEg(K) - A5 (p')].
(30)

and is called the thermal vorticity tensor. Here the frame
vector n* is chosen to be the fluid velocity u*. We also
introduce the chemical potentials for the vector and axial
charges,

u _HrtpL
v 2

HR —HL
=TT~ O(R). (33)

z/"R/LNO(l)’ Ha
Therefore, the vector and axial distribution functions in
local equilibrium read

N;,leq('x’ p) = [exp ([}L{ P _ﬂ,uV) + 1]_1’ (34)

h v
_E‘/\/';,leq(x7 p)N;,leq(x’ p)QWS?MV (35)

N p) =
where we have kept the results up to O(%). Now, from
Egs. (6) and (11), the vector and axial-vector components
of Wigner functions become

) — o) Vil(p) = 278(p*) PN 1o (x. P). (36)
0,(pu,) — 9, (pu
Q,, = w7l =P 3
|
v 1

At (x, p) = 2708(p* )N 10g (X, PINT 1o (X, P) {S’(u) [0.(Buv) = P*éa] + 5 €””“”pp9(w} (37)

with AL (x, p) = ALl (x, p), where we have introduced the thermal shear tensor
a{l ul/ + al/ u(l
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Equipped with the above results, we are able to calculate Eqs. (27) and (28), which take the form,

d*k >
" (§aﬂ)(q) = 4e? (271_)2 5[(‘1 + k)z]é(kz)N\%,leq(q + k)N\j,leq(k) (Zkakﬂ + QGkﬂ + Qﬂka — Yapq * k), (39)
1 s ) d*k 2 2\ NS Z 3p
TI(q) = +4hie Weaﬂgpé[(q + K)ZS(R)INT 1og(q + ONT o (I, (40)

where
I = 0,(Buy) (@ + KN 1oy (K)S(oy (K) + KNG o (K + q)S(r (g + K)]
— E[K(g" + KONT 1o (k + @) 7o) (g + &) + K (g + KON 1o () ST (K)]

1 ~ < >
SOk + RKINF g (K) + (4K + RAING o (K + ). (41)
and we have also introduced

~ 1
Q

oy = EGMMQM. (42)

The fermionic self-energies are thus given by

<

1 .
25 ,.(p) = (27)°8e? / g ?5[@ + )25(k2)8(p" ) 15 (P IN G 1eq (@ + NG 1o () 2k p' -k + q,p" -k + kup' - ). (43)
P

Z

1 < <
,k?(s[(q +k)J6(k2)5(P"2INT 1eq (@ + N 16 (K)2F 3 (P') 2kup -k + qup -k +Kup - q)

+ 20SW (90, 15 (') (2k,k, + 4ok, + q,k,) + 28(gu5P) = 9,,05)F 5 (P EY], (44)

3,(p) = —(21)4e*

~

which yield the collision kernel in Eq. (16),
Cylfvl =25, (p)V*(p) = 27 . (p)V#(p) + O(1*)

—se's(p?) | (jﬂ‘)g / (;’ﬂ;%a[(p — ))al(q + KYI6()

X 2(k-p)*=2(k-p)g-k+2(p-q)k-p—(p-k)g* = (p-q)(q k)]
X [[7(P)f5(P = ONT 1eq(k + QNT 10q (k) = [5 (D)7 (P = ONT jog (k= QNT 1o (=) + O(?),  (45)

and another one in Eq. (17),
Calfv. fal =25, (P)V>*(p) = 23 ,(P)V=H(p) — (£7,, A7 = Iy L, A=)

= se'a(p?) [ 55 [ 55 el -0 lla + PR

. {wﬂp —q) — Lof 5 (p) + B0 (p — @) — B0uf 5 ()]
+n {—6,,(/}/4‘/)(5” + tf},,/.@}’” - %Q”‘fé’pg} } + O(flz), (46)

where the explicit expressions of <7, A%, €%, 7", &

¢ are presented in Appendix A.
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As a sanity check for our results, we will show the
detailed balance such that the collision kernels vanish when
fvia = fviaieq = N\<//A.leq' For convenience, one may
change the integration variables k - —k in Cy. It is easy
to check

CV[fV.leq] = z;.ﬂ.leq( )Vleq ( ) z\iuleq( )Vleq ( ) 0.

(47)
For the axial collision kernel, it is found
CA [fV.leq; fA.leq}

— —(2n)'8he*5(p?) / 5l(p — a)l(q + b1k &

9.k q
X f\i,leq(k)f\i,leq( )f; leq(p - Q)f‘i,leq(k + ‘D
X {aa(ﬂﬂV)ﬂll’ + gyulzgear} + O(hz)’ (48)

where
17 = SI;Z) (P—a)lcry— S!(m) (k)lczﬂ
= Stola+0)Ics, = SG(p)ea
L = = ?Z)(P -q)(p" —q)c1,+ Sl(:)(k)k”cz,y
+ 80 (@ +K)(q" + k)3 + S (P)P T eap
(49)

and

ICl,/l:2p'kkﬂ+p'qkﬂ+p.kqlu

lery=q,(p-qg+p-k)—pg*+q-k).
IC3;¢:p'kq;¢_p/4q'k
Ica,=Q2p-k=2q-k+p-q—q )k, + (p-k—q-k)q,.

