
IEEE COMMUNICATIONS LETTERS, VOL. 12, NO. 5, MAY 2008 389

Quantum LDPC Codes from Balanced Incomplete Block Designs
Ivan B. Djordjevic, Member, IEEE

Abstract— We present a series of structured LDPC codes
suitable for use in quantum error correction. Those codes
belong to the class of dual-containing Calderbank-Shor-Steane
(CSS) codes. The component CSS code is designed using the
combinatorial object known as balanced incomplete block design
(BIBD) with an even index. The quantum LDPC codes have
the rate around 0.9. Several examples of quantum LDPC codes
from BIBDs from unity index, extended by addition of an all-
ones column, are introduced as well. To improve the BER
performance, we employed the method of removing the cycles
of length four in corresponding bipartite graph.

Index Terms— Low-density parity-check (LDPC) codes, quan-
tum error-correction, Calderbank-Shor-Steane codes.

I. INTRODUCTION

THE quantum information processing is an exciting re-
search area with applications ranging from cryptography

to complexity theory [1]. It can be used to efficiently solve
some hard problems in classical computation, e.g. integer
factorization, and quantum-based computers are much more
powerful than Turing machines. The quantum information
processing, however, relies on fragile superposition states
required to manipulate the quantum information, which are
sensitive to the interactions with environment-decoherence.
Decoherence introduces the errors, and someone has to rely
on quantum error-correction. Fortunately, it was shown by
Calderbank and Shor in [2], and Steane in [3], that good
quantum error-correcting codes exist. Moreover, it has been
shown that quantum information processing can be done fault-
tolerantly [1].

It is well known in classical error correction that Shannon
limit can be closely approached by low-density parity-check
(LDPC) codes. Inspired by the conjecture that the best quan-
tum error-correcting codes can be related to the best classical
codes [1]-[3] D. J. C. MacKay at el. proposed recently in [4]
how to design the sparse dual-containing binary codes that
can be used to construct quantum LDPC codes belonging to
the class of Calderbank-Shor-Steane (CSS) codes [1]. Most of
the constructions introduced in [4] are obtained by computer
search, and several researchers recently addressed the problem
of designing quantum LDPC codes by using some other
approaches [5],[6].

In this paper we propose to design quantum LDPC codes
using the combinatorial concepts [7]. It was recently shown in
[8] that combinatorial constructions can successfully be used
to design good classical LDPC codes. The codes from combi-
natorial objects exhibit highly regular structure, which might
facilitate the quantum implementation. The good classical
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LDPC codes are codes of high girth (at least six), and several
interesting constructions are given in [8]. Unfortunately, it
was shown in [4],[5] that quantum stabilizer LDPC codes and
quantum self-dual containing CSS codes are girth-4 codes, so
that combinatorial designs proposed in [8] are not applicable
here. Novel combinatorial constructions resulting in girth-4
LDPC codes with even overlap between any two rows and
even row weight are needed.

We propose a series of quantum LDPC codes designed
using the combinatorial object known as balanced incomplete
block design (BIBD) [7]. The quantum LDPC codes, intro-
duced in this letter, have the high code rate (around 0.9). We
also show how to modify some of BIBDs used to design
classical LDPC codes, so that they can be used to design
quantum sparse codes as well. To improve the bit-error rate
(BER) performance we employed an efficient algorithm due
to Sankaranarayanan and Vasic [10] to remove the cycles of
length four from corresponding bipartite graph (the modified
bipartite graph is used only in decoding phase).

II. QUANTUM LDPC CODES FROM BIBDS

It has been shown by Calderbank, Shor and Steane [2]-[3]
that the quantum codes, now known as CSS codes, can be
designed using a pair of conventional linear codes satisfying
the twisted property, that is one of the codes includes the dual
of another code. Among them, particularly are simple the CSS
codes based on dual-containing codes [4], whose (quantum)
check matrix can be represented by [1],[4]

