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Probabilistic metrology attempts to improve parameter estimation by occasionally reporting an excellent
estimate and the rest of the time either guessing or doing nothing at all. Here we show that probabilistic metrology
can never improve quantum limits on estimation of a single parameter, both on average and asymptotically in
number of trials, if performance is judged relative to mean-square estimation error. We extend the result by
showing that for a finite number of trials, the probability of obtaining better estimates using probabilistic
metrology, as measured by mean-square error, decreases exponentially with the number of trials. To be tight, the
performance bounds we derive require that likelihood functions be approximately normal, which in turn depends
on how rapidly specific distributions converge to a normal distribution with number of trials.
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I. INTRODUCTION

Quantum metrology is the study of how accurately physical
quantities can be measured within the structure of quantum
theory. Quantum-limited metrology is important for such
objectives as improving time and frequency standards [1,2]
and detecting gravitational waves [3]. The basic scenario of
quantum metrology is that of a quantum system whose state is
influenced by one or more parameters that are to be determined
by probing the system with other physical systems. The goal
is to tailor the measurement made by the probes so as to
learn as much as possible about the values of the parameters.
Researchers have been busy devising new ways to estimate
parameters [4] and devising new bounds on how accurately
one can estimate a parameter [5–11].

Recently some researchers have proposed ingenious tech-
niques that appear to allow for an improvement in estimation
precision beyond the limits quantum mechanics usually im-
poses. These techniques go under the names of “probabilistic
metrology” [12–14], “metrology with abstention” [15–17],
and “weak-value amplification” [18–20]. Before examining
probabilistic protocols for estimation, we briefly summarize
some ways probabilistic protocols are used in quantum
information.

Probabilistic protocols have a long history in quantum
measurement and information theory and have proven to
be very useful in some contexts. For example, in quantum
optics, single-photon states can be probabilistically created
by heralding on one photon from a pair created by spon-
taneous parametric downconversion [21]. The low success
probabilities seen in experiments are not fundamental and
can be increased by multiplexing [22]. Similarly, in the
Knill-Laflamme-Milburn quantum-optical computing scheme,
the probabilistic gates can have arbitrarily high success rates
if special resource states can be prepared offline [23].

Using unambiguous state discrimination (USD) [24,25],
one can discriminate without error between linearly inde-
pendent pure states, provided there is the possibility that
some of the time one is not required to make a decision
among the states. USD is interesting in its own right, as is
probabilistic metrology, but to assess the usefulness of USD
for some quantum-information task, one must formulate a
performance metric that weighs the trade-off between never

making a mistake and sometimes not making a decision.
In metrological contexts, one doesn’t have to formulate a
performance metric; there typically is a natural performance
metric related to a measure of the accuracy with which the
parameters are estimated. The aim of this paper is to assess
probabilistic metrology relative to such a natural performance
metric. Our focus in this paper is not whether protocols for
probabilistic quantum metrology are intrinsically interesting,
but rather whether they are useful for reaching or beating
quantum limits.

The strategy employed by probabilistic metrology schemes
is to make a selection measurement that “concentrates”
information about the parameters into some subset of the
measurement outcomes. Further measurements to determine
the parameters, made on these favorable outcomes, provide
a refined estimates of the parameters; unfavorable outcomes
are discarded with no attempt to gather information from
them. The process of waiting for a favorable outcome is called
postselection; it amounts to using the selection measurement
to prepare states that, on favorable outcomes, provide high
sensitivity to the parameters. In prior work, it is not at
all clear if the process of postselection can aid overall
estimation accuracy, primarily because the relative scarcity
of the favorable outcomes and/or the failure to garner any
information from the discarded outcomes is not fully included
in the analysis.

In broad terms, the aim of probabilistic metrology is to use
the selection measurement to increase the distinguishability of
quantum states. In this paper, we explore whether this strategy
can provide benefits for quantum metrology once the probabil-
ity of favorable outcomes is properly taken into account. We
focus on estimation of a single parameter x and show that if
the performance of a strategy for estimating x is judged by the
mean-square estimation error (MSE), postselection can never
improve on quantum limits for estimating x. The framework
for our analysis is laid out in Secs. II and III, and the main
results are given in Secs. IV and V.

In Sec. VI, we survey previous critical analyses of prob-
abilistic metrology (in Sec. VI A), formulate desiderata for
analyzing any protocol for probabilistic metrology (Sec. VI B),
discuss proposals for metrology using weak-value ampli-
fication, to which our results apply, but which has also
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been analyzed critically elsewhere [26–29] (Sec. VI C), and
consider in some detail the protocol for metrology with
abstention formulated in [15] (Sec. VI D).

II. QUANTUM PARAMETER ESTIMATION

We are interested in estimating a parameter x that is
impressed on the system state through some general quantum
evolution ρ(x) = Ex(ρ), where Ex is a trace-preserving com-
pletely positive map that depends on x. The parameter could
correspond, for example, to a unitary phase shift or to the decay
constant of an atom. In order to compare protocols fairly, we
need a way to characterize how well an estimation procedure
performs. We compare protocols based on their mean-square
estimation error (MSE),

MSE(xtrue) = Edata[(x̂(data) − xtrue)2], (1)

where x̂ is an estimator for xtrue and Edata[ · ] denotes an
expectation over data.

