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Quantum kinetic theory of two-beam current injection in bulk semiconductors
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We develop a theory of current injection in bulk semiconductors by simultaneous excitation with two laser
beams with frequenciesd?;, wy. Coherent mixing of the resulting one- and two-photon transitions generates
aneffective field A¢¢(k) with different strengths at k points in momentum space. This asymmetry in carrier
generation, producing the induced currentastrolledby the relative phase of the two fields. Quantum kinetic
equations for the photogenerated carriers are derived from nonequilibrium Green functions. They are simplified
here to the Boltzmann limit, and applied to a model of GaAs in the presence of LO phonons. Different forms
of the conduction electron distributions result for generation from light- and heavy-hole bands, and give
different saturation and relaxation rates for the induced current. Generation of THz radiation by the current is
also discussed.

I. INTRODUCTION carriers from light(lh) and heavy holéhh) bands gives dif-
ferent electron distributions in the conduction band and dif-
Two coherent laser beams at frequencies, 2nd w,,  ferent momentum relaxation raté’s.
connecting the ground state of an atom to its ionized states The paper is organized as follows. In Sec. Il we present
by one- and two-photon transitions, respectively, can be useifie model for the photogeneration and relaxation of carriers
to eject electrons in a preferred direction by adjusting thén bulk semiconductors. In Sec. Il the field self-enefgy
relative phase of the two bearh3he effect is a consequence for two-beam injection is obtained. Section IV is devoted to
of a quantum interferencéetween electron wave function the derivation of the approximated quantum kinetic equa-
components of different parities, associated with the twdions. Numerical results of the current injection in GaAs, in
transition processes. An analogous scheme has been sufje Boltzmann approximation, are presented in Sec. V.
gested for the control of the ionization of a defect in a
semiconductof,and later such an injection of dc current was
observed in a semiconductor quantum well. Il. MODEL SYSTEM
More recently, it has been realized that two-beam injec-

tion of dc current can be effected by excitation of a bulk In Fig. 1 we schematically show the excitation of a semi-

semiconductor above the ghpyhere the band-gap energy conductor by two laser beams. The fields, with frequencies
2wg andw,, lead to one- and two-photon transitions between

E, satisfies 2 wy>Ey>%wy. Here the current injection in h I d duction band tively. The t .
conduction and valence bands follows naturally from the fac{. € valence and conduction bands, respectively. 'ne transi-
that one- and two-photon excitation amplitudes interfere dif-'on amplitudes for the two processes have opposite parities

ferently for wave vectork and — k. The injection rates have in reciprocal space, so their interference can result in differ-
been calculated using a Fermi’s golden rule approach for

typical semiconductors, with the momentum relaxation de- Ex A

scribed by the inclusion of a phenomenological relaxation oo _n=3_

time in the hydrodynamic equations for the currérithis g WD

gives a semiquantitative agreement between theory and hog ——"—fé-

experiment;® but the kinetics of carrier injection and relax- Y v hmo%

ation has not yet been studied. Other current injection hoe| oo

scheme$s and coherent control methods have been also To| p=3

investigated 10 Boo
We use nonequilibrium Green functidhs'® to derive o

guantum kinetic equations for the two-beam current injection °

and relaxation. From a diagrammatic analysis we first find an it

effectivefield self-energy.;, describing the quantum inter-

ference of the one- and two-photon processes, and giving a -k k

tunable anisotropy of injected carrier population in the Bril- /\B\

louin zone. The absolute value &f; forms theexpansion Y

parameterin the transport equations. We explicitly find
quantum kinetic equations quadratic 3}. For our model FIG. 1. Excitation of the semiconductor atk mixing transition
calculations, they are simplified to the Boltzmann limit andamplitudes from the two optical fields. The following carrier relax-
solved for pulsed and steady-state excitations in bulk GaAsgtion by LO-phonon emissions, and absorptions are denoted by for-
in the presence of scattering by LO phonons. The injection ofnal levels with the index.
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ent carrier generation rates atk in the Brillouin zone. In 2:“’0 ‘;’0 ‘|°° ‘;’0
coherent control experimems,injected currents can be ob- . i |L b
served with injected carrier densities as low as G G i T I

~10' cm 3. At such low densities, scattering from LO ) TR TR T

phonons, indicated in Fig. 1, provides the fastest relaxation FIG. 2. The diagrammatic expansion of the Green function in

of the momentum of eXCIte_d_ part'CIe_S' o ’ the excitation fields. The field self-energy results from combina-
Even at these low densities, carrier-carrier interactfons tion of one- and two-photon diagrams.

can modify the current injection through excitonic effetts.

