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An ideal phase-preserving linear amplifier is a deterministic device that adds to an input signal the minimal

amount of noise consistent with the constraints imposed by quantum mechanics. A noiseless linear amplifier

takes an input coherent state to an amplified coherent state, but only works part of the time. Such a device is

actually better than noiseless, since the output has less noise than the amplified noise of the input coherent state;

for this reason we refer to such devices as immaculate. Here we bound the working probabilities of probabilistic

and approximate immaculate amplifiers and construct theoretical models that achieve some of these bounds. Our

chief conclusions are the following: (i) The working probability of any phase-insensitive immaculate amplifier is

very small in the phase-plane region where the device works with high fidelity; (ii) phase-sensitive immaculate

amplifiers that work only on coherent states sparsely distributed on a phase-plane circle centered at the origin

can have a reasonably high working probability.

DOI: 10.1103/PhysRevA.88.033852 PACS number(s): 42.65.Yj, 03.67.−a, 42.50.Lc

I. INTRODUCTION AND MOTIVATION

Classical noninverting amplifiers take a macroscopic input

signal, such as a time-varying voltage, and produce an output

signal that is a rescaled version of the input signal. The ratio of

the input amplitude to the output amplitude is called the gain g

of the amplifier. Classical amplifiers are used ubiquitously,

e.g., to boost signal strength for classical communications

or to increase the power of signals driving loudspeakers.

In principle, a classical amplifier can be noise free in the

sense that no noise is added to the input signal. The only

truly fundamental limit on amplification comes from quantum

mechanics.

The canonical quantum amplifier is called a phase-

preserving linear quantum amplifier. It takes an input bosonic

signal and produces a larger output signal [1–3], while preserv-

ing the phase. The quantum constraints on the operation of such

a device are ultimately a consequence of unitarity and can be

thought as coming from the prohibition on transformations that

increase the distinguishability of nonorthogonal states [4,5].

The quantum constraint on a high-gain device can be expressed

as the requirement that the amplifier must add noise that, when

referred to the input, is at least as big as an extra unit of vacuum

noise. A device that achieves the minimal added noise is called

an ideal linear amplifier.

To understand the purpose of quantum amplifiers, it is

instructive to look at how they are used. An illustrative

case involves experiments probing quantum mechanics at

microwave frequencies. Experimenters wish to measure the

small amplitude and phase shifts of a field that is used to probe

another quantum system. It turns out that quantum-limited

simultaneous measurements of both amplitude and phase

shifts introduce the same additional unit of vacuum noise

as does an ideal linear amplifier [6]. Thus, in principle,

measuring at the input or amplifying and measuring at the

output both provide the same signal-to-noise ratio (SNR); the

*ccaves@unm.edu

practical question becomes whether it is easier to do quantum-

limited measurement or to do quantum-limited amplification

and subsequent measurement at the output. The answer at

microwave frequencies is that amplifiers operate closer to

quantum limits.

Recently, Ralph and Lund [7] proposed a device, which they

call a “nondeterministic noiseless linear amplifier,” previously

considered by Fiurášek [8] in the context of probabilistic

cloning. The idea behind the Ralph-Lund device is that it

might be possible to improve the SNR in some number of

trials or experiments, while the device fails in the remaining

runs. Specifically, what Ralph and Lund proposed is a device

that takes an input coherent state |α〉 to a target coherent state

|gα〉 with (success) probability p� and fails with probability

1 − p�. Such a device is even better than noiseless, because

when the output noise is referred to the input, it is smaller

than the original coherent-state noise by a factor of 1/g2. In

particular, it is better than a device that amplifies the input

noise to the output without the addition of any noise, a device

that we call a perfect amplifier. Because it is better than

perfect, we call Ralph and Lund’s proposal an immaculate
amplifier. The purpose of this paper is to analyze in detail and

to bound the performance of immaculate linear amplifiers.

In Sec. II we review recent work on deterministic linear

amplifiers [3], which allows us to consider on the same

footing ideal linear amplifiers and (unphysical) perfect and

immaculate amplifiers. We use this discussion to motivate the

idea of nondeterministic, or probabilistic, versions of perfect

and immaculate amplifiers, and we use a simple uncertainty-

principle argument to bound the working probability of

probabilistic perfect and immaculate amplifiers.

Section III reviews the relation between amplification

and cloning, thus connecting the results in this paper to

the literature on cloning of coherent states, and Sec. IV

reviews proposals for and experimental implementations of

immaculate linear amplifiers.

Sections V and VI are the heart of the paper, the place where

we derive bounds on the operation of immaculate amplifiers.
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Immaculate amplifiers that produce the target coherent state

exactly, but are allowed to fail, are the subject of Sec. V; they

are closely related to unambiguous state discrimination [9,10],

in which one discriminates among a set of linearly independent

states exactly, but can declare a failure to discriminate. We use

results from unambiguous state discrimination to bound the

working probability of an immaculate amplifier that amplifies

M coherent states uniformly spaced around a circle of radius

|α| centered at the origin of the phase plane. In the case of many

coherent states on both the input and the output circles, i.e.,

assuming M ≫ g2|α|2, the working probability is bounded by

p� �
e(g2−1)|α|2

g2(M−1)
≪

(√
e

g2

)2(M−1)

. (1.1)

This success probability decreases exponentially with M and

goes to zero in the phase-insensitive limit M → ∞. We stress

that this means that an immaculate amplifier that works exactly

on an entire circle of input coherent states never works.

For an immaculate amplifier that acts on all coherent states

on M equally spaced spokes of a disk of any radius |α| > 0

centered at the origin, the success probability is governed by

the limiting circle of zero radius and thus is bounded by

p� �
1

g2(M−1)
(1.2)

for any M � 2. This success probability goes to zero in the

phase-insensitive limit M → ∞.

On a more optimistic note, we also show in Sec. V that

if the M coherent states are more than about a vacuum unit

apart on the input circle, they can be immaculately amplified

with a success probability exceeding a half. This suggests that

practical applications of immaculate amplifiers are likely to

be as amplifiers that are both phase sensitive and amplitude

specific in that they only work well on a discrete set of states

on a particular phase-plane circle. Such an amplitude-specific,

phase-sensitive amplifier might prove useful, for example, in

discriminating the coherent states used in phase-shift keying

[11,12].

The results of Sec. V indicate that exact immaculate

amplification and phase insensitivity do not go well together.

In Sec. VI we explore this incompatibility further by dropping

exactness and investigating the performance of approximate,

probabilistic immaculate amplifiers that are explicitly phase

insensitive. We characterize such a device by its amplitude gain

and by the radius
√

N/g of the disk, centered at the origin, over

which it amplifies an input coherent |α〉 to the target output

state |gα〉 with near unit fidelity. The high-fidelity outputs thus

lie within a disk of radius
√

N . By finding the optimal such

amplifier, we show that the best success probability in the

high-fidelity input region is

p� =
e−|α|2

g2N
, |α|2 � N/g2, (1.3)

which decreases exponentially with N . We use our results to

investigate the performance of phase-insensitive immaculate

amplifiers within the context of the SNRs for measurements

of amplitude and phase shifts discussed above.

Because the success probability (1.3) is so small, we

suggest that a good performance measure for phase-insensitive

immaculate amplifiers must include both the fidelity with

the target output |gα〉 and the success probability. A natural

combination is the product of the two, which can be thought of

as the overall probability to reach the target. We show that over

the whole range of operation of the optimal phase-insensitive

immaculate amplifier, this probability-fidelity product is never

better than that of the identity operation. This can be sum-

marized by saying that in terms of the probability-fidelity

product, phase-preserving immaculate amplification is never

better than doing nothing, thus reenforcing our conclusion that

any practical application of immaculate amplification lies in

phase-sensitive amplification.

A concluding Sec. VII wraps up by summarizing our key

results and discussing avenues along which future research

might and should proceed.

II. PHYSICAL AND UNPHYSICAL LINEAR AMPLIFIERS

A. Context

The setting for our investigation is a signal carried by a

single-mode field,

E(t) =
1

2
(ae−iωt + a†e−iωt ) =

1
√

2
(x1 cos ωt + x2 sin ωt).

(2.1)

This primary mode, which we label by A, is to undergo phase-

preserving linear amplification. The annihilation and creation

operators, a and a†, are related to the Hermitian quadrature

components, x1 and x2, by a = (x1 + ix2)/
√

2, a† = (x1 −
ix2)/

√
2, where [a,a†] = 1 or, equivalently, [x1,x2] = i.

The annihilation operator is a complex-amplitude operator

for the field, measured in photon-number units; the expectation

value of the field, 〈E(t)〉 = Re(〈a〉e−iωt ), oscillates with the

amplitude and phase of 〈a〉. The variance of E characterizes

the noise in the signal; for phase-insensitive noise, for which

〈(�a)2〉 = 0 (we use �O = O − 〈O〉 here and throughout),

this variance is constant in time and given by

2〈(�E)2〉 = 〈|�a|2〉 = 1
2

(

�x2
1 + �x2

2

)

� 1
2
. (2.2)

Here 〈|�a|2〉 ≡ 1
2
〈�a�a† + �a†�a〉 is the symmetrically

ordered second moment of a. The inequality follows directly

from the uncertainty principle for the quadrature components,

〈(�x1)2〉〈(�x2)2〉 � 1/4. The lower bound is the half-quantum

of zero-point (or vacuum) noise and is saturated if and only if

the mode is in a coherent state |α〉.
The objective of phase-preserving linear amplification is

to increase the size of the input signal by a (real) amplitude

gain g, regardless of the input phase, while introducing as

little noise as possible. The amplification of the input signal

can be expressed as a transformation of the expected complex

amplitude,

〈aout〉 = g〈ain〉. (2.3)

A perfect linear amplifier would perform this feat while

adding no noise; in the Heisenberg picture, the primary mode’s

annihilation operator, not just its expectation value, would

transform from input to output as

aout = gain. (2.4)

033852-2
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The second-moment noise would be amplified by the power

gain g2, i.e., 〈|�aout|2〉 = g2〈|�ain|2〉. The amplifier’s output

would be contaminated by the same noise as the input, blown

up by a factor of g2, but the amplification process would not

add any noise to the amplified input noise.

There are, however, no perfect phase-preserving linear

amplifiers; the transformation (2.4) does not preserve the

canonical commutation relation and thus violates unitarity.

Physically, this is the statement that amplification of the

primary mode requires it to be coupled to other physical

systems, not least to provide the energy needed for amplifi-

cation; these other systems, which can be thought of as the

amplifier’s internal degrees of freedom, necessarily add noise

to the output. This physical requirement is expressed in an

input-output relation [1,2],

aout = gain + L†, (2.5)

where the added-noise operator L is a property of the internal

degrees of freedom. One usually assumes that 〈L†〉 = 0 so as to

retain the expectation-value transformation (2.3). Preserving

the canonical commutation relation between input and output

requires that

[L,L†] = g2 − 1, (2.6)

which implies an uncertainty principle for the added noise,

〈|�L|2〉 � 1
2
(g2 − 1). (2.7)

The amplifier must be prepared to receive any input in

the primary mode, without having any idea what that input

is going to be. This places the restriction that the primary

mode and the internal degrees of freedom cannot be correlated

before amplification. The total output noise is then the sum of

the amplified input noise and the noise added by the internal

degrees of freedom:

〈|�aout|2〉 = g2〈|�ain|2〉 + 〈|�L|2〉 � g2 − 1
2
. (2.8)

The lower bound follows from the uncertainty principles (2.2)

and (2.7). An amplifier that achieves the lower bound in

Eq. (2.7), thus adding the least amount of noise permitted

by quantum mechanics, is called an ideal linear amplifier.

B. Ideal, perfect, and immaculate linear amplifiers

We can formulate a more general description of linear

amplifiers by using the formalism developed in Ref. [3], where

we showed that for any phase-preserving linear amplifier,

its action on an input state ρ of the primary mode can be

represented by an amplifier map,

ρout = E(ρ) = TrB[S(r)ρ ⊗ σS†(r)]. (2.9)

In this expression, σ is the input state of a (perhaps fictitious)

ancillary mode B, which has annihilation and creation opera-

tors b and b†, and S(r) = er(ab−a†b†) is the two-mode squeeze

operator. The amplitude gain is given by g = cosh r , and the

noise properties of the amplifier are encoded in σ . The main

result of Ref. [3] is that the amplifier map is physical, i.e., is

completely positive, if and only if σ is a physical ancilla state.