For quantum estimation problems there is a strict lower
bound on the MSE obtained from any unbiased estimator
applied to data collected from any quantum measurement. The
bound is expressed in terms of the quantum Fisher information
Iρ(x) associated with the state ρ(x) that encodes the parameter.
For measurements on N copies of the system—we call these
N trials—the bound, called the quantum Cramér-Rao bound
(QCRB), is expressed as

MSE(x) � 1

NIρ(x)
. (2)

The quantum Fisher information is defined as [30]

Iρ(x) = Tr[ρ(x)L(x)2], (3)

where L(x) is the symmetric logarithmic derivative (SLD),
implicitly defined by the equation

∂

∂x
ρ(x) = 1

2
[L(x)ρ(x) + ρ(x)L(x)]. (4)

It is known that there is an optimal quantum measurement
whose classical Fisher information, calculated from the
probabilities of measurement outcomes, achieves the quantum
Fisher information (3) [31]; letting {ϒk} be any positive-
operator-valued measure (POVM), with outcome probabilities
p(k|x) = Tr[ρ(x)ϒk], this can be written as

Iρ(x) = max
{ϒk}

Icl[p(k|x)], (5)

where the classical Fisher information of the outcome proba-
bilities is

Icl[p(k|x)] =
∑

k

p(k|x)

(
∂ ln p(k|x)

∂x

)2

. (6)

Equation (5) is an alternative, operational definition of the
quantum Fisher information. An additional important fact is
that the maximum likelihood estimator generally achieves the
classical Fisher bound asymptotically in N , and this, together
with Eq. (5), means that the QCRB does indeed express the
quantum limit on achievable MSE. To achieve the QCRB often
requires prior information about the parameter and, in practice,
an adaptive implementation of the optimal measurement.

Before moving on to our detailed analysis, we draw atten-
tion to one important point. The inequalities we derive are tight
only when the relevant likelihood function is approximately
normal. Thus the rate of convergence with N of a particular
likelihood function to the normal distribution determines
when the following bounds are tight. For measurements with
Gaussian statistics, the inequalities are saturated immediately,
for one trial. Interestingly, distributions that are quite different
from the normal distribution rapidly become approximately
normal. For example (see Chap. 2 of [32]), “a rough rule” is that
for N > 5, the normal approximation to a binomial distribution
is good if |[√(1 − p)/p − √

p/(1 − p)]/
√

N | < 0.3, where
p is the Bernoulli or binomial success probability. In practice,
provided p is not too close to 0 or 1, this means that 20 �
N � 100 is sufficient to approximate a normal distribution.
As quantum statistics are often Bernoulli or binomial, we can
expect our results to hold very closely in as few as 20–100
trials. In typical quantum-metrology applications [33], the
likelihood functions are highly non-Gaussian and oscillatory,
yet the convergence to a normal distribution still occurs
approximately after as little as 15 trials (see Sec. 6 of [34]).
Braunstein [35] has explored the question of approach to
Gaussian statistics in the context of the maximum likelihood
estimation that can achieve the Cramér-Rao bound.

III. PROBABILISTIC QUANTUM METROLOGY
AND ANCILLA MODEL

Rather than using the optimal POVM which solves Eq. (5),
the idea of probabilistic metrology is to “encode” the informa-
tion about the unknown parameter “in a more efficient way”
[13–19]. Formally, one makes a selection measurement whose
outcomes are divided into the set � of favorable outcomes,
which “concentrate” the information about the parameter, and
the complementary set ✕ of unfavorable outcomes, which are
discarded. When a favorable outcome is obtained, a second
measurement is performed on the postselected state to extract
information about x.

To investigate these ideas, we compare the quantum Fisher
information before and after the selection measurement. This is
different from the analysis performed in [26,27], where there
were additional assumptions about how the parameter was
encoded in the state ρ(x) and about what types of selection
measurement could be performed. Here we use the most
general forms allowed by quantum mechanics.

The quantum state that encodes the classical parameter
x is denoted by ρQ(x) = Ex(ρ), where we now label the
system with Q to distinguish it from the ancilla we introduce
shortly. The system can consist of more than one part: in
weak-value amplification, for example, the system Q is divided
into two parts, R and S, the parameter is the strength of an
interaction between R and S, and the selection measurement
is performed on R alone [27]. Notice also that since we allow
the encoded state ρQ(x) to be mixed, our analysis covers
the case of technical noise that is imposed on the system
as the parameter is encoded in the system. We can simply
regard the operation Ex as incorporating a description of such
technical noise.
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The selection measurement is described by quantum oper-
ations, one for each outcome α,

Fα[ρQ(x)] =
Jα−1∑
j=0

Mα,j ρQ(x) M
†
α,j , (7)

where the operators Mα,j are Kraus operators. The POVM
element for outcome α and the completeness relation satisfied
by the POVM elements are

Eα =
Jα−1∑
j=0

M
†
α,jMα,j , IQ =

J∑
α=1

Eα. (8)

The subscript j allows for the possibility that the quantum
operations involve course graining over measurement results
we do not have access to. Our subsequent analysis requires us
to be clear about the values assumed by α and j : the outcomes
α are labeled by positive integers, 1, . . . ,J , and the index j ,
when associated with outcome α, takes on values j = 0,

1, . . . ,Jα − 1.
The postmeasurement state, postselected on outcome α, is

σQ|α(x) = Fα[ρQ(x)]

p(α|x)
, (9)

where p(α|x) = Tr{Fα[ρQ(x)]} = Tr[EαρQ(x)] is the condi-
tional probability of obtaining outcome α given the state ρQ(x).

