
 Open access  Journal Article  DOI:10.1103/PHYSREVA.77.012317

Quantum-limited metrology with product states — Source link 

Sergio Boixo, Sergio Boixo, Animesh Datta, Steven T. Flammia ...+6 more authors

Institutions: University of New Mexico, Los Alamos National Laboratory, Perimeter Institute for Theoretical Physics,
Autonomous University of Barcelona ...+1 more institutions

Published on: 15 Jan 2008 - Physical Review A (American Physical Society)

Topics: Quantum metrology, Quantum entanglement, Hamiltonian (quantum mechanics), Coherent states and Scaling

Related papers:

 Statistical distance and the geometry of quantum states

 Quantum metrology

 Generalized limits for single-parameter quantum estimation.

 Quantum Metrology: Dynamics versus Entanglement

 Quantum detection and estimation theory

Share this paper:    

View more about this paper here: https://typeset.io/papers/quantum-limited-metrology-with-product-states-
42tewoz6d5

https://typeset.io/
https://www.doi.org/10.1103/PHYSREVA.77.012317
https://typeset.io/papers/quantum-limited-metrology-with-product-states-42tewoz6d5
https://typeset.io/authors/sergio-boixo-1q3uvllx5s
https://typeset.io/authors/sergio-boixo-1q3uvllx5s
https://typeset.io/authors/animesh-datta-j97qzitzp7
https://typeset.io/authors/steven-t-flammia-20ajps4e0y
https://typeset.io/institutions/university-of-new-mexico-3fikxehf
https://typeset.io/institutions/los-alamos-national-laboratory-2kt0qt5l
https://typeset.io/institutions/perimeter-institute-for-theoretical-physics-3bebq9np
https://typeset.io/institutions/autonomous-university-of-barcelona-u2urjc9f
https://typeset.io/journals/physical-review-a-j6ltrmrf
https://typeset.io/topics/quantum-metrology-2fd8smoh
https://typeset.io/topics/quantum-entanglement-n2gihxkl
https://typeset.io/topics/hamiltonian-quantum-mechanics-21hpkpqj
https://typeset.io/topics/coherent-states-3ry9rbsj
https://typeset.io/topics/scaling-6kbpenxb
https://typeset.io/papers/statistical-distance-and-the-geometry-of-quantum-states-43zr36ayxo
https://typeset.io/papers/quantum-metrology-5f976751lj
https://typeset.io/papers/generalized-limits-for-single-parameter-quantum-estimation-1ajvahrqdt
https://typeset.io/papers/quantum-metrology-dynamics-versus-entanglement-5b9d19vfq6
https://typeset.io/papers/quantum-detection-and-estimation-theory-1dc4j4fwzs
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/quantum-limited-metrology-with-product-states-42tewoz6d5
https://twitter.com/intent/tweet?text=Quantum-limited%20metrology%20with%20product%20states&url=https://typeset.io/papers/quantum-limited-metrology-with-product-states-42tewoz6d5
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/quantum-limited-metrology-with-product-states-42tewoz6d5
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/quantum-limited-metrology-with-product-states-42tewoz6d5
https://typeset.io/papers/quantum-limited-metrology-with-product-states-42tewoz6d5


Quantum-limited metrology with product states

Sergio Boixo,
1,2

Animesh Datta,
1

Steven T. Flammia,
1,3,* Anil Shaji,

1
Emilio Bagan,

1,4
and Carlton M. Caves

1,5

1
Department of Physics and Astronomy, MSC07-4220, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA

2
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

3
Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5

4
Grup de Física Teòrica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

5
Department of Physics, University of Queensland, Brisbane, Queensland 4072, Australia

�Received 20 October 2007; published 15 January 2008�

We study the performance of initial product states of n-body systems in generalized quantum metrology

protocols that involve estimating an unknown coupling constant in a nonlinear k-body �k≪n� Hamiltonian. We

obtain the theoretical lower bound on the uncertainty in the estimate of the parameter. For arbitrary initial

states, the lower bound scales as 1 /nk, and for initial product states, it scales as 1 /nk−1/2. We show that the

latter scaling can be achieved using simple, separable measurements. We analyze in detail the case of a

quadratic Hamiltonian �k=2�, implementable with Bose-Einstein condensates. We formulate a simple model,

based on the evolution of angular-momentum coherent states, which explains the O�n−3/2� scaling for k=2; the

model shows that the entanglement generated by the quadratic Hamiltonian does not play a role in the

enhanced sensitivity scaling. We show that phase decoherence does not affect the O�n−3/2� sensitivity scaling

for initial product states.

DOI: 10.1103/PhysRevA.77.012317 PACS number�s�: 03.67.Lx, 03.65.Ta, 06.20.Dk

I. INTRODUCTION

Parameter estimation is a fundamental physical task. It

typically involves picking a physical system whose state,

through its evolution, depends on the value of the parameter.

In most quantum metrology schemes �1–18�, this system,

which we call the “probe,” is a composite made up of n

elementary quantum constituents. The influence of the un-

known parameter � on the probe is described by an n-body

Hamiltonian

H� = �H , �1.1�

in which � appears as a coupling constant and H is a dimen-

sionless coupling Hamiltonian �we use units with �=1, so �
has units of frequency�. The precision with which � can be

determined depends on the initial state of the probe, the na-

ture of the parameter-dependent Hamiltonian, and the mea-

surements that are performed on the probe to extract infor-

mation about the parameter. Other factors, such as

decoherence in the probe �3,19–21�, also have an effect on

the achievable sensitivity.

The appropriate measure of the precision with which �
can be determined is the units-corrected mean-square devia-

tion of the estimate �est from the true value � �22,23�,

�� = �� �est

�d��est	/d��
− �
2�1/2

. �1.2�

This estimator uncertainty is inversely proportional to the

displacement in Hilbert space of the state of the probe cor-

responding to small changes in �. The fundamental limit on

the precision of parameter estimation,

�� �
1

��

1

2t�H
, �1.3�

called the quantum Cramér-Rao bound �QCRB� �22–25�, is

an expression of the maximum amount the state can change

under the evolution due to H�. In Eq. �1.3�, � is the number

of trials with independent, identical probes, t is the time for

which each probe evolves under H�, and �H= ��H2	
− �H	2�1/2 denotes the uncertainty in H for each probe, which

does not change under the evolution due to H�. The QCRB is

independent of the choice of estimator and is achievable as-

ymptotically in the limit of a large number of trials, provided

the initial state of the probe is a pure state. If the initial state

of the probe is not pure or if nonunitary processes destroy the

purity of the initial state, the bound �1.3� is not tight, and a

stricter version of the QCRB, given in �22–25�, can be used,

but we have no need for this stricter bound in this paper.

The uncertainty in H is bounded above by

�H �
�max − �min

2
, �1.4�

where �max and �min are the maximum and minimum eigen-

values of H. The difference between the largest and least

eigenvalues, denoted by

H = �max − �min, �1.5�

is an operator seminorm of H. Using this seminorm, we can

write a state-independent version of the QCRB �22�,

�� �
1

��

1

tH
. �1.6�

This bound can be achieved by using the initial state

���max	+ ��min	� /�2, which evolves after time t to*sflammia@perimeterinstitute.ca
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e−iH�t
1

�2
���max	 + ��min	�

=
1

�2
�e−i�max�t��max	 + e−i�min�t��min	� . �1.7�

Measurement in a basis that includes the states �± 	
= ���max	± ��min	� /�2 yields outcomes ±1 with probabilities

p+=cos2�H�t /2� and p−=sin2�H�t /2�. Letting 	 denote

an observable with the outcome values ±1, we have �		
=cos�H�t� and �	= �sin�H�t��. An appropriate estimator

is defined in terms of the mean of the outcomes,

1

�
�
k=1

�

	k � cos�H�estt�

= cos�H�t� − Ht sin�H�t���est − �� , �1.8�

where the second expression is the linear approximation to

the relation between �est and the mean of the outcomes, hold-

ing statistically in the limit of a large number of trials, spe-

cifically, �≫ tan2�H�t�. Now it is easy to see that ��est	
=� and

�� = ���est − ��2	1/2 =
�	

��

1

Ht�sin�H�t��
=

1

��

1

tH
,

�1.9�

showing that the bound �1.6� can be achieved and thus mak-

ing it the fundamental limit to quantum metrology.

The �� factor in Eqs. �1.3� and �1.6� is the well-

understood statistical improvement available from averaging

over many probes. In the remainder of the paper, we some-

times do not include this factor explicitly, referring to the

remaining term on right-hand side of Eq. �1.3� or Eq. �1.6� as

the QCRB, always remembering, of course, that generally

the bound can only be achieved asymptotically in the limit of

large �.