The P function of the output state can be written as a

convolution of the P function of the input state with the Q

distribution of σ :

Pout(β) =
∫

d2α
Qσ [−(β∗ − gα∗)/

√

g2 − 1 ]

g2 − 1
Pin(α).

(2.10)

We specialize for the remainder of this section to a coherent-

state input |α〉, for which the input P function is a δ distribution

and the output P function is obtained by displacing and

rescaling the Q distribution of σ ,

Pout(β) =
Qσ [−(β∗ − gα∗)/

√

g2 − 1 ]

g2 − 1
. (2.11)

Moments of α calculated using the P function give normally

ordered moments of a and a†.

An ideal linear amplifier corresponds uniquely to the case

where the input ancilla state is vacuum, i.e., σ = |0〉 〈0|, giving

rise to an output P function,

Pout(β) =
e−|β−gα|2/(g2−1)

π (g2 − 1)
. (2.12)

The displacement of the Q distribution indicates that the

input complex amplitude is amplified as in Eq. (2.3), and

the rescaling of the Q distribution confirms that the total

(symmetric) output noise is 〈|�aout|2〉 = 〈�a
†
out�aout〉 + 1

2
=

g2 − 1
2
.

We can embed the ideal-amplifier map in a sequence

of maps for both physical and unphysical amplifiers by

considering ancilla states of thermal form,

σ =
1

μ2

(

1 −
1

μ2

)a†a

=
1

μ2

∞
∑

n=0

(

1 −
1

μ2

)n

|n〉 〈n| .

(2.13)

When μ2 ∈ [1,∞), σ is a physical thermal state, with dimen-

sionless inverse temperature β given by μ2 = (1 − e−β )−1;

μ2 = 1 gives the vacuum state. When μ2 ∈ [0,1), however,

σ has negative eigenvalues and thus is unphysical. When

μ2 ∈ ( 1
2
,∞), the trace of σ is well defined and equal to 1,

but when μ2 ∈ [0,1/2], the series for the trace of σ diverges;

μ2 = 1/2 makes σ the parity operator. The amplifier maps

corresponding to unphysical σ are not completely positive

and thus are unphysical [3]. In the following, we sometimes

use quotes to warn the reader that σ might not be physical.

The Q function for σ , Qσ (α) = e−|α|2/μ2

/πμ2, is well

behaved on the entire range μ2 ∈ (0,∞) and becomes a δ

function when μ2 = 0. The output P function is the Gaussian

Pout(β,μ2) =
1

πμ2(g2 − 1)
e−|β−gα|2/μ2(g2−1), (2.14)

which has normally ordered output noise 〈�a†�a〉 = μ2(g2 −
1) and, hence, symmetrically ordered output noise [13],

〈|�aout|2〉 = 〈�a
†
out�aout〉 + 1

2
= μ2(g2 − 1) + 1

2
. (2.15)

The output Q distribution is

Qout(β,μ2) =
1

π [μ2(g2 − 1) + 1]
e−|β−gα|2/[μ2(g2−1)+1].

(2.16)
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We now focus on three amplifiers of interest, which

correspond to three values of μ2:

(1) the ideal linear amplifier (physical), which corresponds

to μ2 = 1 and which adds the minimal amount of (symmetri-

cally ordered) noise permitted by quantum mechanics;

(2) the perfect linear amplifier (unphysical), μ2 = 1/2,

whose (symmetrically ordered) output noise consists only of

the amplified input noise;

(3) the unphysical μ2 = 0 amplifier, which we christen the

immaculate linear amplifier, because it is better than perfect,

and which takes an input coherent state |α〉 to an amplified

output coherent state |gα〉; we let A denote the amplifier map

(2.9) for the case of an immaculate linear amplifier, i.e.,

A(|α〉〈α|) = |gα〉〈gα|. (2.17)

The operation of these three amplifiers can be understood

intuitively in terms of how the output noise arises from

amplified input noise and added noise. The three canonical

quasidistributions, the P function, the Wigner W function, and

the Husimi Q distribution [14], with their different operator

orderings, quantify the noise differently and thus provide

three different perspectives on the relation between input

and output noise. In Fig. 1 we illustrate the amplification

transformations for ideal, perfect, and immaculate amplifiers.

The transformations can be summarized in terms of ball-and-

stick phase-space diagrams that depict the input and output

noise as circles of uncertainty centered at the input and output

mean complex amplitudes. We give such diagrams for the

normally ordered variances corresponding to input and output

P functions, as in Eq. (2.14), and also for the symmetrically

ordered moments of input and output Wigner W functions and

the antinormally ordered moments of input and output Husimi

Q distributions.

The P -function perspective, with its normally ordered

moments, is matched to the immaculate amplifier map (2.17).

The immaculate amplifier takes an input coherent state to an

amplified coherent state; in the P -function depiction, it takes

an input dot in the phase plane to an output dot, without adding

any noise. All the output noise for a perfect or an ideal amplifier

appears to be added noise.

The symmetrically ordered moments of the Wigner function

give the traditional perspective on amplifier noise. A perfect

amplifier amplifies input coherent-state noise without adding

any noise. An ideal amplifier adds further noise 〈|�L|2〉 =
1
2
(g2 − 1), and an immaculate amplifier subtracts the same

amount of noise.

The antinormally ordered moments of the Q function give

a picture matched to an ideal amplifier. The input noise of a

coherent state is amplified by an ideal amplifier to produce

the output noise without addition of any further noise. A

perfect amplifier has less output noise by 1
2
(g2 − 1), and an

immaculate amplifier has less noise by g2 − 1.

C. Naive uncertainty-principle bounds

on probabilistic µ
2 amplifiers

The antinormally ordered noise of the Q function has a

physical interpretation that sheds light on the performance of

linear amplifiers. Suppose one wishes to determine the center

of a coherent state by making simultaneous measurements

FIG. 1. (Color online) Ball-and-stick phase-space depictions of

input and output noise for ideal (μ2 = 1), perfect (μ2 = 1

2
), and

immaculate (μ2 = 0) amplifiers defined by the amplifier map (2.9)

with initial ancilla “state” (2.13). Color and fill conventions: Solid

(purple) fill is used for input noise; (red) fill with slanted lines for

the output noise of an ideal amplifier; (blue) fill with dots for the

output of a perfect amplifier; and solid (green) fill for the output of

an immaculate amplifier. The primary-mode input is a coherent state

|α〉 with |α| = 1, and the gain is g = 4, giving the output state a

mean that lies on a circle of radius g|α| = 4. The input and output

states are represented by noise circles centered at the mean complex

amplitude (the stick) and having radius 
/2
√

2 (the ball), where


2 = 〈|�α|2〉 is the variance of the complex amplitude calculated

from the appropriate quasidistribution: for the normal ordering of

the P function, 
2
P = 〈�a†�a〉; for the symmetric ordering of the

Wigner W function, 
2
W = 1

2
(〈�a†�a〉 + 〈�a�a†〉) = 
2

P + 1

2
; for

the antinormal ordering of the Q distribution, 
2
Q = 〈�a�a†〉 =


2
W + 1

2
. The P -function depiction is the one suggested by the

amplifier map (2.9): The dot (
P = 0) for the input coherent state

|α〉 is amplified by an immaculate amplifier to a dot for the output

coherent state |gα〉; the output for a perfect amplifier has additional

noise 
2
P = 1

2
(g2 − 1), and the output for an ideal amplifier has

additional noise 
2
P = g2 − 1. The symmetrically ordered moments

of the Wigner W function give the traditional picture of amplifier

noise: the input coherent state, represented by a circle corresponding

to 
2
W = 1

2
, has its noise amplified by a perfect amplifier along the

(gray) radial lines to the circle with 
2
W = 1

2
g2; the output of an

ideal amplifier has additional noise 1

2
(g2 − 1), giving total noise


2
W = g2 − 1

2
, and the output of an immaculate amplifier has its

noise reduced by 1

2
(g2 − 1) to the coherent-state value 
2

W = 1

2
.

The antinormally ordered moments of the Husimi Q distribution

give a picture suited to discussion of simultaneous measurements

of the quadrature components (see text): The input coherent state,

represented by a circle corresponding to 
2
Q = 1, has its noise

amplified by an ideal amplifier along the (gray) radial lines to a

circle with 
2
Q = g2; the output of a perfect amplifier has less noise

by 1

2
(g2 − 1), giving total noise 
2

Q = 1

2
(g2 + 1), and the output

of an immaculate amplifier has its noise reduced by g2 − 1 to the

coherent-state value 
2
Q = 1.

of the two quadrature components. The statistics of ideal

simultaneous measurements are given by the Q distribution

[6], so in ν such measurements, one can determine the
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center with uncertainty (δx1)in/
√

ν = (δx2)in/
√

ν = 1/
√

ν;

the uncertainties here, distinguished by a δ, are calculated

from the Q distribution, i.e., using antinormal ordering.

Alternatively, one could amplify the coherent state with an

ideal linear amplifier and determine the center of the output

state with uncertainty (δx1)out/
√

ν = (δx2)out/
√

ν = g/
√

ν;

this allows one to determine the center of the input coherent

state with the same uncertainty as measurements at the

input, i.e., (δx1)out/g
√

ν = (δx2)out/g
√

ν = 1/
√

ν. The point

of linear amplification is to make a signal much larger so it can

be detected by less sensitive measurements. That it is possible

to determine the input with exactly the same sensitivity by

measuring either the input or the output is an alternative way

of characterizing the performance of an ideal amplifier.

It is interesting to apply this sort of thinking to the

unphysical amplifiers with μ2 < 1; if one could construct

such an amplifier, one could determine the center of an input

coherent state with uncertainty

(δx1)out

g
√

ν
=

(δx2)out

g
√

ν
=

√

μ2(g2 − 1) + 1

g
√

ν
. (2.18)

This violates the uncertainty-principle bound for any μ2 < 1

and thus provides another way of seeing why the amplifiers

with μ2 < 1 are unphysical.

A potential way to make such an amplifier physical is to

make it nondeterministic, so that it only works with probability

p�. Then, since only p�ν of the trials are effective, one

can determine the center of the input coherent state with

uncertainty (δx1)out/g
√

p�ν = (δx2)out/g
√

p�ν. Requiring

that this uncertainty not best the uncertainty-principle bound,

(δx1)2
out

p�g2
=

(δx2)2
out

p�g2
� 1, (2.19)

gives us a bound on the working probability,

p� �
(δx1)2

out

g2
=

(δx2)2
out

g2
= μ2 +

1 − μ2

g2
. (2.20)

Another way to express the bound (2.20) is in terms of the

root-probability–SNR product,
√

p�SNR, where if x1 and x2

represent the amplitude and phase quadratures (〈x1〉 =
√

2|α|
and 〈x2〉 = 0), the SNR is defined as SNR ≡ 〈x1〉/δx1 =
〈x1〉/δx2. The root-probability–SNR product is a measure of

the resolvability of states. The uncertainty-principle bound

(2.20) on success probability is equivalent to the requirement

that amplification not increase this resolvability, i.e.,

√
p� SNRout � SNRin =

√
2|α|. (2.21)

The root-probability–SNR product provides the same in-

formation as the uncertainty-principle bound, but without

referring output quantities to the input. We consider the

root-probability–SNR product again in Sec. VI.

It is worth noting that since the output state ρout is Gaussian,

its fidelity with |gα〉 is the inverse of the antinormally ordered

output variances:

F (μ2) = 〈gα|ρout|gα〉 = πQout(gα) =
1

μ2(g2 − 1) + 1
.

(2.22)

This gives a bound on the probability-fidelity product,

p�(μ2)F (μ2) �
1

g2
, (2.23)

which is independent of μ2 and achieved by an ideal linear

amplifier. The probability-fidelity product can be regarded as

the overall probability to reach the target state |gα〉. Such

products appear again throughout our analysis.

