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Abstract— This paper surveys some recent results on the
theory of quantum linear systems and presents them within
a unified framework. Quantum linear systems are a class of
systems whose dynamics, which are described by the laws of
quantum mechanics, take the specific form of a set of linear
quantum stochastic differential equations (QSDEs). Such sys-
tems commonly arise in the area of quantum optics and related
disciplines. Systems whose dynamics can be described or ap-
proximated by linear QSDEs include interconnections of optical
cavities, beam-spitters, phase-shifters, optical parametric am-
plifiers, optical squeezers, and cavity quantum electrodynamic
systems. With advances in quantum technology, the feedback
control of such quantum systems is generating new challenges
in the field of control theory. Potential applications of such
quantum feedback control systems include quantum computing,
quantum error correction, quantum communications, gravity
wave detection, metrology, atom lasers, and superconducting
quantum circuits.

A recently emerging approach to the feedback control of
quantum linear systems involves the use of a controller which
itself is a quantum linear system. This approach to quantum
feedback control, referred to as coherent quantum feedback
control, has the advantage that it does not destroy quantum
information, is fast, and has the potential for efficient imple-
mentation. This paper discusses recent results concerning the
synthesis of H-infinity optimal controllers for linear quantum
systems in the coherent control case. An important issue which
arises both in the modelling of linear quantum systems and
in the synthesis of linear coherent quantum controllers is the
issue of physical realizability. This issue relates to the property
of whether a given set of QSDEs corresponds to a physical
quantum system satisfying the laws of quantum mechanics. The
paper will cover recent results relating the question of physical
realizability to notions occuring in linear systems theory such
as lossless bounded real systems and dual J-J unitary systems.

I. INTRODUCTION

Developments in quantum technology and quantum infor-

mation provide an important motivation for research in the

area of quantum feedback control systems; e.g., see [1]–[7].

In particular, in recent years, there has been considerable

interest in the feedback control and modeling of linear

quantum systems; e.g., see [3], [5], [5], [8]–[26]. Such linear
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quantum systems commonly arise in the area of quantum

optics; e.g., see [27]–[29]. Feedback control of quantum

optical systems has applications in areas such as quantum

communications, quantum teleportation, and gravity wave

detection. In particular, linear quantum optics is one of the

possible platforms being investigated for future communica-

tion systems (see [30], [31]) and quantum computers (see

[32], [33] and [34]). Feedback control of quantum systems

aims to achieve closed loop properties such as stability [35],

[36], robustness [11], [37], entanglement [18], [38], [39].

Quantum linear system models have been used in the

physics and mathematical physics literature since the 1980’s;

e.g., see [26], [28], [40]–[42]. An important class of linear

quantum stochastic models describe the Heisenberg evolution

of the (canonical) position and momentum, or annihilation

and creation operators of several independent open quantum

harmonic oscillators that are coupled to external coherent

bosonic fields, such as coherent laser beams; e.g., see [27],

[26], [28], [8], [10], [9], [11]–[13], [17], [18], [22], [25],

[43], [44]). These linear stochastic models describe quantum

optical devices such as optical cavities [29], [27], linear

quantum amplifiers [28], and finite bandwidth squeezers

[28]. Following [11], [12], [22], we will refer to this class

of models as linear quantum stochastic systems. In par-

ticular, we consider linear quantum stochastic differential

equations driven by quantum Wiener processes; see [28].

Further details on quantum stochastic differential equations

and quantum Wiener processes can be found in [40], [42],

[45].

This paper will survey some of the available results on

the feedback control of linear quantum systems and related

problems. An important class of quantum feedback control

systems involves the use of measurement devices to obtain

classical output signals from the quantum system and no

quantum measurements is involved. These classical signals

are fed into a classical controller which may be implemented

via analog or digital electronics and then the resulting control

signal act on the quantum system via an actuator. However,

some recent papers on the feedback control of linear quantum

systems have considered the case in which the feedback con-

troller itself is also a quantum system. Such feedback control

is often referred to as coherent quantum control; e.g., see [5],

[6], [11], [12], [14]–[17], [46]–[48]. Due to the limitations

imposed by quantum mechanics on the use of quantum mea-

surement, the use of coherent quantum feedback control may

lead to improved control system performance. In addition, in

many applications, coherent quantum feedback controllers

may be preferable to classical feedback controllers due to

considerations of speed and ease of implementation.
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One motivation for considering such coherent quantum

control problems is that coherent controllers have the po-

tential to achieve improved performance since quantum

measurements inherently involve the destruction of quantum

information; e.g., see [34]. Also, technology is emerging

which will enable the implementation of complex coherent

quantum controllers (e.g., see [49]) and the coherent H∞

controllers proposed in [11] have already been implemented

experimentally as described in [17]. Furthermore, coher-

ent controllers implemented using quantum optics have the

potential to operate at much higher speeds than classical

controllers implemented in analog or digital electronics.