It is clear from Eqs. �1.3� and �1.6� that strategies for

improving the precision in estimating a parameter include

changing the initial state of the probe, the coupling Hamil-

tonian H, or both. The case that has received most attention

in the past is the one in which the probe constituents are

coupled independently to the parameter,

H = �
j=1

n

h j . �1.10�

Here h j is a single-body operator acting on the jth constituent

of the probe �hence, all these operators commute�. In this

case, the QCRB �1.6� scales like ��=O�1 /n�, a scaling

known as the Heisenberg limit �1,10�. This scaling outper-

forms that attainable with classical statistics, which goes as

��=O�1 /�n�, a scaling known as the standard quantum limit

or, sometimes, as the shot-noise limit. The 1 /�n scaling is

the optimum sensitivity allowed by the QCRB �1.3� when

the coupling Hamiltonian has the form �1.10� and the opti-

mization of the probe state is restricted to product states.

Achieving the quantum-enhanced Heisenberg sensitivity

with the linear coupling Hamiltonian �1.10� requires the

probe to be initialized in a highly entangled state, which is a

formidable challenge using current technology �1�. Much

progress has been made in preparing such states toward pre-

cisely this end, e.g., by using measurement-induced squeez-

ing �26�, but it is still currently infeasible to use Heisenberg-

limited experiments to outperform the best measurements

operating at the standard quantum limit, although

Heisenberg-like scalings have been achieved in related serial

protocols that involve repeated interactions with a single

constituent and thus do not involve entanglement �27�. Prac-

tical proposals �28� for reaching the Heisenberg limit have

also been made in the context of measurements on a har-

monic oscillator prepared in a state that displays sub-Planck

phase-space structure �29�.
More general families of Hamiltonians, containing non-

linear couplings of the constituents to the parameter, in con-

trast to the independent, linear coupling of Eq. �1.10�, can

perform better than the 1 /n scaling of the Heisenberg limit,

while respecting the QCRB �6,9,11,12,14,15,18�. In particu-

lar, when the coupling Hamiltonian has symmetric k-body

terms in it, it is possible to achieve the scaling ��=O�n−k�, as

shown in �12�. This O�n−k� scaling requires entangled input

states, but we will show here that the optimal scaling with

initial product states is O�n−k+1/2�. Thus scalings better than

the 1 /n Heisenberg scaling are possible for k�2, even with

initial product states for the probe, a result found for k=2 in

�6,9,18�.
In this paper we investigate the theoretical and practical

bounds on precision in the generalized quantum metrology

scheme introduced in �12�, which allows for nonlinear cou-

plings of the probe constituents to the parameter. In particu-

lar, we study the nonlinear coupling Hamiltonian �12�

H = ��
j=1

n

h j
k

= �
a1,. . .,ak

n

ha1
¯ hak

. �1.11�

For simplicity, we assume that the probe constituents are

identical and that the single-body operators h j are the same

for all the constituents. We review in Sec. II the optimal

precision that can be achieved when the probe can be pre-

pared in any initial state, particularly, entangled states of the

probe constituents, but our emphasis in this paper is on the

precision that can be attained when the initial state is re-

stricted to be a product state.

In Sec. III we show that the optimal precision with

product-state inputs scales as O�n−k+1/2�, and we find the cor-

responding optimal input state for the probe constituents.

The sensitivity that can be achieved in practice depends, as

mentioned above, on the measurements that are performed

on the probe to extract information about �. By analyzing the

short-time limit, we show in Sec. IV that when the probe is

initialized in a product state, simple, separable measurements

on the probe constituents can achieve the optimal sensitivity.

The conclusion, reached in �6,9,18� for specific cases, is that

scalings better than the standard quantum limit—indeed, bet-

ter than the Heisenberg limit—can be had without the need

to invest in the generation of fragile initial entangled states.

Our scheme thus circumvents a major bottleneck in attaining,

in practice, scalings superior to 1 /�n.
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In Sec. V, we analyze in detail a quadratic coupling

Hamiltonian �k=2� for effective qubits, with h j =Z j /2, where

Z j is the Pauli z operator for the jth qubit. This case can be

implemented in Bose-Einstein condensates �15,18�, as was

suggested in �12�, and in fermionic atoms in optical lattices

�15�. We show that the optimal sensitivity for input product

states, scaling as O�n−3/2�, can be achieved by using the op-

timal product-state input found in Sec. III and making sepa-

rable measurements of equatorial components of the total

angular momentum of the effective qubits. Moreover, we

show that, as was found independently in �18�, the O�n−3/2�
scaling is attainable with these measurements starting with

almost any state of the constituents except the equatorial

states, which were the subject of the analysis in �15�. We

formulate a simple model, based on the evolution of angular-

momentum coherent states, that explains the origin of the

O�n−3/2� scaling. The model indicates that the entanglement

generated by the quadratic Hamiltonian does not play a role

in the enhanced sensitivity, and it suggests that, unlike pro-

tocols based on the use of entangled inputs, the product-state

scheme should not be extremely sensitive to decoherence.

We verify this suggestion by a brief analysis of the effect of

phase decoherence in Sec. V B.

Section VI concludes with a brief summary of our results,

including an extension of the coherent-state model to arbi-

trary k, and a discussion of our perception of the field of

quantum-enhanced metrology.

II. GENERALIZED QUANTUM METROLOGY AND THE
QUANTUM CRAMÉR-RAO BOUND

Attaining the QCRB �1.6� requires using an appropriate

initial state and making appropriate measurements to extract

the information about �, but changing the optimal scaling

with n requires changing the dependence of the coupling

Hamiltonian H on n. This can be done by replacing the linear

coupling Hamiltonian �1.10�, which has just n terms, with

the nonlinear Hamiltonian �1.11�. The coupling Hamiltonian

�1.11� describes a system with symmetric k-body couplings,

including self-interactions, and it has nk terms. For example,

if the constituents are spin-
1

2
particles and the operator h j is

the z component of the jth particle’s spin, then H describes a

coupling of the parameter to the kth power of the z compo-

nent of the total angular momentum.

The eigenvectors of H are products of the eigenvectors of

the h j’s. The eigenvectors can be labeled by a vector of

single-body eigenvalues, ��	��
1 , . . . ,
n	. The correspond-

ing eigenvalues of h are given by the polynomial

�k��� = ���H��	 = ��
j=1

n


 j
k

= �
a1,. . .,ak

n


a1
¯ 
ak

, �2.1�

which is symmetric under permutation of its arguments and

is known in the mathematical literature as the kth-degree

elementary symmetric polynomial �on n variables�.
To calculate the QCRB �1.6� for the k-body coupling

Hamiltonian �1.11�, we must calculate the maximum and

minimum eigenvalues of H in terms of the eigenvalues of the

single-body operators h j, the total number of constituents n,

and the degree of the coupling k. Let 
max and 
min be the

largest and smallest eigenvalues of h j. We consider four

cases.

�1� k odd. The largest �smallest� eigenvalue of H is

�max= �n
max�
k ��min= �n
min�

k�, corresponding to the eigen-

vector ��max	= �
max , . . . ,
max	 ���min	= �
min , . . . ,
min	�.
�2� k even, 
min�0. The same conclusions apply as in

case �1�.
�3� k even, 
max�0. The same conclusions apply as in

case �2�, except that the roles of 
max and 
min are reversed:

the largest �smallest� eigenvalue, �max= �n
min�
k ��min

= �n
max�
k�, corresponds to the eigenvector that has every

constituent in the state �
min	 ��
max	�.
�4� k even, 
min�0�
max. Since all the eigenvalues of H

are non-negative, the maximum eigenvalue is �max

= �n�
�max�
k, where �
�max�max��
max� , �
min��, corresponding

to all the constituents being in either �
max	 or �
min	. The

minimum eigenvalue comes from the string �, perhaps con-

taining all eigenvalues, that makes �k��� as close to zero as

possible.