For the remainder of the paper, we focus on the immac-

ulate linear amplifier (μ2 = 0), for which the probability

bound (2.20) becomes p� � 1/g2. Our analysis shows that

a nondeterministic immaculate linear amplifier only works

with high fidelity on a portion of phase space, where it has

considerably less chance of working than this bound. It thus

does considerably worse than a deterministic linear amplifier in

determining the center of an input coherent state. This suggests

that such devices should not be thought of primarily as linear

amplifiers. They could be used, however, as probabilistic,

approximate cloners, a task that we consider now.

III. AMPLIFIERS AND CLONING

Exact, deterministic cloning is not allowed by quantum

mechanics [4,5,15]. For coherent states, the impossibility of

exact, deterministic cloning corresponds to the impossibility of

deterministic immaculate amplification. If one has M clones

of a coherent state |α〉, they can be coherently combined in

an M-port device to produce M − 1 vacuum states and a

single amplified coherent state |gα〉, with g =
√

M; running

an amplified coherent state |gα〉 backwards through the same

device splits that state into M clones. This equivalence between

cloning and immaculate amplification is the basis for links

between cloning and amplification (see, e.g., Refs. [4,16]);

here we summarize the links and the terminology relevant to

this paper [17,18].

The cloning literature phrases the task of cloning in terms

of transforming N replicas of the state to be cloned into some

number M of identical clones; this is termed “N to M” cloning

and is often denoted N → M . An amplifier with amplitude

gain g can be thought of as doing 1 → M = √
g cloning. Since

exact, deterministic cloning is ruled out by the no-cloning

theorem when M > N , one must drop either exactness,

considering instead noisy or approximate cloning [19], or

determinism, considering instead probabilistic cloning.

Consider first approximate, deterministic cloning. The stan-

dard measure of performance for approximate cloning is the fi-

delity F of the clones with the desired target state. If the clones

all have the same fidelity with the target state, the cloning

process is said to be symmetric. If the fidelity of the clones is

independent of the input state, the cloning is called universal.
It is known [17,20] that the optimal fidelity for cloning

coherent states |α〉 to M clones that have Gaussian noise is

achieved by using an ideal linear amplifier with gain g =
√

M ,

followed by an M-port device that splits the amplified state

into M approximate clones, each of which has the marginal

state ρα . The state ρα has P function Pα(β) = g2Pout(gβ) [see

Eq. (2.12)], and the corresponding Q distribution is

Qα(β) =
e−|β−α|2/(2−1/g2)

π (2 − 1/g2)
. (3.1)
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The output fidelity,

F1→M = 〈α|ρα|α〉 = πQα(α) =
M

2M − 1
, (3.2)

is a function of the gain alone, independent of the amplitude

of the input state [17,21]. This output fidelity limits to 1
2

as

M → ∞.

Suppose instead that one desires perfect clones and is thus

willing to put aside determinism. This is called exact (F =
1), probabilistic cloning [22], and the appropriate measure of

performance is the probability p� that the cloning process

works. In probabilistic cloning, one usually restricts to a finite

set of input states and attempts to clone these states optimally.

The restriction on input states is referred to as state-dependent
cloning.

In Sec. V, we consider exact, but probabilistic immaculate

amplification. Given the equivalence between immaculate

amplification and exact cloning, this can equally well be

thought of as exact, probabilistic, 1 → M = √
g cloning of

coherent states. We show that exact, probabilistic immaculate

amplification of all coherent states—or even of all the coherent

states on a circle centered at the origin of phase space—cannot

occur with a nonzero probability of success. If, however,

the input coherent states are restricted to a finite set equally

spaced around a circle centered at the origin, exact immaculate

amplification can occur with a success probability given by

the probability of unambiguously discriminating the input

coherent states [9,10]. Once one has identified unambiguously

the input state, one can do any state transformation, including

making an amplified coherent state or making as many exact

clones as one wants. Thus, we have a recipe for making

an exact, probabilistic immaculate amplifier or an exact,

probabilistic, state-dependent cloner.

In Sec. VI, we derive rigorous bounds on the success

probability of an amplifier that amplifies coherent states near

the origin immaculately with fidelity near unity, but has output

fidelity that decreases to zero as the amplitude of the input

coherent states increases. Since the output states do not have

Gaussian noise, the connection to cloning is not precise, but

for coherent states near the origin, these amplifiers can be

thought of as cloners that are approximate, probabilistic, and

state dependent.

There is some cloning literature that considers various com-

binations of approximate, probabilistic, and state-dependent

cloning. For example, Chefles and Barnett [23] interpolate

between exact, probabilistic, state-dependent cloners and

approximate, deterministic cloners, including both fidelity and

success probability as performance measures, but only for two

input states, a restriction that makes their results too limited for

our purposes. There is also work on cloning for a distribution

of input coherent states [24], which derives the optimal average

fidelity of a 1 → 2 cloner that acts on a Gaussian distribution

with width � centered at the origin. As the width goes to zero,

the average fidelity not surprisingly approaches unity.

IV. PRIOR WORK ON PROBABILISTIC IMMACULATE

AMPLIFICATION

Ralph and Lund [7] conceived the notion of an immaculate

linear amplifier and proposed a probabilistic implementation

(what they called a nondeterministic, noiseless linear ampli-

fier) described by a quantum operation

Eamp(ρ) = E�(ρ) + Efail(ρ), (4.1)

where E� is the quantum operation when the amplifier works

and Efail, the quantum operation when it fails, describes its

fallible nature.

Ralph and Lund [7] and collaborators [25] suggested

that the most straightforward incarnation of a probabilistic

immaculate amplifier is to have

E�(|α〉 〈α|) = p� |gα〉 〈gα| (4.2)

for all input coherent states, where p� is the state-independent

probability that the amplifier works. Since this makes E� =
p�A, i.e., a multiple of the map (2.17) for a deterministic

immaculate amplifier, it is not completely positive unless the

success probability is zero. Indeed, quite generally, if E�

works as a linear amplifier with uniform success probability

over the entire phase plane, complete positivity imposes the

same restrictions on E� as for a deterministic linear amplifier;

in particular, Eamp would be just as noisy as a deterministic

amplifier, the only difference being that some of the time

the amplifier would not work at all. To make an immaculate

amplifier physical, one must make it not just probabilistic,

but also drop the idea that it can work immaculately over

the entire phase plane with uniform success probability. In

making models of immaculate amplification, this is precisely

what Ralph and Lund [7] and Fiurášek [8] did.

For the remainder of this section, we review some of

the theoretical proposals for and experimental realizations

of Eq. (4.1). Here implementation is interpreted as meaning

that the amplifier works immaculately with high fidelity in a

restricted region of phase space near the origin and with the

success probability p� depending on the distance of the input

coherent state from the origin.

Quantum-scissors proposal. Ralph and Lund originally

proposed to implement Eq. (4.2) using a network of beam

splitters, single-photon sources, and single-photon detectors,

as illustrated in Fig. 2. An input coherent state |α〉 is split

up equally at an N -port splitter, each output |α/
√

N〉 is

processed through a modified “quantum scissors” (MQS) [26],

and the outputs of the quantum scissors are recombined at a

second N -port splitter. Successful immaculate amplification

requires heralding on the MQSs so that they work correctly

and on vacuum detection in N − 1 outputs of the second

splitter. These heralding requirements mean that the quantum-

scissors proposal is probabilistic, and its region of high-fidelity

immaculate amplification is restricted by the requirement that

|α|2 ≪ N . Even within this phase-plane region, the fidelity

with the target state |gα〉 is a function of the amplitude |α| of

the input coherent state.

In Ref. [27], Jeffers tried to reduce the need to make N so

large by constructing a quantum-scissors device that works at

the two-photon level, i.e., that implements the truncation-and-

amplification transformation |α′〉 = c0 |0〉 + c1 |1〉 + c2 |2〉 +
O(|α′|3) → c0 |0〉 + gc1 |1〉 + g2c2 |2〉. Though this is a nice

idea, there is a catch: It requires lossy beam splitters or a

beamtritter. Numerically it was shown that, for |α|2 = 0.1, a

single two-photon device performs better than N = 3 single-

photon MQSs with respect to the fidelity of the output with
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FIG. 2. (Color online) Device that approximates an immaculate

amplifier (figure based on Fig. 1 of Ref. [25]). An incident coherent

state is split equally into N modes at an N -port splitter. The

state of each mode is a coherent state |α′〉, where α′ = α/
√

N ;

N is chosen large enough that α′ = α/
√

N ≪ 1, so that |α′〉 =
|0〉 + α′ |1〉 + O(|α′|2) is well approximated by its vacuum and

one-photon pieces. Each of the N modes enters a modified “quantum

scissors” (MQS) [26], shown on the right, which is the heart of

the amplifier. When the two detectors in the MQS get results 1,0

or 0,1, the MQS is said to work; a feedforward phase shift (FPS)

by π , controlled on one of the two outcomes, is applied to the

device’s output mode. The result of these manipulations is that,

conditioned on the MQS working, it implements the transformation

|α′〉 → (1 + gα′a†) |0〉 = |gα′〉trunc, i.e., truncation of the state to the

vacuum–one-photon sector and change of the relative weights of

the vacuum and one-photon contributions so that the one-photon

weight is increased; the gain is determined by the transmissivities

and reflectivities of the beam splitters in the MQS. The amplified

and truncated states, |gα′〉trunc, are recombined at a second N -port

splitter. Conditional on detecting vacuum in N − 1 outputs of this

splitter, the output mode is in the amplified state |gα〉 in the limit

that N → ∞. Successful immaculate amplification thus corresponds

to heralding on the desired outcome of all of the MQSs, as well as

vacuum detection in the N − 1 ports of the final N -port splitter.

the target amplified state |gα〉 and the success probability. No

mention is made in either Jeffers’s or Ralph and Lund’s work

of how close these implementations are to limits imposed by

quantum theory.

Quantum-scissors implementations. One-photon scissors

devices have been implemented experimentally by Xiang et al.
[25] and Ferreyrol et al. [28,29].

The experiment by Xiang et al. [25] used an attenuated

spontaneous parametric down-conversion source to produce an

input state ρin = (1 − |α|2) |0〉 〈0| + |α|2 |1〉 〈1|, where |α|2 ∈
[10−3,10−1]. This state is an approximation to a uniform

mixture of coherent states of fixed amplitude; the motivation

for considering this input state was to investigate the action

of the amplifier on all states in the mixture simultaneously.

As the value of |α| was so small, i.e., α = α′, only N = 1

quantum-scissors device is needed. The domain of gains

used in the experiment was g ∈ [
√

2,2]. For g =
√

3, the

experimental data showed that the amplifier was linear over

the range |α| ∈ [10−3,2 × 10−2].

Ferreyrol et al. [28,29] implemented quantum-scissors-type

amplifiers with N = 1, input coherent states with |α| ∈ [5.5 ×
10−2,1], and g ∈ [0.25,2]. Their theoretical modeling and

experimental results are in agreement with the modeling and

results in Ref. [25]. The first data point is in the region of phase

space where the device has linear gain. Very quickly, however,

the gain decreases for input states with |α| > 5.5 × 10−2.

Their data also show that as the coherent-state amplitude

increases, the probability of the amplifier’s working increases,

and the output state is increasingly distorted away from the

target coherent state. These behaviors appear in our analysis

of quantum limits on immaculate amplifiers in Sec. VI.

Photon addition and subtraction proposals. Fiurášek [30]

and, separately, Marek and Filip [31] attempt to approximate

the transformation in Eq. (4.2) by adding and then subtracting

M photons from a low-amplitude coherent state. The transfor-

mation for M = 1 is aa†(|0〉 + α |1〉) → a(|1〉 +
√

2α |2〉) →
|0〉 + 2α |1〉, which has a gain of 2. This will not act like a linear

amplifier unless |α| � 1. Generalizing to M-photon addition

and subtraction, the gain becomes g = M + 1. The chief

problem with this method is the experimental infeasibility of

M-photon addition and subtraction for M more than a very

few.

Photon addition and subtraction implementations. Zavatta

et al. [32] reported an experimental implementation of a

single-photon addition and subtraction device (M = 1), which

had |α| ∈ [0.2,1], and g ∈ [1.25,2]. For input |α| > 0.5 the

fidelity of the output state with |gα〉 dropped dramatically,

and the appearance of the output Wigner function departed

noticeably from the target Wigner function in a way to which

we return in Sec. VI. The authors point out that an equivalent

quantum-scissors device performs worse with respect to gain

and fidelity, both of which decrease quicker with increasing

|α| in the scissors case.