The idea behind probabilistic quantum metrology is that
the states for favorable outcomes (α ∈ �) have higher Fisher
information than ρQ(x). The QCRB arises, however, from
the quantum Fisher information of an individual quantum
state and not directly from an average of the quantum Fisher
informations for states occurring with various probabilities.
Thus, to formalize the idea of probabilistic metrology for
analysis using the QCRB, we need to formulate it in terms
of a single quantum state. For this purpose, we employ an
ancilla A that records and stores the outcomes of the selection
measurement. The joint system-ancilla state we are shooting
for is

σQA(x) =
J∑

α=1

p(α|x)σQ|α(x) ⊗ |fα〉〈fα|, (10)

where the states |fα〉 are orthonormal ancilla states. In the state
(10) the ancilla stores a record of the selection-measurement
outcomes; the outcomes are correlated with the postselected
system states σQ|α(x), which occur with probability p(α|x).

We now show how to get to the state (10) and to successor
states that are relevant for probabilistic metrology by physical
processes; this demonstration illuminates how information is
discarded at various points in these processes. To reiterate
where we are headed, we are going to show in Sec. IV how
getting to the state (10) and to the successor states envisioned
by probabilistic metrology decreases the Fisher information
available for parameter estimation.

We first invoke the Kraus representation theorem [36,37],
which tells us that given the complete set of Kraus operators,
{Mα,j }, there exists an ancilla with initial pure state ρA =
|ψ〉〈ψ | and a joint unitary operator U such that Mα,j =
〈fα,j |U |ψ〉, where the states |fα,j 〉 make up an orthonormal

basis for the ancilla. The evolution under U can be written as

UρQ(x) ⊗ ρAU
† =

∑
α,j ;β,k

Mα,jρQ(x)M†
β,k ⊗ |fα,j 〉〈fβ,k|.

(11)

This joint unitary evolution does not store the measurement
outcome in the ancilla. Indeed, since the unitary U can
be reversed, the state (11) has the same quantum Fisher
information as ρQ(x). To record and store the outcome in the
ancilla requires some decoherence of the ancilla, which can be
thought of as a measurement on the ancilla.

Naı̈vely one might expect that performing the measure-
ment specified by Kraus operators 	α = IQ ⊗ ∑

j |fα,j 〉〈fα,j |
would result in the state (10), but in fact, it gives the state∑

α

	αUρQ(x) ⊗ ρAU
†	α

=
∑
α,j,k

Mα,jρQ(x)M†
α,k ⊗ |fα,j 〉〈fα,k|. (12)

This measurement, though it removes the coherence between
different outcome subspaces in the ancilla, leaves the co-
herence within each outcome subspace and thus does not
reproduce the state (10).

To get to the state (10), we need to do a measurement on the
ancilla in the basis {|fα,j 〉} and then keep only the outcome α;
erasing the suboutcome j can be done by a postmeasurement
unitary on the ancilla that, in each outcome subspace α, leaves
the ancilla in a particular state, which we take to be |fα,0〉. The
desired ancilla measurement is thus described by the quantum
operation

G =
J∑

α=1

Jα−1∑
j=0

Kα,j � K
†
α,j , (13)

where the Kraus operators are given by

Kα,j = IQ ⊗ |fα,0〉〈fα,j |. (14)

In Eq. (13), the symbol � is a place holder for the operator
the operation acts on. Applying G to the state (11) gives the
desired state (10),

G[UρQ(x) ⊗ ρAU
†] =

J∑
α=1

Fα[ρQ(x)] ⊗ |fα〉〈fα| = σQA(x),

(15)

where we identify |fα〉 = |fα,0〉. The quantum operation G is
a decoherence process that stores the selection-measurement
outcomes in the ancilla, correlated with the postselected
system states σQ|α(x).

Before proceeding further, a remark is in order. Had we
restricted our analysis to selection-measurement quantum
operations each of which has a single Kraus operator, i.e.,
replaced Eq. (7) with Fα[ρQ(x)] = Mα ρQ(x) M†

α , the analysis
to this point would be considerably simplified at the cost of
less generality.

Having gotten to the state (10), we now imagine a further
conditional decoherence that for the unfavorable outcomes,
damps the system to a state σQ|✕ = |φ✕〉〈φ✕| = σQ|0, which
contains no information about x (zero Fisher information),
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N
onincreasing Fisher inform

ation

Joint state.

Make selection measurement with 
outcome stored in ancilla.

Information discarded.

Information discarded.

Selection measurement 
not generally part of 
optimal measurement.

Optimal measurement 
achieves QCRB.

Fisher information inequalities

Unfavorable outcomes discarded.

Relationships between states

Unfavorable outcomes stripped of information about x
and lumped into set    .