(50)

In Ref. [48], the authors have used the symmetry argument
to prove that the axial collision kernel vanishes.
Alternatively, since 1%, Iy, and f v leq Should not contain
the gradient terms as the higher-order corrections in 7, we

can prove that integrating over the momenta ¢, k leads to
S’(l;l)([_))ICtﬂ - Sl(l;l)(p><ciuﬂ + Eip[l) = 07 (51)

where i = 1, 2, 3, 4, p is an arbitrary momentum, and c;, ¢;
are just unimportant factors. Consequently, it is found

Ca [fV.leq;fA.leq] =0. (52)

Before ending this subsection, we would like to com-
ment on the condition in global equilibrium. As mentioned
above, in local equilibrium, the fluid velocity u*,

temperature 7', and chemical potentials yy 4 are functions
of the spacetime. Differently, the global equilibrium means
all the thermodynamic variables are constant and fluid
velocity satisfies the Killing condition. Since we have
already proved the collision kernels vanish in local equi-
librium, it is obvious that the collision kernel is zero in
global equilibrium. Notably, as shown above and in
Ref. [48], the vanishing collision kernel for the QKT of
massless fermions in local equilibrium is reached after
integrating over the momenta of scattered particles, while
the integrand in global equilibrium vanishes even without
the integration.

B. HTL approximation and the spin-polarization rate

Following Ref. [91], we further adopt the HTL approxi-
mation to analyze the collision kernels. As a common
strategy, we assume

el < g < T, K K+, p, (53)

and we are mainly interested in acquiring the leading-
logarithmic result ~e*In e~!. That is, we will conduct the
|g| expansion up to the terms contributing to logarithmic
divergence of the collision term in the following calcu-
lations. For simplicity, we further assume that fuy is
negligible but 9, (fuy) is finite, i.e., we will ignore fuy
in the distribution functions when performing the integral
while keeping d,(fuy). After lengthy yet straightforward
calculations, we eventually obtain the collision kernel in the
HTL approximation. We only summarize the main steps
here. More details can be found in Appendix C. For
simplicity, we assume that the fluid cell is in its own local
rest frame, i.e., u* ~ (1,u) with |u| < 1.

The symmetric photonic self-energies are given by
Eq. (C9),

a[j)( Q)

e? 1?4
~fai(n et ) +otaR). 5

7, (q) =

where the explicit forms of a, and t?ﬂ are shown in
Eq. (C9). The antisymmetric part can be written into
different components,

=117 (a) + T, ()
NS

_H[z/j] (_‘D

(o)
+H[a/;} (q )"‘H(l/;] (Q)

H[Zﬁ] (Q> -

where the upper labels, &, fu, @, Df denote the contribu-
tions proportional to thermal shear tensor &,,, d,(fuy ), the
kinetic vorticity @* = ¢***u,0,us/2, and D = (u - 0)p.
The expressions for each term are given by Egs. (C22),
(C24), (C25), and (C26). Although we adopt the Feynman
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gauge through this paper, as an indirect check, the photonic two-point Green function in the Coulomb gauge G (k) =
i[O (k) + KPuru?)/K* reads

I ne’T? 1 Baolq] e’Tq| >
_G<,(;w) _ L P Y ST 1= 0 o Grutut | 623 2
3 (q) 2lg17 [ (@)3" +54"u'u ]( > ) T2 (q) 5+ q'uu*| g3 + °)
’Tlq| q
(0% _ A4 v O -2 , 56
Tl lom(0)L - gtare] + 0ar) (56

where the first line agrees with the bookkeeping result [132] and the remaining terms are higher-order corrections.
From Eq. (22), we can compute the fermionic self-energies in the HTL approximation,

5 - ) e4 T 1 , +o0 1 1
8(p°)Zy,.(p) = d(p )W ; d|q| dZ » dq02—|17|—\¢1|3(513 —1)e

1- 2’2 la? al 372 —11q?
5\ g0 — |qlZ’ + l+z el
( 2 | 2 p|?

x (1,5 (P 1) = 15,005, 15 (P1) + 15,0595, 0. 5 (Ip]) + O(la)]. (57)

: D O3
where the expressions of Iy, .,/

5 ua’I ouap are shown in Eq. (C18) and

d =cos(p.q) = —pL,d) =—pud- (58)

Here we introduce the thermal mass m, ~ eT as an infrared cutoff for |g| in order to extract the leading-logarithmic result.
Then, we integrate over ¢° and 7' and obtain the expression for &( pz)Zé.ﬂ,

()% (0) =~ ot (2 62/H:|p|) (b0, o)

1 ﬂ|17|jE2 s 2
s -5 00 £ P82 20,0105, + 2 p Ol maﬂnw} ()5 (p). (59

4 d 2,4 d 1 d7’' <
0055 () = =00 [ 30D = o) [ [ laPau )

2RI 022000, a0 03,0 )~ 05, £ + Ol .