Proposals for noise addition followed by photon sub-
traction. To overcome the difficulties of adding M photons,

Marek and Filip [31] suggested one could simply add phase-

insensitive noise (random displacements on the phase plane)

and then do M-photon subtraction. Intuitively this can be

understood as follows: Adding noise increases the phase space

area of the state; the subsequent photon subtraction enhances

the larger photon numbers, producing an amplified final state

that is, roughly speaking, squeezed in the amplitude direction.

An explicit formula is given for the success rate as a function

of the input coherent state, M , and the mean number of thermal

photons added.

Implementation of noise addition followed by photon
subtraction. Usuga et al. [33] and Usuga [34] describe the

preparation of a displaced thermal state which is intended

to correspond to a coherent state with added thermal noise.

The parameters used in their experiments are |α| = 0.431,

g ∈ [1,2], and M ∈ [1,4]. For g > 2 (M > 1), the authors

found that the probability of success decreased drastically,

and the state started to deform (also see Ref. [35]).

Discussion. From the theory and experiments summarized

above, several conclusions can be drawn. First, all of the

devices produce an output state with high fidelity to the target

coherent state |gα〉 only over a restricted region of the phase

plane centered on the origin. Second, although the theoretical

proposals allow for high gains and high input amplitudes,

current implementations are restricted to small gains g � 2

and small input amplitudes |α| � 2 by technical limitations.

Third, even for these small gains and small input amplitudes,

these devices fail almost all of the time.
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Most previous work on this subject has focused on

proposing and analyzing the performance of specific schemes

for probabilistic immaculate amplification. We take a different

tack: We provide a general analysis of the performance of

any device that attempts to approximate immaculate linear

amplification. We characterize the amplifier by its gain and

the region of the phase plane over which it operates with high

fidelity, and we derive fundamental quantum limits on the

probability that the amplifier works.

V. USD BOUNDS ON PROBABILISTIC IMMACULATE

AMPLIFICATION

Quantum state discrimination is a decision-theoretic task

in which an agent, who has the ability to perform any

measurement he wishes, is handed a single state drawn from

a known set of states and is told to determine which of the

states he received. Our chief interest here is unambiguous state

discrimination (USD): The agent is told never to misidentify

the state, at the cost of sure and sudden death, but is allowed

throw up his hands in despair and refuse to make a decision. A

set of states can be discriminated unambiguously if and only if

they are linearly independent [9]; there is a nonzero probability

for no decision unless the states are orthogonal. In this section

we apply USD bounds to the performance of exact immaculate

amplifiers. We use the USD formalism in two ways.

The first is to provide upper bounds on the working

probability of an immaculate amplifier. Let ℘(�) be the

probability that an immaculate amplifier works exactly on a

set of input coherent states. Suppose that P B is the optimal

probability for discriminating the input states and P A is

the corresponding optimal probability for discriminating the

amplified states. The amplified states, being further apart on

the phase plane than the input states, are easier to distinguish,

so P A > P B. The overall probability of successfully discrim-

inating the amplified states is ℘(�)P A. Since P B is optimal,

the amplification process cannot increase the distinguishability

of the states, so we must have P B � ℘(�)P A. The result is

a strict upper bound, ℘(�) � P B/P A, on the probability that

the immaculate amplifier works; we cannot warrant, however,

that this upper bound can be achieved.

The second way we use the USD formalism is to construct

models of immaculate amplifiers that have an achievable

working probability. Once one has used USD to identify one

of the input states, one can perform any unitary transformation

on that state. This procedure always produces the right

transformed state when it makes a decision; consequently,

we call it, somewhat cumbersomely, an exact, finite-state,
probabilistic state transformation. The transformation could

be the displacement of a coherent state required to amplify it.

Since the optimal USD discrimination probability P B can be

achieved in principle, the result is a model for an immaculate

amplifier that works with probability P B on a finite set of

input coherent states. We call such a model a finite-state,
probabilistic immaculate amplifier.

We note this formulation and subsequent analysis is similar

to the analysis performed by Dunjko and Andersson in Ref.

[36]. Their results are not explicit about the dependence of the

success probabilities on gain and input amplitude, whereas we

are.

A. Helstrom bound for two coherent states

Before turning to USD bounds on immaculate amplifiers,

we consider a related bound provided by the minimal error

probability in discriminating two nonorthogonal states. Con-

sider two coherent states, |α〉 and |β〉. A measurement that

minimizes the chance of incorrectly identifying the state is

known as a Helstrom discrimination measurement [37,38].

The probability of successful identification is

P B
Hel(�) = 1

2
(1 +

√

1 − |〈β|α〉|2)

= 1
2
(1 +

√

1 − e−|α−β|2 ), (5.1)

where the superscript “B” reminds us that this probability

is before immaculate amplification. It is apparent that as

the separation, |α − β|, between the two states grows, the

states become orthogonal, and the probability of successful

discrimination approaches unity. In contrast, when |α − β| →
0, the success probability limits to guessing.

Now we use the above-described procedure, modified to

Helstrom discrimination, to bound the working probability

℘(�) of an immaculate amplification device. The device

takes |α〉 to |gα〉 and |β〉 to |gβ〉. Amplification increases

the distinguishability of the states so that the probability of

successful identification of the state is

P A(�) = 1
2
(1 +

√

1 − e−g2|α−β|2 ), (5.2)

where the superscript “A” reminds us this is after amplification.

The overall probability to identify the input state correctly after

amplification is

P A
Hel(�) = 1

2
[1 − ℘(�)] + ℘(�)P A(�)

= 1
2
[1 + ℘(�)

√

1 − e−g2|α−β|2 ]. (5.3)

Since the probability for successful discrimination cannot

increase, we must have P A
Hel(�) � P B

Hel(�), which gives an

upper bound on the amplifier’s success probability,

℘(�) �

√

√

√

√

1 − e−|α−β|2

1 − e−g2|α−β|2
. (5.4)

This bound, which holds for any pair of states, has its minimum

value when the two coherent states become very close to each

other, i.e., |α − β| → 0; in this case the bound on the working

probability becomes

℘Hel �
1

g
. (5.5)

For constructing models of immaculate amplifiers,

Helstrom-type discrimination has the problem that it some-

times misidentifies the input state. Such misidentification

inevitably leads to noise in the amplifier output, which cannot

be part of a model of an exact immaculate amplifier.

B. USD bounds

1. Two coherent states

Unambiguous state discrimination does discriminate states

without error, but this providence requires a sacrifice, namely,

the no-decision measurement result. For two input states, |α〉
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and |β〉, the probability of successfully identifying them is [38]

P B
USD(�) = 1 − |〈β|α〉|2 = 1 − e−|α−β|2 . (5.6)

In this expression, as in the Helstrom case, it is apparent

that as the separation, |α − β|, between the two states grows,

the probability of discrimination approaches unity. When the

states get close together, |α − β| → 0, the probability of

successful discrimination goes to zero.

After amplification we have a discrimination probability,

P A(�) = 1 − |〈gβ|gα〉|2 = 1 − e−g2|α−β|2 (5.7)

and an overall probability for successfully identifying the input

state,

P A
USD(�) = ℘(�) P A(�). (5.8)

Since amplification cannot increase the distinguishability of

the states, we have P A
USD(�) � P B

USD(�) and thus an upper

bound on the working probability,

℘(�) �
P B

USD(�)

P A(�)
=

1 − e−|α−β|2

1 − e−g2|α−β|2
, (5.9)

as pointed out in Ref. [25]. Being the square of the Helstrom

bound (5.4), this is always the tighter bound. The minimum of

the bound is found in the limit that the coherent states become

very close to each other, i.e., |α − β| → 0, in which case the

bound becomes

℘USD �
1

g2
. (5.10)

The allowed working probability is a factor of 1/g smaller

than the Helstrom bound (5.5). This USD bound is the same

as the bound (2.20), which was derived by considering how

to distinguish neighboring coherent states using quadrature

measurements; the two bounds are the same because both are

based on discriminating neighboring coherent states.

2. M coherent states on a circle

The USD bound (5.10) is not at all a tight bound on the

working probability for a probabilistic immaculate amplifier.

We can get much tighter bounds by applying USD to more than

two input states. Indeed, we work toward a phase-insensitive

amplifier, which must act symmetrically on all input coherent

states with the same |α|. Thus, what we do is to consider a set

of M coherent states, |αj 〉 = |ᾱeiφj 〉, all located on a circle of

radius ᾱ with phases

φj =
2πj

M
, j = 0,1,2, . . . ,M − 1, (5.11)

distributed uniformly around the circle. To avoid clutter in

what follows, we use, as here, ᾱ = |α|. To apply USD to the

states |αj 〉, they must be linearly independent. This property

was shown in Ref. [39], and it emerges naturally as part of

the USD construction. In contrast, the continuum of states

on the circle are complete, spanning the entire Hilbert space,

but are not linearly independent; we review these facts in

Appendix A.

Chefles and Barnett [10] solved the USD problem for sets

of linearly independent symmetric states (see also [9]). For

the case of coherent states on a circle, the unitary operator

that rotates between states is the phase-plane rotation by

angle 2π/M , i.e., U = ei2πa†a/M . Restricted to the subspace

spanned by the set of input coherent states, U has the

eigendecomposition

U =
M−1
∑

r=0

eiφr |γr〉 〈γr | , (5.12)

where the (orthonormal) eigenstates are given by

cr |γr〉 =
1

M

M−1
∑

j=0

e−i2πrj/M |αj 〉. (5.13)

Here cr , chosen to be real, is the magnitude of the vector on

the right:

c2
r =

1

M

M−1
∑

j=0

e−i2πrj/M〈α0|αj 〉

=
1

M

M−1
∑

j=0

e−irφj exp[ᾱ2(eiφj − 1)]. (5.14)

It is useful to manipulate c2
r into a quite different form and also

to write it in terms of

qr = Mc2
r = e−ᾱ2 dM−r

dxM−r

M−1
∑

j=0

exp(xeiφj )

∣

∣

∣

∣

x=ᾱ2

= Me−ᾱ2

∞
∑

k=0

ᾱ2(kM+r)

(kM + r)!
. (5.15)

That the states |γr〉 are orthonormal establishes that they

and the original coherent states |αj 〉 span an M-dimensional

subspace and thus that the |αj 〉 are linearly independent.

The vectors

|α⊥
j 〉 =

1

M

M−1
∑

r=0

1

cr

ei2πrj/M |γr〉 (5.16)

are reciprocal (or dual) to the original coherent states in

the sense that 〈α⊥
j |αk〉 = δjk . This duality property is what

is needed to construct the USD positive-operator-valued

measure (POVM). This POVM has M POVM elements Ej =
P (�)|α⊥

j 〉〈α⊥
j |, j = 0, . . . ,M − 1, for the results that identify

the input states, where P (�) is the success probability, and a

single failure POVM element, Efail = I − E, where

E =
∑

j

Ej = P (�)
∑

r

1

qr

|γr〉 〈γr | . (5.17)

The largest eigenvalue of E must be no larger than 1, which

gives an optimal success probability for discriminating among

M coherent states symmetrically placed on a circle of radius

ᾱ [10]:

P (�|ᾱ,M) = min
r ∈ {0, . . . ,M − 1}

qr . (5.18)

This success probability has two important limits: (i) many

states on the circle or, equivalently, small coherent-state

amplitude, i.e., M ≫ ᾱ2, and (ii) states sparse on the circle

or, equivalently, large coherent-state amplitude, i.e., M ≪ ᾱ.
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The reason for the difference in powers of ᾱ in the two limits

emerges as we examine each limit in turn.