FIG. 1. (Color online) Summary of the relationships among the states in our analysis: the diagram should be read as a threat advisory,
where the danger is decreased Fisher information. Our main results are that the Fisher information cannot increase as one goes from the top
of the diagram to the bottom; the decrease in going to the bottom state is statistical in a sense analyzed further in Sec. V. The boxes in the
right column give the inequalities between the Fisher informations and cite which of the principles enunciated in Sec. IV encapsulates why the
Fisher information decreases.

and the ancilla to a state |f✕〉 = |f0〉, which can be taken to be
the state |fα〉 for a particular unfavorable outcome. The result
is the joint state

σQA,�(x) =
∑
α∈�

p(α|x)σQ|α(x) ⊗ |fα〉〈fα|

+p(✕|x)σQ|✕ ⊗ |f✕〉〈f✕|
=

∑
α∈{0,�}

p�(α|x)σQ|α(x) ⊗ |fα〉〈fα|. (16)

Here

p(✕|x) =
∑
α∈✕

p(α|x) (17)

is the total probability of the unfavorable outcomes. To
simplify our expressions we introduce, in the second form
of Eq. (16), the conditional distribution p�(α|x). This distri-
bution is defined on the lumped unfavorable outcomes, which
are labeled by α = ✕ or α = 0 (we find both these labels to
be useful), and the favorable outcomes by

p�(α|x) =
{

p(✕|x), α = 0,

p(α|x), α ∈ �.
(18)

The state (16) encodes the parameter x in a way that is envi-
sioned by probabilistic quantum metrology: the ancilla records
the outcome of the selection measurement; the postselected
system states σQ|α(x) for the favorable outcomes occur with
the right probabilities p(α|x); and the unfavorable outcomes
are lumped together and associated with a state σQ|0 that has
no information about x. All information about the parameter
has clearly been removed from the unfavorable outcomes, but

the state (16) still allows a guess for the parameter when an
unfavorable outcome occurs.

We consider one other state, which is perhaps the best
expression of the strategy of probabilistic metrology. This
state arises from looking at the ancilla and, if the outcome
is favorable, handing the resulting state to a party who
performs the rest of the probabilistic-metrology protocol. The
probability of the hand-off is the total probability of the
favorable outcomes,

p(�|x) =
∑
α∈�

p(α|x) = 1 − p(✕|x), (19)

and the state handed to the other party is

σQA|�(x) = ��σQA,�(x)��

p(�|x)

=
∑
α∈�

p�(α|x)

p(�|x)
σQ|α(x) ⊗ |fα〉〈fα|. (20)

Here �� = ∑
α∈� |fα〉〈fα| projects the ancilla onto the

favorable outcomes. With the state (20), an estimate of the
parameter is made only on the favorable outcomes.

Our main results are concerned with the Fisher information
for the joint states (10), (16), and (20). Notice that information
about x is thrown away in going from the unconditional
state σQA(x) to σQA,�(x) and again in going from σQA,�(x)
to σQA|�(x). These states and their relations are summarized in
Fig. 1.

IV. FISHER-INFORMATION INEQUALITIES

To highlight our main results and to isolate the main
technical manipulations in a proof, we style them as a lemma
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and a theorem. The lemma is concerned with the Fisher
information for the states (10), (16), and (20). We remind
the reader that the QCRBs that come from the quantum
Fisher informations below can generally only be achieved
asymptotically in the number of trials, i.e., N � 1.

Lemma: The quantum Fisher information of the state (16)
is

IσQA,� (x) = Icl[p�(α|x)] +
∑
α∈�

p(α|x)IσQ|α (x); (21)

i.e., it is the sum of the classical Fisher information of
the distribution p�(α|x) and the average quantum Fisher
information of the favorable-outcome states. The quantum
Fisher information of the state (20) is related to the Fisher
information (21) by

IσQA,� (x) = p(�|x)IσQA|� (x) + Icl[p(�|x),p(✕|x)], (22)

where the final term is the classical Fisher information for
the binary distribution of favorable vs unfavorable outcomes.
When the favorable set includes all outcomes, Eq. (21)
becomes the Fisher information of the unconditional state (10):

IσQA
(x) = Icl[p(α|x)] +

J∑
α=1

p(α|x)IσQ|α (x). (23)

Proof. The proof is a mainly a straightforward derivation of
the SLD for σQA,�(x). We first take the derivative of σQA,�(x)
with respect to the parameter x:

∂xσQA,�(x) =
∑

α∈{0,�}
[σQ|α(x)∂xp�(α|x)

+p�(α|x)∂xσQ|α(x)] ⊗ |fα〉〈fα|. (24)

The derivative ∂xσQ|α(x) defines the SLD of the states after the
selection measurement via

∂xσQ|α(x) = 1
2 [Lα(x)σQ|α(x) + σQ|α(x)Lα(x)], (25)

and the derivative of the outcome probabilities can be
written in terms of the usual classical logarithmic derivative,
∂xp�(α|x) = p�(α|x)∂x ln p�(α|x). We combine the two
derivatives in Eq. (24) into the operator

L�(x) =
∑

α∈{0,�}
[∂x ln p�(α|x) + Lα(x)] ⊗ |fα〉〈fα|. (26)

After a little algebra, one finds that

∂xσQA,�(x) = 1
2 [L�(x)σQA,�(x) + σQA,�(x)L�(x)], (27)

which makes L�(x) the SLD of σQA,�(x). That the ancilla
states |fα〉 are orthogonal is the crucial part of the algebra;
this is the mathematical expression of the fact that the ancilla
stores a record of the selection-measurement outcomes.