(60)

and a4(Z, |p|) = 37* ﬁ + ZLIP\ B+ = p2'2(3 + *). We note that the Zfiw( p) are highly divergent in both collinear and

1,2

infrared regimes, say, the terms ~ [*' dZ/(z"* = 1)7! corresponding to the former and ~ d|q|\q| S ~mpt~ (eT)2

corresponding to the latter. Here, we keep these divergent terms in the expression of 25 - They w111 be exactly canceled in
the collision kernel.

Recalling Eq. (17), we find that in the collision kernel C,, the axial self-energies Zfi L are always combined with the
vector component of Wigner functions as Vz'/‘ZiM. To avoid the unnecessary complexity, we compute the 5(p?)p - Zi

instead of the axial self-energy Zil. After a detailed calculation shown in Appendix C 2, we eventually obtain
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et 272

F 100l [ dal i)

et 5 5 e 27? 7 -6
:':716ﬂ3|]7|6(p )lnm—D{IP| fi(p) [3ﬂ3lp|2i3ﬂ2|17|+ 188

2
- ”7 PR3y, -0,,) F B(P1 -0, )If5(p) + hlp|Hs o025 (p)

P*S(P2)E5 () [f . fr] =

2

2
Fh—os 12ﬁ2 Il"epayﬂﬁl-,vuﬂal’ppaafv( ) + hwepwﬁﬁl,puﬂapbvaaf\i (p>

1236;5[ Pl (P)e" s s 122 ple b1y upb 1 (19:),%, . 07 (P )}, (61)

where
H;, = 2%;% 7 = Jacalyp (P D+ 307 Py ) + ﬂl4_n2 UG D0, (Ppay) + Z_;Qﬂy(AaKﬁJ_,é +ug(PLaPic— an))] . (62)

Finally, we get the vector collision kernel,
es(p?) T < > A < 1 < 2

) = oL 25007 (0) + F(0)D2.05,57(0) = B15(0,, 0, )17(0) | + O, (63)

where
F(p) =fv(p) = fv(p) = 1=2fv(p). (64)

When combining p - Zg( ) to compute the axial collision kernel Cy4, the collinear divergence and quadratic divergence
from the soft-photon exchange in X3 (p)V>*(p) — %3 (p)V=#(p) in C4 and those in Xy A™# —X%7 AS# are

exactly canceled. At last, we obtain an ax1a1 collision kernel with only the logarithmic dlvergence regularlzed by the
thermal mass as

e*s(p?) * 2 A
Calfvifal == 2|p|1 {ﬂzlpl (P)fi(p) + 3—ﬁ2|17| F(p)[(PL-0p,) =2 (9, -9, )|f5(P)

T
12/

3ﬂ2 |P|2fA( )1 -0y, )fv(p) +hF(p)lp|Hs.405, f7(P) = h-"s F(p)lple”™ b1 Lug0,, ,00f7 (P)

2

2
VA
+ h 6_,53 epayﬂpl /)ulialu v afv( ) + h 6_/)72 €ﬂﬂkp/1uxa§f\</ (p)alu,ﬂff/ (p)

2
T Dl DD D105, 05,07 ) | + OP) (65)

Note that some of the leading-logarithmic contributions from the lesser and greater parts of the self-energies also cancel
each other and do not affect C,. Here many terms above in Eq. (65) could contribute to dynamical spin polarization. For
simplicity, we may consider the scenario when there exists no initial axial charge and the spacetime gradient on fy is
negligible, the spin-polarization rate here is then mostly governed by the Hj , term in C,, which could be approximated as’

hetlne

1673 |p|

The polarization rate I'y (p) is of importance to understand the angular-momentum transfer from spin-orbital interaction in
the QKT. We will present more discussion on it in Sec. IV C.

Ca(p) = 0ofalp) = F(P)H&aaZLfv(P)' (66)

*We also neglect the spatial inhomogeneity of f.
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Now, we turn to the local-equilibrium limit. After
inputting the equilibrium distribution functions fy j.q into
Eq. (63), one immediately finds

Cy [f V,leq] =0

On the other hand, by using the Schouten identity,

(67)

e/mpapu + €apaup;4 + epouﬂpa + gau/mpp + euya/)pa =0,
(68)

and with the
(=6ij + Drib1))

help of apbaﬁlﬁ - apblf)l’j —
,j) =1, 2, 3, we also obtain

CA [fV,leqva,leq] =0

which is just up to our expectations. Although the collision
kernels vanish due to the symmetry, in general, as shown in
Sec. IV A, we emphasize that it is highly nontrivial to check
it with the QED interactions in the HTL approximation.

(69)

C. A brief summary and discussions

In the previous section, we have computed the collision
kernel in the HTL approximation and obtain the Cy, C, ina
local-equilibrium medium. First, we summarize the QKT
with the collision kernel (16), (17) in HTL approximation.
The vector and axial parts of QKT read®

(p-0)fy(x.p) =
(p-0)f5(x.p) +h0,S(, 0.1 (x.p)

CUTHfv] + O(R?),
=Cit[fv.fal+ O

where CJ/{- is related to the Cy 4 in Eqgs. (63) and (65) by

Cy.a = 275(p*)CVLY (72)
and the particles are on shell.