Notice first that the sums for qr/M in Eq. (5.15) consist of

terms drawn with period M from a Poisson distribution that has

mean ᾱ2, a distribution we denote throughout by Pr[ n|ᾱ2 ] =
e−ᾱ2

ᾱ2n/n!. When the first term in the sum for r = M − 1 lies

beyond the maximum of the Poisson distribution, as it does in

the case of many states on the circle, it takes only a moment’s

contemplation to realize that the terms in the sum for qM−1

are term by term smaller than the corresponding terms in the

sums for other values of r , provided that the first term in qM−1

is smaller than the first term in q0, i.e., ᾱ2(M−1)/(M − 1)! < 1,

which is certainly true when M ≫ ᾱ2. Thus, for many coherent

states on the circle, the minimum in Eq. (5.18) is achieved by

r = M − 1 [10], so

P (�|ᾱ,M) = qM−1 = Me−ᾱ2

∞
∑

k=0

ᾱ2(kM+M−1)

(kM + M − 1)!
. (5.19)

Moreover, the Chernoff bound for a Poisson random variable

n with mean ᾱ2 [40], applied to the terms in the sum (5.19)

after the first,
∞

∑

k=1

ᾱ2(kM+M−1)

(kM + M − 1)!
< eᾱ2

Pr[ n � 2M − 1|ᾱ2 ]

�

(

eᾱ2

2M − 1

)2M−1

, (5.20)

shows that, in the limit M ≫ ᾱ2, we need to keep only the

first term, k = 0, of the sum (5.19). The result is a simple

expression for USD success probability in the case of many

coherent states on a circle (small coherent-state amplitude):

P (�|ᾱ,M) =
Me−ᾱ2

ᾱ2(M−1)

(M − 1)!
, M ≫ ᾱ2. (5.21)

Now consider the case of sparse coherent states on the

circle. For fixed M , as ᾱ → ∞, Chefles and Barnett [10]

showed that all of the qr limit to 1, so

P (�|ᾱ,M) = 1. (5.22)

Since, for fixed M , the input states limit to being orthogonal

as ᾱ → ∞, this simply means that orthogonal states can be

discriminated with unity probability of success. More useful

than the limit, however, is the correction to the limit.

To find this correction, we begin by noting that since

ᾱ ≫ M � 2, we can approximate the Poisson distribution in

Eq. (5.15) as a Gaussian of the same mean and variance and

extend the sum on k to −∞ on the grounds that the Gaussian

is negligible for these additional terms:

qr =
M

√
2πᾱ

∞
∑

k=−∞

exp

(

−
(kM + r − ᾱ2)2

2ᾱ2

)

. (5.23)

By introducing δ functions, we can write this in the form

qr =
M

√
2πᾱ

∞
∑

k=−∞

∫ ∞

−∞
dx e−(x−ᾱ2)2/2ᾱ2

δ(x − kM − r)

=
1

√
2π

∫ ∞

−∞
du e−u2/2

∞
∑

k=−∞

δ

(

k −
ᾱ

m
+

s − u

m

)

,

(5.24)

where x is a continuous version of kM + r and where in

the second expression we introduce the integration variable

u = x/ᾱ − ᾱ and rescaled variables m = M/ᾱ ≪ 1 and s =
r/ᾱ ≪ 1. Now we write ᾱ/m = [ᾱ/m] + ℵ, where [z] denotes

the nearest integer to z and, hence, − 1
2

� ℵ < 1
2

(half-integers

are rounded up), redefine the dummy summing variable to be

k − [ᾱ/m], and use

∞
∑

k=−∞

δ(k − v) =
∞

∑

j=−∞

e−i2πjv (5.25)

to put Eq. (5.24) in the form

qr =
1

√
2π

∞
∑

j=−∞

ei2πj (s/m−ℵ)

∫ ∞

−∞
du e−u2/2e−i2πju/m

= 1 + 2

∞
∑

j=1

cos

[

2πj

(

s

m
− ℵ

)]

e−2π2j 2/m2

= θ3

[

π

(

s

m
− ℵ

)

; e−2π2/m2

]

. (5.26)

Here θ3 denotes a Jacobi θ function [41].

When m ≪ 1, we only need to keep the j = 1 term in

the sum to get the dominant correction to unity in qr . To

minimize qr , we choose r/M − ℵ = s/m − ℵ as close to 1
2

as possible, consistent with letting r be an integer. Thus, we

choose r = [M(ℵ + 1
2
)], which gives

cos

[

2π

(

s

m
− ℵ

)]

= −1 +
(

irrelevant errors of size �
π2

2M2

)

. (5.27)

Keeping more terms in the sum and then minimizing could

provide a better approximation, but the lowest-order, j =
1 correction already provides a good approximation for a

reasonably dense set of coherent states so the following

analysis is restricted to it.

The resulting success probability in the case of sparse

coherent states (large coherent-state amplitudes) is

P (�|ᾱ,M) = 1 − ǫ ≃ 1 − 2e−2π2ᾱ2/M2

, M ≪ ᾱ. (5.28)

The key result here is that in this limit the success probability

only depends on the ratio ᾱ/M . Indeed, using this expression,

we can turn the question around and determine the ratio that

gives a deviation ǫ:

ᾱ2

M2
≡ a(ǫ) ≃ −

ln(ǫ/2)

2π2
= −0.050 66 ln ǫ + 0.0351.

(5.29)

For example, to achieve P (�|ᾱ,M) = 0.9 for any M , one

chooses ᾱ2 ≃ 0.15M2. The dependence (5.29) has been tested

numerically over the ranges ǫ ∈ [0.5,10−5] and M ∈ [2,40];

the numerics give

a(ǫ) = −0.0508 ln ǫ + 0.035, (5.30)

in good agreement with the analytic approximation. Figure 3

compares the numerics with the analytic approximation; the

analytic approximation works quite well for ǫ � 0.5.
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FIG. 3. (Color online) Dependence of the ratio ᾱ2/M2 = a(ǫ) on

the deviation ǫ of the success probability P (�|ᾱ,M) from unity:

Numerical results are plotted as (red) circles; analytic approximation

of Eq. (5.29) as (blue) squares. The analytic approximation works

quite well for ǫ ∈ [0,0.5], but breaks down progressively beyond

ǫ = 0.5.

Figure 4 plots the success probability for USD of coherent

states on a circle, comparing the exact, numerically determined

result with the approximations that apply for many coherent

states and sparse coherent states. The two approximations

work better than we have any right to expect: The plots and

a consideration of the next term in the sum (5.19) suggest

that the many-coherent-states approximation (5.21) works well

for M � 2ᾱ2; provided ᾱ is somewhat bigger than 1, the

sparse-coherent-states approximation (5.28) works well for

M � 4ᾱ. The two approximations overlap when ᾱ � 1 and M

are both small, but because of the different powers of ᾱ in the

two approximations, generally there is a gap between the two

that must be filled in with numerics.

These results in hand, we can apply them, first, to obtain

bounds on the success probability of immaculate amplifiers

and, second, to constructing a model of an immaculate

amplifier based on USD. For the first task, we use the

same notation as previously for before and after probabilities

of USD; the USD bound on the success probability of an

immaculate amplifier that works on the M input coherent states

is

℘(�|ᾱ,M) �
P B

USD(�)

P A(�)
=

P (�|ᾱ,M)

P (�|gᾱ,M)
. (5.31)

The important cases of this bound require only our approxi-

mate results for the USD success probabilities.

A first such case is when the input coherent states are sparse

and, hence, so are the amplified output states. In this case, the

numerator and the denominator in the bound (5.31) are both

close to one, and the bound on success probability is also close

to one, reflecting the fact that one can discriminate and amplify

such nearly orthogonal states.

More interesting is the case of many input coherent states,

M ≫ ᾱ2. If the gain is large enough that the amplified states are

sparse, i.e., M ≪ gᾱ—this requires that g ≫ ᾱ—the bound

(5.31) reduces to

℘(�|ᾱ,M) � P B
USD(�) =

Me−ᾱ2

ᾱ2(M−1)

(M − 1)!
. (5.32)

This bound, which is plotted in Fig. 4 as (red) circles in the

left column and a (red) dashed line in the right column, can

FIG. 4. (Color online) Success probability P (�|ᾱ,M) = P B(�).

(Left column) As a function of M with fixed ᾱ2; (black) asterisks

are the exact, numerically determined success probability (5.18);

(red) circles give the approximate result (5.21) for many coherent

states (small coherent-state amplitude); (blue) squares give the

approximate result (5.28) for sparse coherent states (large coherent-

state amplitude). (Right column) As a function of ᾱ2 with fixed M;

(black) solid line is the exact result; (red) dashed line, many coherent

states; (blue) dotted line, sparse coherent states.

be regarded as the g → ∞ bound on an immaculate amplifier

that works on a fixed number M ≫ ᾱ2 of input states.

Most interesting is the case in which M is large enough that

both the input and amplified output can be treated in the many-

coherent-states limit, i.e., M ≫ g2ᾱ2. In this case, the bound

(5.31) becomes ℘(�|ᾱ,M) � e(g2−1)ᾱ2

/g2(M−1). This case is

the most interesting because we can let M become arbitrarily

large and thus approach the limit in which the amplifier acts

phase-insensitively on the entire circle of coherent states. Since
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M − 1 ≫ (g2 − 1)ᾱ2, we have e(g2−1)ᾱ2 ≪ eM−1 and thus

℘(�|ᾱ,M) �
e(g2−1)ᾱ2

g2(M−1)
≪

(√
e

g2

)2(M−1)

. (5.33)

This shows that the success probability of an exact immaculate

amplifier goes to zero in the phase-insensitive limit M → ∞,

even when the amplifier is only required to work on a single

circle of input coherent states.

We can make a more precise statement for an immaculate

amplifier that amplifies exactly all the coherent states on

M spokes spaced equally in angle and of length ᾱ. Such

an amplifier acts immaculately on M coherent states on all

circles with radius �ᾱ. The success probability is bounded by

the ᾱ → 0 limit of the bound (5.33), where the assumptions

underlying the bound are satisfied for any M � 2:

℘USD �
1

g2(M−1)
. (5.34)

This is one of the two chief results of this section: an

immaculate amplifier that works exactly on M spokes within

a phase-space disk centered at the origin has a working

probability that decreases exponentially with M , with the base

of the exponential, g2, given by the gain, and goes to zero in

the phase-insensitive limit M → ∞.

It is useful to pause here to relate these results to the

discussion at the end of Sec. II. For the disk amplifier,

the measurement-based performance measure (2.19), which

uses antinormal ordering to calculate the uncertainties, is

1/℘USDg2 � g2(M−2); this is greater than the uncertainty-

principle lower bound of one, achieved by an ideal linear

amplifier, for M > 2 and far worse than the bound as M

gets large. (These same arguments hold for the bound on

the root-probability–SNR product, which is equivalent to the

uncertainty bound.) The related probability-fidelity product

is given by ℘USD � 1/g2(M−1), since an exact immaculate

amplifier has unit output fidelity; this is worse than the

probability-fidelity product 1/g2 achieved by an ideal linear

amplifier for M � 2 and far worse as M gets large.

As we discussed in the introductory paragraphs of this

section, we can construct a USD-based model of an im-

maculate amplifier in which the M input coherent states are

first discriminated and then the identified input is amplified

immaculately by any amount. The quantum operation for this

model is

A(ρ) =
M−1
∑

j=0

℘(�|ᾱ,M)|gαj 〉〈α⊥
j |ρ|α⊥

j 〉〈gαj |. (5.35)

This map can be applied to any input state, not just the M

coherent states used to construct it, but applied to one of those

special input states, |αj 〉, A outputs the amplified state |gαj 〉
with probability

℘(�|ᾱ,M) = P B
USD(�) = P (�|ᾱ,M). (5.36)

This success probability is plotted in Fig. 4.

When M ≫ ᾱ2, the success probability is given by

Eq. (5.21),

℘(�|ᾱ,M) ≃
√

M

2π
e−ᾱ2

(

eᾱ2

M − 1

)M−1

, (5.37)

where here we apply Stirling’s approximation to the factorial

to make clear that the success probability goes to zero in the

phase-insensitive limit M → ∞.

The case of sparse input states is where immaculate

amplification shines with the radiance its name evokes. As

the plots in Fig. 4 show, the success probability for this case is

captured by the sparse-states approximation (5.28), which is

plotted in Fig. 4 as (blue) squares in the left column and a (blue)

dotted line in the right column. The approximation works well

for success probabilities 1 − ǫ � 0.5, which corresponds to

M � 4ᾱ. To achieve a success probability 1 − ǫ requires that

ᾱ/M =
√

a(ǫ) be chosen as in Eq. (5.29). To get a feeling

for what these results mean, notice that a success probability

of 1 − ǫ corresponds to a distance between states, measured

along the arc of the circle, given by 2πᾱ/M = 2π
√

a(ǫ); for

example, a success probability of 0.5 corresponds to
√

a ≃
0.265 and a distance of about 1.67. These states might seem

pretty crowded, but the distance makes sense when compared

with the one-standard-deviation diameter of a coherent state,

which is 1. These input states are just beginning to overlap,

but they are far enough apart that they can be distinguished

and amplified immaculately half the time.