These become negligible far above the band gap, and for

simplicity we neglect them here. At larger injection densi- I PESCRIPTION OF THE TWO-BEAM EXCITATION

ties, nj=10' cm™®, carrier-carrier scattering dominates e describe thewo-beam coherent contrdy nonequi-
over LO-phonon scatteririg:" Then the injected carrier |inrium Green functions in a matrix fort? '%as defined in

populations, with opposite quasimomen_ta in the conductior);\ppendiX A. The causal functiofs in Eq. (A1) satisfies a
and valence bands, can rapidly thermalize to form hot Ferm _ . — —
l:)yson equatior(integration overts,t,):

seas, with their center wave vectors shifted from the cente

of the Brillouin zone. At higher densities, momentum relax-

ation by Auger transitions between the conduction and va- 0

lence bands can also become imporfant. G(kity,t2) =G (kity,t2)
Here we only consider current injection in the low carrier — — — —

density limit, aﬁd model our systerjn by a Hamiltonian that +GO(kity 1) 2(Kits, ta) G(K; g ta). (4)

includes only LO-phonon scattering:

Here G0=G2g5a3 is the free Green function, antl is the
electron self-energy, which includes contributions from the
interaction with the electromagnetic field and the phonons. It
can be formally separated into fiell; and scatterings
. t t parts, as in one beam excitation, even though here both are
[V“B(k)a“'kaﬁ’k+H'C']+zq fiagbgba functionals ofG. While 3¢ has a standard form, determined
by the scattering diagrammatics, the field self-en€gygan
+ > Maa(q)a;kaa,k—q(bq_F qu)_ (1) b_e. constructed py C(?mbining the one- and two-photop tran-
a;kg sitions relevant in this problem. Thi¥; forms an effective
external field!* whose absolute value gives a natuzapan-
The creation(annihilation operatorsalvk (ank) describe sion parameterThe injection efficiency can be characterized
electrons in bandr and at wave vectok in the Brillouin by the ratio of minimum and maximum values Bf(k) at
zone. In the excitation ternv,,5(k) are the velocity matrix  differentk [see Eq(6)].
elements, and(t) is the vector potential; tha?(t) term has The field self-energ; can be obtained by expandir@
been neglected in Eq1), since it only introduces a phase in the two laser fields. For small excitation energies the real
shift in the total wave function of the system. We take thepopu|ations are injected 0n|y into one Conduct(@m band

e
H=2 e (k)al @.— > <At)
ak ’ ' a,B;k c

vector potential to be and the nearest light- and heavy-hole) (valence bands,
_ ' . _ while the two-photon part of the carrier injection includes
A(t)=[Awo(t)e"“’ot"9w0+A2w0(t)e‘2""0“'"Zwo]+c.c-, virtual transitions involving all bands Therefore, the real

(2) processes can be described by two-by-two matrix
G,s (a,B=c,v). The nonzero off-diagonal elemeris..,

whereA,, (t) andA,,, () are real, slowly varying, envelope and 3., for interband driving give the propagatoks:2,
functions; the formalism can be also extended to slowly=S1.co=2f,c and the correlation par{’, ,=0.
chirped pulses. Intraband scattering is described by the ma- The first few terms in the diagrammatic expansiorGain
trix elementsM ,(q) for the electron-phonon couplifd, the separate field components from expresé®rare shown
without considering phase-dependent prefactors relevant e Fig. 2. The terms following include electron-phonon
different bands? In the approximation of a constant LO- diagramé® and diagrams combining the two processes. We

phonon energyiw,~fiwg, they are equal to use the rotating wave approximatigRWA)® throughout,
since our focus is on real injected populations. The field with
M2 1 1 frequency 2v, can induce resonant transitions betweemd
Mia(Q): M2(q)= _0, MgzzweZ\/ﬁ(__ _>_ v bands, as shown in Fig. 2 by the first diagram on the right
|q/? €= €0 side of G°. For a field with frequency,, the same diagram

3 is nonresonantcrossed, but that component contributes in
second ordefand higher even ordersas shown in the next
The g-dependence oM fm(q) is responsible for the relax- diagram.
ation of the injected carrier momenta. In the numerical cal- In the lowest order, the effective field self-ene®y can
culations below, parameters relevant for GaRef. 24 are  be constructed by adding the two diagrams from Fig. 2. In
used;iwg=36 meV,e;=12.5, ande.,=10.9. the RWA, it is equal to
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e . '
0Kty o) = = S Voo (K) - Aggy(tr)em 20 ™ 200ty — 1)

e’ A .
+ ? 2 Vca(k) 'Awo(tl)Gaa(kvtl_tZ)Vav(k) : Awo(tZ)e_Iwo(tl+t2)_|20w01 (5)

where G, (k,t;—t,) corresponds to “instantaneous” off- Eq. (A2) in the zeroth iteration give the field-induced cur-
resonant virtual transitions. Dressing of this function is notrent, which is iteratively dressed by scattering.

crucial, unless momentum relaxation is large or higher-order The equation foilG= (G~) has the following form:
phenomena in the field\(t) are investigated. In the two-

band model adopted here, virtual transitions involving higher

— . T < A e
bands in the two-photon part from E¢p) are neglectedd G (K t1,t2) =Gl (Kity, t5) 25 (Kits, 1) Go(K; ty 1)
=c,v). Inclusion of these termMsvould rescale the magni- = q
tude of the two-photon amplitude by 10-20 %. => I_|G'<(k't1’t2)' 7
For steady-state excitations, the Dyson equat®rwith =ol:

the field self-energg..., from Eq.(5) can be Fourier trans-
formed to the frequency representatidnFor laser beams Here we neglect the term associated with initial distributions

polarized in thex direction, this provides the elements that decays in the presence of interactidhsince we assume
that inelastic scattering is turned on adiabatically from
S (K)=— va (K)| A% e7i020, —oo; another approach can be adopted in simplified model
ficv c 209 situations'® The right side of Eq(7), which includes both

X () —p* (K injection and scattering, is expanded into contributi@js
+ E(Ax )2e—i20wOUCC( ) ~0u(K) . (8 inlth powers of the field self-energy, to obtain equations
c “o fiwg for different order coherent control phenomena. A similar

. expansion was used by Séamand Treusctt in a different
In transport equations, the frequency argument of Green

functions following 3., (k) are shifted by &, [see Eq. Optical excitation problem.