In cases �1�–�3�, the QCRB �1.6� takes the form

�� �
1

tnk�
max
k − 
min

k �
, �2.2�

displaying the O�n−k� scaling found in �12�.
Case �4� requires further discussion regarding �min. We

can bound �min from above by considering strings � that

contain only 
max and 
min. If 
max appears a fraction p of the

time, the corresponding eigenvalue is

�k��� = �np
max + n�1 − p�
min�
k. �2.3�

This eigenvalue can be minimized by making p
max+ �1
− p�
min as close to zero as possible, i.e., by choosing

np = ⌈n�
min�

h ⌋ , �2.4�

where ⌈x⌋ denotes the nearest integer to x and h=
max

−
min is the seminorm of the single-particle operators. The

resulting eigenvalue can be written as �k���= ��h�k, where

��1 /2 is the magnitude of the difference between

n�
min� / h and the integer closest to it. The minimum eigen-

value can be written as

�min = ��� − �h�k, �2.5�

where  �0��1 /2� accounts for the fact that strings con-

taining other eigenvalues of the h j’s can generally make �min

smaller. If the constituents are qubits, =0. Since

h / �
�max�2, we have

�min

�max

= �� − 

n

h

�
�max


k

� n−k. �2.6�

The upshot is that for even k and 
min�0�
max, the QCRB

�1.6� is given by
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�� �
1

tnk�
�max
k

1

1 − �min/�max

. �2.7�

Thus the symmetric k-body coupling leads to a QCRB scal-

ing as O�n−k� in all four cases.

A closely related k-body coupling Hamiltonian is the

same as Eq. �1.11�, except that the self-interaction terms are

omitted, which might be more appropriate in some physical

situations. We analyze this alternative k-body coupling

Hamiltonian in Appendix A and show that it also leads to a

O�n−k� QCRB scaling when arbitrary input states are al-

lowed.

Luis and collaborators �6,9� showed that O�n−2� scalings

can be achieved in principle using a Kerr-type optical non-

linearity, and Luis generalized these results to optical nonlin-

earities of arbitrary order in �14�. Reference �17� proposes a

method for synthesizing a quadratic �k=2� Hamiltonian from

a linear Hamiltonian by passing a light beam 2 times through

an atomic medium and finds a O�n−2� scaling for this

method.

III. ATTAINABLE PRECISION WITH PURE
PRODUCT STATES

A. General bound

The QCRB �1.6� gives the best possible measurement pre-

cision, but can only be achieved for an optimal probe initial

state, i.e., one of the form ���max	+ei���min	� /�2, which the

results of Sec. II show is typically highly entangled. In this

section we obtain lower bounds on �� in the situation where

the initial state is a pure product state,

��0	 = ��1	 � ¯ � ��n	; �3.1�

for this purpose, we start from the state-dependent QCRB

�1.3�. Since all the one-body operators h j in the coupling

Hamiltonian are assumed to be identical, it is reasonable to

expect that the optimal initial product state will have all con-

stituents in the same state, but we do not assume this at the

outset, instead allowing its moral equivalent to emerge from

the analysis.

The trick to evaluating �H is to partition the unrestricted

sum in Eq. �1.11�, in which terms in the sum contain differ-

ent numbers of duplicate factors, into sums such that each

term has the same sort of duplicate factors. Thus we write

H = �
�a1,. . .,ak�

ha1
¯ hak

+ �k

2

 �

�a1,. . .,ak−1�

ha1
¯ hak−2

hak−1

2 + ¯ ,

�3.2�

where a summing range with parentheses �a1 , . . . ,al� denotes

a sum over all l-tuples that have no two elements equal. The

two sums in Eq. �3.2� are the leading- and subleading-order

terms in an expansion in which successive sums have fewer

terms. The first sum in Eq. �3.2�, in which the terms have no

duplicate factors, has n ! / �n−k� ! =O�nk� terms, and the sec-

ond sum, in which one factor is duplicated in each term, has

n ! / �n−k−1� ! =O�nk−1� terms. The binomial coefficient mul-

tiplying the second sum accounts for the number of ways of

choosing the factor that is duplicated. The next sums in the

expansion, involving terms with factors h j
3 and h j

2hl
2, have

n ! / �n−k−2� ! =O�nk−2� terms. These expansions require that

n�k, which we assume henceforth, and the scalings we

identify further require that n≫k.

Given the expansion �3.2�, the expectation value of H has

the form

�H	 = �
�a1,. . .,ak�

�ha1
	 ¯ �hak

	 + �k

2



� �
�a1,. . .,ak−1�

�ha1
	 ¯ �hak−2

	�hak−1

2 	 + O�nk−2� .

�3.3�

The expression for �H2	 follows by replacing k with 2k:

�H2	 = �
�a1,. . .,a2k�

�ha1
	 ¯ �ha2k

	

+ �2k

2

 �

�a1,. . .,a2k−1�

�ha1
	 ¯ �ha2k−2

	�ha2k−1

2 	 + O�n2k−2� .

�3.4�

The rest of the analysis is based on an artful switching be-

tween restricted and unrestricted sums. By changing the ini-

tial sum in Eq. �3.3� to an unrestricted sum, we can rewrite

�H	 to the required order as

�H	 = �
a1,. . .,ak

�ha1
	 ¯ �hak

	

+ �k

2

 �

�a1,. . .,ak−1�

�ha1
	 ¯ �hak−2

	�hak−1

2 + O�nk−2� .

�3.5�

Squaring this expression and changing the unrestricted sums

back to restricted ones, again keeping only the leading- and

subleading-order terms, gives

�H	2 = �
�a1,. . .,a2k�

�ha1
	 ¯ �ha2k

	

+ �2k

2

 �

�a1,. . .,a2k−1�

�ha1
	 ¯ �ha2k−2

	�ha2k−1
	2

+ 2�k

2

 �

�a1,. . .,a2k−1�

�ha1
	 ¯ �ha2k−2

	�hak−1

2 + O�n2k−2� .

�3.6�

We can now find ��H�2 by subtracting Eq. �3.6� from Eq.

�3.4�,

��H�2 = k2 �
�a1,. . .,a2k−1�

�ha1
	 ¯ �ha2k−2

	�hak−1

2 + O�n2k−2�

= k2��
j=1

n

�h j	
2�k−1���
j=1

n

�h j
2
 + O�n2k−2� . �3.7�

In the final form, we take advantage of the fact that in the

now leading-order sum, we can convert the restricted sum to

an unrestricted one.
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To make the QCRB �1.3� as small as possible, we need to

maximize the variance ��H�2 of Eq. �3.7�. We can immedi-

ately see that for fixed expectation values �h j	, we should

maximize the variances �h j
2, and this is done by using for

each constituent a state that lies in the subspace spanned by

�
max	 and �
min	. Letting p j be the probability associated

with �
max	 for the jth constituent, we have

x j � �h j	 = p j
max + �1 − p j�
min = 
min + p jh ,

�h j
2 = p j
max

2 + �1 − p j�
min
2 − x j

2

= h2p j�1 − p j�

= �
max − x j��x j − 
min� . �3.8�

Thus we should maximize

��H�2 = k2��
j=1

n

x j
2�k−1�

�
j=1

n

�
max − x j��x j − 
min� �3.9�

within the domain defined by 
min�x j �
max, j=1, . . . ,n.

Discarding potential extrema of ��H�2 given by 0=� jx j,

since these either are minima or lie outside the relevant do-

main, we find that the conditions for extrema of ��H�2 imply

immediately that x j =x �and thus p j = p� for j=1, . . . ,n. Thus,

the optimal states in the initial product state �3.1� have the

form

�� j	 = �p�
max	 + ei�j�1 − p�
min	 . �3.10�

The only possible difference between the states for different

constituents is in the relative phase between �
max	 and

�
min	.
Since the optimal constituent states live and evolve in a

two-dimensional subspace, we can regard the constituents

effectively as qubits, with standard basis states �0	= �
max	
and �1	= �
min	, serving as the basis for constructing Pauli

operators X, Y, and Z. Restricted to this subspace, the opera-

tor h takes the form

h = 
max�0	�0� + 
min�1	�1� = 
̄1 + hZ/2, �3.11�

where 
̄��
max+
min� /2 is the arithmetic mean of the larg-

est and smallest eigenvalues of h.

In the analyses in Secs. IV and V, we assume that all the

constituents have zero relative phase �� j =0�, giving an ini-

tial state ���	= ���	�n, where

���	 = e−i�Y/2�0	 = cos��/2��0	 + sin��/2��1	 ,

p = cos2��/2� = �1 + cos ��/2. �3.12�

Here we describe the one-body state ���	 in terms of the

rotation angle � about the y axis that produces it from �0	.
The corresponding initial density operator is

�� = ���	���� = �
j=1

n
1

2
�1 j + X j sin � + Z j cos �� .