The lesson here is important: USD-based devices can

outperform ideal linear amplifiers if they are both phase-

sensitive and amplitude-specific, amplifying immaculately

only a relatively sparse set of input coherent states on a

particular input circle. This realization leads to a set of

interesting questions that we consider briefly in the Conclusion

as the basis for future work. The flip side is that success

probability goes to zero when an exact immaculate device

is required to work phase-insensitively on even a single input

circle. This suggests that phase insensitivity is a key property,

which does not play well with exact immaculate amplification.

In the next section, we explore this further by considering

probabilistic immaculate amplifiers that are required to be

phase insensitive but, unlike USD-based amplifiers, are not

exact.

VI. BOUNDS ON PHASE-INSENSITIVE, APPROXIMATE,

PROBABILISTIC IMMACULATE AMPLIFICATION

In this section we canonize phase insensitivity as a primary

requirement for amplification. This means that the amplifier’s

operation must be invariant under phase-plane rotations. We

relax the requirement of unit fidelity with the target output

state, thus obtaining a model of an approximate immaculate

amplifier. We would like the amplifier to work with high

fidelity for input coherent states |α〉 within a disk centered

at the origin, but we allow the fidelity with the target amplified

state |gα〉 to fall off for inputs outside the disk of interest.

There are two motivations for this assumption: First, as we

noted in Sec. IV, an immaculate amplifier cannot work over the

entire phase plane; second, as was true for the implementations

reviewed in Sec. IV, such a cutoff is a property of practical

devices.

We characterize the high-fidelity output region as a disk

of radius
√

N ; the corresponding input disk thus has radius√
N/g. After translating this description into the language

of amplifier maps and Kraus operators, we characterize the

amplifier in terms of the fidelity with the target state, F (ᾱ),
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and the probability that the amplifier works, p(�|ᾱ), both

of which are functions of the input amplitude ᾱ = |α|. We

maximize the fidelity at each ᾱ given a working probability

at that ᾱ, after which we maximize the working probability

consistent with the amplifier’s map being trace decreasing.

We thus obtain an optimal immaculate amplifier that is both

approximate and probabilistic.

We note that a similar analysis has been performed

by Fiurášek [8,42] in the context of cloning and arbitrary

state transformations; we point out below similarities to and

differences from our analysis.

We describe the amplification process by a quantum

operation, which we write in terms of a canonical Kraus

decomposition in which the Kraus operators are orthogonal.

We assume that these Kraus operators have the form PNKj ,

where PN is the projector onto the subspace SN spanned by the

first N + 1 number states. The amplifier quantum operation is

thus

AN =
∑

j

PNKj ⊙ K
†
jPN , (6.1)

where the ⊙, technically a tensor product, can be regarded as

designating the slot for the input to the quantum operation.

The projector PN provides a sharp cutoff in the number basis,

beyond which the amplifier’s output has no support; notice that

we can let the operators Kj map outside SN without having

any effect on the quantum operation (6.1). Shortly we extend

the Kraus operators in a way that allows the outputs to have

support outside SN ; this extension smooths the rough edges in

the amplifier map (6.1), and it provides marginal improvements

in the output fidelity. Phase insensitivity is the requirement that

AN commutes with phase-plane rotations; this implies, as we

show in Appendix B, that each Kraus operator has nonzero

number-basis matrix elements on only one diagonal strip, as

in Eq. (B5). Additionally, the Kraus operators must satisfy the

trace-decreasing requirement,

∑

j

K
†
jPNKj � I. (6.2)

Suppose now that the input state to the amplifier is a

coherent state |α〉. The probability of outcome j is

pj (�|ᾱ) = 〈α|K†
jPNKj |α〉, (6.3)

and the overall success probability is

p(�|ᾱ) =
∑

j

pj (�|ᾱ) = tr[AN (|α〉〈α|)]. (6.4)

The fidelity of the output with the target output state |gα〉 is

F (ᾱ) =
〈gα|AN (|α〉〈α|)|gα〉

p(�|α)
. (6.5)

Because of the rotational symmetry, these quantities depend

only on the magnitude ᾱ = |α|.
The problem we solve is the following. Fix a circle of

coherent states with amplitude ᾱ, and find the maximum

fidelity F (ᾱ) on this circle for a fixed success probability

q = p(�|ᾱ). We do this first for a single Kraus operator and

later argue that a single Kraus operator is better than more than

one. The optimization problem is thus to maximize

F (ᾱ) =
|〈gα|PNK|α〉|2

p(�|ᾱ)
, (6.6)

subject to the constraint

q = p(�|ᾱ) = 〈α|K†PNK|α〉. (6.7)

We can, of course, rephrase this as maximizing |〈gα|PNK|α〉|2
subject to the constraint on working probability.

Introducing a Lagrange multiplier μ, we maximize

|〈gα|PNK|α〉|2 − μ(〈α|K†PNK|α〉 − q). (6.8)

Varying K gives

0 = 〈α|δK†(PN |gα〉〈gα|PNK|α〉 − μPNK|α〉)
+ (Hermitian conjugate), (6.9)

so we conclude that

PNK|α〉 = PN |gα〉
〈gα|PNK|α〉

μ
. (6.10)

The Lagrange multiplier is given by the probability for the first

N + 1 photons in the target state |gα〉,

μ = 〈gα| PN |gα〉 = e−g2|α|2eN (g2|α|2), (6.11)

where we introduce a standard shorthand for the first N + 1

terms in the expansion of the exponential,

eN (x) ≡
N

∑

n=0

xn

n!
. (6.12)

Without changing the Kraus operator PNK , we can let K map

outside the subspace SN in such a way that

K|α〉 = |gα〉
〈gα|PNK|α〉

μ
. (6.13)

Since

ga†a|α〉 = e(g2−1)|α|2/2|gα〉, (6.14)

we can simplify this by letting K = Lga†a . The result,

L|gα〉 = |gα〉
〈gα|PNL|gα〉

μ
, (6.15)

says that |gα〉 is an eigenstate of L. Since the coherent states

on a circle are a basis for the Hilbert space, this determines L

to be a function of the annihilation operator a. The rotational

symmetry further requires that L have number-state matrix

elements on only one diagonal strip, implying that L = λak ,

where k is a non-negative integer and λ can be taken to be real

without loss of generality.

The possible optimal Kraus operators are

Kk = λakga†a = λga†a(ga)k

= λ

∞
∑

n=0

gn+k

√

(n + k)!

n!
|n〉〈n + k|, (6.16)

k = 0,1,2, . . . .

This operator has nonzero matrix elements only on the kth

diagonal strip above the main diagonal. It is not surprising

that this class of operators emerges, because they do take |α〉
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to a multiple of |gα〉, just as we would like an immaculate

amplifier to do. The success probability and fidelity become

p(�|ᾱ) = λ2g2ke(g2−1)ᾱ2

ᾱ2k〈gα|PN |gα〉, (6.17)

F (ᾱ) = 〈gα| PN |gα〉 = e−g2ᾱ2

eN (g2ᾱ2) = μ. (6.18)

We can increase the success probability without changing

the fidelity by letting λ2 increase, but there is a limit to this

increase set by the requirement that

I � K
†
kPNKk = λ2

N
∑

n=0

g2(n+k) (n + k)!

n!
|n + k〉〈n + k|.

(6.19)

Since the eigenvalues increase with n, the constraint is set by

the largest eigenvalue (n = N ). Choosing the largest possible

value,

λ2 =
N !

(N + k)!

1

g2(N+k)
, (6.20)

maximizes the success probability.

The final results of these considerations are the Kraus

operators

Kk =

√

N !

(N + k)!

akga†a

gN+k
=

√

N !

(N + k)!

ga†aak

gN
(6.21)

and the corresponding success probability and fidelity,

p(�|ᾱ) =
N !

(N + k)!

e−ᾱ2

ᾱ2k

g2N
eN (g2ᾱ2), (6.22)

F (ᾱ) = e−g2ᾱ2

eN (g2ᾱ2). (6.23)

Equation (6.23) was derived by Fiurášek [8] (our amplitude

gain g is his
√

M) by maximizing an average fidelity. Fiurášek

considers a Gaussian distribution of input coherent states. His

average fidelity includes, first, an average over the success

probability, normalized to an average success probability,

averaged over the input Gaussian, and, second, an average

over the input Gaussian. He does not quote the probability of

success, and he only finds the k = 0 case. He formulates the

optimization problem as a semidefinite program, whereas we

use a simple Lagrange-multiplier maximization.

It is useful to pause here to summarize properties of the

fidelity and the success probability. The fidelity (6.23) is the

probability of the first N + 1 number states in the Poisson

distribution associated with the coherent state |gα〉. As we

anticipated, this fidelity is close to 1 for gᾱ ≪
√

N , goes

to zero for gᾱ ≫
√

N , and transitions between these two

extremes around gᾱ ≃
√

N . Indeed, we can use the Chernoff

bound for the probability in the tails of a Poisson distribution

with mean g2ᾱ2 to bound the fidelity in the two extremes [40],

g2ᾱ2 � N : F (ᾱ) = 1 − Pr[ n � N + 1|g2ᾱ2 ]

� 1 − e−g2ᾱ2

(

eg2ᾱ2

N + 1

)N+1

, (6.24)

g2ᾱ2 > N : F (ᾱ) = Pr[ n � N |g2ᾱ2 ]

�

(

eg2ᾱ2e−g2ᾱ2/N

N

)N

. (6.25)

The width of the transition region can be estimated by re-

membering that the two-standard-deviation phase-plane radius

of a coherent state is 1. As a consequence, the amplified

output begins to contact the number state cutoff at N when

gᾱ + 1 ≃
√

N and leaves the high-fidelity region entirely

when gᾱ − 1 ≃
√

N . Thus, we expect the transition from unity

fidelity to zero fidelity to occur as ᾱ varies from (
√

N − 1)/g

to (
√

N + 1)/g.

The fidelity does not depend on k, but the success

probability does, so the value of k that maximizes the success

probability can change as ᾱ changes. The amplifier map

(6.1) cannot depend, of course, on the input amplitude, so

we must settle on a value of k and apply the resulting map

to all input coherent states. We are most interested in the

high-fidelity regime, where the leading-order behavior of the

success probability (6.22) is

p(�|ᾱ) =
N !

(N + k)!

e−ᾱ2

ᾱ2k

g2N
, ᾱ ≪

√
N/g. (6.26)

In this regime all values of k have success probabilities that

are exponentially small in N , but k = 0 is the best of a sad lot,

indicating that it is the best value of k. Before investigating the

different values of k in detail, however, we extend the Kraus

operator PNKk so that it can map outside SN in a way that

increases the fidelity and success probability.

The extension we seek should preserve the phase insen-

sitivity of PNKk and should not interfere with the output

of PNKk in the subspace SN . A glance at Eq. (6.16)

shows that the extension must have the form ϒk = PNKk +
∑∞

n=N+1 υn |n〉 〈n + k|. Now we impose the condition

I � ϒ
†
kϒk = K

†
kPNKk +

∞
∑

n=N+1

|υn|2 |n + k〉 〈n + k| .

(6.27)

The term K
†
kPNKk already satisfies the inequality in the

subspace SN+k spanned by the first N + k + 1 number states

[see Eq. (6.19)], and we can maximize the amplifier’s success

probability by saturating the inequality for the second term,

i.e., by choosing υn = 1 for n = N + 1,N + 2, . . ., with the

result that

ϒk = PNKk +
∞

∑

n=N+1

|n〉 〈n + k| . (6.28)

With this choice, notice that for k = 0, the additional term in

ϒk is simply the unit operator in the orthocomplement of SN .

The extension of the Kraus operator has essentially no im-

pact on the operation of the amplifier in the high-fidelity input

region. It does increase the fidelity marginally in the transition

region by including in the output number-state components

with n > N . The biggest effect is to increase dramatically

the success probability in the low-fidelity regime beyond

ᾱ ≃
√

N + k, but this improvement is a pyrrhic victory: All

it does is to allow the amplifier to report that it worked on

inputs where the output has essentially the same fidelity with

the target as the input does.