A =
[

H 0
0 H

]
, (1)

where HHT = 0, which is equivalent to C⊥(H) ⊂ C(H),
where C(H) is the code having H as the parity check
matrix, and C⊥(H) is its corresponding dual code. It has
been shown in [4] that the requirement HHT = 0 is satisfied
when rows of H have even number of 1s, and any two of
them overlap by an even number of 1s. The LDPC codes
satisfying these two requirements in [4] were designed
by exhaustive computer search, in [5] they were designed
as codes over GF(4) by identifying the Pauli operators
I,X, Y, Z with elements from GF(4), while in [6] they were
designed in quasi-cyclic fashion. In what follows, we will
show how to design the dual-containing LDPC codes using
the combinatorial objects known as BIBDs [7]. Notice that
the theory behind BIBDs is well known (see [7]), and BIBDs
of unity index have already been used to design LDPC
codes of girth-6 [8]. Notice, however, that dual-containing
LDPC are girth-4 LDPC codes, and they can be designed
based on BIBDs with even index. A balanced incomplete
block design, denoted as BIBD(v, b, r, k, λ), is a collection
of subsets (also known as blocks) of a set V of size v, with a
size of each subset being k, so that: (i) each pair of elements
(also known as points) occurs in exactly λ of the subsets,
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and (ii) every element occurs in exactly r subsets. The
BIBD parameters satisfy the following two conditions [7]: a)
vr = bk, and b) λ(v − 1) = r(k − 1). Because the BIBD
parameters are related (conditions a) and b)) it is sufficient
to identify only three of them: v, k and λ. It can be easily
verified [8] that a point-block incident matrix represents a
parity-check matrix H of an LDPC code of the code rate
R lower bounded by R ≥ [b − rank(H)]/b, where b is the
codeword length, and with rank( ) we denoted the rank of
the parity-check matrix. The parameter k corresponds to the
column weight, r to the row weight and v to the number
of parity-checks. The corresponding quantum code rate is
lower bounded by RQ ≥ [b − 2rank(H)]/b. By selecting the
index of BIBD λ = 1, the parity-check matrix has the girth
of at least 6. For a classical LDPC code to be applicable
in quantum error-correction the following two conditions
are to be satisfied [4]: (1) the LDPC code must contain its
dual or equivalently any two rows of the parity-check matrix
must have even overlap and the row weight must be even
(HHT = 0), and (2) the code must have rate greater than
1/2. The BIBDs with even index λ satisfy the condition (1).
The parameter λ corresponds to the number of ones in which
two rows overlap. For example, the parity check matrix
from BIBD(7,7,4,4,2)={{1, 2, 4, 6}, {2, 6, 3, 7}, {3, 5, 6, 1},
{4, 3, 2, 5}, {5, 1, 7, 2}, {6, 7, 5, 4}, {7, 4, 1, 3}}, given as
H1-matrix at the bottom of this column, has the rank 3,
the even overlap between any two rows, and row weight
is even as well (or equivalently H1H

T
1 = 0). Notice that

so called λ-configurations (in definition of BIBD the word
exactly from condition (i) is replaced by at most) are not
applicable here. However, the H-matrix from BIBD of unity
index can be converted to H-matrix satisfying condition (1)
by adding a column with all-ones, which is equivalent to
adding an additional block to unity index BIBD having all
elements from V . For example, the parity check matrix from
BIBD(7,7,3,3,1), after the addition of a column with all
ones, is given as H2-matrix at the bottom, and satisfies the
condition H2H

T
2 = 0. The following method due to Bose

[9] is a powerful method to design many different BIBDs
with desired index λ. Let S be a set of elements. Associate
to each element u from S n symbols u1, u2, . . . , un. Let sets
S1, . . . , St satisfy the following three conditions: (i) every
set Si(i = 1, . . . , t) contains k symbols (the symbols from
the same set are different from one another); (ii) among kt
symbols in t sets exactly r symbols belong to each of n
classes (nr = kt); and (iii) the differences from t sets are
symmetrically repeated so that each repeats λ times.

