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The quantum limit to incoherent imaging is achieved by linear interferometry

Cosmo Lupo, Zixin Huang, and Pieter Kok
Department of Physics & Astronomy, University of Sheffield,

Hicks building, Hounsfield Road, Sheffield S3 7RH, United Kingdom

(Dated: October 9, 2019)

We solve the general problem of determining, through imaging, the three-dimensional positions of N
weak incoherent point-like emitters in an arbitrary spatial configuration. We show that a structured
measurement strategy in which a linear interferometer feeds into an array of photo-detectors is always
optimal for this estimation problem, in the sense that it saturates the quantum Cramér-Rao bound.
We provide a method for the explicit construction of the optimal interferometer. Further explicit
results for the quantum Fisher information and the optimal interferometer design that attains it are
obtained for the case of one and two incoherent emitters in the paraxial regime. This work provides
insights into the phenomenon of super-resolution through incoherent imaging that has attracted
much attention recently. Our results will find a wide range of applications over a broad spectrum
of frequencies, from fluorescence microscopy to stellar interferometry.

Quantum imaging [1] exploits quantum features of light
to create an image of an object—or collection of objects—
that emits or scatters light. Advances in quantum imag-
ing have followed several routes. Typically, the goal is to
addresses the possibility of beating the limits of classical
imaging [2, 3] by exploiting the unique properties of op-
tical quantum states [4–10]. For example, ghost imaging
[6, 8, 11], quantum lithography [12, 13], and quantum
sensing [14–16] exploit entanglement to enable sensitiv-
ity and precision beyond what is achievable classically,
whilst fluorescence super-resolution microscopy [17–20]
utilizes carefully engineered emitters and measurements
to break the diffraction limit.

A renewed interest in the field was triggered recently
by the work of Tsang, Nair, and Lu [21], who investigated
the imaging of a pair of weak incoherent emitters in the
far field paraxial regime, such as a binary star system
or a pair of fluorescent emitters. They considered the
problem of measuring, through imaging, the transverse
angular separation between the two sources, and used
the tools of quantum estimation theory, in particular the
quantum Fisher information (QFI) and the Cramér-Rao
bound [22, 23]. They showed that a structured mea-
surement setup in which the light focused on the image
plane is first passed through a Hermite-Gaussian mode
sorter is superior to direct imaging. The statistical er-
ror for the estimation of the transverse angular separa-
tion between two identical sources is constant (indepen-
dent of the separation), and inversely proportional to the
Rayleigh length.

By contrast, direct detection sees the error in the es-
timation of the angular separation increase substantially
when the separation between the sources falls below the
Rayleigh length, a phenomenon dubbed the “Rayleigh
curse”. The method for obtaining sub-Rayleigh super-
resolution through coherent detection of incoherent light
has been further developed, generalized [24–35], and
demonstrated [36–44]. See Ref. [45] for a comprehensive
review on recent progress and related topics.

The problems considered so far have been limited, with
a few exceptions [34, 46–48], to a pair of point-like emit-
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FIG. 1. A collection ofNS incoherent point-like emitters (left)
and the apparatus used to measure them (right). The light
emitted or scattered by the objects is collected at NC specific
locations in the collection plane. The collected light is co-
herently processed in a general interferometer and measured
using photo-detection.

ters. There is still no general quantum theory that can
be applied to a situation where an arbitrary number of
emitters lay within a region of the size of the Rayleigh
length. Furthermore, we still lack a general insight in why
interferometric measurements are optimal for this family
of estimation problems. In this paper we answer both
these questions: (i) we determine the QFI for the three-
dimensional positions of an any number of point sources
in an arbitrary spatial configuration; (ii) we show that a
structured measurement strategy where a linear interfer-
ometer feeds into an array of photo-detectors is always
optimal for this general estimation problem. We pro-
vide an explicit construction for the interferometer, which
then can be realized using standard techniques [49, 50].
Our theory is based on a very general model for the

optical system that is used to collect and measure light.
It includes as special cases the standard imaging model
based on the point-spread function, as well as interfero-
metric measurements as stellar interferometry [51, 52].
The Model:— Consider a system of NS point-like ob-

jects that emit or scatter quasi-monochromatic, incoher-
ent light. The system is measured by collecting the light
that impinges on a system of NC collectors with accu-
rately known positions. Schematically, these can be con-
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sidered as pin holes on a light-collection plane (see Fig. 1),
microlenses coupled into optical fibres, or telescope ar-
rays such as the Very Large Telescope. The collected
light is coherently processed in a general device R, and
measured using photodetectors. If the collectors are ar-
ranged to form a square array, they can be used to model
the pixel of a CCD camera. Taking a continuous distri-
bution of collectors, one can recover the thin lens model
of an optical imaging system.
A single source s has coordinates rs = (xs, ys, z0+ zs),

where the first two are the transverse coordinates and the
third component lies along the optical axis. Here z0 is a
reference distance between the objects and the collection
plane. For simplicity, we assume that the collectors lie in
a transverse plane (this constraint may be relaxed), with
collector j having coordinates wj = (uj , vj , 0). We work
in the limit of weak sources and assume that at most one
photon is collected in one detection window.
The state of a photon emitted by source s impinging

on the NC collectors is described by

|ψ(rs)〉 =
NC
∑

j=1

γ(wj , rs)|j〉 , (1)

where |j〉 denotes the state of a photon arriving at col-
lector j, and γ(wj , rs) is the corresponding complex am-
plitude. This model requires that the light coupled to
a collector is described as single mode. In general, the
phase of γ(wj , rs) is expressed by the optical path length
from the source to the collector:

arg γ = ik

√

(xs − uj)
2
+ (ys − vj)

2
+ (z0 + zs)

2
, (2)

where k is the wave number. The modulus of γ
is inversely proportional to the distance between the
source and the collector. The normalization condition
is
∑

j |γ(wj , rs)|2 = 1. The total state of a single photon
coming from NS weak incoherent sources is given by

ρ(r) =

NS
∑

s=1

p(s)|ψ(rs)〉〈ψ(rs)| , (3)

where r ≡ (x1, y1, z1 . . . , xNS
, yNS

, zNS
) indicates the col-

lective coordinates of the NS emitters, and p(s) is the
probability that the photon is emitted by source s.