X < .
(B2)]. In the second term of E@6), the free-electron energy . To close the equaftllon_s '@ andQ in Eq. (7), expres-
fiw~e (k) is used in the approximate virtual propagatorss'ons for the nonequilibrium scattering self-energy paifs

> . .
GS"(k,w— wg)~ —Ggg(k,w—wo)wllﬁwo, giving opposite andX_ are also needed. We use them in the self-consistent

signs atvy(k), v}, (k). The large bracket in Eg6) is an Born approximatiof?

effective excitation fieldA\.¢¢(k) with different amplitudes in

the =k directions, since the second term has parity opposite Es(k,tl,tz):M(Q_)G<(k—at11tz)D<(at1,tz)M(q_)-
the first term[v’, (k) = —v’,(—k)]. The direction ofk for (8)
which |Ag¢1(k)| is larger can be tuned by adjusting the

phasest,, and#é,, , which gives a control over the current Here D is the standard phonon Green function in
directionality. Note that the carrier quasimomentum is con-equilibrium? and theM’s are the phonon matrix elements,
served during the injection process, while the tatmlmen-  which are nonzero on the band diagofs¢e Eq.(3)]. The
tum of carriers injected in each band has the same sign, andonequilibrium propagator&®{?® result from Eq.(8) as in

it is provided by the lattice. Egs.(A3) and (A6).

Quantum interference of the wave-function components The propagator§&™ andG? in Eq. (7) can be expressed in
coming from the two transition amplitudes can be suppressetérms ofG~ andG~ as in Eq.(A3), or they can be formally
if their phases are randomized by scattering. This phasebtained by inversion of the Dyson equati@$). In the co-
relaxatiorf® can be also seen as a decoherence prg¢é8s  herent control problem, the poles of the fGll give different
a coherent control scheme, with two independent excitatioguasiparticle spectra atk. The equilibrium propagatoisy,
paths, space or time fluctuations either from scattering opave nonzero diagonal elements
external fields could lead to such decoherence, which can be
also seen as a kind of inhomogeneous broadefiiitge de-
fer those issues to future studies. 1

G aalk, @)= ’
Or““( @) ﬁw—sa(k)_zg;wﬁ(k’w)

(€)
IV. KINETIC EQUATIONS

The light-induced current is proportional to the momen- related to the equilibrium correlation functionﬁ)'?aa as in
tum imbalance in the nonequilibrium population of carriers.Eq. (A4). The steady-state form of the first two expansion
We can conveniently address the description of this imbalterms in Eq(7) is found in Appendix B. In the following, the
ance with thantegral form of the Kadanoff-Baym quantum equations in the second-order term are approximated, start-
transport equation§-3! This is because the nonequilibrium ing with the one-particléspectral part in the scattering self-
electron correlation function&~ and G~ (population$ in  energyX{. ., s-
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A. Approximations of the scattering self-energy G2<;cc( &)= |G(r);cc(g)|2[2|2f;6v(k)|26(§;vv(§_250)
In metals, the electron self-enerdy(k, ) for scattering — 5w — =
with LA phonons depends weakly on the absolute value of TM(@)°Cy (66D (H)],

the wave vectok= |k| because of weak scattering close to - - (11)
the Fermi level an(|d lhe small ratio of phonon ar?d electron GZ:vv(g):|Gg?vv(g)|2[2|2f?v0(k)|2e0?06(§+250)
velocities. Therefore, th& dependence oEL(k,w) can be =2~ S
effectively neglected in the derivation of gseneralized trans- M) Gz, (6= HDT (O],
port equationg?'34 In polar semiconductors, such as GaAs,whereé=(k,w), &,=(0,wp). The first terms on the right
the energy difference between electron levels related by LOsides describe the optical injection of carriers by interband
phonon emission and absorption proces@ee Fig. 1is transitions; the expansion prefactor 2 cancels 1/2! from Eq.
comparable to their broadening; i.e., the times scales for phq7). The second terms describe the intraband “injection” of
non oscillation and electron relaxation are of the samehonon relaxed carriers with a different energy and momen-
order™ When the level width is projected through the elec-tyym. To keep the picture consistent, these equations, repre-
tron spectral functiol,(k—qg,w— ) on the momenta, dif- senting the two-particle part of the problem, must be ap-
ferent matrix element®(q) are encountered in each level, proximated in the same way as the self-engfy) from the
which makes the self-enerd$®) momentum dependent. one-particle part. In particular, we make the transport verti-
In a first approximation, we simply neglect this depen-cesEg?nn'S k independent.
dence, as is done in metals. The self-energy beconmee- Here the @ integration does not equal unity, since the

pendent if the elemenil(q) is kept fixed in the integration relaxation of electrons out of th&* axis (nonzero &)
over the absolute value ¢f|. We setq in M(qg) equal tothe no longer has cylindrical symmetry. Using the notation
valueky— k?eisl for the difference of the centers for neigh- k™=K Jcos(),sin(¢),0] and kTetSl: k?él[cos@,

bor levels, located for simplicity at the free-electron energies.: 1 o 728 i/ ~mclan - .
Eres= E?es+ Nnhwg. This approximation freezes the scatter- 511(¢)sm(6),sm(¢)cos(0)], and fixing these vectors in the

ing ratewithin each level, but preserves the dependence ofdl integration as before, we arrive at the transport vertex in
the matrix element (k™..—k"-1) on the angle between the hek-independent approximatio10):

initial wave vectork', and the final wave vectdds.!. The mdep — (27d@ [=dk—
first can be placed on the axis, kj,=k(1,0,0), and the Eiccvs(n@,w):MSf 2—sin(¢)f Ey By 2
second in thek*-k? plane, k's.t=k"[ cos(¢),0,sin(®)], 0T 0 cmioem

where the angleb  (0,7) operates. The angle &f.. in the

orthogonal k¥-k* plane is #e(0,27r). We use parabolic
bands with effective masses,=0.067m,, m;,=0.082n,,