Given the collision kernels from the HTL approximation,
we may estimate how fast the dynamical spin polarization

e*IneT?
p|

by further treating the rest terms in the bracket on the right-
hand side of Eq. (63) as an O(1) quantity and omitting the
overall numerical prefactor. On the other hand, approxi-
mating F(p)|p|0% fv(p)/(87*) ~ O(1) in Eq. (66) in the
same fashion, we may estimate

Ty(p) = dofv(p) = (73)

hetlne
1—‘A (p) ~ Ip|2 H3,a’ (74)
and hence obtain the ratio
T4(p) < Hz, ( 0)
~0(Z), (75)
Ty(p)  T?lp| p|

where d represents the gradient scale of the thermal medium.
This result implies that the dynamical spin polarization for a
probe could be much slower than its thermalization (for the
vector distribution function) in certain cases, which is con-
sistent with the finding from the NJL model [95]. However,
such a conclusion is based on the simplification in Eq. (66)
and the omission of Compton scattering. In practice, large
spacetime gradients on f (p) that have been neglected could
be present for an out-of-equilibrium probe even though the
correction should be still within the valid regime for 7
expansion. The precise ratio will also depend on the initial
condition for practical simulations of the full collision terms
from Eqgs. (63) and (65).

For the future numerical simulations, we further simplify
the QKT with collisions. One of the most important topics
of spin polarization is to obtain the dynamical spin
evolution equations near local equilibrium. It corresponds
to taking the f7 in Egs. (70) and (71) to be at local
equilibrium. As shown in the previous section,
CY™[fv1eq) = 0. The evolution of f7 in Eq. (70) reduces
to an ordinary Boltzmann equation near local equilibrium.
On the other hand, Eq. (71) becomes

(]7 : a)f; (X, p) + haﬂsl(l:)avf;,leq(x7 p)

of a probe compared to its thermalization when traversing a = CHIL[f) 1on fa] + O(R2) (76)
thermal medium in local equilibrium is. From Eq. (63), we 4 e
may similarly estimate the interaction rate for fy as where
|
HTL 84 ﬂz T < < >
CA [fV,leqv fA] 16 1.3 3,62 mp (fV leq( ) _fV,leq(p)) + 2[1’|ﬂfv,leq(p)fv,1eq(p)
. 1
| Uil) = £ PP 00, = 510, -0,)] | 750)
et 2 T w o )
+ 167 ’;Ip‘sﬂj,lnmis (wfvleq( )f‘>/leq(p)+o(h )’ (77)
®In principle, the axial kinetic equation incorporates an extra term proportional to 729 (S’(: Cy,lfv]),whereCy [fv] = Z5 fv — 27 fv-

However, since ZT, , & p,,u, up to O(A°) in the effective power counting we adopt, it turns out that hS CV Jfvl=0.
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which delineates the dynamical evolution for the spin.
More precisely, the amplitude of the spin polarization is
dynamically changed by f,, while the direction is still
fixed by the momentum for massless fermions here besides
the nondynamical part coming from the side-jump term
in A=K,

In the previous section, we have assumed that both the
vector and axial distribution functions for the medium are at

local equilibrium. As an alternative scenario, we may
consider the case when vector distribution functions for
the medium are at local equilibrium, while the axial one N

is not. We find there is an extra term, 525’” N A, vl
contributing to axial self-energies p*&( pz)Zi” Nafarfvl,
where we omit their A/ v.leq dependence for brevity. It turns
out that

P(P2)Z5 N as fan fv] = PP (PP)Z5 U fas FV] + pPo(p?)655, INK . fol. (78)

et T 1 1
PO N ) = 500750 [ dao [ el [z [ wlaikiarg

X 5<qo —lglz’ +

1 -z |‘I|2 q* + 2qok
LA - -k
5 P o| z 5(ko — |k|)

2lq||k]

X (14 1R S NI g (6) = N (R, (79)

where p”5(p2)2§# [fv,fa] is given by Eq. (61). Inserting
the above axial self-energies into the collision kernel C4, we
find that the extra term 625 [N, fy] does not modify the
CH™ in Eq. (71). In this case, the axial kinetic equation (76)
holds. However, such a property may be subject to the HTL

approximation.

V. NEAR-EQUILIBRIUM PROBE AND
RELAXATION-TIME APPROXIMATION

In this section, we implement the relaxation-time
approach to simplify the collision kernel for dynamical
spin polarization of an electron probe approaching local
equilibrium. Following the standard RTA by linearizing the
collision term with respect to the fluctuation of fy and f4
near local equilibrium, Eqs. (70) and (71) can be para-

|
(p-0)fy = —%yhofv. (80)

(b 0)fx + hlp[7' 0,81 0.fv = =25'6f 4 = 255fv. (81)

Here, the 23!, 73!, 2}, are the (inverse) relaxation-time
operators and we introduce small deviations of the probe
distribution functions from local equilibrium,

fv(x.p) = frieq(x, p) + 6fv(x, p),
fa(x,p) = faneq(x, p) +6fa(x, p). (82)

We also consider the gradient expansion and 7 expansion
here. Then, Eq. (80) and Eq. (81) reduce to

metrized as 5fy ==ty (p-0)f ‘</,1eq(x’ p) (83)
|
8fa = =2a(P - )i 1eq(¥: P) = MEalpI ™10, 0 S 1o (¥, P) = 24Ty 20 v (84)

up to O(0) for §fy and O(d?) for &f 4, respectively.