Quantum Fisher Information:— We are interested in
measuring one or more generalized coordinates of the sys-
tem of NS emitters. Consider a unit vector with 3NS

components a = (a1, a2, . . . , a3NS
). A generalized coor-

dinate is defined as ϑ := a · r, i.e., the scalar product
of a unit vector with the collective coordinates of the
object. For a variation δϑ in the parameter ϑ, the col-
lective coordinate changes from r to r′ = r + aδϑ, with
δϑ = a · (r′ − r). We first obtain a simple expression for
the QFI of ϑ in our model. Second, we compute the clas-
sical Fisher information (CFI) for the case where R is a
linear interferometer followed by photo-detectors. Third,
we construct an R such that the CFI equals the QFI,

proving that linear interferometry and photo-detection
is optimal for the measurement of ϑ.
To compute the QFI, consider a purification of the

mixed state ρ(r) in Eq. (3). We introduce an auxiliary
NS-dimensional Hilbert space spanned by a set of orthog-
onal unit vectors |s〉 such that

|Ψ(r)〉 =
∑

j,s

c(wj , rs)|j〉|s〉 , (4)

c(wj , rs) :=
√

p(s) γ(wj , rs) . (5)

The QFI IQ(ϑ) is given by the relation

IQ(ϑ) = lim
δϑ→0

8(1− fr,r′)

δϑ2
, (6)

where

fr,r′ = max
V

|〈Ψ(r)|(I ⊗ V )|Ψ(r′)〉| , (7)

is the Uhlmann fidelity [53], and the maximization is over
all unitary transformations V acting on the purifying sys-
tem. By substituting the expression for the purification
in Eq. (4) into Eq. (7) we obtain an explicit expression
for the fidelity:

fr,r′ = max
V

∣

∣

∣

∣

∣

∣

∑

st

Vst
∑

j

c(wj , rs)
∗c(wj , r

′
t)

∣

∣

∣

∣

∣

∣

(8)

= max
V

∣

∣Tr(V TM)
∣

∣ = ‖M‖1 , (9)

where the last equality follows from the trace norm [53],

‖M‖1 = Tr(
√
M†M), and we have defined the matrices

Vst := 〈s|V |t〉 , Mst :=
∑

u

c(wj , rs)
∗c(wj , r

′
t) . (10)

Therefore, we have shown that the QFI can be expressed
as a function of the matrix M (similar to Ref. [54]) that
characterizes the geometry of the light sources and the
collectors.
Next, we obtain an expression for the CFI for ϑ from

a measurement comprising a linear interferometer char-
acterized by a NC ×NC unitary matrix R and an array
of photo-detectors (shown in Fig. 1). Given the state
ρ(r) in Eq. (3), the probability of observing a photon at
detector q is

pω =
∑

s

∣

∣

∣

∣

∣

∣

∑

j

c(wj , rs)Rjq

∣

∣

∣

∣

∣

∣

2

. (11)

Given our assumption that no more than one photon ar-
rives at the collector plane within one detection time pe-
riod, at most one detector will click. The classical fidelity
between two probability distributions corresponding to
source configurations r and r′ is

f cr,r′ =
∑

q

√

√

√

√

√

∑

s,t

∣

∣

∣

∣

∣

∣

∑

j

c(wj , rs)Rjq

∣

∣

∣

∣

∣

∣

2 ∣
∣

∣

∣

∣

∣

∑

j′

c(wj′ , r′t)Rj′q

∣

∣

∣

∣

∣

∣

2

.

(12)
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The CFI for ϑ is then given by the classical version of
Eq. (6). To find the optimal interferometer, we minimize
the classical fidelity in Eq. (A5) over the set of unitary
matrices R. The classical fidelity is lower bounded by the
quantum fidelity in Eq. (9), f cr,r′ ≥ fr,r′ , which is an in-
stance of the Cauchy-Schwarz inequality. The optimality
of the measurement based on interferometry and photo-
detection then follows in from the fact that there exists a
choice of R that saturates the Cauchy-Schwarz inequal-
ity. We show this explicitly in the appendix. Our proof
gives an explicit construction of the interferometer ma-
trix R. This result has been obtained without invoking
the paraxial approximation.
Note that, in general the optimal R may depend on the

value of the parameter. This is a feature that is often en-
countered in quantum metrology and implies that the
optimal measurement cannot be decided from the outset
[23]. However, in the paraxial regime the optimal inter-
ferometer does not depend on the parameter for the prob-
lem of estimating the separation between two sources.
Paraxial Regime:— Of particular interest to astron-

omy is the paraxial regime, where xs, ys ≪ z0. We also
assume that zs ≪ z0. In this approximation the optical
path length from a source at location rs to collector at
wj becomes

arg γ(wj , rs) ≃ −ik ujxs + vjys
z0

− ik
zs
z0

u2j + v2j
2z0

=: iφ(wj , rs) , (13)

where we have kept only the terms that are linear in
rs/z0. We neglected the global phases that depend only
on rs since the sources are incoherent, and the terms
that depend only on wj are absorbed in the definition
of the single photon states |j〉. In this regime, we may
assume that all sources have the same distance from the
collection plane, such that γ(wj , rs) = N

−1/2
C eiφ(wj ,rs).