H1 =

⎡
⎢⎣

1 0 1 0 1 0 1
1 1 0 1 1 0 0
0 1 1 1 0 0 1
1 0 0 1 0 1 1
0 0 1 1 1 1 0
1 1 1 0 0 1 0
0 1 0 0 1 1 1

⎤
⎥⎦

H2 =

⎡
⎢⎣

1 1 1 0 0 0 0 1
1 0 0 1 1 0 0 1
1 0 0 0 0 1 1 1
0 1 0 1 0 1 0 1
0 1 0 0 1 0 1 1
0 0 1 1 0 0 1 1
0 0 1 0 1 1 0 1

⎤
⎥⎦

If s is an element from S, from each Si set we are able to form
another set Si, s by adding s to Si keeping the class number
(subscript) unchanged; then sets Si,s(i = 1, . . . , t; s ∈ S)
represent a (mn,nt, r, k, λ) BIBD. By observing the elements

from BIBD blocks as position of ones in corresponding
columns of a parity-check matrix, the code rate of an LDPC
code such obtained is lower bounded by R ≥ 1 − m/t
(RQ ≥ 1 − 2m/t), and the codeword length is determined
by b = nt. In the rest of this Section we introduce several
constructions employing the method due to Bose.

Construction 1: If 6t + 1 is a prime or prime power and
θ is a primitive root of GF(6t + 1), then the following t
initial sets Si = (0, θi, θ2t+i, θ4t+i)(i = 0, 1, . . . , t − 1)
form a BIBD(6t + 1, t(6t + 1), 4t, 4, 2). The BIBD is formed
by adding the elements from GF(6t+1) to the initial blocks
Si. Because the index of BIBD is even (λ = 2), and row
weight r = 4t is even, the corresponding LDPC code is a
dual-containing code (HHT = 0). The quantum code rate
for this construction, and constructions 2 and 3 as well, is
lower bounded by RQ ≥ (1 − 2/t). The BIBD(7,7,4,4,2)
given above is obtained using this construction method. For
t = 30 a dual-containing LDPC(5430,5249) code is obtained.
The corresponding quantum LDPC code has the rate 0.934,
which is significantly higher than any of the codes introduced
in [4] (RQ = 1/4).

Construction 2: If 10t + 1 is a prime or prime power and
θ is a primitive root of GF(10t + 1), then the following t
initial sets Si = (θi, θ2t+i, θ4t+i, θ6t+i) form a BIBD(10t +
1, t(10t+1), 4t, 4, 2). For example, for t = 24 dual-containing
LDPC(5784,5543) code is obtained, and corresponding CSS
code has the rate 0.917.

Construction 3: If 5t + 1 is a prime or prime power and θ
is a primitive root of GF(5t + 1), then the following t initial
sets (θi, θ2t+i, θ4t+i, θ6t+i, θ8t+i) form a BIBD(5t+1, t(5t+
1), 5t, 5, 4). Notice that parameter t is to be even for LDPC
code to satisfy the condition (1). For example, for t = 30,
the dual-containing LDPC(4530,4379) code is obtained, and
corresponding CSS LDPC code has the rate 0.934.

Construction 4: If 2t + 1 is a prime or prime power and θ
is a primitive root of GF(2t + 1), then the following 5t + 2
initial sets

(θi
1, θ

t+i
1 , θi+a

3 , θt+i+a
3 , 02)(i = 0, 1, ..., t − 1)

(θi
2, θ

t+i
2 , θi+a

4 , θt+i+a
4 , 03)(i = 0, 1, ..., t − 1)

(θi
3, θ

t+i
3 , θi+a

5 , θt+i+a
5 , 04)(i = 0, 1, ..., t − 1)

(θi
4, θ

t+i
4 , θi+a

1 , θt+i+a
1 , 05)(i = 0, 1, ..., t − 1)

(θi
5, θ

t+i
5 , θi+a

2 , θt+i+a
2 , 01)(i = 0, 1, ..., t − 1)

(01, 02, 03, 04, 05), (01, 02, 03, 04, 05)

(2)

form a BIBD(10t+5, (5t+2)(2t+1), 5t+2, 5, 2). Similarly
as in previous construction, the parameter t is to be even. The
quantum code rate is lower bounded by RQ ≥ [1−2· 5/(5t+
2)], and the codeword length is determined by (5t+2)(2t+1).
For t = 30, the dual-containing LDPC(5490,5307) is obtained,
and corresponding quantum LDPC codes has the rate 0.934.
The following two constructions are obtained by converting
unity index BIBD into λ = 2 BIBD.

Construction 5: If 12t + 1 is a prime or prime power and
θ is a primitive root of GF(12t + 1), then the following t
initial sets (0, θi, θ4t+i, θ8t+i)(i = 0, 2, . . . , 2t − 2) form a
BIBD(12t+1, t(12t+1), 4t, 4, 1). To convert this unity index
BIBD into λ = 2 BIBD we have to add an additional block
(1,2,. . . ,12t+1).