�3.13�

The variance of H now takes the simple form

��H�2 = k2n2k−1�h	2�k−1���h�2

= k2n2k−1x2�k−1��
max − x��x − 
min� , �3.14�

which leads, in the QCRB �1.3�, to a sensitivity that scales as

1 /nk−1/2 for input product states. This should be compared

with the O�n−k� scaling that can be obtained by using initial

entangled states �12�. Notice that for k�2, the O�n−k+1/2�
scaling is better than the 1 /n scaling of the Heisenberg limit,

which is the best that can be achieved in the k=1 case even

with entangled initial states.

The coupling Hamiltonian that has the self-interaction

terms of Eq. �1.11� removed is analyzed in Appendix A. We

show that for initial product states, this modified Hamil-

tonian has the same leading-order behavior in the variance of

H; it thus has O�n−k+1/2� scaling for initial product states and

the same optimal product states as we now find for the cou-

pling Hamiltonian �1.11�.

B. Optimal product states

The problem of finding the optimal input product state is

now reduced to maximizing the 2k-degree polynomial

f�x� � x2�k−1��
max − x��x − 
min� = x2�k−1��h2
/4 − �x − 
̄�2�

�3.15�

with respect to the single variable x= �h	 on the domain


min�x�
max. The condition for an extremum is

0 = f��x� = 2x2k−3��k − 1��h2
/4 − �x − 
̄�2� − x�x − 
̄�� .

�3.16�

We assume k�2, because the k=1 case is already well un-

derstood. For k=1, there is a single maximum at x= 
̄, cor-

responding to equal probabilities for �
max	 and �
min	 and to

��H�2=nh2
/4.

The polynomial f vanishes at x=
min and x=
max. We can

make some general statements about the extrema of f in

three cases.

�1� If 
min�0�
max, f has a minimum at x=0 and two

maxima within the allowed domain, one at a positive x+

�
̄ and one at a negative x−�
̄. The global maximum is at

x+ �x−� if �
�max=
max ��
�max= �
min��.
�2� If 
max�
min�0, f has a maximum at x=0, a mini-

mum for a positive x−�
min, and a maximum within the

allowed domain at x+�
̄. Only the last of these lies in the

relevant domain.

�3� If 
min�
max�0, f has a maximum at x=0, a mini-

mum for a negative x+�
max, and a maximum within the

allowed domain at x−�
̄. Only the last of these lies in the

relevant domain.

These general observations are perhaps more enlightening

than the form of the �nonzero� solutions of Eq. �3.16�,

x± = �1 −
1

2k


̄ ±

1

2
� 
̄2

k2
+ �1 −

1

k

h2. �3.17�

The ± here means the same thing as in the discussion of the

three cases above.
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As k increases, x+ approaches 
max, and x− approaches


min. Indeed, as k→�, we have x+= �1−1 /2k�
max, corre-

sponding to p+=1−
max /2kh and ��H�2= �k /2e�
��n
max�

2k−1h, and x−= �1−1 /2k�
min, corresponding to

p−=−
min /2kh and ��H�2= �k /2e��−n
min�
2k−1h.

An important limiting case, not covered in the discussion

above, occurs when 
min=−
max. Then the maxima occur

symmetrically at

x± = ±
1

2
h�1 − 1/k , �3.18�

corresponding to probabilities p±=
1

2
+x± / h

=
1

2
�1±�1−1 /k�=1− p� and to sin �±=�1 /k. The two

maxima lead to the same variance,

��H�2 = k�1 − 1/k�k−1n2k−1�h/2�2k, �3.19�

thus yielding a QCRB,

�� �
2k−1

k1/2�1 − 1/k��k−1�/2

1

tnk−1/2hk
. �3.20�

Of course, when 
min=−
max, we can always choose units

such that 
max=1 /2 �h=1�, which means that the single-

body operators are h j =Z j /2. It is this situation that we ana-

lyze in the remainder of this paper.

IV. SEPARABLE MEASUREMENTS

In the preceding section we obtained the theoretical limits

on the measurement uncertainty with symmetric k-body cou-

plings and initial product states for the probe. The theoretical

bound is saturated by a measurement of the so-called sym-

metric logarithmic derivative �22–25�; this measurement, in

general, is entangled and depends on the value of the param-

eter that we are attempting to estimate. In this section we

show that for some Hamiltonians of interest, standard sepa-

rable measurements lead to uncertainties for small � that

have the same scaling as the theoretical bounds. The restric-

tion to small values of � is not a strong limitation, because

we can always use feedback to operate in this regime, as we

discuss in more detail in Sec. V A.

We consider the special case in which the single-body

operators are h j =Z j /2, leading to a coupling Hamiltonian

H = ��
j

Z j

2

k

= Jz
k. �4.1�

Here we introduce Jz as the z component of a “total angular

momentum” corresponding to the effective qubits. We as-

sume an initial state of the form �3.13�, and we let this state

evolve for a very short time, i.e., ���t≪1. In the remain-

der of the paper, we often work in terms of the parameter �
instead of �. After the time evolution, we measure the sepa-

rable observable

Jy = �
j

Y j . �4.2�

Over � trials, we estimate � as a scaled arithmetic mean of

the results of the Jy measurements.

The expectation value of any observable at time t is given

by

�M	t = Tr�U†MU��� = �U†MU	 , �4.3�

where U=e−iH�t=e−iH�, and where we introduce the conven-

tion that an expectation value with no subscript is taken with

respect to the initial state. For small �, we have

U†MU = M − i��M,H� + O��2� . �4.4�

Thus, the expectation value and variance of Jy at time t take

the form

�Jy	t = �Jy	 − i���Jy,H�	 + O��2� , �4.5a�

��Jy�t
2 = ��Jy�0

2 − i���Jy − �Jy	��Jy,H� + �Jy,H��Jy − �Jy	�	

+ O��2� . �4.5b�

The initial expectation value and variance of Jy are those of

an angular-momentum coherent state in the x-z plane,

�Jy	 = 0, �4.6a�

��Jy�0
2 = �Jy

2	 =
1

4
�
j,l

�Y jY l	 =
n

4
. �4.6b�

In evaluating the other expectation values in Eqs. �4.5�, we

can avail ourselves of the expansions used in Sec. III A,

since we are only interested in the leading-order behavior in

n. To leading order, the coupling Hamiltonian has the form

H =
1

2k �
�a1,. . .,ak�

Za1
¯ Zak

+ O�nk−1� . �4.7�

In this section we use �, to indicate equalities that are good

to leading order in n. We can now write

�Jy,H� �
1

2k+1�
j=1

n

�
�a1,. . .,ak�

�Y j,Za1
¯ Zak

�

=
i

2k�
l=1

k

�
�a1,. . .,ak�

Za1
¯ Zal−1

Xal
Zal+1

¯ Zak

=
ik

2k �
�a1,. . .,ak�

Xa1
Za2

¯ Zak
, �4.8�

from which it follows that

��Jy,H�	 �
ik

2k �
�a1,. . .,ak�

�Xa1
	�Za2

	 ¯ �Zak
	 � ik�Jx	�Jz	

k−1.

�4.9�

Elaborating this procedure one step further, we can show that

to leading order in n, the expectation value in the second

term of Eq. �4.5b� vanishes. Our results to this point are

summarized by

�Jy	t � �k�Jx	�Jz	
k−1 + O��2�

= �k�n/2�ksin � cosk−1 � + O��2� , �4.10a�
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��Jy�t � �n/2 + O��2� . �4.10b�

If we let our estimator �est be the arithmetic mean of the �
measurements of Jy, scaled by the factor �d�Jy	t /d��−1

=1 /k�n /2�k sin � cosk−1 �, we have

��est	 =
�Jy	t

d�Jy	t/d�
� � + O��2� , �4.11�

�� �
1

��

��Jy�t

�d�Jy	t/d��
+ O���

�
1

��

2k−1

knk−1/2 sin ��cosk−1 ��
+ O��� . �4.12�

This scheme thus attains the O�n−k+1/2� scaling that is the

best that can be achieved by initial product states. In an

analysis of optical nonlinearities of arbitrary order, Luis �14�
reported finding this O�n−k+1/2� scaling.