In general, quantum linear stochastic systems represented

by linear Quantum Stochastic Differential Equations (QS-

DEs) with arbitrary constant coefficients need not corre-

spond to physically meaningful systems. In contrast, because

classical linear stochastic systems can be implemented at

least approximately, using analog or digital electronics, we

regard them as always being realizable. Physical quantum

systems must satisfy some additional constraints that restrict

the allowable values for the system matrices defining the

QSDEs. In particular, the laws of quantum mechanics dictate

that closed quantum systems evolve unitarily, implying that

(in the Heisenberg picture) certain canonical observables

satisfy the so-called canonical commutation relations (CCR)

at all times. Therefore, to characterize physically meaningful

systems, [11] has introduced a formal notion of physically

realizable quantum linear stochastic systems and derives a

pair of necessary and sufficient characterizations for such

systems in terms of constraints on their system matrices.

In the paper [21], the physical realizability results of [14],

[15] are extended to the most general class of complex

linear QSDEs. It is shown that this class of linear quantum

systems corresponds to the class of real linear quantum

systems considered in [11] via the use of a suitable state

transformation.

The remainder of this paper proceeds as follows. In

Section II, we introduce the class of linear quantum stochas-

tic systems under consideration and consider a number of

different representations of these systems. We also introduce

a useful special class of linear quantum systems which was

considered in [14]–[16]. In Section III, we consider the

issue of physical realizability for the class of linear quantum

systems under consideration. In Section IV, we will consider

the problem of coherent H∞ quantum controller synthesis.

In Section V, we present some conclusions.

II. LINEAR QUANTUM SYSTEM MODELS

In this section, we formulate the class of linear quantum

system models under consideration. These linear quantum

system models take the form of quantum stochastic differen-

tial equations which are derived from the quantum harmonic

oscillator.

A. Quantum Harmonic Oscillators

We begin by considering a collection of n independent

quantum harmonic oscillators which are defined on a Hilbert

space H = L2(Rn,C); e.g., see [25], [42], [50]. Elements of

the Hilbert space H, ψ(x) are the standard complex valued

wave functions arising in quantum mechanics where x is a

spatial variable. Corresponding to this collection of harmonic

oscillators is a vector of annihilation operators

a =











a1

a2

...

an











. (1)

Each annihilation operator ai is an unbounded linear operator

defined on a suitable domain in H by

(aiψ)(x) =
1√
2
xiψ(x) +

1√
2

∂ψ(x)

∂xi

where ψ ∈ H is contained in the domain of the operator ai.

The adjoint of the operator ai is denoted a∗i and is referred to

as a creation operator. The operators ai and a∗i are such that

the following cannonical commutation relations are satisfied

[ai, a
∗
j ] = aia

∗
j − a∗jai = δij (2)

where δij denotes the kronecker delta multiplied by the

identity operator on the Hilbert space H. We also have the

commutation relations

[ai, aj] = 0, [a∗i , a
∗
j ] = 0. (3)

For a general vector of operators

g =











g1
g2
...

gn











,

on H, we use the notation

g# =











g∗1
g∗2
...

g∗n











,

to denote the corresponding vector of adjoint operators.

Also, gT denotes the corresponding row vector of operators

gT =
[

u1 u2 . . . un

]

, and g† =
(

g#
)T

. Using this

notation, the canonical commutation relations (2), (3) can be

written as
[

[

a

a#

]

,

[

a

a#

]†
]

=

[

a

a#

] [

a

a#

]†

−
(

[

a

a#

]# [

a

a#

]T
)T

=

[

I 0
0 0

]

. (4)

A state on our system of quantum harmonic oscillators

is defined by a density operator ρ which is a self-adjoint

positive-semidefinite operator on H with tr(ρ) = 1; e.g., see

I. R. Petersen • Quantum Linear Systems Theory 

2174



[34]. Corresponding to a state ρ and an operator g on H is

the quantum expectation

〈g〉 = tr(ρg).