From the collision kernels in Eqgs. (70) and (71), we conduct the calculation and derive the explicit expression for the

relaxation-time operators,

Bh =1
—_ 64 1 T 2 > — < 2 < >
- W nm_D{ [fV,leq<p> fV,leq(p)] + |p|ﬂfV,leq(p)fV,leq<p>
1
H Pl V1ea(P) = fV1eq (PP L~ 0y, ) = Pl 50, '%)}, (85)
Al e*h T N

W2 = ] " (9,81 a5 + S a6 + £, 85+ 0,(Buy ) + @ a8, (86)
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where the operators as,aq, a5, a4, ai are shown in

Egs. (B1), (B2), (B3), (B4), and (B5). Note %}, ~ O(h)
and 27! ~ 2!, ~ O(1).

In the standard RTA, one assume that these relaxation
times are functions of p instead of operators and immedi-
ately get the 6fy 4 [48,133]. By inserting the 6fy 4 into the
modified Cooper-Frye formula [9,134], we can get the
additional contributions to the polarization pseudovector
from interactions. However, as shown in Eqs. (85) and (86),
the space and momentum derivatives are involved in the
realistic relaxation times obtained from the field theory.
Solving 6fy 4 analytically becomes rather challenging,
which requires further studies in the future.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have investigated the collision kernels
of QKT for a massless electron probing an local-equilib-
rium medium with QED-type interaction up to the leading-
logarithmic order in the HTL approximation. The collision
kernel for the axial kinetic equation delineating dynamical
spin polarization is obtained in Eq. (65), from which we
further extract the spin-polarization rate shown in Eq. (66).
It turns out that the dynamical spin polarization of the probe
is slower than its thermalization. Such an axial kinetic
equation, denoted by Eq. (71), can be utilized for future
simulations. Moreover, a simplified form for the electron
probe approaching local equilibrium is further derived from
the RTA, shown in Eq. (81), where the relaxation times in
operator form are found. This kinetic equation will be
useful for solving near-equilibrium corrections pertinent to
interactions on the spin-polarization spectrum.

Our estimation of the spin-polarization rate for the
massless fermions in a gauge theory complements that
for massive fermions with contact interaction found in

Ref. [95]. In general, the dynamical spin polarization is
relatively slow, due to the suppression by the ratio of
spacetime gradients to particle energy, compared to ther-
malization in the probe limit. It is hence desired to estimate
the quantitative impact from nonequilibrium corrections
upon the spin polarization. Even for a toy model, we have
found the collision term could be rather complicated in the
gauge theory. It infers great challenges to construct the
practical collision term in QGP for the QKT, which is also
implied by the complication of the spin-relaxation term in
weakly coupled QGP [91,120]. For phenomenological
purpose, it could be enlightening to further employ our
model to solve for near-local-equilibrium corrections, with
suitable generalization to the massive case as Ref. [42], and
implement the hydrodynamic simulations to estimate the
quantitative modifications on the local spin polarization.
On the theoretical side, there also exists a puzzle that only
the global-equilibrium solution of axial-vector Wigner
functions is found from detailed balance of the QKT for
massive fermions [89,123], while the local-equilibrium
corrections have been recently derived from other
approaches in Refs. [46,47] for fermions with arbitrary
mass. Some technical details in our study may also help
with resolving this puzzle for the QKT with massive
fermions, which is imperative to overcome in order to
rigorously study nonequilibrium effects on spin polariza-
tion of massive fermions beyond the local-equilibrium
contributions.
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APPENDIX A: EXPRESSION FOR THE COEFFICIENTS IN EQ. (46)

The coefficients <7;, B¢,€", I, &

14

¢ in Eq. (46) are

A\ =[p-k(k-p—2k-q+2p-q—q*)—(q-k)p-q]

dy=[p-k(2k-p-2k-q+2p-q—q*)—(q-k)p-q]

By = S<”>’/’“(p -q)2p-kk,+p-qk,+p- kqp)

KB = S(“>"‘“(p)[(2p-k—2q-k—|—p . q—qz)kﬂ + (p-k—q-k)qﬂ]

of Science and Technology, Taiwan under Grant
No. MOST 110-2112-M-001-070-MY3.
|
X (fV(PINT 1eq(k + DN 1oq (k) + [T (PINT jog (k + QN 14 (K)). (A1)
X (f7 (P = DNV jeq(k + QNT 1eg (k) + 17 (P = INT jeq (k + ONT 1o (K)). (A2)
X V(PINT 1ok + DNT 1eg (k) + NT 1oq(k + QN 1 ()7 (P)]. (A3)
X [f7(P = ONT 1eg(k + QN T 164 (k) + f5 (P = DN joq(k + QINT 1 (K], (A4)
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¢ = (4,(P-q+p k)= py(@° + q-k)S[ ()NT 1 (DONT 1o (K)
X NV ek + @) fv(P) V(P = @) + N g (k+ a) 5 (P)fV (P — q)]
+ (P kg, = ppq- k)S/():)W + k)N\</,1eq(k + Q)N\?leq(q + k)
X N5 1 ()5 (P)f7 (P = @) + N5 1o (k)7 (P)f5 (P = @), (A5)