GZCC(Eg,w— 0g)

n _,n-12
|kres kres

Ng(wg)

and mhh20.53n . < (k h +
With these aepproximations, and using E¢®), (9), and GZ;CC(k’¢'_w+le)[1+ ng(wg)]|.
(A4), thek-independent functiollg... s (25.ccs=0) for the |Kres—Kres |2

nth level can be obtained in the form (12)

- 5 wdg - wd?_z In the following, it will be convenient to denote
20;cc,s,(n-‘1)):'\/|of o Sm((ﬁ)J' 2_k
0 &T 0 &

cdk—, _ —
Gan )= [ 5 RG5 k b0,

Ak, 0= wq)
X n—_m[l'f' nB(wQ)] _ (13)
|kres_ Kres —) 2nd 6 1
_ F(n,p;n=1,)= ———,
Aqk, 0+ wQ) (@0) (10) 0o 2m |kPes_ kpeTS1 2
———Np(® X _
[k — kP2 Bre whereF (n,¢;n+1,¢) can be evaluated analytically with the

a similar result holds foB 5, s (35.,,5=0). The integra- USe Of the formul

tion over @ gives unity, anchg(w) =1[expt w/kT)—1] is x dx ’{c+atg(x/2)>

the Bose-Einstein distribution. If the scattering paramgter J = Carctanl —=——

=(M0/th)2 increases in valueg(>0.1)® the electron 0a+csin(x)

levels become broadened and the optical transitions detuned/e can take advantage of the fact that expres§l@ is k

Then thew dependence & ... (N, ) reflects the changing independent, and integrate Eq4.1) over k, as in studies

density of statesithin these quasiparticle leve[see the concerning metal¥333* This allows us to close the first

discussion after Eqg14)]. equation in Eq.(11) in terms of G (n,¢,w), since the

propagatordGy..(k, )| become integrated independently

from thek-independenks... (N, ¢, ). At the same level of
We also approximate the transport equations for nonequiapproximations, the producth[);cc(k,w)|2 G&Uv(k,w

librium correlation functionss3. .. andG;w to second order —2wg) can be integrated oveer (see Appendix €

in 3¢..,(k). In the steady state, they are found in Appendix ~ Substitution of termg12), (C1), and(C2) into Egs.(11)

C: gives the quantum kinetic equation f@ . in the form

a~—c

B. Approximations of the transport equations
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— kn (b
Goe(n, b, 0)= 2 rres {|Ef co(D)PAN, 0) e, nO+ j 5=sin($){F(n,¢;n—1,¢)
h ImECC’S(n,w)\
X Ggo(N—1,¢,0— wg)Ng(wo) +F(N,¢;n+1,¢)Gey(n+1,¢,0+ wo)[ 1+ ng(w) ]} |- (14)
|
Here u.,=m.m,/(m.+m,) is the effective electron-hole C. Boltzmann equation
mass, and the equation far;, has an analogous form. For weak scattering, the dependence of the self-energy

These quantum kinetic equations describe the two-beanm Eq. (10) can be neglected by using the Markov approxi-
coherent control for a moderately large scattering. In EqsmaﬂonECc «(n,w=ENJ#). In this situation we can also use
(14), the broadening of the effective spectral function p_~ ~A2, which Ieads t& ¢ s in the non-self-consistent Born
A(n,w), further modified by the w-dependent form Then thek integral in Eq.(10) is
ImX5...s(N,w), describes the effect of the electron-photon il 1/ 2m | 32
interaction on .the carrier generimon. ansequentl.y, the transf —k2A (k EN Jh+ o) N_(%) \/@ (15)
port vertex with populations;(n*1,4,w*wq) is also 02 h
broadened, and further modified by ... s(n,). These e propagator& ;2 | can be constructed frolg.,, s as
w-dependent changes in the transport equations represeptEq. (A6). T
quasiparticle corrections which change the relaxation If the self-energy in Eq(15) is applied in Eq(14), then
rates}” and in transient situations have the character ofjuring their integration ovew the prefactor splits from the
memory effects. They reflect time-dependent quasiparticlgest of the terms and the effective spectral functibrinte-
formation, observed in recent one-beam excitationgrates to 1. As a result, we obtain the steady-state integral
experiments’?! Two-beam coherent control could allow the Boltzmann equatici! (IBE) for the two-beam optical exci-
observation of these phenomena in the induced cuffent. tation,

To(N)
fcc<n,¢>=re;L—° S e @) e St f —sm(q&){F(ﬂ $in—1.6)foc(N=L1.h)Ng(w0)
F(n,¢;n+1,$>fcc<n+1,$>[1+n3<wq)]}), (16)

|
where the distribution function is it is necessary to add the radiative transfer of carriers be-
tween the bands. The induced current is not sensitive to the