The minimum of ��, occurring when sin �=�1 /k, gives

an optimal sensitivity

�� �
1

��

2k−1

k1/2�1 − 1/k��k−1�/2

1

nk−1/2
+ O��� , �4.13�

which is identical to the optimal QCRB sensitivity for initial

product states. For k=2, the case that is the subject of the

next section, the two optimal values of � are �=� /4 and

�=3� /4, and the sensitivity becomes

�� �
1

��

2

n3/2
+ O��� . �4.14�

Aside from showing that the QCRB scaling for initial prod-

uct states can be achieved, the analysis in this section serves

to illustrate how the product-state scheme works in a regime

that has a singularly simple description. The Jz
k coupling

Hamiltonian induces a nonlinear rotation about the z axis,

which rotates the probe through an angle �Jy	t / �Jx	
��k�Jz	

k−1. This rotation induces a signal in Jy of size

��k�Jx	�Jz	
k−1, which is k�Jz	

k−1 times larger than for k=1,

yet is to be detected against the same coherent-state uncer-

tainty �n /2 in Jy as for k=1. To take advantage of the non-

linear rotation, we cannot make the Jx lever arm of the rota-

tion as large as possible, because the nonlinear rotation

vanishes when the initial coherent state lies in the equatorial

plane. Nonetheless, we still win when we make the optimal

compromise between the nonlinear rotation and the lever

arm. The optimal compromise comes from maximizing �Jx	
��Jz	

k−1, which turns out to be exactly the same as finding

the optimum in the QCRB analysis of Sec. III B because

�X	=sin �=�Z.

A more careful consideration of the terms neglected in

this analysis suggests that, as formulated in this section, the

small-time approximation requires that �≪1 /nk−1. Nonethe-

less, the analysis is consistent because � can be resolved

more finely than this scale, i.e., ��nk−1=O�1 /�n�. This con-

clusion is confirmed by the more detailed analysis of the k

=2 case in Sec. V. On the other hand, the simple model of

coherent-state evolution, developed for k=2 in Sec. V, sug-

gests the description of the preceding paragraph can be ex-

tended to much larger times. We return to this point in Sec.

VI.

V. SEPARABLE MEASUREMENTS FOR THE
INTERACTION H�=�J

z

2

We focus now on the symmetric, k=2 coupling Hamil-

tonian

H� = �Jz
2 = ���

j

Z j

2

2

. �5.1�

This is perhaps the most important example for practical

applications of nonlinear Hamiltonians to quantum metrol-

ogy �12�, since it occurs naturally whenever the strength of

two-body interactions is modulated by a parameter �. As

suggested in �12�, one good place to look for this kind of

coupling Hamiltonian is in Bose-Einstein condensates. In-

deed, in �15,18�, it is shown how this Hamiltonian can be

implemented using the internal atomic states of BECs. In

analyzing the BEC scenario, Ref. �15� finds a sensitivity that

scales as O�1 /n� for separable measurements made on a

probe that evolves from an initial product state chosen to be

an angular-momentum coherent state in the equatorial plane.

The results in the preceding sections show that we should be

able to improve this scaling to O�n−3/2� through a wiser

choice of the initial coherent state. In this section we analyze

this situation in some detail.

We take the initial state of the n-qubit probe to be an

angular-momentum coherent state that is at an angle � from

the z axis in the x-z plane. This state is obtained from the

coherent state along the z axis, �J ,J	= �0	�n, by a rotation

through � about the y axis,

���	 = e−i�Jy�J,J	 = �e−i�Y/2�0	��n. �5.2�

The rotation about the y axis and the nonlinear rotation under

the interaction Hamiltonian �5.1� both leave the state in the

�2J+1�-dimensional subspace with angular momentum J

=n /2, so we can use the basis �J ,m	 of Jz eigenstates for this

subspace, with m=−J , . . . ,J. The initial probe state used in

�15� is a special case, �=−� /2.

The state ���	=�m=−J
J dm�J ,m	, can be expanded in the

basis �J ,m	 using a reduced Wigner rotation matrix �30�

dm � dmJ
J ��� = �J,m�e−i�Jy�J,J	

=� �2J�!

�J + m� ! �J − m�!
�cos��/2��J+m�sin��/2��J−m.

�5.3�

At time t=� /�, the state of the probe becomes

����t�	 = e−i�Jz
2

���	 = �
m=−J

J

dme−i�m2

�J,m	 . �5.4�

A. Measurements

We now look at the attainable measurement uncertainties

using both Jx=�X j /2 and Jy =� jY j /2 measurements on the
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final state of the probe. It turns out that Jx and Jy measure-

ments are on nearly the same footing, with Jy measurements

being marginally better, for all � except �=� /2. For very

short times, the superiority of Jy measurements for ��� /2

is clear from the analysis in Sec. IV, since the change in �Jy	
is linear in �, whereas the change in �Jx	 is quadratic. What

happens for longer times and for �=� /2 cannot be ad-

dressed by the short-time analysis in Sec. III. What we find

in this section is that both Jx and Jy measurements can

achieve the optimal scaling obtained in Sec. III. For �
=� /2, Jy measurements provide no information about �, but

Jx measurements achieve the O�n−1� scaling found in �15�.
These conclusions assume no decoherence, and in Sec. V B

we explore the impact of decoherence on the ability to

achieve super-Heisenberg scalings with the symmetric, k=2

coupling Hamiltonian.

For measurements of Jx or Jy, the sensitivity is given by

��x,y = t��x,y =
��Jx,y��

�d�Jx,y	�/d��
�5.5�

�for this section, we revert to our practice of omitting the

1 /�� statistical factor from our sensitivity formulas�.
The expressions needed to calculate �� for Jx and Jy mea-

surements are derived in Appendix B. These results are con-

veniently expressed in terms of the raising and lowering op-

erators

J± = Jx ± iJy , �5.6�

since we can write

�Jx	� = Re��J+	��, �Jy	� = Im��J+	�� , �5.7�

�Jx,y
2 	� =

1

4
�J+J− + J−J+	� ±

1

2
Re��J+

2	�� , �5.8�

where the upper sign in Eq. �5.8� applies to Jx and the lower

sign to Jy. In Appendix B, we show that

�J+	� = J sin ��cos � + i sin� cos ��2J−1

= J sin �r2J−1ei�2J−1��, �5.9�

1

2
�J+J− + J−J+	� = J +

J�2J − 1�

2
sin2 � , �5.10�

�J+
2	� =

J�2J − 1�

2
sin2 ��cos 2� + i sin 2� cos ��2�J−1�

=
J�2J − 1�

2
sin2 �R2�J−1�e2i�J−1��, �5.11�

where

r = �1 − sin2 � sin2 ��1/2, �5.12a�

� = tan−1�tan � cos �� , �5.12b�

and

R = �1 − sin2 2� sin2 ��1/2, �5.13a�

� = tan−1�tan 2� cos �� . �5.13b�

Plugging these results into Eqs. �5.7� and �5.8�, we arrive at

�Jx	� = J sin �r2J−1 cos��2J − 1��� , �5.14�

�Jy	� = J sin �r2J−1 sin��2J − 1��� , �5.15�

and

�Jx,y
2 	� =

J

2
+

J�2J − 1�

4
sin2 ��1 ± R2�J−1� cos�2�J − 1���� .

�5.16�

In using these results in what follows, it is easier to deal

directly with the first forms in Eqs. �5.9� and �5.11� rather

than working with the functions r, �, R, and �.

The expectation values �Jx,y	� change sign when � ad-

vances by �. This means that their squares and absolute val-

ues, which are all that appear in the sensitivity �5.5�, are

periodic with period �. The second moments �Jx,y
2 	� are pe-

riodic with period � /2. The upshot is that the uncertainties

�Jx,y and the precision ��x,y are periodic with period �. This

� periodicity is a consequence of periodic revivals in the

evolved state ����t�	.
The main features of the sensitivity �� for measurements

of Jx and Jy can be gleaned from Fig. 1. It is clear from these

plots that the best sensitivity is achieved when � is near zero

and also, because of the periodicity of ��, when � is near

q�, for q any integer.

When J is large, we can develop a good approximation

for the entire region of high sensitivity, where � is small, by

writing

�cos � + i sin � cos ��2J−1 � e2iJ� cos �e−J�2 sin2 �,

�5.17a�

�cos 2� + i sin 2� cos ��2�J−1� � e4iJ� cos �e−4J�2 sin2 �.

�5.17b�

These approximations are good to second order in � in the

exponent. When � is near q�, the same approximations can

be had by replacing � with �−q�. The complex exponen-

tials give rise to rapidly oscillating fringes in �Jx,y	� and

�Jx,y
2 	�, with periods �1 /J cos �; the slower Gaussian enve-

lopes take these expressions to zero when � is a few times

�sin �� /�J.