A state on the system is said to be Gaussian with positive-

semidefinite covariance matrix Q ∈ C2n×2n and mean

vector α ∈ Cn if given any vector u ∈ Cn,

〈

exp

(

i
[

u† uT
]

[

a

a#

])〉

= exp









− 1
2

[

u† uT
]

Q

[

u

u#

]

−i
[

u† uT
]

[

α

α#

]

;









;

e.g., see [25], [50]. Here, u# denotes the complex conjugate

of the complex vector u, uT denotes the transpose of the

complex vector u, and u† denotes the complex conjugate

transpose of the complex vector u.

Note that the covariance matrix Q satisfies

Q =

〈

[

a

a#

] [

a

a#

]†
〉

.

In the special case in which the covariance matrix Q is of

the form

Q =

[

I 0
0 0

]

and the mean α = 0, the system is said to be in the vacuum

state. In the sequel, it will be assumed that the state on

the system of harmonic oscillators is a Gaussian vacuum

state. The state on the system of harmonic oscillators plays

a similar role to the probability distribution of the initial

conditions of a classical stochastic system.

The quantum harmonic oscillators described above are

assumed to be coupled to m external independent quan-

tum fields modelled by bosonic annihilation field operators

A1(t),A2(t), . . . ,Am(t) which are defined on separate Fock

spaces Fi defined over L2(R) for each field operator [39],

[40], [42], [45]. For each annihilation field operator Aj(t),
there is a corresponding creation field operator A∗

j (t), which

is defined on the same Fock space and is the operator adjoint

of Aj(t). The field operators are adapted quantum stochastic

processes with forward differentials

dAj(t) = Aj(t+ dt) −Aj(t)

and

dA∗
j (t) = A∗

j (t+ dt) −A∗
j (t)

that have the quantum Itô products [39], [40], [42], [45]:

dAj(t)dAk(t)∗ = δjkdt;

dA∗
j (t)dAk(t) = 0;

dAj(t)dAk(t) = 0;

dA∗
j (t)dA∗

k(t) = 0.

The field annilation operators are also collected into a vector

of operators defined as follows:

A(t) =











A1(t)
A2(t)

...

Am(t)











.

For each i, the corresponding system state on the Fock

space Fi is assumed to be a Gaussian vacuum state which

means that given any complex valued function ui(t) ∈
L2(R,C), then

〈

exp

(

i

∫ ∞

0

ui(t)
∗dAi(t) + i

∫ ∞

0

ui(t)dAi(t)
∗

)〉

= exp

(

−1

2

∫ ∞

0

|u(t)|2dt
)

;

e.g., see [25], [40], [42], [45].

In order to describe the joint evolution of the quantum

harmonic oscillators and quantum fields, we first specify the

Hamiltonian operator for the quantum system which is a

Hermitian operator on H of the form

H =
1

2

[

a† aT
]

M

[

a

a#

]

where M ∈ C2n×2n is a Hermitian matrix of the form

M =

[

M1 M2

M
#
2 M

#
1

]

and M1 = M
†
1 , M2 = MT

2 . Here, M † denotes the complex

conjugate transpose of the complex matrix M , MT denotes

the transpose of the complex matrix M , and M# denotes

the complex conjugate of the complex matrix M . Also, we

specify the coupling operator for the quantum system to be

an operator of the form

L = N

[

a

a#

]

=
[

N1 N2

]

[

a

a#

]

whereN1 ∈ Cm×n andN2 ∈ Cm×n. In addition, we define a

scattering matrix which is a unitary matrix S ∈ Cn×n. These

quantities then define the joint evolution of the quantum

harmonic oscillators and the quantum fields according to a

unitary adapted process U(t) (which is an operator valued

function of time) satisfying the Hudson-Parthasarathy QSDE

[23], [40], [42], [45]:

dU(t) = ((S − I)TdΛ(t) + dA(t)†L− L†dA(t)