P =(4p(p-q+p k) =Py +qk)S[ ()FNG g (ONT, 1o (k)
X N7 ieq(k+ @) v (P)fv (P — ) + N7 oo (k + @) 5 (P)f7 (P — )]
+ (P kg, — p,q - K)S(,y(q + k) (q" + KNG g (k + @NT 1o (g + k)
X [N\</,]eq< v (p)fv(p—q) "‘Nv.leq(k)fv(P)fv(P -q)l, (A6)

Epe = (@pkep -k = pokeq - k+ qokep - q = ppkeq )N 1o (RN 1oq (k)
X [NV 1eq(k+ ) fv(P)fv (P —a) + N7 oo (k + @) v (P)f7 (P — )]
+ (qpkep k= ppokeq -k = ppqeq - KNG 1oq(k + QN 1oy (g + k)
X [N 1eg(O)f5 (P)f7 (P = @) + N7 1o ()7 (P)fV (P = @) (A7)

APPENDIX B: EXPRESSION FOR THE COEFFICIENTS IN EQ. (86)

Here, we list the operators in Eq. (86),

as = _ﬂlp|f‘</,leq<p)f\7leq(p) [f‘>/,leq(p> - f;,leq(p)] + 4f\</,leq(p)f\>/,leq(p) + Ip‘f;,leq<p>f\>/.leq(p)(i)l_ ’ aPL>’ (Bl)

1 1
6—— [fv leq( )_f;.leq(p)]apbya 2ﬁpi (ygll)#a;luazﬂa +ﬂlp| pLv ;4 [ (ﬂﬂv) pyav(ﬂ”y)}ff/,leq(p)f;,leq(p)apL.w

(B2)
AV 1 > < KUEA 1 ~Y o y 2 led
a; = _@ [fV,leq(p) - fV,leq(p)]e u; _gpLgarpr +u P19k apL’ (B3)
AV 3 ln 2 KU 108
ag = 2”2 [ Vleq( )_f;,leq(p)]e &gmcu/lpfapL7 (B4)
AM = ﬂ [fV leq( ) - f\i,leq(p)}ewﬂ(gakpi,f - ua”xﬁl,é - gmcué + ufﬁl,(lﬁl,K)a([‘;l‘ (BS)
APPENDIX C: FERMIONIC SELF ENERGIES IN LOCAL EQUILIBRIUM
In this part we will compute the fermionic self-energies in the local-equilibrium medium.
1. Vector self-energies
Inserting the expression of Vleq( ) from Eq. (36) into Eq. (27), we get
§H< e / e 2+ RSN s (k- N7 1o () 2k + ks + Gk = gupg K. (C1)

where we define ¢ = p — p’ and the distribution function f is at the equilibrium because the fermions are in the medium.
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Before applying the HTL approximation, we first sim-
plify the ¢ functions in Eq. (C2). For simplicity, we focus
on the particles, whose energy is positive, and neglect the
negative-energy modes. We write the J functions as

1 9> + 2qoko
ol + 7] = o (- L2,
2|q| |k 2|q||k|
1
S5(k%) = — (ko — |k|), C2
() = 3790k = k) (C2)
where we have defined that

z = cos(q, k) = cos(q,, ]Aﬁ) =-q,- ]Aﬁ- (C3)

Also, we decompose the momentum as

kL.a = A(ljk/}‘
(C4)

k{l = (M : k)u(l + A(l}kﬁ = k()ua + kl,a’

Here, we simplify the fluid velocity as u® ~ (1,u) and
lu| < 1. We emphasize that the gradient of velocity
o;u;, (i,j = 1,2,3) is finite and the chemical potential in
the integral is neglected, while its gradient is kept, to get an
analytic result.

In the following calculations, we also need to project the
momentum to the direction of g | . Since we need to take the
momentum integration at the end, e.g., in Eq. (C1), we can
drop the last term in the above decomposition due to the
rotational symmetry with respect to the polar axis,

ka - kOMa + Z|k|211_,av
kak/i - k%uau/} + k0|k|z(uaql,ﬁ + ZIL,auﬁ)
A 1
+ 2k[*q1 g1 p+ 3 k|*@p(q) (2> = 1).  (C5)

Inserting Eq. (C2) into Eq. (C1) and applying the
decomposition (C5) yield

1 2 1
EH(Z/}) (q) = m/ d|k|d¢N\$leq(k) ;,leq(k){l _ﬂqu\i,leq(k)_Eﬂzq% \>/,leq(k) [N\j,leq(k) - \i,leq(k)]}

1

X {2k|2[uau/} +auegp + a%él,aél,ﬂ + EG)(I/}(Q)(a% — )] = lklgos(u,q0 + q.1 ,) (" + a1q"))

T Klaup + man ) + 0<|q|3>},

(Co)

where a; = (q* + 2qqlk|)/(2|q|k) and we expand N5, (k + ¢) in the limit |g| < [k],

< < < > ﬂ2q(2)
V,leq(k + Q> = NV.leq (k) - ﬂquV.leq (k) V,leq(k) - TN

\>/.leq(k) ;,leq<k)( ‘</.leq<k) - \>/,leq(k)) + 0(|q|%) (C7)

Here, since we are only interested in the result up to the leading-log logarithmic order e* In e, the expansion of H;/,(q) up to

O(|q[?) is sufficient.

