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Abstract. We classify all weak ∗ limits of squares of normalized eigenfunc-
tions of the Laplacian on two-dimensional flat tori (we call these limits quantum

limits). We also obtain several results about such limits in dimensions three
and higher. Many of the results are a consequence of a geometric lemma which
describes a property of simplices of codimension one in Rn whose vertices are
lattice points on spheres. The lemma follows from the finiteness of the number
of solutions of a system of two Pell equations. A consequence of the lemma is
a generalization of the result of B. Connes. We also indicate a proof (commu-
nicated to us by J. Bourgain) of the absolute continuity of the quantum limits
on a flat torus in any dimension. We generalize a two-dimensional result of
Zygmund to three dimensions; we discuss various possible generalizations of
that result to higher dimensions and the relation to L

p norms of the densities
of quantum limits and their Fourier series.

In this note we shall consider eigenfunctions of the Laplacian on the standard
flat d-dimensional torus Td = Rd/Zd. Most of the results of this paper are also
valid for other flat tori Rd/Λ, where Λ is a lattice (of rank d) in Rd different from
Zd.

Let ϕ be an eigenfunction with the eigenvalue λ, and let ||ϕ||2 = 1. The mul-

tiplicity of λ is equal to the number of lattice points on a sphere of radius
√
λ

centered at the origin (or, equivalently, to the number of ways of writing λ as a
sum of d squares). It is well-known that the multiplicity is unbounded for d ≥ 2.

We are interested in all possible weak limits as λj → ∞ of the (probability)
measures dµj = |ϕj |2d vol (where d vol is the Riemannian volume form on Td),
which are henceforth called quantum limits (cf. [Jak]).

A. Zygmund proved in [Zyg] that for d = 2

(1) ||ϕ||4/||ϕ||2 ≤ 51/4

It follows that for d = 2 any quantum limit dν is absolutely continuous, and its
density is a function ψ ∈ L2 satisfying ||ψ||2 ≤ 51/2. In fact, much more can be
said about the densities of quantum limits on two-dimensional tori.
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To formulate our result, denote the Fourier expansion of a quantum limit dν on
Td by

(2) dν ∼
∑

τ∈Zd

cτe
i (τ,x),

where (τ, x) is the usual scalar product in Rd.
We prove the following result:

Theorem 1. The density of every quantum limit dν on T2 is a trigonometric
polynomial all of whose non-zero frequencies lie on the union of (at most) two
circles centered at the origin.

In other words, for every dν with the Fourier expansion (2) there exist two
positive numbers r1 and r2 such if τ 6= 0 and cτ 6= 0 then either |τ | = r1 or |τ | = r2.
We can also describe the combinations of τ -s (as above) that occur (together with
the set of possible cτ -s).

The first question one asks for d > 2 is whether quantum limits are absolutely
continuous with respect to Lebesgue measure or not. No analogue of (1) is known
for d > 2, so the absolute continuity of quantum limits has to be proved differently
than for d = 2. J. Bourgain has communicated to us the proof of

Theorem 2 (Bourgain). Quantum limits are absolutely continuous in any di-
mension.

The proof involves repeated applications of a result due to B. Connes1 (see
Proposition 3 below); a property2 of sequences of nonnegative numbers uniformly
bounded in l1 is also used.

The rest of this note is concerned with obtaining more precise information about
the possible quantum limits in dimensions three and higher, although we are not
able to classify all such limits as in dimension two.

The first result is

Theorem 3. For 3 ≤ d ≤ 5, every quantum limit on Td satisfies

(3)
∑

τ∈Zd

|cτ |d−2 < ∞

(where cτ -s are defined by (2)).

We conjecture that (3) holds in any dimension d > 5, but are not able to prove
it because of certain technical difficulties.

It follows from Theorem 3 that the density of any quantum limit on T3 is a
function that has absolutely convergent Fourier series; for d = 4 it follows that
any such function is in L2. We also deduce from a certain conjecture about the
distribution of n-tuples of primes3 (which we shall call conjecture HL, cf. [Jak]) that
on a three-dimensional torus there exist quantum limits which are not trigonometric
polynomials; on a four-dimensional torus we can prove this unconditionally.