We introduce the operators:

ĝx =
kû

z0
, ĝy =

kv̂

z0
, ĝz =

1

2

k(û2 + v̂2)

z20
, (14)

where û, v̂ are position operators of the collectors. These
operators are the generators of an Abelian unitary group.
For each source coordinate rs = (xs, ys, zs) we define the
unitary operator

U(rs) = e−iĝxxs−iĝyys−iĝzzs . (15)

In the paraxial regime this unitary generates a specific
instance of the single-photon wave function of Eq. (1):

|ψ(rs)〉 = U(rs)|ψ(0)〉

=
1√
NC

∑

j

eiφ(wj ,rs)|j〉

=
1√
NC

∑

j

e−ik
ujxs+vjys

z0
−ik zs

z0

u2
j+v2

j
2z0 |j〉 (16)

photon 

counter 
50:50 BS collector 

eiα 

u1
 

u2 

Δz 

Δx 

z0 

FIG. 2. Schematic of two sources with a separation of ∆x in
the object plane, and a separation ∆z in the axial direction.
Two collectors at u1 and u2 direct light into a two-mode in-
terferometer consisting of a phase shift α and a 50:50 beam
splitter, followed by two photon counters.

with |ψ(0)〉 := N
−1/2
C

∑

j |j〉 a reference state that does
not depend on rs. This representation is readily extended
to NS incoherent sources via Eq. (3):

ρ(r) = p(s)
∑

s

|ψ(rs)〉〈ψ(rs)|

= p(s)
∑

s

U(rs)|ψ(0)〉〈ψ(0)|U(rs)
† . (17)

It allows us to compute directly the QFI matrix for the
source coordinates.
As an example, for two identical emitters, we estimate

the centroid and the relative coordinates. We find that
their QFI matrix is proportional to the covariance matrix
of the generators (see appendix):

σab = 〈ĝaĝb〉 − 〈ĝa〉〈ĝb〉 , (18)

for a, b = x, y, z, where the average is over the dummy
state |ψ(0)〉 introduced in Eq. (16). This covariance ma-
trix is a function of the spatial distribution of the collec-
tors only. We can compute it explicitly, for example, for
a continuous distribution of collectors that define a circu-
lar aperture, we reproduce the results of Yu and Prasad
[31].
For the estimation of a transverse separation ∆x along

one transverse direction, we obtain the following expres-
sion for the QFI:

IQ(∆x) = 〈ĝ2x〉 − 〈ĝx〉2 =
k2

z20

(

〈û2〉 − 〈û〉2
)

. (19)

This shows that the accuracy of the estimation is char-
acterised by the variance of the spatial distribution of
the collectors. For a continuous distribution of collectors
that simulate the aperture of a microscope or telescope,
the variance is proportional to the square of the aperture

size D, which yields IQ(∆x) ∼ k2D2

z2
0

∼ xR
−2, where xR

is the Rayleigh length of the optical imaging system.
Physical Implementation:— Consider the simplest

case of using two collectors to estimate the transverse
angular separation ∆x of two sources. The collectors are
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FIG. 3. Schematic for estimating simultaneously ∆x and
∆z using four collectors which are evenly spaced, centered
at position 0. The optimal linear optical transformation is a
four-mode quantum Fourier transform.

placed at positions u1 and u2, and the precision in ∆x is
given by (see appendix):

IQ(∆x) =
k2

4z20
(u1 − u2)

2
. (20)

A simple experimental scheme that can achieve this pre-
cision is given in Fig. 2, for a phase shift α = 0. It
is worth noting that our expressions for the QFI and
CFI are for estimating the linear separation ∆x, instead
of the angular separation, which would be ∆x/z0. If
we were to estimate the angular separation, the expres-
sion for the QFI would increase by a factor of z20 , i.e
IQ(∆x/z) ≈ (u1 − u2)

2/4. We thus reproduce the cele-
brated result of Ref. [21], using a simple scheme interfer-
ometry. Such a scheme is also optimal for other imaging
applications [55, 56]. Note that the optimal interferome-
ter does not depend on the parameter for this example.

One may wish to also estimate the axial separation ∆z
simultaneously with ∆x, as considered in Refs. [31, 32].
However, using only two collectors, one cannot extract
two parameters from one measured degree of freedom. A
necessary condition to simultaneously estimate the pa-
rameters ∆xa and ∆xb, is that the QFI sub-matrix is
diagonal, i.e., we must use a spatial distribution of the
collectors such that, for a 6= b,

σab = 〈ĝaĝb〉 − 〈ĝa〉 〈ĝb〉 = 0 . (21)

One such configuration is four evenly spaced collectors on
a line. We find that the optimal interferometer is simply
a quantum Fourier transform of the four modes (Fig. 5),
independent of the parameters.

Discussion and conclusions:— Recent developments
have shown that coherent detection schemes are opti-
mal for estimating the transverse separation between two
point-like weak incoherent sources. In particular, these
schemes side step the so-called “Rayleigh curse” that lim-
its the precision of direct detection in the sub-Rayleigh
regime.
Here, we solve the general problem of determining the

three-dimensional positions of NS weak incoherent point-
like emitters in an arbitrary spatial configuration. We
introduce a general model where light is collected at dif-
ferent locations, and is coherently measured. Our model
includes stellar interferometry and imaging through a cir-
cular aperture in the limit of a continuous distribution of
collectors.
Our analysis shows that linear interferometry and pho-

ton counting is always optimal for estimating generalised
coordinates of the sources. Furthermore, we provide
an explicit construction for the optimal interferometer,
which then can be implemented using standard methods
[49, 50].
Our results explain why coherent detection overcomes

the Rayleigh curse by recasting imaging as interferometry
at the outset. We have shown that, for the case of two
incoherent sources, the optimal interferometer can have
relatively low complexity, for example, a single beam-
splitter, and a quantum Fourier transform for the case
of four collectors. In general, the optimal interferometer
may depend on the parameter to be estimated, but our
examples show that it is parameter-independent for the
problem of estimating the separation between two point
sources.
A number of questions remain open. For example: un-

der what conditions is the optimal interferometer inde-
pendent of the parameter to be estimated? When is it
possible to use the same interferometer for the optimal
estimation of multiple parameters? Finally, we expect
that our approach can be generalized and applied to ex-
tended sources [34], non-weak or non-incoherent sources
[24], and to estimate other parameters beyond gener-
alised spatial coordinates, for example spatial moments
[46], as well as time and frequency measurements [57, 58].
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Appendix A: Optimality of linear optics and photo-detection