−(iH +
1

2
L†Ldt))U(t); U(0) = I,

where Λ(t) = [Λjk(t)]j,k=1,...,m. Here, the processes Λjk(t)
for j, k = 1, . . . ,m are adapted quantum stochastic processes

referred to as gauge processes, and the forward differentials

dΛjk(t) = Λjk(t + dt) − Λjk(t) j, k = 1, . . . ,m have the

quantum Itô products:

dΛjk(t)dΛj′k′(t) = δkj′dΛjk′ (t);

dAj(t)dΛkl(t) = δjkdAl(t);

dΛjkdAl(t)
∗ = δkldA∗

j (t).
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Then, using the Heisenberg picture of quantum mechanics,

the harmonic oscillator operators ai(t) evolve with time

unitarily according to

ai(t) = U(t)∗aiU(t)

for i = 1, 2, . . . , n. Also, the linear quantum system output

fields are given by

Aout
i (t) = U(t)∗Ai(t)U(t)

for i = 1, 2, . . . ,m.

We now use the fact that for any adapted processes X(t)
and Y (t) satisfying a quantum Itô stochastic differential

equation, we have the quantum Itô rule

dX(t)Y (t) = X(t)dY (t) + dX(t)Y (t) + dX(t)dY (t);

e.g., see [42]. Using the quantum Itô rule and the quantum

Itô products given above, as well as exploiting the canonical

commutation relations between the operators in a, the fol-

lowing QSDEs decribing the linear quantum system can be

obtained (e.g., see [25]):

da(t) = dU(t)∗aU(t)

=
[

F1 F2

]

[

a(t)
a(t)#

]

dt

+
[

G1 G2

]

[

dA(t)
dA(t)#

]

;

a(0) = a;

dAout(t) = dU(t)∗A(t)U(t)

=
[

H1 H2

]

[

a(t)
a(t)#

]

dt

+
[

K1 K2

]

[

dA(t)
dA(t)#

]

, (5)

where

F1 = −iM1 −
1

2

(

N
†
1N1 −NT

2 N
#
2

)

;

F2 = −iM2 −
1

2

(

N
†
1N2 −NT

2 N
#
1

)

;

G1 = −N †
1S;

G2 = NT
2 S

#;

H1 = N1;

H2 = N2;

K1 = S;

K2 = 0. (6)

From this, we can write

[

da(t)
da(t)#

]

= F

[

a(t)
a(t)#

]

dt+G

[

dA(t)
dA(t)#

]

;

[

dAout(t)
dAout(t)#

]

= H

[

a(t)
a(t)#

]

dt+K

[

dA(t)
dA(t)#

]

,

(7)

where

F =

[

F1 F2

F
#
2 F

#
1

]

; G =

[

G1 G2

G
#
2 G

#
1

]

;

H =

[

H1 H2

H
#
2 H

#
1

]

; K =

[

K1 K2

K
#
2 K

#
1

]

. (8)

Also, the equations (6) can be re-written as

F = −iJM − 1

2
JN †JN ;

G = −JN †

[

S 0
0 −S#

]

;

H = N ;

K =

[

S 0
0 S#

]

; (9)

where

J =

[

I 0
0 −I

]

.

Note that matrices of the form (8) occur commonly in the

theory of linear quantum systems. It is straightforward to

establish the following lemma which characterizes matrices

of this form.

Lemma 1: A matrix R =

[

R1 R2

R3 R4

]

satisfies

[

R1 R2

R3 R4

]

=

[

R1 R2

R
#
2 R

#
1

]

if and only if

RΣ = ΣR#

where

Σ =

[

0 I

I 0

]

.

We now consider the case when the initial condition in the

QSDE (5) is no longer the vector of annihilation operators

(1) but rather a vector of linear combinations of annihilation

operators and creation operators defined by

ã = T1a+ T2a
#

where

T =

[

T1 T2

T
#
2 T

#
1

]

∈ C
2n×2n
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is non-singular. Then, it follows from (4) that

[

[

ã

ã#

]

,

[

ã

ã#

]†
]

=

[

ã

ã#

] [

ã

ã#

]†

−
(

[

ã

ã#

]# [

ã

ã#

]T
)T

= T

[

ã

ã#

] [

ã

ã#

]†

T †

−



T#

(

[

a

a#

]# [

a

a#

]T
)T

T T





T

= T











[

a

a#

] [

a

a#

]†

−
(

[

a

a#

]# [

a

a#

]T
)T











T †

= Θ

where

Θ = T

[

I 0
0 0

]

T † =

[

T1T
†
1 T1T

T
2

T
#
2 T

†
1 T

#
2 T

T
2

]

≥ 0. (10)

The relationship

[

[

ã

ã#

]

,

[

ã

ã#

]†
]

= Θ (11)

is referred to as a generalized commutation relation [14]–

[16]. Also, the covariance matrix corresponding to

[

ã

ã#

]

is given by

Q̃ =

〈

[

ã

ã#

] [

ã

ã#

]†
〉

= Θ.