Integrating over the |k| and the angle ¢ from 0 to 2z, we obtain

2
<

where

1 e
En(a[j)(q> ~ 2704l (azfl,aﬂ +

_ 122 - 6xpinlal + Palal* (=6 + *)  lal*@’

ay

36/°

. .. I L, N
Hap = qot@qdLp) + 3 (Bag—1)q149.1 5+ 5 (95— 1)gap + ) (3 — 45 uqup.

By using the relation

1

EH@;)(Q) =3

it is straightforward to get the connection between the one-loop photon propagator G<#*)(g) and G>*)(—q),

1.
5G°(g) = G"(q)

DL 6,(0) +0laP). ()
ap
1 (c9)
5y (-4): (c10)
Tep®) gurg) = Lo —g), ()
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From Eq. (22), we can compute the self-energy for fermions,

et r b3 +oo 21 6<(p —
0% 4(0) = i) [ laPdal [ az [*ap [ g, 22O

lal’ (@5 - 1)
2@ _3Z1612+Z/A R qZ_l 3_(':12_2Z/q q22 R
< f2alpl (P =W p, W0 02 N T g, ) o).
2 2 2 2p
(C12)
where we have used [d*p'f(p') = [d*qf(p —q), and
qpl]’/m- = 0
Here, we have introduced
= COS<p, q> = _ﬁl,;tgllj_ = _ﬁﬂA/j_' (C13)
Again, we have limited the particle with momentum p to the positive-energy particle, say, po = |p| > 0.
Similar to Egs. (C2) and (C7), we apply the on-shell condition and get
1-22q lal | 322 —1]qf
ollp = 0= 5300 = lal2 + 5 00) (1 221+ +O(aP). (14
2IPI 2 Il Il 2 IpP
and expand f5(p — g) with g,
< _ < g% o < |q|2qJ_qJ_ 0 O Cl15
fv(p=a) = fi(lpl) = 1al419,, of v () + =570y, a0y, sf5(IPI) + Olg]). (C15)

2

and keep the expansion up to O(|g|?). Again, we decompose the g# and drop the terms
which will vanish after integrating over momentum,

~ Ia
QJ_,a -z pJ_,av

(r)
Q1ad1p = 7 Prabip+ a/; (22 =1),
A O, Z(1-22) . .
Q1adipdry =2 Prabiphry———F5 X (P1.a®p,(P) + D1 pOsa(P) + P1,Ous(p))- (C16)

Then, Eq. (C12) becomes

. ) et T 1 , [t 1 1
8(p*)Zy . (p) = d(p )W ; dlq| dz » dqoZ—IPI—\qP(fJ%—l)z

1- Z’2 la? lg| 327 -1|qP
x5<q0—|q|z’ 14+7 =+ —
2 | p| 2 |pP

< (1,15 (p1) = 15,005, £5 (1) + 15,0595, 05 5 (Ip]) + O(lq])]. (C17)

where
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2@02 3Z/2 2+Z12+@2_1
Iél,,=za3m|( 0

: it (1= 2200, ) = 5 paP (3 = Dty + 27,

q R 200 =325 +7 [ 5. 1
By = “’;'ﬂ' o = wpala) PR (02, 122 Do)

N . n 1 N R R
+= (Q(z) - 1)Zpubi o+ 3 (3-4q5- 2Z’qo)Z’uﬂpL,a},

1 N A A A Gaﬂ(p)
g = P Zox {36 - D0y + 2 2 - )
1 R . R . Z/ I_Z/,Z R
5 (240 - 31/61(2) +7') |:ZI’3PL.apL,ﬁpL,;4 - %PL.W@W)(P)]
X , L Bg(p)
+36-= 200, |2 pabip+ 252 2 - )] | c18)

with

. _ 127 —6rpavla| + Fa5lal G+ 7)) _lal®
3= 364 4p

and ﬁl,((l®ﬂﬂ)(p) = ﬁj_,()z@ﬂu (p) + ﬁL,/iG;m(p) + ﬁJ_.ﬂ@a/i(p)'

2. Axial self-energies

Next, we compute the axial self-energy. By using the same method as in Appendix C 1, inserting Egs. (36), and (37) into
Eq. (28) yields

1 1
EH[Z/}] (q) = _EH[T,/}](_‘])

,2 d*k 212\ A< >
=t [ 550a + RPNy + 0N (0
{<q + KON 1eq(R)ST) ()1, (Bry) = K1 &) + KN g (g + R)S(y (q + K)10, (Buy) = (a7 + K&,