It is not hard to work out the sensitivity in this approxi-

mation, but the formulas are sufficiently messy that they are

little more illuminating than the exact expressions. We can,

however, develop a very simple, yet instructive picture of the

fringes by keeping them, but assuming that � is small

enough that the Gaussian envelopes have yet to become ef-

fective, i.e., �J� sin � is somewhat smaller than 1. In this

approximation, the fringes are uniform in �, and we obtain

�Jx	� � J sin � cos�2J� cos �� , �5.18�

�Jy	� � J sin � sin�2J� cos �� , �5.19�
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��Jx��
2 �

J

2
�1 − sin2 � cos2�2J� cos ��� , �5.20�

��Jy��
2 �

J

2
�1 − sin2 � sin2�2J� cos ��� . �5.21�

These lead to sensitivities

��x
2 �

1

2J3

1 − sin2 � cos2�2J� cos ��

sin2 2� sin2�2J� cos ��
, �5.22�

��y
2 �

1

2J3

1 − sin2 � sin2�2J� cos ��

sin2 2� cos2�2J� cos ��
. �5.23�

Within this uniform-fringe approximation, the best sensitivi-

ties are achieved at the troughs of the fringes: the best oper-

ating points are, for Jx measurements,

� = q� +
�s + 1/2��

2J cos �
, �5.24�

and for Jy measurements,

� = q� +
s�

2J cos �
, �5.25�

where q and s are integers. At these operating points, the

sensitivity for both measurements becomes

��x,y �
1

�2J3/2�sin 2��
, �5.26�

which takes on its optimal value, 1 /�2J3/2=2 /n3/2, when �
=� /4 or �=3� /4, in agreement with the analyses in Secs.

III and IV. This O�J−3/2� scaling has been found indepen-

dently by Choi and Sundaram �18� and for nonlinear optical

systems by Luis and collaborators �6,9�. For �=� /4 and J

=2500, Fig. 2 plots the central fringes of the approximate

sensitivities �5.22� and �5.23� and compares them with the

exact sensitivities and the Gaussian approximation for mea-

surements of Jx and Jy.

As we show in Appendix B, within the uniform-fringe

approximation, the evolved state �5.4� is an angular-

momentum coherent state that makes an angle � with the z

axis and that rotates around the z axis with angular velocity

2�J cos �. The enhanced sensitivity available from a qua-

dratic Hamiltonian is a consequence of this increased rota-

tion rate, which is greater by a factor of 2J cos �=2�Jz	 than

that available from a linear Hamiltonian. This same conclu-

sion came out of the short-time analysis of Sec. IV, but it is

stronger now because the uniform-fringe approximation is

much better than the short-time approximation. The short-

time approximation requires that J�≪1 and thus describes

correctly only the center of the central fringe for Jy measure-

ments. In contrast, the uniform-fringe approximation only

requires that ��J�sin ��≪1; within this requirement, there

can be several fringes, i.e., 2J� cos � can be somewhat

larger than �, provided that J≫ tan2 �. The more accurate

uniform-fringe approximation allows us to see the other

near-optimal operating points for Jy measurements and to see

the optimal operating points for Jx measurements, which lie

not at �=0, but at �= ±� /4J cos �. As � approaches � /2,

the fringes become wider and wider, making the uniform-

fringe approximation reliable only for larger and larger val-

ues of J. For �=� /2, the fringes disappear entirely, and a

separate analysis is required to find the scaling for Jx mea-

surements �since �Jy	�=0 for �=� /2, measurements of Jy

provide no information about ��.
That the final state �5.4�, within the region of high sensi-

tivity, is approximately an angular-momentum coherent state

tells us two important things. First, even though the quadratic

Hamiltonian will generate entanglement from a product

state, this entanglement plays no role in the enhanced sensi-

tivity. The improved sensitivity comes from the increased

rotation rate of the coherent state, which is a product state,

having no entanglement among the probe constituents. In-

deed, for the measurements we consider here, the deviation

from being a coherent state makes the sensitivity worse. Sec-
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FIG. 1. �Color online� Sensitivity �solid red lines� vs � �−� /8

���� /8� using an optimal initial state at angle �=� /4: �a� Jx

measurements; �b� Jy measurements. The total angular momentum J

of the probe is 200, corresponding to n=400. The lower bound on

the sensitivity, 1 /�2J3/2, is plotted as the dotted �green� line. The

sensitivity is characterized by rapidly oscillating fringes and a de-

cay of sensitivity away from the best sensitivities near �=0. The

sensitivity patterns repeat with periodicity �; only one-quarter of a

period is plotted because the sensitivity worsens even more outside

the plotted region. Part �a� also shows the sensitivity for Jx mea-

surements when �=� /2 �dashed blue line�; notice the absence of

fringes in this case and the substantially degraded sensitivity.
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ond, that the probe state is approximately a product state
within the region of high sensitivity hints that this scheme
should not be as fragile in the presence of decoherence as
schemes that rely on initial entanglement. We investigate the

impact of decoherence in Sec. V B and show that the

O�n−3/2� scaling is unaffected by phase decoherence.

To achieve the optimal sensitivity for Jx or Jy measure-

ments, we need to operate within the appropriate central

fringe, of width � /�2J for �=� /4. This can be done by

using an adaptive feedback procedure, which we discuss in

the context of Jy measurements. The feedback procedure is

carried out in several steps, in each of which the quantity that

is estimated is �−�est, where �est is the estimate of � from

the previous step. At each step, we choose J=n /2 so that

�−�est is with very high probability close to the center of

the central fringe, and we use � probes to determine � with

greater precision for the next step. As we obtain progres-

sively refined estimates of �, the quantity being estimated

becomes smaller and smaller, always lying well within a se-

quence of progressively finer central fringes.

To check that this procedure works and to determine its

scaling properties, imagine that we determine � /2� bit by

bit. At step l, we determine the lth bit of � /2� by choosing

J=Jl so that the precision is given by

��l

2�
=

1

��

1

2��2Jl
3/2

=
1

f2l
, �5.27�

where the factor f �3–10 is chosen to ensure that we get the

right lth bit with very high probability. This gives

Jl =
1

2�1/3� f2l

�

2/3

. �5.28�

We must, of course, choose Jl to be an integer or half-integer,

so we choose the nearest one, but this detail does not change

the resource calculation significantly, so we ignore it. At step

l+1, �−�est lies well within the central fringe, as we see

from

��l

�/�2Jl+1

=
27/6

��1/3� �

f2l
1/3

. �5.29�

Indeed, because of the O�J−3/2� scaling, the quantity being

estimated is buried progressively deeper fractionally in the

central fringe as we step through the procedure, despite the

fact that the central fringe is itself narrowing exponentially.

Suppose now that we use this procedure to estimate L bits

of �. The total number of constituents used,

N = ��
l=1

L

2Jl = �2�f

�

2/322L/3 − 1

22/3 − 1
, �5.30�

is dominated by the last step, as is typical in these feedback

procedures. The ultimate precision displays the O�N−3/2�
scaling,

2�2−L =
4f

�22/3 − 1�3/2

�

N3/2
=

2f

�22/3 − 1�3/2

1

��

2

�N/��3/2
,

�5.31�

with a small additional overhead given by the factor

2f / �22/3−1�3/2.

As � becomes smaller, the uniform-fringe approximation

becomes progressively better, since the fringes oscillate rap-

idly and the Gaussian envelopes become very broad. On the

other hand, the signal in Jx and Jy disappears, making the

sensitivity worsen as 1 /sin2 2�.

At the other extreme, as � approaches � /2, the uniform-

fringe approximation becomes poorer as the fringes become

as wide as the Gaussian envelopes and loses validity entirely

when J�cot ���1. When �=� /2, which is the initial probe

state analyzed by Rey et al. �15� �Ref. �15� actually uses �
=−� /2, but this state is equivalent to �=� /2 for purposes of
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FIG. 2. �Color online� Central few fringes of the

measurement precision for �=� /4 and J=2500 �n=5000�:
�a� Jx measurements; �b� Jy measurements. The solid �red� lines

are the exact sensitivities, the dashed �blue� lines are the

sensitivities given by the uniform-fringe approximation of Eqs.