In terms of the variables ã(t) = U(t)∗ãU(t), the QSDEs,

(7) can be rewritten as

[

dã(t)
dã(t)#

]

= F̃

[

ã(t)
ã(t)#

]

dt+ G̃

[

dA(t)
dA(t)#

]

;

[

dAout(t)
dAout(t)#

]

= H̃

[

ã(t)
ã(t)#

]

dt+ K̃

[

dA(t)
dA(t)#

]

,

(12)

where

F̃ =

[

F̃1 F̃2

F̃
#
2 F̃

#
1

]

= TFT−1;

G̃ =

[

G̃1 G̃2

G̃
#
2 G̃

#
1

]

= TG;

H̃ =

[

H̃1 H̃2

H̃
#
2 H̃

#
1

]

= HT−1;

K̃ =

[

K̃1 K̃2

K̃
#
2 K̃

#
1

]

= K. (13)

Now, we can re-write the operators H and L defining the

above collection of quantum harmonic oscillators in terms

of the variables ã as

H =
1

2

[

ã† ãT
]

M̃

[

ã

ã#

]

, L = Ñ

[

ã

ã#

]

where

M̃ =
(

T †
)−1

MT−1, Ñ = NT−1. (14)

Here

M̃ =

[

M̃1 M̃2

M̃
#
2 M̃

#
1

]

, Ñ =
[

Ñ1 Ñ2

]

. (15)

Furthermore, equations (9), (13) and (14) can be combined

to obtain

F̃ = −iΨM̃ − 1

2
ΨÑ †JÑ ;

G̃ = −ΨÑ †

[

S 0
0 −S#

]

;

H̃ = Ñ ;

K̃ =

[

S 0
0 S#

]

; (16)

where

Ψ = Ψ† = TJT † =

[

T
†
1T1 − T T

2 T
#
2 T

†
1T2 − T T

2 T
#
1

T
†
2T1 − T T

1 T
#
2 T

†
2T2 − T T

1 T
#
1

]

.

(17)

The QSDEs (12), (13), (16) define the general class

of linear quantum systems considered in this paper. Such

quantum systems can be used to model a large range of

devices and networks of devices arising in the area of

quantum optics including optical cavities, squeezers, optical

parametric amplifiers, cavity QED systems, beam splitters,

and phase shifters; e.g., see [3], [5], [6], [11], [17], [19],

[22], [24], [26]–[29], [48].

B. Annihilation operator linear quantum systems

An important special case of the linear quantum systems

(12), (13), (16) corresponds to the case in which the Hamil-

tonian operator H and coupling operator L depend only of

the vector of annihilation operators a and not on the vector of

creation operators a#. This class of linear quantum systems

is considered in [14]–[17], [19], [20], [51] and can be used

to model “passive” quantum optical devices such as optical

cavities, beam splitters, phase shifters and interferometers.

This class of linear quantum systems corresponds to the

case in which M̃2 = 0, Ñ2 = 0, and T2 = 0. In this case,

the linear quantum system can be modelled by the QSDEs

dã(t) = F̃ ã(t)dt+ G̃dA(t)

dAout(t) = H̃ã(t)dt+ K̃dA(t) (18)

where

F̃ = −iΘ1M̃1 −
1

2
Θ1Ñ

†
1 Ñ1;

G̃ = −Θ1Ñ
†
1S;

H̃ = Ñ1;

K̃ = S;

Θ1 = T1T
†
1 > 0. (19)
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C. Position and momentum operator linear quantum systems

Note that the matrices in the general QSDEs (12), (13)

are in general complex. However, it is possible to apply a

particular change of variables to the system (5) so that all

of the matrices in the resulting transformed QSDEs are real.

This change of variables is defined as follows:

[

q

p

]

= Φ

[

a

a#

]

;

[

Q(t)
P(t)

]

= Φ

[

A(t)
A(t)#

]

;

[

Qout(t)
Pout(t)

]

= Φ

[

Aout(t)
Aout(t)#

]

(20)

where the matrices Φ have the form

Φ =

[

I I

−iI iI

]

and have the appropriate dimensions. Here q is a vector of

the self-adjoint position operators for the system of harmonic

oscillators and p is a vector of momentum operators; e.g.,

see [11], [12], [21], [39]. Also, Q(t) and P(t) are the

vectors of position and momentum operators for the quantum

noise fields acting on the system of harmonic oscillators.