The SLD in hand, we can compute the quantum Fisher
information IσQA,� (x) = Tr[σQA,�(x)L2

�(x)], using

σQA,�(x)L2
�(x) =

∑
α∈{0,�}

p�(α|x)σQ|α(x)

× [∂x ln p�(α|x) + Lα(x)]2 ⊗ |fα〉〈fα|.
(28)

Here we again use the orthogonality of the states |fα〉.
In evaluating the trace to find the Fisher information, the
cross terms that come from the square in Eq. (28) vanish
because Tr[Lα(x)σQ|α(x)] = Tr[∂xσQ|α(x)] = ∂xTr[σQ|α(x)] =
0. The result is that the quantum Fisher information of the
state σQA,�(x) is that given in Eq. (21). Notice that L0 = 0
because the state σQ|0 is independent of x, so IσQ|0 = 0 does
not contribute to Eq. (21).

The quantum Fisher information of σQA|� follows from an
identical derivation,

IσQA|� (x) = Icl[q�(α|x)] +
∑
α∈�

q�(α|x)IσQ|α (x), (29)

where q�(α|x) = p(α|x)/p(�|x) is the renormalized proba-
bility of the favorable outcomes. Straightforward manipulation
of Icl[q�(α|x)] leads to Eq. (22). �

We are now ready to state our main result, which generalizes
inequalities derived by Tanaka and Yamamoto [26] and Ferrie
and Combes [27].

Theorem: The quantum Fisher informations of the states
introduced above satisfy

IρQ
(x) � IσQA

(x) � IσQA,� (x) � p(�|x)IσQA|� (x). (30)

When the favorable set � contains only a single outcome α,
the final entry in the chain becomes p(α|x)IσQ|α (x).

Proof. The first inequality follows from Eq. (5): either
the selection measurement followed by optimal extraction
of information about x from σQA(x) is optimal, or (more
likely) it is suboptimal; either way, the inequality holds. The
second inequality follows from a similar optimality argument
or directly from comparing Eqs. (21) and (23), with the
additional fact that lumping classical alternatives together, as
in lumping the unfavorable outcomes together, cannot increase
the classical Fisher information [38]. The third inequality is
an immediate consequence of Eq. (22), and the final sentence
is confirmed by Eq. (29). �

The chain of inequalities in the theorem, which is summa-
rized in Fig. 1, shows that probabilistic metrology cannot beat
fundamental metrological quantum limits. The first inequality
says that unless the selection measurement and subsequent
measurements on the postselected states are optimal, they
cannot do as well as the optimal measurement. The second
inequality says that discarding the information in the posts-
elected states for unfavorable outcomes cannot improve the
quantum limit on estimating x. The third inequality says that
discarding entirely the postselected states for the unfavor-
able outcomes cannot improve quantum limits, although the
presence of the success probability p(�|x) requires further
discussion, which we give in Sec. V.

Much ink is spilt here in formulating and stating our results
precisely, but the results enshrined in the theorem arise from
two principles, which we hold to be self-evident:

P1: A suboptimal strategy cannot achieve optimal perfor-
mance (this is the message of the first inequality);

P2: Information cannot be increased by throwing some of it
away (this is the essence of the second and third inequalities).

These two principles should inform thinking about metrol-
ogy even before things are spelled out precisely. Much has
been made of the possibility that one might trade optimality
for other practical advantages [19]. Indeed, there might be
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practical advantages to discarding data (such as reduced data
processing time), but generally data should be discarded only
when they contain no useful information.

The last inequality in Eq. (30) bears further consideration
because the state σQA|�(x) is closest to the idea behind
probabilistic metrology and because of the presence of the
probability p(�|x) for the favorable outcomes in the inequal-
ity. The Fisher information of the postselected state σQA|�(x)
can be larger than the Fisher information of ρQ(x)—it is such
favorable outcomes that one hopes to exploit in probabilistic
metrology—but the success probability p(�|x) says that this
strategy can only work in the sense of a bet. Next we turn our
attention to the question of how often this bet can pay off.

V. STATISTICAL INEQUALITIES FOR GAMBLING
ON FAVORABLE OUTCOMES

We can analyze the scenario above formally by imagining
a sequence of N independent trials, with N� trials having a
favorable outcome and, for these favorable trials, a subsequent
use of the state σQA|�(x) to estimate x. The QCRB can be
written as

MSE(x) � 1

N�IσQA|� (x)
, (31)

where N� is a random variable. Since E[N�] = Np(�|x),
the last inequality in Eq. (30) enforces the bound (31) on
average or, more precisely, asymptotically for large N . Might
it not be possible, however, to beat the quantum limit in a
finite number of trials that happen to have a large number of
favorable outcomes? Though this can happen, its likelihood
can be bounded using standard statistical tools.