1J. Bourgain has remarked that Proposition 3 also follows from lemma 25 in [Bou2].
2Sometimes referred to as a ”sequence splitting lemma”.
3A weak form of Hardy-Littlewood’s conjecture, cf. [HL].
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By Theorem 2, every quantum limit has a density which is a (nonnegative)
function in L1(Td). The question arises whether the densities of quantum limits on
Td belong to Lp for any p > 1 and d ≥ 5. The answer turns out to be intimately
related to the generalization of Zygmund’s result (1) to higher dimensions.

Namely, we define the number A(d, p) ≤ ∞ by

(4) A(d, p) = sup
∆ϕ+λϕ=0

(||ϕ||p/||ϕ||2)

(where the supremum is taken over the eigenfunctions of the Laplacian on Td).4 It
is not known whether A(d, p) < ∞ for any p > 2 and d ≥ 3. Bourgain showed in
[Bou1] that A(d, p) = ∞ for d ≥ 4 and p ≥ 2(d+ 1)/(d− 3).

We can show that if A(d, p) = ∞ for some p > 2, then there exist quantum limits
on Td+3 whose densities are not in Lp/2(Td+3).

To state the converse result, for d ≥ 2 we define B(d, p) by

B(d, p) = sup
{
||ϕ||p/||ϕ||2 : ϕ̂ ∈ (Ω ∩ Z

d+2)
}

where the supremum is taken over the trigonometric polynomials on Td+2 all of
whose frequencies lie on an intersection of Zd+2 with a (d− 1)-dimensional sphere
Ω lying in a d-dimensional subspace of Rd+2, and the Lp norms are for the functions
on Td+2. It is easy to see5 that B(d, p) ≥ A(d, p). One can generalize (1) and prove
that B(2, 4) <∞. It may happen that B(d, p) <∞ whenever A(d, p) <∞, but we
cannot prove this.

We can show that if B(d, p) <∞ for some d and p > 2, then the density of any
quantum limit on Td+2 is in Lp/2(Td+2).

Let ϕ be the eigenfunction of the Laplacian with the eigenvalue λ. We want to
prove an analogue of (1) for the Fourier series of the function |ϕ|2. The Fourier
expansion of ϕ is given by

ϕ(x) =
∑

ξ∈Zd;|ξ|2=λ

aξe
i (ξ,x), aξ ∈ C

It follows from the previous formula that

(5) |ϕ|2 =
∑

τ

bτe
i (τ,x), bτ =

∑

ξ−η=τ
|ξ|2=|η|2=λ

aξ āη

If A(d, p) <∞ for some 2 < p = p(d) ≤ 4, then by Hausdorff-Young theorem




∑

τ∈Zd

|bτ |q



1/q

≪ ||ϕ||22

uniformly on Td for q = q(d) = p(d)/(p(d) − 2).

4The question of the rate of growth of the ratio in (4) with increasing eigenvalue is one of the
basic questions in quantum chaos, cf. [Sar].

5We can identify the eigenfunctions on Td with the eigenfunctions on Td+2 all of whose fre-
quencies lie in the subspace {x ∈ Rd+2|xd+1 = xd+2 = 0} of Rd+2.
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Accordingly, we define a number C(d, q) ≤ ∞ by

(6) C(d, q) = sup
∆ϕ+λϕ=0

(||f̂ ||q/||ϕ||22), f = |ϕ|2

where f̂ is the Fourier series of f , and the supremum is taken over the eigenfunctions
of the Laplacian on T

d.
We have just shown that for 2 ≤ p ≤ 4, (A(d, p))2 ≥ C(d, p/(p− 2)). Zygmund

proves in [Zyg] that C(2, 2) < ∞. Note that Bourgain’s results in [Bou1] suggest
that if C(d, q(d)) <∞, then q(d) → ∞ as d→ ∞, and this can indeed be shown.