In the main body of the paper, we have obtained expressions for the quantum Fisher information (QFI) and for
the classical Fisher information (CFI) for an estimation strategy where the light at the collectors is first processed
coherently by a linear interferometer and then measured by photo-detection. Here we show that, for a suitable choice
of the interferometer matrix, the CFI equals the QFI, therefore showing the optimality of said measurement.
Before proceeding to the proof, we recall that the QFI is given by the following expression:

IQ(ϑ) = lim
δϑ→0

8(1− fr,r′)

δϑ2
, (A1)

where the Uhlmann fidelity

fr,r′ = ‖M‖1 , (A2)

is given by the trace norm of the matrix M with components

Mst =
∑

j

c(wj , rs)
∗c(wj , r

′
t) . (A3)

On the other hand, for a given interferometer characterized by a NC ×NC unitary matrix R, the CFI reads

I(ϑ) = lim
δϑ→0

8(1− fr,r′)

δϑ2
, (A4)

where the classical fidelity is given by the following expression:

f cr,r′ =
∑

q

√

√

√

√

√

∑

s,s′

∣

∣

∣

∣

∣

∣

∑

j

c(wj , rs)Rjq

∣

∣

∣

∣

∣

∣

2 ∣
∣

∣

∣

∣

∣

∑

j′

c(wj′ , r′s′)Rj′q

∣

∣

∣

∣

∣

∣

2

. (A5)

From the very definition of the QFI it follows that

f cr,r′ ≥ fr,r′ . (A6)

We are now ready to present the optimality proof, which is divided into two parts. First, we show that inequality
(A6) is a Cauchy–Schwarz inequality. Second, we show that there exists a choice of R that saturates it.

1. Cauchy–Schwarz inequality

The matrix M can be written as follows:

M = C(r)†C(r′) , (A7)

where

C(r) :=







c(w1, r1) c(w1, r2) . . . c(w1, rNS
)

c(w2, r1) c(w2, r2) . . . c(w2, rNS
)

. . . . . . . . . . . .
c(wNC

, r1) c(wNC
, r2) . . . c(wNC

, rNS
)






, (A8)

and similarly

C(r′) :=









c(w1, r
′
1) c(w1, r

′
2) . . . c(w1, r

′
NS

)
c(w2, r

′
1) c(w2, r

′
2) . . . c(w2, r

′
NS

)
. . . . . . . . . . . .

c(wNC
, r′1) c(wNC

, r′2) . . . c(wNC
, r′NS

)









, (A9)

The trace norm ‖M‖1 can be obtained from the singular value decomposition of M , i.e. by finding the unitary
transformations V and W that make M diagonal:

V †MW = D , (A10)
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where D is a diagonal, non-negative matrix, yielding ‖M‖1 = TrD.
We then have, for any given unitary matrix R,

‖M‖1 = TrD (A11)

= Tr(V †MW ) (A12)

= Tr(V †C(r)†C(r′)W ) (A13)

= Tr(V †C(r)†RR†C(r′)W ) (A14)

=
∑

s,s′,j,j′,t,v

V ∗
st c(wj , rs)

∗R∗
vjRvj′c(wj′ , r

′
s′)Ws′t . (A15)

By applying the Cauchy–Schwarz inequality NC times we obtain

‖M‖1 =
∑

v







∑

t





∑

j,s

Rvjc(wj , rs)Vst





∗ 



∑

j′,s′

Rvj′c(wj′ , r
′
s′)Ws′t











(A16)

≤
∑

v

√

√

√

√

√

∑

t

∣

∣

∣

∣

∣

∣

∑

j,s

Rvjc(wj , rs)Vst

∣

∣

∣

∣

∣

∣

2
√

√

√

√

√

∑

t′

∣

∣

∣

∣

∣

∣

∑

j′,s′

Rvj′c(wj′ , r′s′)Ws′t′

∣

∣

∣

∣

∣

∣

2

. (A17)

The last step is to note that the quantity on the right-hand side is invariant under the unitary transformations V
and W . Therefore, putting V =W = I we finally obtain inequality (A6):

fr,r′ = ‖M‖1 ≤
∑

v

√

√

√

√

√

∑

t

∣

∣

∣

∣

∣

∣

∑

j

Rvjc(wj , rt)

∣

∣

∣

∣

∣

∣

2
√

√

√

√

√

∑

t′

∣

∣

∣

∣

∣

∣

∑

j′

Rvj′c(wj′ , r′t′)

∣

∣

∣

∣

∣

∣

2

= f cr,r′ . (A18)

In conclusions, we have shown that inequality (A6) is nothing but an instance of the Cauchy–Schwarz inequality.

2. Saturation of the Cauchy–Schwarz inequality

To conclude the optimality proof we will now show that there exists a choice of R that saturates inequality (A6).
Consider the matrix

A(r) := C(r)V =







a(w1, 1) a(w1, 2) . . . a(w1, NS)
a(w2, 1) a(w2, 2) . . . a(w2, NS)
. . . . . . . . . . . .

a(wNC
, 1) a(wNC

, 2) . . . a(wNC
, NS)






, (A19)

where V , as well as W below, is the unitary matrix that appears in the singular value decomposition of M in Eq.
(A10).
This matrix can be seen as a list of NS vectors a(1), a(2), . . . , a(NS), where

a(s) =







a(w1, s)
a(w2, s)
. . .

a(wNC
, s)






. (A20)

Similarly we define the matrix

B(r′) := C(r′)W =







b(w1, 1) b(w1, 2) . . . b(w1, NS)
b(w2, 1) b(w2, 2) . . . b(w2, NS)
. . . . . . . . . . . .

b(wNC
, 1) b(wNC

, 2) . . . b(wNC
, NS)






, (A21)
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and the vectors b(1), b(2), . . . , b(NS), where

b(s) =







b(w1, s)
b(w2, s)
. . .

b(wNC
, s)






. (A22)

Note that the condition V †C(r)†C(r′)W = D determines the scalar products of the a’s vectors with the b’s vectors,
i.e.,

NC
∑

j=1

a(wj , s)
∗b(wj , t) = Dsδst . (A23)

The matrix R transforms the matrix A into A′:

A′(r) = RA(r) . (A24)