Following Ferrie and Combes [27], what we do is bound
the probability that N�IσQA|� exceeds NIρQ

or, equivalently,
that

N� � NIρ

Iσ

= E[N�]
Iρ

p(�)Iσ

. (32)

To reduce clutter here and and in the remainder of this section,
we omit reference to x, and we use the abbreviations

Iρ = IρQ
(x) and Iσ = IσQA|� (x), (33)

since ρQ and σQA|� are the only two states involved in the
discussion. We use the Chernoff bound [39,40], which bounds
the probability that a sum, X, of random variables, each lying
between 0 and 1, is greater than its mean μ by a factor δ � 1:

Pr[X � δμ] � e−μ(δ−1)2/(δ+1). (34)

For the case at hand, it follows that

Pr[N�Iσ � NIρ]

= Pr

[
N� � NIρ

Iσ

]
� exp

(
−Np(�)

(δ − 1)2

δ + 1

)
, (35)

where δ = Iρ/p(�)Iσ . The probability of gaining an ad-
vantage from probabilistic metrology is thus exponentially
suppressed in the number of trials.

Notice, however, that when δ � 1, a situation that could
easily be encountered and in which we would expect proba-
bilistic metrology to perform poorly, the bound (35) becomes

Pr[N�Iσ � NIρ] � exp(−NIρ/Iσ ), which is not at all small
when N � Iρ/Iσ . Since probabilistic metrology aims to have
Iσ � Iρ , this bound suggests that a probabilistic-metrology
protocol might have a high probability of exceeding the QCRB
for small numbers of trials. Our intuition, stemming from the
notion that δ � 1 says that the favorable outcomes contain
little of the information in ρQ(x), suggests that the bound (35)
is not very good in these circumstances, and that turns out to
be the case.

The task is thus to improve the bound (35) to match our
intuition, and indeed, the Chernoff bound (34) is derived from
an approximation that works best when δ is near 1. The tighter
bound, from which Eq. (34) is derived, is

Pr[X � δμ] � e−μ(1−δ+δ ln δ) = e−μ(e/δ)μδ. (36)

Using this bound, we find

Pr[N�Iσ � NIρ] � e−Np(�)

(
e p(�)Iσ

Iρ

)NIρ/Iσ

. (37)

This bound takes care of the situation described above. The
term in large parentheses, e/δ, is small when δ is large, and
this term is taken to a power that is linear in N and large for
all values of N when Iρ/Iσ � 1.

The considerations in this section prompt us to formulate a
statistical version of our second principle:

P2′: Attempts to increase information statistically by
discarding information probabilistically are bad bets.

We do, however, caution the reader that since the QCRB
can only be achieved for large N , it could be that the favorable-
outcome state σQA|�(x) converges to its QCRB more rapidly
than does the initial state ρQ(x). In this situation, there could
be an advantage to postselection for finite N ; establishing such
an advantage would require a detailed, case-specific analysis
of convergence to the respective QCRBs.

VI. RELATIONSHIP TO PRIOR WORK

A. Sketch of prior Fisher-information analyses

The results presented above owe much to prior critical
analyses of probabilistic metrology in the literature. Here we
sketch some results of other researchers and put their results
in context by describing the inequalities they proved in our
notation.

Inspired by the results of Knee et al. [28] a series of papers
[26–29,41,42] have shown that probabilistic metrology in the
context of weak-value amplification is not a statistically useful
way to design an experiment and then process the results.
Knee et al. [28] showed that, for a particular estimation
problem involving initial pure product states of two qubits and
two-outcome projective measurements, the quantum Fisher
information obeys the inequality IψQ

(x) � p(�|x)IψQA|� (x),
where ψ denotes pure states and where there is only a
single outcome in the favorable outcome set. Tanaka and
Yamamoto [26] proved this inequality for any pair of quantum
systems that begin in a pure product state and interact
via any interaction Hamiltonian. Ferrie and Combes [27]
generalized the inequality of Tanaka and Yamamoto to a
double inequality that includes the mixed state σQA(x), i.e.,
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IψQ
(x) � IσQA

(x) � p(�|x)IψQA|� (x); in this inequality, the
state σQA(x) is the ensemble of postselected pure states, and
the second inequality explicitly includes contributions from
the classical Fisher information of the selection-measurement
probabilities. Ferrie and Combes also considered the presence
of arbitrary Gaussian technical noise on the input state, thus
demonstrating that the derived inequalities are true even in
the presence of such technical noise. They also used the
Chernoff bound, in a special case of the analysis in Sec. V, to
find the consequences of the Fisher-information inequalities
for a finite number of trials. Recently, Zhang, Datta, and
Walmsley [41] have independently proved a special case of
the Ferrie-Combes inequality and illustrated it with several
examples, and Knee and Gauger [29] have shown, using a
Fisher-information analysis, that if there is technical noise on
the detector, weak-value amplification offers no advantage for
overcoming such technical imperfections.

In this paper we have put the analysis of probabilistic
metrology on a firm, general footing by using the physi-
cally motivated ancilla model. We generalized prior Fisher-
information inequalities to the set of inequalities in Eq. (22),
which apply to all mixed input states, thus including the effect
of any technical noise at the input, and to all possible quantum
operations for the selection measurement. This means that
the analysis covers all protocols for probabilistic metrology
in which MSE is the performance metric; in particular, this
encompasses all versions of probabilistic metrology that use
weak-value amplification, regardless of whether the defined
weak values are real or imaginary.