1 form of this additional term, since mostly levels with small
foo(n @)= Gee(n, ,0), 17 are affected, where the total momentum of carriers is already
; ) ) o very small due to relaxation.

and7,(n)=—#/2ImZ () is the particle relaxation ime. e can similarly derive a time-dependent IBE, necessary

The relaxation of electron momenta IS described by the locafor studies of pulsed excitations. It can be obtained from Eg.
transport(momentum relaxationtime®® r p~37,, resulting  (7), using apprOX|mat|ons analogous to the steady-state case
from 7,(n) by inclusion of the vertex correctlon terms in Eq. in the time domairf® or by a logical generalization of Eq.
(16).3! To obtain a physically consistent solution of E6), (16). Its form is as follows:

fee(n, ¢T>— f dT'e” TV |5 (6, T")|?1erd no+ f —sm(¢>{F<n n—1,4)

><fcc<n—1,$,T')nB<wQ)+F(n,¢;n+1,$>fcc<n+1,$,T'>[1+na<wq>]}), (18)
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and it coincides with the steady-state equati®6) for long fee(n,@) [10'cm?3]
excitation pulses. Here we use E¢7) and(18) to present
the main features in the injection and relaxation of the hot
electron population with nonzero average momentum, even
though the conditions of weak scattering are not fully satis-
fied in GaAs.

D. Induced current density

The solutions of Eqs(16)—(18) can be used to calculate
the optically induced current densify The injection(scat-
tering term contributes ta) from the leveln=0 (n#0).
The total current density is formed by the electron and hole
partsJ=J..+J,,, resulting from the individual bands. For . L L.
laser beams polarized in thedirection, the current density ~ 1ight hole excitation ~ heavy hole excitation

X
Jec Is

FIG. 3. The steady-state electron distribution in the conduction
N a7 band,f..(n,¢), for In/hh excitation aff=300 K. The full line is
X =2 . KIG=(K for level n=0, and dashe@dash-dottegllines correspond to nega-
cc € 3 2 vcc( ) cc( 1('0) . .
(2m) T tive (positive n.

~§2 Veo(K" )rg—ﬁsin(w)fcc(n,@, (199 metry has already been recognized in one-photon
n 0

res excitation®® where a mixture of the light- and heavy-hole
X . bands close to thé' point was considered. In Sec. V we
an<d‘]vv IS analogogs. In the seco_nd expression, we have Useg,y that the momentutgcurren) relaxation has a different
Gee~Ted/2!, and sin(2p)/2 combines thep dependence of  character for these two cases. In Appendix D the carrier gen-
the momentum integrgkin (¢) ] and thex component of the  gration rates obtained here are compared with those found

velocity [cos (¢) ]. _ earlier from a Fermi’s golden rule calculatifn.
In the generation ternfi,.(n=0,¢), the mixed part from

the squared field self-enerd¥..,(#,T)|? contributes taJ.

In steady state it is equal to V. NUMERICAL RESULTS AND DISCUSSIONS
263 Here we solve Eq916) and(18) and calculate the carrier
I3 .o (D)] % =—= A%, (AX )2coq 6,, —20, ) distribution in the individual levels and the related currents.
;Cv mix 3 2w0 2H) 2u)0 g i i
c Results for only the conduction band are presented, since the

« M valence band has similar distributions and contributes less to
X [ (¢)|2Ucc(¢’)_”vv(¢) (20) the total current. Generation of radiation in the THz region
cv h ' by these transient currents is also briefly described.

where all the velocities are taken lgl.. The approximate
cosine dependence of the intraband matrix elements A. Electron distribution

Uty ()~ *cos(g) builds animbalancein the generation We take the energy gap to lig,=1.5 eV, and consider
of carriers W!th qpposite momenta. The direction of the netaycitation at Zwy=2.1 eV. At this energy, thab initio
current densityd is controlled by the phases,, and6,,,. results forv, andvy, in Eq. (21) are very close to the intra-
The angular dependence of the generated population isand speed ..(k)=7%k/m, in the parabolic approximation.
also determined by the interband velocity elemarfi{¢).  Therefore, we approximate them at the excitation pfpt
We use their approximatab initio values for GaAs, calcu- by the Va|uajcc(k?es)~1_7 nm/fs. For the intensities atg
lated in the absence of spin-orbit interaction, and consideand w, we take the experimentally realistic valfies I,,,
the lowest conduction band, one light-hole band, and two_ 14 |\wi/en? andl =100 MW/cn? respectively.
degenerate heavy-hole bands. The square of the interband “o '
velocity elementv, (#)|? summed over the two hh bands is
approximatelyd independent, as is the valle} (¢)|? for
the single light hole bandindicated by our notation In the
parabolic approximation these two then have the forms

0

In Fig. 3 we present the quasi-steady-state electron distri-
bution in the conduction band, as calculated from &d).
In the left (right) caption we show the results for excitation
from the Ih (hh) bands. The full line corresponds to the ex-
citation leveln=0, dasheddash-dottefllines are for levels

X 2.2 X 22 with the one- and two-phonon emissior=—1 and —2,
|08 1ight()|*~0j cos (), |00 heay(D)] ~uhsm2(g)1,) (absorption, n=+1 and +2). The temperature isT