Using the extended Kraus operators to calculate the success

probability and the fidelity of the output with the target
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|gα〉 gives

pk(�|ᾱ) = 〈α| ϒ†
kϒk |α〉 = e−ᾱ2

ᾱ2k

(

N !

(N + k)!

1

g2N
eN (g2ᾱ2) +

∞
∑

n=N+1

ᾱ2n

(n + k)!

)

, (6.29)

Fk(ᾱ) =
|〈gα|ϒk|α〉|2

pk(�|α)
=

e−g2ᾱ2

pk(�|ᾱ)/e−ᾱ2
ᾱ2k

(
√

N !

(N + k)!

1

gN
eN (g2ᾱ2) +

∞
∑

n=N+1

gnᾱ2n

√
n!(n + k)!

)2

. (6.30)

With the extended Kraus operators, both the success prob-

ability and the fidelity depend on k. In the high-fidelity

regime, ᾱ ≪
√

N/g, the extension terms have little impact:

The fidelity limits to unity, and the success probability has

the form given in Eq. (6.26), which decreases exponentially

with N . For ᾱ ≫
√

N/g, the fidelity goes to zero much as

it did before. The success probability, however, has a new

transition that occurs at ᾱ2 ≃ N + k: For ᾱ2 ≫ N + k, only

the extension term matters, so the success probability becomes

nearly the entire probability under a Poisson distribution with

mean ᾱ2, i.e., pk(�|ᾱ) = Pr[ n � N + k + 1|ᾱ2 ], and this

limits to unity as ᾱ2 → ∞.

To gain insight into the success probability (6.29) and

output fidelity (6.30), we plot them in Fig. 5 as a function

of the input amplitude ᾱ for k = 0, 1, and 2. In Fig. 5(a), we

take an amplitude gain g =
√

2 and N = 4, both of which are

too small to see some of the characteristic features we have

discussed. The three fidelity curves are approximately unity

until ᾱ ∼
√

N/g. After this point the fidelity decreases to zero.

Conversely, the three success-probability curves start close to

zero and rise to unity after |α| ∼
√

N/g. Figure 5(b) plots the

FIG. 5. (Color online) Fidelity Fk(ᾱ) of Eq. (6.30) (descending

curves) and success probability pk(�|ᾱ) of Eq. (6.29) (ascending

curves) plotted as functions of input amplitude ᾱ for different

extended Kraus operators ϒk with k = 0 (solid lines), 1 (dashed lines),

and 2 (dotted lines): (a) g =
√

2, N = 4; (b) g = 3, N = 9. The inset

in (b) illustrates the small differences in fidelity, undetectable in the

main plot, among the three values of k.

same curves for g = 3 and N = 9, values big enough to see

the characteristic features of the two quantities. In particular,

it is apparent that the fidelity transitions from unity fidelity

to zero fidelity around ᾱ ≃
√

N/g = 1, with the transition

occurring between (
√

N − 1)/g = 2/3 and (
√

N + 1)/g =
4/3, as anticipated. For all three values of k, the success

probability in panel (c) rises from its initial small value to

unity, with the rise occurring around the second transition at

ᾱ ≃
√

N .

It turns out that the success probability and fidelity for any

value of k are bounded in the following way:

0 � pk(�|ᾱ) � p0(�|ᾱ), (6.31)

Fk(ᾱ) � F0(ᾱ). (6.32)

These bounds are illustrated by the examples plotted in Fig. 5,

and we have proven them analytically. The proof, which is

tedious, is contained in Appendix C. The bounds confirm that

the best value of k is k = 0. We also show in Appendix C that

F0(ᾱ) � 〈gα|PN |gα〉, (6.33)

which indicates that the k = 0 extension increases the fidelity

over that of the restricted Kraus operators.

If the amplifier quantum operation has Kraus operators

other than ϒ0, our analysis shows that these other Kraus

operators necessarily reduce the fidelity and the success

probability. This justifies our earlier assumption of a single

Kraus operator. The best Kraus operator is ϒ0, and this gives

an amplifier quantum operation AN = ϒ0 ⊙ ϒ
†
0 .

The three plots in Fig. 6, all for k = 0, have different

values of g and N , but roughly the same high-fidelity input

region: The ratio
√

N/g = 1 in panels (a) and (c), whereas

in (b) it is
√

2. The plots include the fidelity and success

probability coming from the extended Kraus operator ϒ0 and,

for comparison, the fidelity and success probability coming

from the restricted Kraus operator PNK0. Panels (a) and (b)

are interesting because they have gains typical of that achieved

in experiments, but the transitions are not very sharp, g and

N being too small to see the characteristic features of the

plotted quantities. In panel (c), where g = 3 and N = 9, the

characteristic features emerge: The extended Kraus operator

provides a small increase in fidelity through the transition

region; the success probability using ϒ0 ascends to 1 beyond

ᾱ ≃
√

N , instead of falling back to nearly zero, as happens

with the success probability that comes from PNK0. These

plots illustrate the superior qualities of the extended Kraus

operator ϒ0; we do not consider the restricted Kraus operators

again.
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FIG. 6. (Color online) Fidelity F0(ᾱ) using the extended Kraus

operator ϒ0 [Eq. (6.30)] (solid line with solid circles); corresponding

success probability p0(�|ᾱ) [Eq. (6.29)] (dashed line with solid

squares); fidelity F (ᾱ) using the restricted Kraus operator PNK0

[Eq. (6.23)] (solid descending line); corresponding restricted success

probability p(�|ᾱ) [Eq. (6.22) with k = 0] (dashed line); probability-

fidelity product p0(�|ᾱ)F0(ᾱ) (solid humped line); and overlap

|〈α|gα〉|2 (dotted line), all plotted as functions of input amplitude

ᾱ: (a) g =
√

2, N = 2; (b) g =
√

2, N = 4; (c) g = 3 N = 9.

Figure 6 plots two other quantities: the probability-

fidelity product, p0(�|ᾱ)F0(ᾱ) = |〈gα|ϒ0|α〉|2, for our phase-

insensitive immaculate amplifier and the overlap |〈α|gα〉|2 =
e−(g−1)2ᾱ2

. The latter can be regarded as the fidelity against

the target state of a device that does nothing, i.e., outputs

the input. Since nothing can be done with unit probability,

|〈α|gα〉|2 is also the probability-fidelity product for a device

that does nothing. A minimal requirement for a useful

amplifier is that it be better than doing nothing. The plots

suggest that, as far as the probability-fidelity product is

concerned, the phase-insensitive immaculate amplifier is never

better than doing nothing—indeed, |〈gα|ϒ0|α〉|2 � |〈gα|α〉|2
follows immediately from the fact that ϒ0 is diagonal in the

number basis with positive eigenvalues bounded above by

1—and approaches that standard only for ᾱ �
√

N , where,

as we have already seen, ϒ0 becomes the identity map. For

comparison, the probability-fidelity product for an ideal linear

amplifier is 1/g2 [see Eq. (2.23)], which beats the do-nothing

standard for ᾱ2 � ln g2/(g − 1)2.

The key features of the output state of the immaculate

amplifier AN = ϒ0 ⊙ ϒ0 are illustrated by the Q-distribution

plots in Fig. 7. In Fig. 7(a), an input state within the high-

fidelity input region is transformed to an output state that

is very close to the target output coherent state. In panel

(b), however, the input state is beyond the high-fidelity input

region; the output state gets plastered against the output arc of

radius
√

N , producing a flattening and distortion along this arc.

This distortion is very much like that seen in experiments that

implement immaculate linear amplification [28,29,32–34].

(It is worth noting that for the unextended Kraus operator

FIG. 7. (Color online) Q distribution of the output state of the

immaculate linear amplifier given by the extended Kraus operator

ϒ0, with g = 3 and N = 9, for four amplitudes of input coherent

state: (a) ᾱ = 0.5, (b) ᾱ = 1.5, (c) ᾱ = 3, (d) ᾱ = 5. The (red) dot

denotes the center of the input coherent state. The transition at input

radius
√

N/g = 1 is marked by a (red) arc, and its image at the

output by the (black) arc at radius
√

N = 3. Thus (a) lies within the

high-fidelity region, and the output looks like an amplified coherent

state; (b) lies beyond the transition, and its output is flattened along

the arc of radius
√

N . A second transition occurs near ᾱ ≃
√

N , as

ϒ0 transitions to being the identity operator. Thus (c), lying right in

the middle of this second transition, has output that is little amplified

and is flattened along the radial direction, whereas (d), lying well

beyond the second transition, has output that is nearly identical to the

input coherent state.

PNK0, as ᾱ increases beyond
√

N/g, the output state becomes

essentially the Fock state |N〉.) Panels (c) and (d) illustrate the

passage through the second transition at ᾱ ≃
√

N , as the action

of ϒ0 transitions to being that of the unit operator.

In Fig. 8 we plot the SNR-based performance measure

defined in Sec. II C, with the key difference that we have two

such SNRs: SNR1 = 〈x1〉 /δx1 =
√

2ᾱ/δx1 for the amplitude

(radial) quadrature x1 and SNR2 = 〈x1〉 /δx2 for the phase

quadrature x2 (〈x2〉 = 0). As in Sec. II C, the uncertainties

in the SNRs are calculated using antinormal ordering, which

applies when one intends to measure both quadratures [43].

Figure 8 plots the SNR quantities for an input coherent state

|α〉, the target output state |gα〉, and the output of an ϒ0

immaculate amplifier. As discussed in Sec. II C, the right way

to take into account the success probability of the immaculate

amplifier is to multiply the SNRs by the square root of

the working probability; thus Fig. 8 also shows plots the

root-probability–SNRs,
√

p0(�|ᾱ)SNR1 and
√

p0(�|ᾱ)SNR2

for the output of the immaculate amplifier.

Panel (a) of Fig. 8 plots these quantities for a gain typical of

that achieved in experiments. Panel (b) has a larger gain that

shows the characteristic features of these quantities. Within
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FIG. 8. (Color online) Antinormally ordered quadrature SNRs

as a function of the input amplitude ᾱ. The SNR is defined as

SNR1 = 〈x1〉 /δx1 for the amplitude (radial) quadrature x1 or as

SNR2 = 〈x1〉 /δx2 for the phase quadrature x2. Four of the plots are

for (i) the input state |α〉 (dotted line), for which SNR1 = SNR2

[this is also the bound given in Eq. (2.21)]; (ii) the output target

state |gα〉 (solid line), for which SNR1 = SNR2; and (iii) and (iv)

the output state of the ϒ0 immaculate amplifier (SNR1, solid line

with crosses; SNR2, solid line with circles). The other two plots give

the amplifier SNRs multiplied by the square root of the working

probability,
√

p0(�|ᾱ), as described in the text: The dashed line with

crosses plots
√

p0(�|ᾱ)SNR1, and the dashed line with circles plots√
p0(�|ᾱ)SNR2. For the amplifier plots, (a) has g =

√
2, N = 2, and

(b) has g = 3, N = 9.

the high-fidelity input region, the output SNRs of the amplifier

match those of the target output state, but they fall away from

the target as ᾱ moves out of the high-fidelity region. The

root-probability–SNRs show that once the success probability

is taken into account, the immaculate amplifier does not do as

well as the input coherent state; it always satisfies the bound

(2.21) and is not even close to the bound in the high-fidelity

region.

One could use other SNR-based performance measures, an

example being one based on the statistics of number of quanta.

Doing this can lead to different conclusions. In Fig. 9, we

consider a number-based SNR defined as SNRN = 〈N〉 /�N ,

where N = a†a is the number operator and �N is the

uncertainty in N . Figure 9 shows that, in terms of SNRN ,

first, the output of the immaculate amplifier can do better

than the target output state and, second, the number-based

root-probability–SNR, which includes the square root of the

success probability, can exceed that of the input coherent

state. The first of these improvements seems to arise from the

distortion of the output state as it leaves the high-fidelity region

at ᾱ ≃
√

N/g, which is 1 in both plots; this distortion amounts

to squeezing in the radial direction, as is illustrated in Fig. 7(b).