In the remainder of this section, we formulate three
desiderata for analyses of probabilistic quantum metrology.
Then we show how the prior work on using weak-value
amplification for metrology and on metrology with abstention
is related to the desiderata and to our analysis.

B. Desiderata for probabilistic metrology

We find it useful to formulate three desiderata for analyses
that assess the utility of probabilistic protocols for quantum
metrology:

D1: Choose a performance metric, and apply it uniformly
to all data.

D2: Include the success probability correctly in the analysis.
This should happen automatically if the problem is set up
properly. Assessing the effect of the success probability might
require the sort of statistical analysis given in Sec. V.

D3: Compare the performance of probabilistic protocols
with deterministic protocols, using the same performance
metric for all cases. If possible, compare with the optimal de-
terministic protocol, which sets a quantum limit on estimation
as measured by the chosen performance metric.

The analysis we present in Secs. II–V adheres to these
desiderata by considering single-parameter estimation, with
MSE as the performance metric and the corresponding
quantum Cramér-Rao bound setting the quantum limit on
achievable MSE. The string of inequalities in our theorem au-
tomatically includes the probabilities for favorable outcomes
and the overall success probability p(�|x) in just the right
way for comparing probabilistic and deterministic strategies.
In contrast, in much previous work, the relative scarcity

of the favorable outcomes and/or the failure to garner any
information about the parameters from the discarded outcomes
is not fully included in the analysis, thus making it difficult to
judge the impact of discarding outcomes.

Though our analysis provides a model for studies of
probabilistic quantum metrology, it does not apply directly
to much of the previous work for two reasons: some previous
work considers multiparameter estimation, and much of it uses
a performance metric other than MSE. We now take a brief
look at some of this previous work to identify problems in the
analysis.

C. Weak-value amplification

Analyses of weak-value amplification [18–20] typically
use signal-to-noise ratio (SNR), instead of MSE, as the
performance metric and consider a probabilistic protocol
successful if the SNR increases on postselection. We note
that there is no good reason to prefer SNR over MSE, since in
the case of amplification, MSE already includes the effects of
gain that SNR is meant to capture; moreover, an improvement
in SNR does not necessarily imply an improvement in MSE
[27].

Most importantly, as was discussed in [42], the relevant
metric for assessing nondeterministic protocols is not the
postselected SNR, which fails to include the success prob-
ability p(�), but rather the root-probability-SNR product,√

p(�) × SNR. SNR increases as the square root of the
number of trials, so when trials proceed to an estimate only
on favorable outcomes, the effective number of trials on
average is reduced to p(�)N ; thus proper accounting requires
including

√
p(�) in the performance metric. As in the analysis

of nondeterministic immaculate amplifiers in [42], it seems
likely that the root-probability-SNR product will show that
weak-value amplification does not improve the ability to detect
weak signals, in accordance with the related results reported
in [26–29].

It has been argued that even when the fundamental results
presented here and in [26–29] hold, the situation for weak-
value amplification changes when “technical noise” is included
(see, e.g., [19]). We have yet to see any convincing evidence
of this claim because success probability is not properly
included in the analysis. As we noted in Sec. III, our analysis
already includes the effects of technical noise at the input.
Any other technical noise is noise in the measurements and
can be regarded as arising from a restriction that prevents
the optimal measurement from being performed. Thus, even
were it true that weak-value amplification has advantages in
the case of such output technical noise, it would mean that
the advantages have nothing to do with fundamental quantum
limits and should not be viewed as addressing fundamental
questions of quantum mechanics.

D. Metrology with abstention

Protocols for metrology with abstention [15–17] have used
mean fidelity as the performance metric. We focus on the
protocol considered in [15], which seeks to estimate the
direction ntrue of the Bloch vector of N qubits all of which
are in the state ρ = 1

2 (I + rntrue · σ ). The chosen performance
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metric is the fidelity of the pure qubit state corresponding to
the estimate nest with the pure qubit state corresponding to the
true direction ntrue, i.e.,

F (nest,ntrue) = |〈nest|ntrue〉|2 = 1
2 (1 + nest · ntrue); (38)

this fidelity is averaged over the prior distribution of ntrue and
over the measurement results that lead to nest. If the prior for
ntrue is uniform on the Bloch sphere, the optimal measurement
is the covariant measurement, i.e., the measurement that is
invariant under simultaneous rotations of the qubits. This
covariant measurement is block diagonal in the angular-
momentum subspaces, which have total angular momentum
in the range j = jmin, . . . ,J , where jmin = N mod 2/2 and
J = N/2. We let ξj denote an arbitrary angular-momentum
subspace with angular momentum j ; the number of such
subspaces, i.e., the multiplicity of irreducible representations
with angular momentum j , is given in Eq. (11) of [15]. In each
angular-momentum subspace, the covariant measurement is
a measurement in the basis of angular-momentum coherent
states, which are specified by a spin direction; the estimate of
spin direction is the result of the measurement.