=300 K, so that the phonon absorption is relatively high,

wherev, andv,, are constant for a given light energy. There- and consequently the distributions are nonzero for all angles
fore, the conduction-band photogenerated electron distribug$. The photogenerated electron distributions for the Ih and
tion in the Brillouin zone has a maximum alofygerpendicu-  hh excitations have a nonzero mean momentum, but their
lar to) the polarization direction for generation from (hh)  forms are very different from the Fermi sea in metals, when
band, which is distorted by the mixed tert20). This sym-  shifted by a dc electric fiellf’ Since the two distributions are
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FIG. 4. The current densitiek.. for Ih excitation atT=50 K

(upper diagramand T=300 K (lower diagran.. The solid line is FIG. 5. The same as in Fig. 4 but for the hh excitation. At both

for n=0, and dashed lines correspond to negativRelaxation at temperatures, the relaxation of current is slower than in Fig. 4 and

higher temperatures is faster, which gives lower saturated values de peaks are more shifted.

the current. The thin vertical dot-dashed line shows the center of the ) ] »

light pulse. The peaks of the individual contributions, shown by theA2s,(t) andA,, (t), with peak intensities as before, are as-

thin dotted line, are shifted with respect to the line. sumed to lead to an effective fieldlos; with a Gaussian
o , _ envelope function e (t-to)120¢ t,=400 fs, and og

also qualitatively dlfferent. one from another, they have dif-_ 150 "ts. This is typical of experimental conditions, be-

ferent momentum relaxation times . cause the pulsé,, (t) is usually produced from,, (t) by

The different shapes of the shifted distributiof@ong second-harmonic generation in a doubling crystal, leading to
and perpendicular to the axis for the Ih/hh excitationare a pulse width ofAZwO(t) that is half that owaO(t).

determined by the elementsg, igni($), Vg, heay(®)- _ N
The relaxation of thé, component of the wave vectirhas In Fig. 4 we show the current densitidg(n) from the

a 2D-like character for electrons generated from Ih excitajndividua_l levels for the Ih excitation. In the upper diagram
tion, sincek, is decreased by scattering in arydirection.  the solution at the low temperatulie=50 K shows a rela-

This relaxation is slower for hh excitation than for Ih excita- iVely large shift of maxima for the lower levels, plotted by
tion, since in the hh case the momentum relaxes in a ondhe thin dotted line, with respect to the center of the laser
dimensional-like form: i.e k, relaxes because there is more pulse, represented by the vertical thin dot-dashed line. In the

available phase space for scattering in the direction towartPWer diagram we show the corresponding results Tor
$=90° than away from it, while scattering in thedirec- =300 K. Here the values are smaller and the relaxation is

tion does not lead to relaxation &,. The large available faster, due to stimulated phonon processes. In Fig. 5 the

phase space for hh excitation also increases the total inject&@Me is presented for the hh excitation. Here the current
current in this case. Since the distributions for the two excicontributions are several times larger and they suffer a
tations are complementary, their sum resembles the chang&aller decrease as we move to levels with smalldhese

in distribution that would characterize a metal in a dc bias/€VelS are also more shifted, especially at the lower tempera-
Relaxation of anisotropy in distributions with zero mean mo-ture T=50 K. For the assumed Gaussian pulse, it is possible

mentum was recently also studied in the presence of carrief® observe a very small overshoot in the relaxation tail of the
carrier scatteriné(."?” current, i.e., levels with smallen give larger current than

those with largem. These effects illustrate the slower mo-
. mentum relaxation of electrons excited from the hh band.
B. Photoinduced current In Fig. 6 the total current density from the conduction
Next from Eqgs.(18) and (19) we calculate the time de- bandJ.. is shown for |h excitation. The saturation and re-
pendent current densities for a pulse excitation. Field$axation time is7,,~70 (50) fs forT=50 (300) K, which
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FIG. 8. The steady-state current densiy. as a function of

temperature. The soli(dashedl line corresponds to the excitation
from heavy(light) holes. Both decay with temperature at appropri-

ate momentum relaxation times.

becomes reflected in the different shifts of these two solu-

tions with respect to the light pulggertical dot-dashed line

In Fig.

9 we present the derivativi(t) for the real hh

As in the previous pictures, the peak value for the current akycitation in our system at the temperatdfe 300 K. We

T=50 K is larger than that aT=300 K. Figure 7 shows
the results fold. in the presence of hh excitation. Here the
relaxation timesr,, are slightly larger than for the Ih excita-
tion at both temperatures, due to the symmetry of the distri

to=150

take fieldsA,,, (t) andA,, (t) with the same peak intensities
used above, but given by a Gaussian envelope function with

fs andog=20 fs. This short excitation leads to a

bution, and the current densities are about three times largdBrge asymmetry od..(t); the sharp increase is produced by

In Fig. 8 the steady-state current denslity is shown as a
function of temperature. The solidashed line corresponds

the pulse and the slow decay is due to relaxation by phonons.
In the inset we show the normalized absolute values of the

to the hh(lh) excitation. At low temperatures the -CU-rrent Fourier components fojCC(t) The full (dasheaj line corre-
densities saturate due to spontaneous phonon emission pPigsonds torg=20 fs (=100 fs); both give two peaks
cesses. At high temperatures they decrease, because St'_r%'yimmetric aroun@;,q=0. If the pulse length is comparable
lated phonon processes shorten the momentum relaxathg or lon
case ofcg=100 fs, the field envelope functions determine
the low frequency spectrum. For shorter pulses, as in the case
of og=20 fs, higher-frequency components of the spectrum

Current pulses in the range of tens of femtoseconds gerappear, and at the long-wavelength limit the spectrum is
erate electromagnetic radiation in the THz region, originatmostly determined by the relaxation of electrons on LO
ing from the fact that electrons are accelerated during th@honons. The THz radiation could reflect nonclassical phe-
injection and relaxation. The field typically varies as the de-nomena in the current, related to polaron formafib?

rivative of the current densitEemiss(t)%J(t). Here we are
concerned with the THz radiation generated by the injected 1
currents, and not that generated by displacement currents tha
persist even at sub-band-gap excitatton.

time.