Construction 6: If 20t + 1 is a prime or prime power and
θ is a primitive root of GF(20t+1), then the following t initial
sets (θi, θ4t+i, θ8t+i, θ12t+i, θ16t+i)(i = 0, 2, . . . , 2t−2) form
a BIBD(20t + 1, t(20t + 1), 5t, 5, 1). Similarly as we did in
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Fig. 1. BERs against crossover probability on BSC.

previous construction, in order to convert this unity index
BIBD into λ = 2 BIBD we have to add an additional block
(1, 2, . . . , 20t + 1).

III. NUMERICAL RESULTS

We performed the simulations for error-correcting perfor-
mance of proposed codes as the function of noise level by
Monte Carlo simulations. We simulated the classical binary
symmetric channel (BSC), to be compatible with current
literature [4]-[6]. The results of simulations are shown in
Fig. 1 for 30 iterations in sum-product-with-correction-term
algorithm due to H. Xiao-Yu et al. [11]. We simulated dual-
containing LDPC codes of high-rate and moderate lengths, so
that corresponding quantum LDPC code has the rate around
0.9. BER curves correspond to C/C⊥ case, and are obtained
by counting the errors only on those codewords from C
not belonging to C⊥. The codes from BIBD with index
λ = 2 outperform the codes with index λ = 4. The codes
derived from unity index BIBDs by adding all 1’s column
outperform the codes derived from BIBDs of even index. In
simulations presented in Fig. 1 the codes with parity-check
matrices with column weight k = 4 or 5 are observed.
The code from projective geometry (PG) is an exception.
It is based on BIBD(s2 + s + 1, s + 1, 1), where s is a
prime power, in our example parameter s was set to 64. The
LDPC(4162,3432) code based on this BIBD outperforms other
codes, however, the code rate is lower (R=0.825), and the
column weight is large (65). For more details on PG codes
and secondary structures developed from them an interested
reader is referred to [12]. To improve the BER performance of
proposed high-rate sparse dual-containing codes we employed
an efficient algorithm due to Sankaranarayanan and Vasic, for
removing the cycles of length four in corresponding bipartite
graph. As shown in Fig. 1, this algorithm can significantly
improve the BER performance, especially for weak (index
four BIBD based) codes. For example, with LDPC(3406,3275)
code the BER of 10−5 can be achieved at cross-over probabil-
ity 1.14· 10−4 if sum-product-with-correction-term algorithm

[11] is employed (g = 4 curve), while the same BER can
be achieved at cross-over probability 6.765· 10−4 when the
algorithm proposed in [10] is employed (g = 6 curve).
Notice that this algorithm modifies the parity-check matrix
by adding the auxiliary variables and checks, so that the
4-cycles are removed in the modified parity-check matrix.
The algorithm attempts to minimize the required number of
auxiliary variable/check nodes while removing the 4-cycles.
The modified parity-check matrix is used only in decoding
phase, while the encoder remains the same.

IV. CONCLUSION

We have shown that sparse dual-containing codes suitable for
use in quantum error-correction can be designed in combi-
natorial fashion, based on BIBDs, instead of using exhaustive
computer search. We present four constructions based on even
index BIBDs, and two constructions based on unity index
BIBDs. All those constructions belong to the class of dual-
containing CSS codes. The quantum LDPC codes have the
rate around 0.9. In order to keep complexity of decoder low
we design moderate length LDPC codes of column weight
k=4 or 5. To improve the BER performance, we employed
the method of removing the cycles of length four in corre-
sponding bipartite graph. Notice that a BIBD does not exist
for arbitrary v, k and λ = 2, but only for those parameters
that satisfy simultaneously conditions a) and b) in definition
of BIBD. Another interesting fact to notice is that by using
the concepts from this paper, and allowing the BIBD blocks
to be of different size we can design quantum irregular LDPC
codes, which might outperform quantum regular LDPC codes
proposed here. The possible applications of quantum LDPC
codes introduced in this paper include deep-space optical
communications, interchip/intrachip optical communications,
and quantum key distribution (QKD).
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