As shown in [15], the mean fidelity is

F =
∫

dntrue

4π
dnest F (nest,ntrue)p(nest|ntrue)

=
∫

dntrue F (ez,ntrue)p(ez|ntrue)

=
∑

j

∫
dntrue F (ez,ntrue)p(ez|j,ntrue)p(j |ntrue). (39)

The second step here follows from the covariance of the
measurement, which allows us to pick any direction for the
estimate, here ez, as long as we integrate over the uniform
prior for ntrue. The same symmetry under rotations implies
that p(j |ntrue) = pj , the probability to find the N qubits with
angular momentum j , is independent of ntrue. The final result
for the average fidelity is

F =
∑

j

pjF j , (40)

where

F j =
∫

dntrue F (ez,ntrue)p(ez|j,ntrue) (41)

is the average fidelity for angular momentum j . Since the
fidelity can be thought of as the probability that nest matches
ntrue, the j th term in the sum (40) can be thought of as the
probability to get the outcome j times the probability of a
match given the outcome j ; the overall fidelity is obtained by
summing over j .

The abstention protocol regards the identification of total
angular momentum j as a selection measurement; the sub-
sequent identification of a particular subspace within j and
the coherent-state measurement in that subspace complete the
measurement required to give an estimate. Since Fj increases
with j (because the bigger j , the more well-defined the spin
direction), the favorable outcomes are chosen to be those
whose total angular momentum exceeds a threshold j∗, i.e.,

� = {j∗ + 1, . . . ,J }. The favorable outcomes have overall
probability and average fidelity

p(�) =
J∑

j=j∗+1

pj , F � =
J∑

j=j∗+1

pj

p(�)
Fj ; (42)

similarly, the unfavorable outcomes have overall probability
and average fidelity

p(✕) =
j∗∑

j=jmin

pj , F ✕ =
j∗∑

j=jmin

pj

p(✕)
F j . (43)

Since Fj increases with j , it is clear that F ✕ < F �.
We can now write a string of inequalities reminiscent of

those for quantum Fisher information in Eq. (30):

F = p(✕)F ✕ + p(�)F � � 1
2p(✕) + p(�)F � � p(�)F �.

(44)

Given that F ✕ < F �, the first equality says that F < F �,
i.e., that the postselected averaged fidelity is bigger than
the unconditioned average fidelity. It is this increase in
postselected average fidelity that is reported as the advantage
of abstention metrology in [15]. The two inequalities that
complete Eq. (44), both of which correspond to discarding
information, indicate why this advantage is not useful. The
first inequality says that the average fidelity decreases if one
guesses a random spin direction in the event of an unfavorable
outcome (random guesses have average fidelity of 1/2), and
the second says that the average fidelity decreases further if
one refuses to give an estimate for unfavorable outcomes. Note
that if Eq. (44) is divided by p(�), as is typically done in the
literature, the inequalities still hold.

If mean fidelity is the performance metric, the postselected
average fidelity must be multiplied by the probability of a
favorable outcome. To put it a bit differently, in the case of
postselection, the average probability that the estimate matches
the true spin direction must include the probability of having
the opportunity to make an estimate.

One could repeat the N -qubit protocol many times M

in the hope that there would be so many favorable out-
comes M� that M�F � > MF or, equivalently, that M� >

MF/F � = E[M�]F/p(�)F �. This clearly does not work
out on average, and the hope can be dashed using the
statistical techniques employed in Sec. V, which show that the
probability of this happy occurrence decreases exponentially
with M .

Although the argument we give here is couched in terms of
the abstention protocol considered in [15], the same ideas and
analysis are easily generalized to any probabilistic protocol
that uses fidelity as the performance metric. The key point is
that the probability of favorable outcomes must be included in
the postselected average fidelity.

VII. DISCUSSION

Our chief objective in this paper has been to give a rigorous
account of quantum limits on probabilistic metrology. Specif-
ically, we have shown that the quantum Fisher information
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weighted by the success probability does not increase under
postselection; thus probabilistic metrology cannot improve
the quantum limit on the accuracy for estimating a single
parameter. The quantum Fisher information is relevant because
we use a quadratic loss function, the MSE of our estimate, as
our performance metric; the QCRB tells us that an unbiased
estimator can achieve a MSE that is the inverse of the quantum
Fisher information.

It remains possible, however, that our conclusion might
not hold for other performance metrics applied to other
parameter-estimation problems. We conclude now by briefly
considering other possibilities, but caution the reader that to
reach a different conclusion about probabilistic metrology
requires violating one of the two principles we enunciated
in Sec. IV. Neither of these principles seems likely to go away.

One approach might be to include a fixed cost for obtaining
an unfavorable outcome from the selection measurement.
Additionally (or alternatively), one might use a loss function
that penalizes deviations of x̂ from xtrue more heavily than does
a quadratic loss function. A power-law loss function such as
E [|x̂ − xtrue|n] might do that, and the resulting penalty might
prejudice one to use states that provide high sensitivity to
changes in the parameter.

Though it is conceivable that exotic loss functions or other
performance metrics might avoid our negative conclusions
about probabilistic quantum metrology, the conjurer of any
such function faces three tasks before reporting back to the
community. The first task is to provide a detailed account of
what parameter-estimation problem the performance metric
corresponds to. The second is to determine, if possible,
the ultimate quantum limit—the analog of the QCRB—on
performance in terms of the new metric. The third is to
analyze rigorously the performance of probabilistic protocols
as expressed by the new metric, including the effect of success
probability in the analysis. Results without the context that
comes from performing these tasks have little call on the
attention of those who actually face quantum limitations on
measurement precision.
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