Jeo [pA/pm?]

FIG. 7. The total current density.. for the hh excitation. The

C. Generation of THz radiation
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9. The derivativel.(t) for hh excitation by two beam

pulses of a Gaussian envelope of a widif=20 fs and at a tem-

peratureT=300 K. In the inset the spectrum of this derivative is

saturation and relaxation rates are longer than that found for Ilshown. The full(dashed line corresponds to the pulse width:
excitation, and the peaks are more shifted.

=20 fs

(cg=100 fs).
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VI. CONCLUSION structure, will open further possibilities for direct current in-
. . . i i ._jection, with new potential applicatiorfé Recently, transport
_We have theoretically investigated the two-laser-beam "Mof atoms in carbon nanotubes by the two-beam coherent con-
jection of dc current in bulk semiconductors. Thjgantum

; NV : . trol was suggestetf

interference injectionand the carrier relaxation was de-

scribed by nonequilibrium Green functions. The transition

amplitudes for the one- and two-photon transitions at, 2 ACKNOWLEDGMENTS

and wy add coherently and form an effective fiedd (k), The authors would like to thank A. Shkrebtii for provid-
which generates carriers with different rates at wave vectorﬁ1g| ab initio matrix elements. We are also grateful H. M. van
*+k and produces a dc current. In our diagrammatic approxipyrie| and D. Cae for helpful discussions. The financial sup-

mation, inelastic scattering by LO phonons does not alter thigort of this work was provided by Photonics Research On-
simultaneous two-beam injection, but it is active in redistri-i5yig.

bution of the carrier’'s momenta and the current relaxation.
We have derived quantum kinetic equations, in the second

order in the field self-energy2..,(k) or equivalently

Ac11(k). Here the equations have been further simplified to  We use electron Green functions in a matrix form. In real

the Boltzmann limit, and applied in steady-state and pulseimes and on the quasimomentum diagonal, the causal func-

excitations of GaAs in the presence of LO-phonon scatteringions are defined B$232°

Different electron distributions are photogenerated in the

conduction band for excitation from light- and heavy-hole ¢ i ;

bands. At all temperatures, the total induced current is stron- Cap(Kt1,t2) == 2(Tas(t)ag(ta)),  a.f=c.,

APPENDIX A

ger and it relaxes slower for hh excitation than for |h excita- (A1)
tion. Generation of THz radiation by the injected current is
also briefly discussed. and the temperature and boson functions can be introduced

It can be expected that other excitation configurations fonalogously. The correlation functioﬁsjﬂ and Gjﬁ are re-
lasers beams, or materials with a noncentrosymmetric lattickated toG* s as follows:

(3

iGtocﬁ(k1tl 12) =G 5K,y t5) :<aa,k(t1)az;,k(t2)>/ﬁ, t1>15,

Coat < t (A2)
=i Gp(kity ) =G gk, ty,tr) =(ag (ta)ank(t))h, t1<t,.
|
The retarded and advanced propaga@®fg are defined by APPENDIX B
LAkt t)=Ti0(+t Tt)[ Gkt t In this appendix we consider steady-state current injection
ap(K 1 t2) ==L L) Gaplk o) and perform a term by term linearization of E¢8). in terms
+G gkt 1)1, (A3)  of 3.3 This gives the first-order equation
where theé function is 6(t)=0 and 1 ‘_”‘3<O and>0. Gy =GL3Gy + Gy 3G+ GL3! Gy
In the steady state the Green functions depend only on the
difference of time coordinate§(k,t=t;—t,). Then the in- +Ggy 23.Gi+ G2 1.Ga, (B1)
traband correlation functions can be expressed after a Fourier
transform ovett as! where the common argumengs- (k,) are not written. In
Eq. (B1), the arguments in th&, elements that follow
Gja(kvw):nF(w)Aaa(kvw)r Ef(ls);w and Ef(ls);vc are Shifteal by —2502(0,—2(1)0)
_ and 20, respectively. We can approximately tal@:‘(jCC
Glalk@)=[1-ng(w)]Aq(K, o), (Ad)  =Gl=Gg,,=Gl,,=0, while the first-order interband
; g . .
where in equilibriumng is the Fermi-Dirac distribution function Gy, fulfills the equation
Ne(w)=1[expfiw/kT)+ 1], and the spectral function is - ; ; - 0
defined by the equilibrium correlators G1.eo(8) =G O X100 (K) + 21,6, (6) 1Ggry, (6 2€7)
r < a 0
AualK,0)==21IMG](k,0) =G, (k,0)+ G, (K ). * Gosecl §)2 15,00(£) Goy0 (£~ 280), (B2)

and the expressions o1 Gl @n ,c are analo-
(A5 and th jons f@7,., i, andGy,. |
This relates back to the propagator through the Hilbert transgous. Equatior{iB2) describes the electron-hole density and
form the related polarizatiot®**In the absence of interband scat-