It follows from well-known results in linear algebra (QR decomposition) that there exists a choice of R that transforms
A(r) into an upper-triangular matrix, i.e.,

A′(r) = RA(r) =























a′(1, 1) a′(1, 2) a′(1, 3) . . . a′(1, NS)
0 a′(2, 2) a′(2, 3) . . . a′(2, NS)
0 0 a′(3, 3) . . . a′(3, NS)
0 0 0 . . . a′(4, NS)
. . . . . . . . . . . . . . .
0 0 . . . . . . a′(NC , NS)
. . . . . . . . . . . . . . .
0 0 0 . . . 0























. (A25)

Note that here we are implicitly using the assumption that the number of collectors NC is at least equal to the number
of sources NS .
Because R preserves the scalar product, the matrix B is necessarily transformed into a lower-triangular matrix, i.e.,

B′(y) = RB(y) =



















b′(1, 1) 0 0 . . . 0
b′(1, 2) b′(2, 2) 0 . . . 0
b′(1, 3) b′(2, 3) b′(3, 3) . . . 0
. . . . . . . . . . . . . . .

b′(1, NS) b′(2, NS) b′(3, NS) . . . b′(NS , NS)
. . . . . . . . . . . . . . .

b′(1, NC) b′(2, NC) b′(3, NC) . . . b′(NS , NC)



















. (A26)

The scalar product then reads:

Ds =

NC
∑

j=1

a(j, s)∗b(j, s) =

NC
∑

j=1

a′(j, s)∗b′(j, s) = a′(s, s)∗b′(s, s) . (A27)

As the coefficients Ds are real and non-negative, we also have

Ds = |a′(s, s)∗b′(s, s)| = |a′(s, s)| |b′(s, s)| . (A28)

We can then write the quantum fidelity as follows:

fr,r′ = ‖M‖1 =
∑

s

Ds =
∑

s

|a′(s, s)| |b′(s, s)| . (A29)

On the other hand, we can write, for the same choice for the matrix R, the classical fidelity:

f cr,r′ =
∑

v

√

√

√

√

√

∑

t

∣

∣

∣

∣

∣

∣

∑

j,s

Rvjc(wj , rs)Vst

∣

∣

∣

∣

∣

∣

2
√

√

√

√

√

∑

t′

∣

∣

∣

∣

∣

∣

∑

j′,s′

Rvj′c(wj′ , rs′)Ws′t′

∣

∣

∣

∣

∣

∣

2

(A30)

=
∑

v

√

∑

t

|a′(v, t)|2
√

∑

t′

|b′(v, t′)|2 (A31)

=
∑

v

|a′(v, v)| |b′(v, v)| . (A32)
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In conclusion, a direct comparison of Eq. (A29) and Eq. (A32) verifies that fr,r′ = f cr,r′ for the above choice of R.
Note that the proof also gives an explicit construction for the matrix R.

Appendix B: Paraxial regime

In this section, we solve explicitly examples of estimation of one emitter and two incoherent emitters.
We apply the theory developed in the main body of the paper, where we have shown that the wave function of a

single emitter at location r = (x, y, z) can be written as

|ψ(r)〉 = U(r)|ψ(0)〉 , (B1)

where

U(r) = e−iĝxx−iĝyy−iĝzz , (B2)

and

|ψ(0)〉 = 1√
NC

NC
∑

j=1

|j〉 . (B3)

The unitary U(r) has generators

ĝx =
kx̂

z0
, ĝy =

kŷ

z0
, ĝz =

1

2

k(x̂2 + ŷ2)

z20
. (B4)

Similarly, the state of NS incoherent source reads

ρ(r) =
1

NS

∑

s

|ψ(rs)〉〈ψ(rs)| =
1

NS

∑

s

U(rs)|ψ(0)〉〈ψ(0)|U(rs)
† . (B5)

1. One source

Consider first the case of a single point-like source. Our goal is to compute the QFI matrix for its three spatial
coordinates.
According to Eq. (B1), the single-photon state depends on the source coordinates through a unitary transformation.

Therefore, general results on quantum estimation theory yield that the QFI matrix is four times the covariance matrix
of the generators. Therefore, the elements of the QFI matrix are:

QFIxx = 4
(

〈ĝ2x〉 − 〈ĝx〉2
)

=
4k2

z20

(

〈u2〉 − 〈u〉2
)

, (B6)

QFIyy = 4
(

〈ĝ2y〉 − 〈ĝy〉2
)

=
4k2

z20

(

〈v2〉 − 〈v〉2
)

, (B7)

QFIzz = 4
(

〈ĝ2z〉 − 〈ĝz〉2
)

=
k2

z40

(

〈(u2 + v2)2〉 − 〈u2 + v2〉2
)

, (B8)

QFIxy = QFI21 = 4 (〈ĝxĝy〉 − 〈ĝx〉〈ĝy〉) =
4k2

z20
(〈uv〉 − 〈u〉〈v〉) , (B9)

QFIxz = QFI31 = 4 (〈ĝxĝz〉 − 〈ĝx〉〈ĝz〉) =
2k2

z30

(

〈u(u2 + v2)〉 − 〈u〉〈u2 + v2〉
)

, (B10)

QFIyz = QFI32 = 4 (〈ĝy ĝz〉 − 〈ĝy〉〈ĝz〉) =
2k2

z30

(

〈v(u2 + v2)〉 − 〈v〉〈u2 + v2〉
)

. (B11)

Here we have used the notation:

〈f(u, v)〉 := 〈ψ(0)|f(û, v̂)|ψ(0)〉 = 1

NC

∑

u

f(u, v) . (B12)
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2. Two sources

Consider a system of two point-like emitters. In this case M is a 2× 2 matrix. We have

M = C(r)†C(r′) (B13)

with

C(r) =







c(w1, r1) c(w1, r2)
c(w2, r1) c(w2, r2)
. . . . . .

c(wNC
, r1) c(wNC

, r2)






, (B14)

and

C(r′) =







c(w1, r
′
1) c(w1, r

′
2)

c(w2, r
′
1) c(w2, r

′
2)