We prove

Proposition 1. On a three-dimensional torus, C(3, 3) <∞.

The proof is by a geometric argument in the spirit of [Zyg]. However, we cannot
use Proposition 1 to bound ||ϕ||p uniformly for any p > 2 because the exponent q
in our bound is bigger than two. The ideas of the proof of Proposition 1 should
allow to prove that C(d, d) < ∞; however, for d ≥ 3 certain technical difficulties
arise which at the moment prevent us from extending Proposition 1 to dimensions
four and higher.

We can show that if C(d, q) = ∞, then there exist such quantum limits on Td+3

that the Fourier series of their densities are not in lq.
To state the converse result, for d ≥ 2 we define D(d, q) by

D(d, q) = sup
{
||f̂ ||q/||ϕ||22 : ϕ̂ ∈ (Ω ∩ Z

d+2)
}
, f = |ϕ|2

where the supremum is taken over the same trigonometric polynomials on Td+2 as
in the definition of B(d, p). It is easy to see that D(d, q) ≥ C(d, q) and that for
2 ≤ p ≤ 4, (B(d, p))2 ≥ D(d, p/(p− 2)).

We can show that if D(d, q) <∞, then for any quantum limit dν on Td+2 given
by (2) ∑

τ∈Zd+2

|cτ |q < ∞

One can also generalize the proofs of (1) and Proposition 1 and show that D(2, 2) <
∞ and D(3, 3) <∞, thus proving Theorem 1 for d = 4 and d = 5.

Finally, we discuss the rate of growth on Td of the sum

(7) Σ(ρ) =
∑

τ∈Zd;|τ |<ρ

|cτ |

Conjecture HL implies that on the four-dimensional torus there exist quantum
limits for which Σ(ρ) → ∞ as ρ → ∞; we can prove this unconditionally for the
five-dimensional torus. We prove

Proposition 2. On Td, Σ(ρ) ≪ ρd−3 for d ≥ 6. For d = 5, Σ(ρ) ≪ ρ3/2+ε and
for d = 4, Σ(ρ) ≪ ρε for every ε > 0.

We expect that Σ(ρ) ≪ ρd−4+ε for any ε > 0. Conjecture HL implies that for
d ≥ 5 and for any ε > 0,

limρ→∞
Σ(ρ)

ρd−4−ε
= ∞
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we can also prove unconditionally that for d ≥ 6, limρ→∞Σ(ρ)/ρd−5−ε = ∞.
Many of the above facts are consequences of a Geometric lemma which is of

independent interest. To motivate the lemma, note that it follows from (5) that
if ϕ is the eigenfunction of the Laplacian on Td with the eigenvalue λ, then the
nonzero frequencies of |ϕ|2 are given by the chords connecting the lattice points

on the sphere S of radius
√
λ in Rd (centered at the origin). Also, the size of the

Fourier coefficient bτ is determined by the coefficients aξ, aη corresponding to such
pairs (ξ, η) of lattice points on S that the chord ξ − η connecting them is equal to
τ . We will call such pairs τ-resonances (the terminology comes from mechanics,

where it is usually assumed that |τ | ≪
√
λ).

Given a measure dν on Td with the Fourier expansion (2), and a sequence ϕj

of eigenfunctions of the Laplacian with (increasing) eigenvalues λj , by |ϕj |2 → dν
weak ∗ as j → ∞ we shall mean that for every τ , bτ (j) → cτ as j → ∞ (for τ = 0,
bτ (j) is always equal to 1, so c0 = 1). Thus we are interested in τ -resonances which
appear on every sphere of radius

√
λj for j > N = N(τ).

To state the Geometric lemma, we give a definition. Let ∆ be a d-dimensional
simplex with d+ 1 vertices all lying in Zn for some n (i.e. a line segment for d = 1,
a triangle for d = 2 etc).

Definition. The points ξ1, ξ2, . . . , ξd+1 ∈ Zn lying on a sphere in Rn are called
∆-resonant if they form a d-dimensional simplex which can be translated into ∆.

This definition is just a multi-dimensional generalization of τ -resonances defined
above for d = 1. We now state the lemma.