�5.22� and �5.23�, ��x��1 /2J3/2��1+ �1 /sin2�2J� cos ���, ��y

��1 /2J3/2��1+ �1 /cos2�2J� cos ���, and the dotted �green� lines

are the Gaussian-envelope approximation of Eqs. �5.17�. The

uniform-fringe approximation locates the fringes precisely, but

misses entirely the degradation in sensitivity as one moves away

from the central fringes and also fails to characterize accurately the

shape of the fringes. The Gaussian-envelope approximation im-

proves on this performance by capturing the degradation of sensi-

tivity quite well, but still fails on the fringe shapes. Even the central

fringe for Jy measurements is noticeably flatter than in the two

approximations. To get the best sensitivity, one should operate right

on the central fringe, at �=q�, for Jy measurements and on one of

the two central fringes, centered at �=q�±� /4J cos � for Jx mea-

surements. Notice that Jx measurements achieve nearly optimal sen-

sitivity at points near the outside of these two central fringes.
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these measurements�, �Jy	�=0, making Jy measurements use-

less for extracting information about �. Thus, we must

choose the Jx measurement. The dashed line in Fig. 1 shows

that the optimal operating point is �=0 �or, more generally,

�=q��. Near �=0, the expectation value and variance of Jx

are given by

�Jx	� � J −
J�2J − 1�

2
�2, �5.32�

��Jx��
2 � J�2J − 1��2, �5.33�

where the approximations hold for �≪1 /�J. The resulting

optimal sensitivity,

�� =
��Jx��

�d�Jx	�/d��
�

1

�J�2J − 1�
, �5.34�

has the O�J−1� sensitivity scaling found in �15�.
We can relate these results to the general lower-bound

analysis in Sec. III by noting that �=� /2 means that �h	
= �Z	 /2=0. This means that the dominant sums in the expan-

sions of Eqs. �3.4� and �3.6� are those that contain only

squares of h j’s. The number of terms in these sums scales as

O�nk�, which yields a sensitivity that scales as O�n−k/2�.
To gain further insight into the scaling behavior, we plot

the scaling exponent � in ��=O�n−�� as a function of � for

Jx measurements �Fig. 3� and Jy measurements �Fig. 4�, us-

ing three very large values of J. For Jy measurements we

calculate � at the optimal operating point, �=0. For Jx mea-

surements, the optimal operating point is a function of �, but

a good compromise point, which works well over the entire

range of �, is 1 /�2J, so we calculate the scaling exponent at

this point for all values of �. An investigation of nearby

operating points scaling as 1 /J gives plots with no discern-

ible differences for the large values of J under consideration.

The main differences between Jx and Jy measurements are

the following: �i� right at �=� /2, Jx measurements have a

scaling exponent of 1, whereas Jy measurements provide no

information about �; �ii� for Jy measurements, the plot of

scaling exponent has two humps, nearly symmetric about �
=� /4 and �=3� /4, whereas for Jx measurements, the scal-

ing exponent is better on the outside of the humps. The over-

all trend is for both measurements to have a scaling exponent

of �=3 /2 in the limit of large J, except at �=0, � /2, and �.

B. Decoherence

The coherent-state model suggests that our generalized

quantum metrology scheme with initial product states should

not display the fragility of entangled protocols in the pres-

ence of decoherence. We can investigate this possibility by

considering independent dephasing of the effective qubits,

described by the Lindblad equation

�̇ = −
�

2
�Z�Z − �� , �5.35�

where �2=�−1 is the dephasing time. Since dephasing com-

mutes with the quadratic Hamiltonian, we can shunt its ef-

fects to the final time t, whence it maps the Pauli operators of

each effective qubit in the following way:

X → e−�tX , �5.36a�

Y → e−�tY , �5.36b�

Z → Z . �5.36c�

To obtain the effect of the decoherence on the expectation

values and variances of the measured operators at the time of

measurement, it is easiest to use the adjoint map �3�, which

for this simple case is identical to the map �5.36� and gives

�Jx,y	� = e−�t�Jx,y	0, �5.37�

��Jx,y��
2 = e−2�t��Jx,y�0

2 +
J

2
�1 − e−2�t� . �5.38�

Here, a subscript � denotes the value with dephasing, and a

subscript 0 denotes without dephasing. It is now easy to see

that under this model of decoherence, for either of the mea-

surements that we are considering, the sensitivity takes the

form

���
2 = ��2 +

J�e2�t − 1�

2��d�Jx,y	0/d��2
= ��2�1 +

J�e2�t − 1�

2��Jx,y�0
2 
 .

�5.39�

To assess the effects of decoherence, we now focus on Jy

measurements, and we assume that through an adaptive feed-
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FIG. 3. �Color online� Scaling exponent � for Jx measurements.

The dotted �red� line is for J=103, the dashed �green� line for J

=105, and the solid �blue� line for J=107.
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back procedure, such as that sketched in Sec. V A, we are

operating well within the central fringe, i.e., �t is somewhat

smaller than � /4J cos �. Inserting the �=0 values from Eqs.

�5.21� and �5.23� into Eq. �5.39� yields a sensitivity

��� =
e�t

t��

1

�2J3/2�sin 2��
. �5.40�

If we now let T=�t be the total time available for measure-

ments involving � probes, the optimal value of t, found by

maximizing e�t
/�t is t=�2 /2, gives a sensitivity

��� =� e

T�2

1

J3/2�sin 2��
. �5.41�

This result assumes that each probe can be processed in a

time �2 /2, but within this constraint, the scaling is the same

O�J−3/2� scaling that applies in the absence of decoherence.

This is to be contrasted with entangled inputs, where uncor-

related phase decoherence degrades the scaling from O�J−2�
to the O�J−3/2� characteristic of product inputs.

These arguments hold for general symmetric k-body

Hamiltonians, giving a sensitivity scaling O�n−k+1/2� for ini-

tial product states subjected to uncorrelated phase decoher-

ence. This is the same scaling achieved by initial optimal

entangled states under this decoherence model �15�. On the

other hand, the use of product states with k-body Hamilto-

nians for k�2 can surpass both the standard quantum limit

and the Heisenberg limit, even in the presence of phase de-

coherence.

VI. CONCLUSION

The possibility of using nonlinear Hamiltonians has the

potential to open up a new frontier in quantum metrology.

Quantum metrology has traditionally focused on linear

Hamiltonians of the form �Jz=�� j=1
n Z j /2. The main techni-

cal challenge has been to improve on the standard quantum

limit for determining the parameter �, which scales as

O�n−1/2� and can be attained relatively easily using product

input states and separable measurements. The goal of linear

quantum metrology has been to achieve the Heisenberg limit

for determining �, which scales as O�n−1� and requires the

use of highly entangled input states. Nonlinear coupling

Hamiltonians of the form Jz
k offer the possibility of further

improvements in scaling. With the same highly entangled

input states, nonlinear Hamiltonians can achieve a scaling

O�n−k�. More importantly, they provide O�n−k+1/2� scalings,

better than the Heisenberg limit, for input product states and

separable measurements. We expect that the generalized

quantum metrology of nonlinear Hamiltonians will lead to

new experiments—and, ultimately, to new devices—that take

advantage of the enhanced scaling, which is available using

the experimentally accessible tools of product-state inputs

and separable measurements.

A notable feature of generalized quantum metrology is

that the enhanced scalings available with product-state inputs

do not rely on the entanglement produced by the nonlinear

Hamiltonian. We reach this conclusion in this paper from a

detailed analysis of the k=2 case, in the course of which we

formulate an approximate coherent-state model of the time

evolution, which applies during the period of enhanced sen-

sitivity. In the model, a coherent state that makes an angle �
to the z axis rotates with angular velocity 2�J cos �. The

increased rotation rate, larger by a factor of 2J cos � than for

k=1, accounts for the enhanced sensitivity. Since coherent

states are product states, this indicates that entanglement

plays no role in the enhanced sensitivity, and it accounts for

the robustness we find in the presence of phase decoherence.

Although these conclusions emerge here from the k=2

analysis in this paper, it is not hard to extend the coherent-

state model to arbitrary k. Given the input state �5.2�, the

state at time t=� /� becomes

����t�	 = e−i�Jz
k

���	 = �
m

dme−i�mk

�J,m	 . �6.1�

The squares of the Wigner rotation-matrix elements dm of

Eq. �5.3� are a binomial distribution, which for large J, ap-

proaches a narrow Gaussian, centered at m= �Jz	=J cos �,

with half-width �2J+1 sin �. This encourages us to approxi-

mate mk in the phases of Eq. �6.1� as �J cos �+�m�k

��J cos ��k+k�J cos ��k−1�m, giving

����t�	 = ei��k−1��J cos ��k�
m

dme−i�k�J cos ��k−1m�J,m	

= ei��k−1��J cos ��k

e−i�k�J cos ��k−1Jze−i�Jy�J,J	 . �6.2�

This is an angular-momentum coherent state at angle � to the

z axis, rotating about the z axis with angular velocity

�k�J cos ��k−1, which is the same enhanced rotation rate that

we found in the very short-time analysis of Sec. IV. The

approximation leading to the coherent state �6.2� thus ex-

tends to arbitrary k the uniform-fringe approximation, formu-

lated for k=2 in Sec. V. The fringes have width

� /k�J cos ��k−1, and the approximation provides a reason-

able description of the first and second moments of Jx and Jy

as long as �J cos ��k−2��J�sin ��≪1.