. . . . . .
c(wNC

, r′1) c(wNC
, r′2)






. (B15)

Using the Dirac notation, we identify each column as a vector, i.e.,

C(r) =
(

|ψ(r1)〉 |ψ(r2)〉
)

, (B16)

C(r′) =
(

|ψ(r′1)〉 |ψ(r′2)〉
)

, (B17)

and the matrix M then reads

M =

(

〈ψ(r1)|ψ(r′1)〉 〈ψ(r1)|ψ(r2)〉
〈ψ(r2)|ψ(r′1)〉 〈ψ(r2)|ψ(r′2)〉

)

. (B18)

a. Estimating the separation between the sources

Consider a symmetric setup in which the two sources have coordinates r1 = −r2. Our goal is to estimate the
separation ∆x along one given direction, for example along the coordinate x. Below δ∆x denotes a small variation of
this parameter.
We have:

|ψ(r′1)〉 = e−iĝx
δ∆x
2 |ψ(r1)〉 , (B19)

|ψ(r′2)〉 = eiĝx
δ∆x
2 |ψ(r2)〉 . (B20)

This implies

〈ψ(r1)|ψ(r′1)〉 = 〈ψ(r1)|e−iĝx
δ∆x
2 |ψ(r1)〉 =

∑

j

e−ik
uj
z0

δ∆x
2 , (B21)

and

〈ψ(r2)|ψ(r′2)〉 = 〈ψ(r2)|eiĝx
δ∆x
2 |ψ(r2)〉 =

∑

j

eik
uj
z0

δ∆x
2 . (B22)

Therefore

〈ψ(r2)|ψ(r′2)〉 = 〈ψ(r1)|ψ(r′1)〉∗ . (B23)

Also note that

〈ψ(r1)|ψ(r′2)〉 = 〈ψ(r1)|eiĝx
δ∆x
2 |ψ(r2)〉 (B24)

= 〈ψ(r2)|e−iĝx
δ∆x
2 |ψ(r1)〉∗ = 〈ψ(r2)|ψ(r′1)〉∗ . (B25)
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The above implies that the matrix M has the general form:

M =

(

α β
β∗ α∗

)

. (B26)

We can readily compute the trace norm for a matrix of this form (under the condition |α| > |β|):

‖M‖1 = 2|α| . (B27)

Since α =
∑

j e
−ik

uj
z0

δ∆x
2 , we have

‖M‖1 = 2

∣

∣

∣

∣

∣

∣

∑

j

e−ik
uj
z0

δ∆x
2

∣

∣

∣

∣

∣

∣

. (B28)

It remains to expand this quantity up to the second order in δ∆x:

‖M‖1 ≃ 2

∣

∣

∣

∣

∣

∣

NC − ik
δ∆x

2z0

∑

j

uj −
k2

2

δ∆x2

4z20

∑

j

u2j

∣

∣

∣

∣

∣

∣

(B29)

≃ 2NC






1− k2

2

δ∆x2

4z20

1

NC

∑

j

u2j +
k2

2

δ∆x2

4z20





1

NC

∑

j

uj





2





, (B30)

and finally

1

2NC
‖M‖1 = 1− k2

8

δ∆x2

z20







1

NC

∑

j

u2j −





1

NC

∑

j

uj





2





(B31)

= 1− k2

8

δ∆x2

z20

[

〈u2〉 − 〈u〉2
]

. (B32)

From this we directly obtain the quantum Fisher information for the estimate of ∆x1:

IQ(∆x) =
8
(

1− 1
2NC

‖M‖1
)

δ∆x2
=
k2

z20

(

〈u2〉 − 〈u〉2
)

. (B33)

We can similarly obtain the quantum Fisher information for the separation in any direction. It follows that also,
in this case, the quantum Fisher information matrix is proportional to the covariance matrix of the infinitesimal
generators. The elements of the QFI matrix are therefore equal, up to a multiplicative factor 4, to the QFI matrix
elements for the coordinates of a single emitter in Eqs. (B6)-(B11).

b. Transverse localization of the centroid

We assume a configuration of the collectors that is inversion-symmetric. This means that for each collector at
location w′ 6= (0, 0) there is another collector at location −w′. This in turn implies that the amplitude

〈ψ(0)|U(r)|ψ(0)〉 =
∑

u

e−ik ux+vy
z0 (B34)

is real for any U(r). Explicitly we have:

〈ψ(0)|U(r)|ψ(0)〉 =







2
∑

j|w 6=(0,0) cos
(

k
ujx+vjy

z0

)

if NC is even ,

1 + 2
∑

j|w 6=(0,0) cos
(

k
ujx+vjy

z0

)

if NC is odd .
(B35)
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Consider an infinitesimal transverse displacement, for example along the first coordinate direction x. We have

〈ψ(0)|U(r)e−iĝxδx|ψ(0)〉 ≃ 〈ψ(0)|U(r)

(

1− iĝxδx− ĝ2x
δx2

2

)

|ψ(0)〉 (B36)

≃ 〈ψ(0)|U(r)|ψ(0)〉+ δx
∂

∂x
〈ψ(0)|U(r)|ψ(0)〉+ δx2

2

∂2

∂x2
〈ψ(0)|U(r)|ψ(0)〉 (B37)

= p+ 2
∑

j|w 6=(0,0)

cos

(

k
ujx+ vjy

z0

)

− 2k
δx

z0

∑

j|w 6=(0,0)

uj sin

(

k
ujx+ vjy

z0

)

− k2
δx2

z20

∑

j|w 6=(0,0)

u2j cos

(

k
ujx+ vjy

z0

)

, (B38)

where p = 1 is NC is odd, and p = 0 otherwise.
We will write this second order expansion of the amplitude as

〈ψ(0)|U(r)e−iĝxδx|ψ(0)〉 ≃ A(r)−B(r)δx− C(r)δx2 . (B39)

Consider now the matrixM for a transverse displacement of both sources. We denote as r1 the vector of coordinates
of the first source, and as r2 the coordinates of the second. The relative coordinate is ∆r = r1 − r2. The matrix M
then reads as (up to the second order in δx)