The second improvement is due to the same distortion, but is

also aided by the increase in success probability, displayed

in Fig. 6, for ᾱ �
√

N . Since these improvements arise

from effects outside the region of high-fidelity immaculate

amplification, they seem to be incidental to the operation of

the device as an immaculate amplifier.

FIG. 9. (Color online) Number-based SNR measure as a function

of the input amplitude ᾱ. The four plots are SNRN for the input

state |α〉 (dotted line); SNRN for the output target state |gα〉 (solid

line); SNRN for the output state of the ϒ0 immaculate amplifier

(solid line with crosses); and the root-probability–SNR measure√
p0(�|ᾱ)SNRN for the output state of the ϒ0 immaculate amplifier

(dashed line with crosses). For the amplifier plots, (a) has g =
√

2,

N = 2, and (b) has g = 3, N = 9.

We conclude this section by reiterating that in the high-

fidelity regime, the k = 0 extended-Kraus-operator immacu-

late amplifier has a success probability [see Eq. (6.26) with

k = 0]

p0(�|ᾱ) =
e−ᾱ2

g2N
. (6.34)

This can be regarded as the chief result of this section:

Within the high-fidelity region of operation, an approximate

phase-insensitive immaculate linear amplifier has a success

probability that decreases exponentially with the size N/g2 of

the high-fidelity input region, with the base of the exponential

being g2g2

. This result, for the optimal phase-insensitive

immaculate amplifier, indicates that the very low success

probabilities seen in experiments [25,28,29], though they

might be depressed yet further by technical difficulties, are

an unavoidable consequence of trying to perform phase-

insensitive immaculate amplification.

VII. CONCLUSION

Immaculate amplification is an attempt to evade the

uncertainty principle. Our chief conclusion is that immaculate

amplifiers, if they operate phase-insensitively, cannot achieve

both high fidelity to the target output state and even reasonably

high working probability. Indeed, in phase-plane regions

where a phase-insensitive device amplifies immaculately with

high fidelity, the probability that the device works is extremely

small. The small working probabilities seen in experiments

that implement immaculate amplification are not solely a

consequence of technical imperfections; they are inherent in

the nature of phase-insensitive immaculate amplification.

We suggest several changes in focus that might reconcile

the concept of immaculate amplification and quantum theory,
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as well as leading to more positive results than those reported

here. The first of these is simple: Phase-insensitive immaculate

amplification, with its reduction in noise from input to output,

might be a step too far; perhaps a better sort of device to seek

is a probabilistic perfect amplifier, which would amplify the

symmetrically ordered input noise without adding the noise of

a (deterministic) ideal linear amplifier. Working probabilities

for probabilistic perfect amplifiers might be better than those

we have found for immaculate amplifiers.

The second change is to abandon hope for invariance

under phase-plane rotations and of working on more than

one circle of input coherent states, focusing instead on the

quite encouraging probabilities we have found for immaculate

amplification of sparse collections of coherent states on a

single input circle. Nondeterministic devices have found many

uses in quantum information science, a notable example being

the KLM scheme for linear-optical quantum computing [44].

Immaculate amplifiers, like the one described formally by

Eq. (5.35), which are both phase sensitive and amplitude

specific, can work on sparse collections of coherent states

with high success probability; they might find application in

problems such as discrimination of the coherent states used

in phase-shift keying [11,12]. There are important questions

regarding communications protocols based on such devices:

How robust are they against amplitude and phase noise in

the preparation of the input coherent states? How badly are

rates impacted by the success probability? These questions are

certainly worth investigating.

Finally, we suggest a change in the quantum-information-

science approach to analyzing amplifying devices. The liter-

ature on immaculate amplification has focused on the fidelity

of the output with the immaculate target. We have stressed that

fidelity cannot be considered as a performance measure alone;

the probability-fidelity product is a better measure of overall

performance. Instead of attempting to optimize the probability-

fidelity product, however, it might be better to develop perfor-

mance measures suited to specific applications. For metrolog-

ical applications, the root-probability–SNR impresses us as

an appropriate measure of performance. Continuous-variable

quantum key distribution is a communication protocol that

might use immaculate amplification and where key rates are

an obvious performance measure. Some steps have been taken

to optimize key rates in this context [45,46], but more work is

needed. To paraphrase Emerson, a foolish fidelity to fidelity

is the hobgoblin of small minds [48]; that is, each application

begs for its own performance measure.
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APPENDIX A: LINEAR DEPENDENCE OF COHERENT

STATES ON A CIRCLE

We review the linear dependence of the continuum of

coherent states on a phase-space circle of radius ᾱ centered

at the origin. The reader should also consult the appendix of

Ref. [36].

A coherent state is represented in the number basis by

|α = ᾱeiφ〉 = e−ᾱ2/2

∞
∑

n=0

ᾱneinφ

√
n!

|n〉 . (A1)

The coherent states |ᾱeiφ〉, 0 � φ < 2π , on a circle of radius

ᾱ are complete, but they are not linearly independent.

These states are linearly dependent, as we can see from
∫ 2π

0

dφ

2π
e−inφ |ᾱeiφ〉 =

{

e−ᾱ2/2 ᾱn
√

n!
|n〉, n � 0,

0, n < 0.
(A2)

The vanishing of the integral for n < 0 shows that the states

are not linearly independent.

That these states are complete follows immediately from

expanding any vector as

|ψ〉 =
∞

∑

n=0

|n〉〈n|ψ〉 =
∫

dφ

2π
χ (φ)|ᾱeiφ〉, (A3)

where the function χ (φ) has Fourier representation

χ (φ) =
∞

∑

n=0

χne
−inφ, (A4)

with the positive Fourier coefficients uniquely determined to

be

χn = eᾱ2/2

√
n!

ᾱn
〈n|ψ〉, n > 0, (A5)

and the negative Fourier coefficients arbitrary. That the neg-

ative Fourier coefficients can be changed arbitrarily without

changing |ψ〉 expresses the linear dependence of the coherent

states on a circle.

APPENDIX B: ROTATIONALLY SYMMETRIC

QUANTUM OPERATIONS

The superoperator that effects a rotation by θ in the phase

plane is

R(θ ) = eiθa†a ⊙ e−iθa†a =
∑

n,m

ei(n−m)θ |n〉〈n| ⊙ |m〉〈m|.

(B1)

A quantum operation A is invariant under rotations if it

commutes with R(θ ) for all θ , i.e., R(θ ) ◦ A = A ◦ R(θ ).

The symmetry condition implies that A has the form

A =
∑

k

∑

n,m

A(k)
nm|n + k〉〈n| ⊙ |m〉〈m + k|. (B2)

That A is a quantum operation, i.e., is completely positive,

implies that A(k) is a positive Hermitian matrix and thus can

be diagonalized by a unitary matrix:

A(k)
nm =

∑

l

λ
(k)
l UnlU

(k)∗
ml . (B3)
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This brings A into the form

A =
∑

k,l

M
(k)
l ⊙ M

(k)†
l , (B4)

where the operators

M
(k)
l =

∑

n

√

λ
(k)
l U

(k)
nl |n + k〉〈n| (B5)

are orthogonal Kraus operators. Invariance under rotations

manifests itself as the requirement that these Kraus operators

have nonzero number-basis matrix elements only in one

diagonal strip specified by the integer k.

APPENDIX C: OPTIMAL SUCCESS PROBABILITY

AND FIDELITY

In this Appendix we show that the success probabilities and

fidelities of Eqs. (6.29) and (6.30) satisfy the bounds (6.31)–

(6.33).

We first show the inequalities

pk(�|ᾱ) � pk+1(�|ᾱ), (C1)

Fk(ᾱ) � Fk+1(ᾱ); (C2)

from these, we can also conclude that pk(�|ᾱ)Fk(ᾱ) �
pk+1(�|ᾱ)Fk+1(ᾱ). This proves that the best success proba-

bility and fidelity are achieved at k = 0, i.e., by the Kraus

operator ϒ0.

The success-probability inequalities (C1) follow straight-

forwardly from the difference

Qk = ϒ
†
kϒk − ϒ

†
k+1ϒk+1

=
N !

(N + k)!

1

g2N

N
∑

n=0

(n + k)!

n!
g2n

(

1 −
n

N + k + 1

1

g2

)

× |n + k〉 〈n + k| � 0. (C3)

The manifest positivity of Qk means that 〈α|Qk|α〉 � 0, which

is the inequality (C1).

To show the fidelity inequalities (C2), we begin by writing

Kraus operator (6.28) in the form

ϒk =
∞

∑

n=0

fk(n)

√

(n + k)!

n!
|n〉〈n + k|, (C4)

where

fk(n) =

⎧

⎨

⎩

√

N!
(N+k)!

gn

gN , n = 0, . . . ,N,
√

n!
(n+k)!

, n = N + 1,N + 2, . . . .
(C5)

Notice that fk(n) does not decrease with n for n � N , reaches it

maximum value at n = N , and then is a nonincreasing function

of n for n � N .

Using fk(n), we can write

〈gα|ϒk|α〉 = e−(g2−1)ᾱ2/2αkE[gnfk(n)], (C6)

where E denotes an expectation value with respect to the

Poisson distribution Pr[ n|ᾱ2 ] = |〈n|α〉|2 ≡ Pn. We also have

pk(�|ᾱ) = 〈α|ϒ†
kϒk|α〉 = ᾱ2kE

[

f 2
k (n)

]

. (C7)

Thus, the fidelity (6.30) can be put in the form

Fk(ᾱ) = e−(g2−1)|α|2 (E[gnfk(n)])2

E
[

f 2
k (n)

] . (C8)

For any k = 0,1, . . . , we define

hk(n) ≡
fk+1(n)

fk(n)

=

{

1√
N+k+1

, n = 0, . . . ,N,

1√
n+k+1

, n = N + 1, N + 2, . . . .
(C9)

Notice that hk(n) is a nonincreasing function of n.

The fidelity inequality (C2) equivalent to

LHS = (E[gnfk+1(n)])2E
[

f 2
k (n)

]

� (E[gnfk(n)])2E[fk+1(n)2] = RHS. (C10)

Since, by the Schwarz inequality,

LHS � E[gnfk(n)]E
[

gnfk(n)h2
k(n)

]

E
[

f 2
k (n)

]

≡ I,

(C11)

we can achieve our objective by showing that I � RHS or,

equivalently, that

E
[

gnfk(n)h2
k(n)

]

E
[

f 2
k (n)

]

� E[gnfk(n)]E
[

f 2
k+1(n)

]

.

(C12)

Equation (C12) can be written as

0 �
∑

m,n

G(m,n) =
∞

∑

n=0

n−1
∑

m=0

G(m,n) + G(n,m), (C13)

where

G(m,n) = PnPmfk(n)fk(m)h2
k(m)[gmfk(n) − gnfk(m)].

(C14)

In the final form of Eq. (C13), we use the fact that G(n,n) = 0

to exclude the terms along the diagonal from the sum. Now

what we show is that

G(m,n) + G(n,m)

= PnPmfk(n)fk(m)[gmfk(n) − gnfk(m)]
[

h2
k(m) − h2

k(n)
]

(C15)
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is never positive for n > m. There are three cases to consider.

First, when m < n � N , hk(m) = hk(n), so the quantity (C15)

vanishes. Second, when m � N < n, hk(m) � hk(n) and

gmfk(n) − gnfk(m) = gm

[

fk(n) −
gn

gN
fk(N )

]

� 0, (C16)

so the quantity (C15) is not positive. Third, when N < m < n,

hk(m) � hk(n) and gmfk(n) � gnfk(m), so the quantity (C15)

is not positive. This completes the proof of the inequalities

(C2).

Now we establish the bound (6.33) by writing the fidelity

F0(ᾱ) of Eq. (6.30) as

F0(ᾱ) = e−g2ᾱ2

[

eN (g2ᾱ2) + gN
∑∞

n=N+1
gnᾱ2n

n!

]2

eN (g2ᾱ2) + g2N
∑∞

n=N+1
ᾱ2n

n!

� e−g2ᾱ2

[

eN (g2ᾱ2) + gN

∞
∑

n=N+1

gnᾱ2n

n!

]

� e−g2ᾱ2

eN (g2ᾱ2), (C17)

where the first inequality follows from using g2N � gNgn in

the denominator. This establishes the bound (6.33).
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