The enhanced rotation rate is responsible for the improved

scaling, and just as for k=2, the coherent-state model indi-

cates that the entanglement generated by the nonlinear

Hamiltonian plays no role in the enhancement. In a separate

work, to be presented elsewhere, we extend these ideas. We

investigate in more detail the entanglement generated by the

nonlinear Hamiltonian, quantifying it using standard en-

tanglement measures and showing that the enhanced sensi-

tivity with initial product states can be achieved with a van-

ishing amount of entanglement.
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APPENDIX A: SYMMETRIC HAMILTONIAN
WITHOUT SELF-INTERACTION TERMS

The symmetric k-body coupling without self-interactions

is described by the Hamiltonian

H̃ = �
�a1,. . .,ak�

n

ha1
¯ hak

= k ! �
a1�a2�. . .�ak

n

ha1
¯ hak

= �
a1,. . .,ak

n

ha1
¯ hak

− �k

2

 �

�a1,. . .,ak−1�

ha1
¯ hak−2

hak−1

2 + ¯ ,

�A1�

where in the second form we use the expansions of Sec. III A

to relate H̃ to the Hamiltonian with self-interactions, plus

corrections of which we give only the first. The analysis of

the QCRB �1.6� relies on finding the largest and smallest

eigenvalues of H̃. Since we are only interested in the leading-

order scaling of the QCRB, Eq. �A1� shows that the analysis

proceeds exactly as in the corresponding analysis for H in

Sec. II, with the proviso that the results are only good to

leading order in n. Thus for H̃, the QCRB �1.6�, which can

be achieved by using an appropriate initial entangled state,

scales as O�n−k�.
For the case of initial product states for the probe, we

proceed as in the comparable analysis of H in Sec. III A.

Using the same trick of artfully switching between restricted

and unrestricted sums, we can write

�H̃	 = �
�a1,. . .,ak�

�ha1
	 ¯ �hak

	 = �
a1,. . .,ak

�ha1
	 ¯ �hak

	

− �k

2

 �

�a1,. . .,ak−1�

�ha1
	 ¯ �hak−2

	�hak−1
	2 + O�nk−2� ,

�A2�

�H̃2	 = �
�a1,. . .,a2k�

�ha1
	 ¯ �ha2k

	

+ k2 �
�a1,. . .,a2k−1�

�ha1
	 ¯ �ha2k−2

	�ha2k−1

2 	 + O�nk−2� ,

�A3�

�H̃	2 = �
�a1,. . .,a2k�

�ha1
	 ¯ �ha2k

	

+ k2 �
�a1,. . .,a2k−1�

�ha1
	 ¯ �ha2k−2

	�ha2k−1
	2 + O�nk−2� .

�A4�

The resulting variance of H̃,

��H̃�2 = k2 �
�a1,. . .,a2k−1�

�ha1
	 ¯ �ha2k−2

	�hak−1

2 + O�n2k−2� ,

�A5�

is the same, to leading order in n, as the variance �3.7� of H,

so the remaining analysis of the optimal scaling and initial

product states proceeds exactly as in Sec. III.

APPENDIX B: FIRST AND SECOND MOMENTS OF J

In this appendix we derive the first and second moments

of the components of the angular momentum J for the

Hamiltonian H�=�Jz
2 considered in Sec. V.

Since Jz commutes with the Hamiltonian, it is a constant

of the motion, and its moments are at all times those of the

initial coherent state,

�Jz	� = J cos � , �B1�

�Jz
2	� = J2 cos2 � +

J

2
sin2 � . �B2�

In finding the first and second moments involving the equa-

torial components of J, it is convenient to work in terms of

the angular-momentum raising and lowering operators, J±

=Jx± iJy, which act according to J±�J ,m	=�m
± �J ,m±1	,

where �m
± =��J�m��J±m+1�.

For the evolved state �5.4�, we can write

�J+	� = �
m,m�=−J

J

dmdm�
ei��m�

2−m2��m
+ �m�,m+1

= �
m=−J

J

dmdm+1�m
+

ei��2m+1�

= cot��/2� �
m=−J

J

�J − m�dm
2

ei��2m+1�, �B3�

where the last line uses

dm+1 =� J − m

J + m + 1
cot��/2�dm. �B4�

Using Eq. �5.3� and a derivative of the binomial formula,

�
m=−J

J

�J − m�� 2J

J − m

aJ+mbJ−m = 2Jb�a + b�2J−1, �B5�

we obtain Eq. �5.9�,

�J+	� = cot��/2�ei� �
m=−J

J

�J − m�� 2J

J − m



��ei� cos2��/2��J+m�e−i� sin2��/2��J−m

= J sin ��cos � + i sin � cos ��2J−1. �B6�

The evaluation of the remaining second moments proceeds

along the same lines. The correlation between Jz and Jx or Jy

is conveniently expressed by
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1

2
�JzJ+ + J+Jz	� = �

m=−J

J

dmdm+1�m + 1/2��m
+

ei��2m+1�

= �1/2 − J��J+	� + cot��/2�

� �
m=−J

J

�J2 − m2�dm
2

ei��2m+1�

=
J�2J − 1�

2
sin ��cos � cos � + i sin ��

��cos � + i sin � cos ��2�J−1�, �B7�

where we use

�
m=−J

J

�J2 − m2�� 2J

J − m

aJ+mbJ−m = 2J�2J − 1�ab�a + b�2�J−1�.

�B8�

To find the second moments that involve only the equatorial

components, we use

Jx
2 + Jy

2 =
1

2
�J+J− + J−J+� , �B9a�

Jx
2 − Jy

2 =
1

2
�J+

2 + J−
2� , �B9b�

JxJy + JyJx =
1

2i
�J+

2 − J−
2� , �B9c�

from which we obtain

�Jx,y
2 	� =

1

4
�J+J− + J−J+	� ±

1

2
Re��J+

2	�� , �B10a�

�JxJy + JyJx	� = Im��J+
2	�� . �B10b�

Thus, we calculate Eq. �5.10�,

1

2
�J+J− + J−J+	� = �

m=−J

J

�J + J2 − m2�dm
2 = J +

J�2J − 1�

2
sin2 � ,

�B11�

where we use Eq. �B8�, and we calculate Eq. �5.11�,

�J+
2	� = �

m=−J

J

dmdm+2e4i��m+1��m+1
+ �m

+

= cot2��/2� �
m=−J

J

�J − m��J − m − 1�dm
2

e4i��m+1�

=
J�2J − 1�

2
sin2 ��cos 2� + i sin 2� cos ��2�J−1�,

�B12�

where we use

�
m=−J

J

�J − m��J − m − 1�� 2J

J − m

aJ+mbJ−m

= 2J�2J − 1�b2�a + b�2�J−1�. �B13�

The equatorial second moments listed in Eq. �5.16� and the

cross moment

1

2
�JxJy + JyJx	� =

1

2
Im��J+

2	��

=
J�2J − 1�

4
sin2 �R2�J−1� sin�2�J − 1��� ,

�B14�

follow from inserting these results into Eqs. �B9�.
We now make the uniform-fringe approximation of Sec.

V, keeping only the fringe terms near �=0. This approxima-

tion requires that �J��sin ��≪1, but allows J� cos � to be

considerably larger than 1 when J cot2 � is large. The result-

ing first and second moments,

�Jz	� = J cos � , �B15a�

�J+	� � J sin �e2iJ� cos �, �B15b�

�Jz
2	� = J2 cos2 � +

J

2
sin2 � =

J

2
+

J�2J − 1�

2
cos2 � ,

�B15c�

1

2
�JzJ+ + J+Jz	� �

J�2J − 1�

2
sin � cos �e2iJ� cos �,

�B15d�

�Jx
2	� �

J

2
+

J�2J − 1�

2
sin2 � cos2�2J� cos �� ,

�B15e�

�Jy
2	� �

J

2
+

J�2J − 1�

2
sin2 � sin2�2J� cos �� ,

�B15f�

1

2
�JxJy + JyJx	�

�
J�2J − 1�

2
sin2 � sin�2J� cos ��cos�2J� cos �� ,

�B15g�

have the unique form of an angular-momentum coherent

state. They show that in the uniform-fringe approximation,

the state is an angular-momentum coherent state oriented at

angle � to the z axis and rotating about the z axis with

angular velocity 2�J cos �=2��Jz	.
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