M =

(

NC − C(0)δx2 A(∆r)−B(∆r)δx− C(∆r)δx2

A(∆r) +B(∆r)δx− C(∆r)δx2 NC − C(0)δx2

)

. (B40)

For this matrix we can compute the trace norm directly:

1

2NC
‖M‖1 = 1− 1

NC
C(0)δx2 +

1

2N2
C

B(∆r)2δx2 (B41)

= 1− k2δx2

z20





1

NC

∑

j|w 6=(0,0)

uj
2



− 1

2N2
C

k2δx2

z20



2
∑

j|w 6=(0,0)

uj sin

(

k
uj∆x+ vj∆y

z0

)





2

(B42)

= 1− k2δx2

z20





1

NC

∑

j

uj
2



− 1

2N2
C

k2δx2

z20



2
∑

j

uj sin

(

k
uj∆x+ vj∆y

z0

)





2

. (B43)

Note that the last term is proportional to ∆r2, therefore it can be neglected in the paraxial approximation. We then
have

1

2NC
‖M‖1 ≃ 1− k2δx2

z20





1

NC

∑

j

uj
2



 . (B44)

Finally, we obtain an expression for the quantum Fisher information for the transverse coordinate of the centroid:

IQ(x) = lim
δx→0

8
(

1− 1
2NC

‖M‖1
)

δx2
(B45)

=
4k2

z20





1

NC

∑

j

uj
2



 =
4k2

z20
〈u2〉 . (B46)

In conclusions, also, in this case, we obtain that the QFI for the coordinate of the centroid is proportional to the
variance of the corresponding generators.
The analogous result is obtained for the coordinate of the centroid along any transverse direction. This implies that

the QFI matrix for the transverse estimation of the centroid equals the corresponding sub-matrix of the single-emitter
QFI matrix, whose elements are shown in Eqs. (B6)-(B11).
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Appendix C: Physical implementation

1. Two detectors

Consider a schematic of the two sources and of the measurement scheme as depicted in Fig. 4. The two sources
have coordinates (±∆x/2, 0,±z/2 + z0)

photon 

counter 
50:50 BS collector 

eiα 

u1
 

u2 

Δz 

Δx 

z0 

FIG. 4. Schematic of the two sources, they have a separation of ∆x on the object plane, and the object planes are separated
by a distance ∆z in the axial direction to the collectors. The collectors are separated by a distance |u1 − u2|.

Making the approximation that ∆x,∆z, |u1|, |u2| ≪ z0, the QFIs for estimating the separation are

QFI∆x ≈ k2
(u1 − u2)

2

4z20
. (C1)

QFI∆z ≈ k2
(u1 − u2)

2
(

∆x2 + (u1 + u2)
2
)

16z40
(C2)

The optimal measurement, also shown in Fig. 4, is a simple text-book example of interferometry.

Assuming the operators transform as

a†
′

u1
→ 1√

2
(a†u1

+ a†u2
)

a†
′

u2
→ 1√

2
(a†u1

− a†u2
), (C3)

the probabilities of measuring a photon at modes 1 and 2 are respectively

p1 =
1

4

[

2 + cos

(

(u1 − u2)(∆z(∆x− u1 − u2) + 2∆xz0)

4z20
+ α

)

+cos

(

(u1 − u2)(∆z(∆x+ u1 + u2)− 2∆xz0)

4z20
+ α

)]

p2 =
1

4

[

2− cos

(

(u1 − u2)(∆z(∆x− u1 − u2) + 2∆xz0)

4z20
+ α

)

− cos

(

(u1 − u2)(∆z(∆x+ u1 + u2)− 2∆xz0)

4z20
+ α

)

(C4)

If θ the unknown parameter to be estimated, given a set of measurement outcomes {x}, each occuring with
probability p(x|θ), the CFI of θ is

Fθ =
∑

x

p(x|θ)
[

∂ log p(x|θ)
∂θ

]2

, (C5)

For the parameter ∆x, applying a relative phase shift α = θs, substituting Eq (C4) into Eq (C5), the CFI is
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F∆x = k2





(u1−u2) sin

(

θs∆z+∆xu1−∆xu2+u2
1−u2

2+2θsz0
∆z+2z0

)

∆z+2z0
+

(u1−u2) sin

(

θs∆z+∆xu1−∆xu2−u2
1+u2

2−2θsz0
∆z−2z0

)

∆z−2z0





2

4
(

− cos
(

θs∆z+su1−∆xu2+u2
1−u2

2+2θsz
∆z+2z0

)

− cos
(

θs∆z+∆xu1−su2−u2
1+u2

2−2θsz
∆z−2z0

)

+ 2
) (C6)

+k2



−
(u1−u2) sin

(

θs+∆xu1−∆xu2+u2
1−u2

2+2θsz

∆z+2z0

)

∆z+2z0
−

(u1−u2) sin

(

θs∆z+∆xu1−∆xu2−u2
1+u2

2−2θsz

∆z−2z0

)

∆z−2z0





2

4
(

cos
(

θs∆z+∆xu1−∆xu2+u2
1−u2

2+2θsz
∆z+2z0

)

+ cos
(

θs∆z+∆xu1−∆xu2−u2
1+u2

2−2θsz
∆z−2z0

)

+ 2
) . (C7)

Given ∆z,≪ z and [∆x(u1 − u2)]/(2z0) ≪ 1, setting θs = 0 gives

F∆x ≈ (u1 − u2)
2

(4z20)
, (C8)

which is equal to the QFI. It is worth noting that our expressions for the QFI and CFI are for estimating the actual
value of ∆x, instead of the angular separation, which would be ∆x/z0. If we were to estimate the angular separation,
the expression for the QFI and CFI will increase by a factor of z20 , i.e

QFI∆x/z0 ≈ F∆x/z0 ≈ (u1 − u2)
2

4
. (C9)

We thus reproduce the result of Tsang, Nair in Lu, namely that the QFI is constant and only depends on the properties
of the imaging system.
For the parameter ∆z, applying a relative phase shift α = θℓ, CFI is