Geometric lemma. Let ∆1, . . . ,∆k be a collection of d-dimensional simplices
with vertices in Zd+1, and let S1, . . . , Sn, . . . be an infinite sequence of d-dimensional
spheres in Rd+1 centered at the origin with increasing radii, such that on each
sphere Sn there are ∆j-resonant points for every 1 ≤ j ≤ k. Then the radii of the
circumscribed spheres Ωj of ∆j-s can take (at most) two different values.

For d = 1 this just means that the line segments ∆1, . . . ,∆k can have at most
two different lengths (hence at most two different circles in Theorem 1). The lemma
is proved by first reducing the statement to counting the number of solutions of
a system of Pell equations, and then using the (known) fact that this number is
finite when the coefficients of the equations are quadratically independent. This
fact can be proved either by applying Baker’s results on linear froms in logarithms
(cf. [Bak1] and [Bak2]; also, cf. [Mi] for the proof of a similar statement); or
by applying Siegel’s theorem about the finiteness of number of integer points on
elliptic curves. The second proof, though easier, does not produce effective bounds
obtained from the first proof.

The Geometric lemma proves a certain finiteness statement about the simplices
of codimension one in Rn whose vertices are lattice points on spheres. One can ask
whether it is possible to prove an analogous finiteness statements for simplices of
codimension two or more. The answer to the above question is negative. Namely,
conjecture HL implies that there exists an infinite sequence ∆j of simplices with
vertices in Z

n of codimension two, and a sequence Sk of spheres in R
n centered

at the origin of increasing radii such that on Sk there are ∆j-resonant points for
1 ≤ j ≤ k (this implies the existence of quantum limits on T3 which are not
trigonometric polynomials); an analogous statement for simplices of codimension
three can be proved unconditionally.
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We can prove analogues of the Geometric lemma for lattices in SL(n,R); these
results will be discussed elsewhere.

The main application of the Geometric lemma is Proposition 4 given below. It
is a generalization of a result of B. Connes (cf. [Con]). To state the result, we first
define certain graphs on spheres.

Definition. For a d-dimensional sphere S in Rn and for ρ > 0, define Gρ(S) to be
the graph with vertices at the points of Zn located on S obtained by connecting two
vertices whenever the distance between them is less than ρ. Also, for ρ > ρ1 > 0
define Gρ1

ρ (S) to be the graph with the same vertices, and with two vertices ξ and η
connected whenever ρ1 < |ξ − η| < ρ.

We remark that Gρ1
ρ (S) coincides with Gρ(S) for ρ1 = 0.

We now state Connes’ result:

Proposition 3 (Connes). There exists a (positive) function g = gd(R)≍R2/(d+2)!

such that on any d-dimensional sphere S in Rn of radius R, for any 0 < ρ < gd(R)
(or, equivalently, R≫ ρ(d+2)!/2) the connected components of Gρ(S) all lie on one
of the (d − 1)-dimensional spheres Ω1,Ω2, . . . ,Ωm formed by the intersection of S
with d-dimensional planes in Rn.

Using Proposition 3 and the Geometric lemma, we prove

Proposition 4. Given a sequence of spheres Sj (of radius Rj) in Rd+1 centered
at the origin, there exist a subsequence {jk} of {j}, and a number ρ1 ≥ 0 with
the following property: given ρ > ρ1, there exists N ∈ N such that if we take any
sphere S = Sjk with jk > N and consider the graph G = Gρ1

ρ (S), then the connected
components of G will lie on one of (d−2)-dimensional spheres Ω1,Ω2, . . . ,Ωm,m =
m(jk) (formed by the intersections of S with the subspaces of Rd+1 of codimension
two).

Proposition 4 thus allows us to “reduce the dimension by two” when proving
statements about the quantum limits.

The proofs of Theorem 1, Geometric lemma and Proposition 4, and of all the re-
sults about the quantum limits in dimensions three and four (except for Proposition
1) appear in [Jak]. Further details of this work will be published elsewhere.
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