G d A (T tering, expressior(8) gives 15, (K,0) =Mc(a) G1c, (k
Gk w)=| —— M (A6) —d.@—©)D~(d,0)M,,(0). For steady-state excitation, the
“ 2T —w*id two Green functions for conduction and valence bands in
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each of the vertex correction terms in E§2), with Efm, APPENDIX C

cannot both be in resonance, if the enefgy is out of the Let us approximate Eq11), and start with the integra-
light excited region (phonon emission and absorption tjon in the square of propagatots®We use the substitution
Therefore, these vertex correction terms should be less M= —7,2k2/2m., along with the fact that the approximated

portant in the<steady state. o self-energy® (..4(n,w) is no longer a function of. Then the
The termG, results from expandinG in Eq. (7) to sec-  E integration can be performed in the complex pldtte
ond order inX: closed path around the pole=fiw—3{.(n,»)], with the

approximate resuit

n

Gy =2Gy(Xf+ 219G (27 + 24 GG+ 2Gp( 2 +Xg)

=dk 21 ~T 2 ~ Rres me
> K [Go.eck, o) ~ o - (€D
X GpE1Go+ 2621 GH( 27 + 215 Gy 0m A% ImEg (N, o)
Pl Nt V12~ < <r/va, va | a2 Here theE integration is approximated by prolongation to
2[Go(21+ 235 ]Go +2Go [(2¢+235) Gl —o, and the square root, resulting from the changek of
+GI¥0. Gy + Gy 33.Ga+ GLY5.Ga. (B3)  Vvariable, is taken at the free pafeo =#2(kl',)%/2m, . More

general results for the integral can be also obtained.

The k integral in the excitatior(first) term on the right
The band diagonal elements here describe the injected intraide in Eq.(11) can be done similarly. It is necessary to
band population. If all terms associated with, are ne- resolve the spectral function in the valence band from the
glected, as discussed above, then EBB) can be solved correlatorGg,,,=Ag,, [Ng=1; see Eq(A4)]into a differ-
independently from Eq(B1). This gives our starting set of ence of two propagator#\y.,,=Gg.,, +Gg.y, =17(Gp.y,
kinetic equationg11). It is worth noting that other terms can —G§ ) [see Eq.(A3)]. These propagators in E) are
contribute to the current. They result from the mixed corre-multiplied by |Gj..|>. These terms produce two integrals,
lation functionGiT , perturbed to a second order in the exter-done as in Eq(C1), which can be collected to the following
nal field, and give ahift current, studied in our next wofR.  form:

—klesA(N, )80 mm,
2h2IM 3L ((n,w) Mctm,’

= dk
fo Ek2|G6;CC(k,w)|2G§;UU(k,w— 2wg)~

me m,

r r
———— ImZi.((nw)+ Py Im>, «(n,w)
A(n,w)=—2 - - 5. (C2
_ 2 c r v r
(ho—A)*+ — Im2¢.o(nw)+ mc+mv|m2””'5(n’w)
A= Resr *—[2hwo—EgaptReX'
= ot el cs(nw)+ mc+mv[ 0o~ EgaptReX | «(n,0)].
|

Here the particular mass prefactor & corresponds to the G (K, ®,T) 1

choice of the valudiw=0 at the bottom of the conduction 0T =g|2f;cU(k)|2Ao;cc(k,w)
band, but the results are independent of this choice. It is good gen

to stress that the above approximations of the transport equa- X Ag-yp(K, 00— 2w0). (D1)
tions (11) are consistent with those implied in the '

k-dependent g o(n,®). This expression is equal to the generation term in the steady
state G5 .(k,») from Eq. (11) multiplied by 1/2! and
—2 Im3¢  ((k,w)/%. Integration of Eq(D1) overk andw,
APPENDIX D using approximations in the text, yields the fitgeneration
term in Eq.(18), differentiated over timel at T=0. This
Here we compare the generation term from the IBE in Eqequivalence of the generation terms in the integral and dif-
(16) with an analogous term obtained by the Fermi’'s golderferential versions of the transport equations allows us to
rule To this end it is more direct to use the differential compare the earlier resuftaith expressionD1), instead of
version of the transport equatitrfor Gg.. It has a genera- Eq. (18).
tion term, in the adiabatic approximation and second order in The time derivative, at =0, of the generation part for the
2¢.c,» Of the form[Eq. (14.18 from Ref. 16 and Eq(B2) in  current density in the conduction band (jsrefactor 2 for
this work] sping
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d3k
(2m)®

)gen

diw

2

(ﬂJ&(T) oK)

aT

el

X(
d3k U)éc(k)|2f'cu(k)|2
~2 :
ef (277)3 h?

X276 we,(K)—2wq],

ﬁch(k,w,T)
oT

(D2)
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where Eq.(D1) was used, tha integration of the free spec-
tral functions was performed, and the factmgv(k)=skclﬁ

—skc/ﬁ was introducedisotropic bands The explicit form

of the squaréX..,(Kk)|? from Eq. (6) can be substituted in
Eq. (D2). Further, the vector potential must be written in
terms of the electric field, and only two parabolic bands con-
sidered. Then the different parts of H@p2) agree with the
one-photon, two-photon, and interference terms found by
Atanasovet al,* when their expressions are subjected to the
approximations made here.
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