F∆z = −k2(u1 − u2)
2×

[ (∆x+ u1 + u2) sin
(

θℓ∆z+∆xu1−∆xu2+u2
1−u2

2+2θℓz
∆z+2z0

)

(∆z + 2z0)2
+

(∆x− u1 − u2) sin
(

θℓ∆z+∆xu1−∆xu2−u2
1+u2

2−2θℓz
∆z−2z0

)

(∆z − 2z0)2

]2

×
{(

cos

(

θℓ∆z +∆xu1 −∆xu2 + u21 − u22 + 2θℓz

∆z + 2z0

)

+ cos

(

θℓ∆z +∆xu1 −∆xu2 − u21 + u22 − 2θℓz

∆z − 2z0

)

− 2

)

(

cos

(

θℓ∆z +∆xu1 −∆xu2 + u21 − u22 + 2θℓz

∆z + 2z0

)

+ cos

(

θℓ∆z +∆xu1 −∆xu2 − u21 + u22 − 2θℓz

∆z − 2z0

)

+ 2

)}−1

(C10)

In general, θs 6= θl, which is logical because here there are 2 parameters to extract, but there is only one variable
in the measurement outcome. The optimal phase for estimating ∆z at ∆z ≈ 0 is

θℓ = tan−1

[ ∆x cos
(

∆x(u1−u2)
2z0

)

√

∆x2 cos2
(

∆x(u1−u2)
2z0

)

+ (u1 + u2)2 sin
2
(

∆x(u1−u2)
2z0

)

,

−
√
2(u1 + u2) sin

(

∆x(u1−u2)
2z0

)

√

(∆x2 − (u1 + u2)2) cos
(

∆x(u1−u2)
z0

)

+∆x2 + (u1 + u2)2

]

. (C11)

2. Four collectors - simultaneous estimation of transverse and axial separations

We have seen in Sec. C 1 that using only two collectors, one cannot simultaneously optimally measure the transverse
and axial separations. Intuitively, this is due to the fact that there are two parameters to extract and only one variable
that changes with the measurement.
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z0 

    

 

QFT 
 

 

u1 

u2 

u3 

u4 

Δz 

Δx 

FIG. 5. Schematic for estimating simultaneously ∆x and ∆z using 4 collectors which are evenly spaced, centered at position
0. The optimal linear optical transformation is a 4-mode quantum Fourier transform.

Since we know the commutators for the different parameters to be estimated (using Eqs. (B4)), we can configure
the positions of the collectors such that the off-diagonal terms in the QFI matrix are zero. If such a condition is
satisfied, then there exists a measurement that can simultaneously. One such configuration is depicted in Fig 5, where
the collectors are evenly spaced, with positions, where the centre is at 0.

For the parameter ∆x, the QFI for putting the four collectors along the u1 axis in generic positions (u1, u2, u3, u4)
is

QFI∆x(u1, u2, u3, u4) =
1

16z20

(

3u21 − 2u1(u2 + u3 + u4) + 3u2
2 − 2u2(u3 + u4) + 3u3

2 − 2u3u4 + 3u4
2
)

. (C12)

Now setting them evenly spaced, the coordinates are
(

u1,
1
3u1,− 1

3u1,−u1
)

, the QFI is

QFI∆x

(

u1,
1

3
u1,−

1

3
u1,−u1

)

=
5

9z20
u21. (C13)

We then apply a 4-mode quantum Fourier transform, which acts on the 4 modes as









a†
′

u1

a†
′

u2

a†
′

u3

a†
′

u4









→ 1

2







1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i















a†u1

a†u2

a†u3

a†u4









. (C14)

The probability of the photon exiting through the mode 1 is

p1 =
1

16

[

cos

(

(u1 − u2)(∆z(−∆x+ u1 + u2) + 2∆xz0)

4z20

)

+ cos

(

(u1 − u2)(∆z(∆x+ u1 + u2) + 2∆xz0)

4z20

)

+ cos

(

(u1 − u3)(∆z(−∆x+ u1 + u3) + 2∆xz0)

4z20

)

+ cos

(

(u1 − u3)(∆z(∆x+ u1 + u3) + 2∆xz0)

4z20

)

+ cos

(

(u1 − u3)(∆z(−∆x+ u1 + u3) + 2∆xz0)

4z20

)

+ cos

(

(u1 − u3)(∆z(∆x+ u1 + u3) + 2∆xz0)

4z20

)

+ cos

(

(u2 − u3)(∆z(−∆x+ u2 + u3) + 2∆xz0)

4z20

)

+ cos

(

(u2 − u3)(∆z(∆x+ u2 + u3) + 2∆xz0)

4z20

)

+ cos

(

(u2 − u3)(∆z(−∆x+ u2 + u3) + 2∆xz0)

4z20

)

+ cos

(

(u2 − u3)(∆z(∆x+ u2 + u3) + 2∆xz0)

4z20

)

+ cos

(

(u3 − u3)(∆z(−∆x+ u3 + u3) + 2∆xz0)

4z20

)

+ cos

(

(u3 − u3)(∆z(∆x+ u3 + u3) + 2∆xz0)

4z20

)

+ 4

]

(C15)

The rest of the probabilities take a similar form, which we omit for brevity. Once again, calculating the probabilities
and using Eq. (C5), the Fisher information for photon counting at the output ports is

CFI∆x =
1

18z20
u21

(

cos

(

2∆xu1
3z0

)

+ 9

)

≈ 5

9z20
u21, (C16)
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with Eq (C16) coinciding with the QFI. In the same configuration, the QFI for ∆z is

QFI∆z =
1

z40

(

5∆x2u21
36

+
4u41
81

)

. (C17)

The actual expression for the CFI of ∆z is large and un-illuminating. However, in the limit that ∆x→ 0, it reduces
to

CFI∆z =
4

81z40
u41 (C18)

which coincides with the QFI. In this limit both the parameters ∆x and ∆z can be extracted here optimally simul-
taneously, since the off-diagonal element in the classical Fisher information matrix is zero.
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