1
3Ok + RN 00+ (g5 + RN (g + D] (c19)

In the HTL approximation, we consider mainly the leading-logarithmic results and we only need to keep the photon

antisymmetric self-energies up to O(|q|%).
With the help of

e, = 2B w® — uw’) + € u, DB,

epgﬁya}ﬁy = 2(u6wp — upw(,) — 2€pgﬂyu7(u o), (C20)
we decompose ;1% (¢) as
S0y (a) = 5119 (0) + 3T (q) + ST (q) + 3 T4 (q) + O(Jg). (c21)
2 2 2 2
The first term is given by
S 0) = 2o g [ashl s (22)
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where

7 3+4+22-9In2 1

05:—6—ﬂg+ 187 lqldq0 +—5 4
5 N LT e 40 (1 (g0
HY, = qou'u’q ¢ + 59119 + = “<5®y + 9090809, + 5 (4707 +q.:07),
-2
2 gy+3 . 1, . s . . .
HY, = <qg -5 )”Wﬂﬁi(—% +333)q L cuP3 — 2000, 207,
L1 236208000, + L (=480 — 4ot — 4, 67 23
+5(1-385)41419 1 ¢ + 5 (=462 = Qo' 6z = 4.1 £97). (C23)
The term related to the gradient of fuy reads
1 <.(Bu) hie? 1 a2 s Ada A a 3A2A
En[aﬁ]” (q) = 27lql €apsp€”™ =0, (Puy) +@|‘I| (245 + 1)3°q 1 ¢ + 4%Q07 1 £4%, +54 3002
-2
A v g5 —1 In2 2+1n2 .
" <qou5ql,¢+qém.§qi L) (M2 -2 220l = lala ) (c24)

The last terms in %H[Z/f](Q) are

1w hie? . +1 33-1 .., . \[(7 . 7+3 s
EHF(]>(Q)—_weaﬁépﬁ{<QOqu6+ T we’ == — w04y | = lalde g ) +1ald e’ |

64 19120 1842 42
(C25)

1 <.(Dp) hie? " . . f]é—l 35](2)—1A . T+ 1- qO
En[aﬂ] (‘I):—weaﬂaﬁw w,Dfs | qou’q.,+ 5 &+ > qq., 6,63 |‘I|6]0 lgﬂz +|qlur g ,——> 7|
(C26)

In fact, the two terms above originate from the thermal-vorticity contribution to the antisymmetric photonic self-energy as

1 <@ hie? ) lita N N
EH@;} '(q) = Wea/}&pew&gzu [4’52 (—u’q ¢ + 4 ue)

77:2 3 + T “ R A s &2 _ 1
+ <i6ﬂs 85 qo) x <”5”§+610’456u..§+QOQiu§+q%q‘iqL,§ += (agﬂ. (C27)

Notice that in our axial collision kernel, we encounter terms like —f7 (p — ¢) x 111 5(q) in X7 and f7(p — q) X %Hftﬂ(—q)
in X7. Expanding them with respect to ¢, we get the leading-order terms like —6/}3( q-0,)fy(p) in X7 and

%(—q -0,)fv(p) in Z7, which just have the different signs and contribute to H;, terms as shown in Eq. (61). On

the contrary, the other terms related to Q,, terms in Eq. (61) are in the form of —f (p) in 5 and — 7, (p) in X3, which yield
the same sign.
Then, the corresponding one-loop propagator is

1155 (9) 11
2

1~
5G<,[/u/] (q) _ G;m(q) GPvt (q) — 747]_[<~[!““] (C]), (C28)

with the relation,

& (g) = — = &= (—q). (C29)

Inserting Eq. (55) into the above expression, we get the G (¢) with the Coulomb gauge shown in Eq. (56).
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According to Eq. (17), we find that in the collision kernel C,, the axial self-energy ¥y is always combined with vector one
as VﬂZ’g. To avoid the unnecessary complexity, we compute the p5(p?) - £, instead of the axial self-energy X. After a long
calculation similar to those in Appendix C 1, we finally obtain

S 0) = F sl [ dlal s 150 5 oo (P [ e A 4 TS
pro\p V4 V4 3, 0p7)In— V4
A A T T6r] mp BRI T3l 188
2
3ﬁ2 |P| [(0p, +0,,) £ (D10, )If3(P) + Rlp|H3 405 fv(P) F 12ﬁ2 ple ™ b Lugo, 0415 (Ipl)
7 R R
+h6_'6351)(wﬁpi,ﬂuﬁappuaaf;( p)— hﬁ |P|€’"wﬁplu”ﬁpi,(ygﬁ)p‘)éﬁ%ﬁafﬂp)}a (C30)
where
. 7’ u, 1 ln2uﬁg(,KA
H3,a:2€ f/1|: 6,33 571/( pigaipk"—zu pJ..anK) ﬂz 2 ) p.fa (/3/"\/)

l ﬂ_galcpl,f - uaukpl,é -

gaK”f + ufi’L.apL,K]

(C31)
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