Furthermore, Qout(t) and Pout(t) are the vectors of position

and momentum operators for the output quantum noise fields.

Rather than applying the transformations (20) to the

quantum linear system (7) which satisfies the canonical

commutation relations (4), corresponding transformations

can be applied to the quantum linear system (12) which

satisfies the generalized commutation relations (11). These

transformations are as follows:

[

q̃

p̃

]

= Φ

[

ã

ã#

]

;

[

Q(t)
P(t)

]

= Φ

[

A(t)
A(t)#

]

;

[

Qout(t)
Pout(t)

]

= Φ

[

Aout(t)
Aout(t)#

]

. (21)

When these transformations are applied to the quantum linear

system (12), this leads to the following real quantum linear

system:

[

dq̃(t)
dp̃(t)

]

= A

[

p̃(t)
q̃(t)

]

dt+B

[

dQ(t)
dP(t)

]

;

[

dQout(t)
dPout(t)

]

= C

[

q̃(t)
p̃(t)

]

dt+D

[

dP(t)
dQ(t)

]

,

(22)

where

A = ΦF̃Φ−1

=
1

2

[

F̃1 + F̃
#
1 + F̃2 + F̃

#
2

−i
(

F̃1 − F̃
#
1

)

− i
(

F̃2 − F̃
#
2

)

i
(

F̃1 − F̃
#
1

)

− i
(

F̃2 − F̃
#
2

)

F̃1 + F̃
#
1 − F̃2 − F̃

#
2

]

;

B = ΦG̃Φ−1

=
1

2

[

G̃1 + G̃
#
1 + G̃2 + G̃

#
2

−i
(

G̃1 − G̃
#
1

)

− i
(

G̃2 − G̃
#
2

)

i
(

G̃1 − G̃
#
1

)

− i
(

G̃2 − G̃
#
2

)

G̃1 + G̃
#
1 − G̃2 − G̃

#
2

]

;

C = ΦH̃Φ−1

=
1

2

[

H̃1 + H̃
#
1 + H̃2 + H̃

#
2

−i
(

H̃1 − H̃
#
1

)

− i
(

H̃2 − H̃
#
2

)

i
(

H̃1 − H̃
#
1

)

− i
(

H̃2 − H̃
#
2

)

H̃1 + H̃
#
1 − H̃2 − H̃

#
2

]

;

D = ΦK̃Φ−1

=
1

2

[

K̃1 + K̃
#
1 + K̃2 + K̃

#
2

−i
(

K̃1 − K̃
#
1

)

− i
(

K̃2 − K̃
#
2

)

i
(

K̃1 − K̃
#
1

)

− i
(

K̃2 − K̃
#
2

)

K̃1 + K̃
#
1 − K̃2 − K̃

#
2

]

.

(23)

These matrices are all real.

Also, it follows from (11) that
[

[

q̃

p̃

]

,

[

q̃

p̃

]†
]

= Λ

where

Λ = ΦΘΦ† = ΦT

[

I 0
0 0

]

T †Φ†, (24)

which is a positive-semidefinite Hermitian matrix.

Now, we can re-write the operators H and L defining the

above collection of quantum harmonic oscillators in terms

of the variables q̃ and p̃ as

H =
1

2

[

q̃T p̃T
]

R

[

q̃

p̃

]

, L = V

[

q̃

p̃

]

where

R =
(

Φ†
)−1

M̃Φ−1, V = ÑΦ−1. (25)

Here

R =
1

4

[

M̃1 + M̃
#
1 + M̃2 + M̃

#
2

−i
(

M̃1 − M̃
#
1

)

− i
(

M̃2 −˜̃M#
2

)

i
(

M̃1 − M̃
#
1

)

− i
(

M̃2 −˜̃M#
2

)

M̃1 + M̃
#
1 − M̃2 − M̃

#
2

]

;

V =
[

Ñ1 + Ñ2 i
(

Ñ1 − Ñ2

) ]

(26)
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where the matrix R is real but the matrix V may be complex.

Furthermore, equations (16), (23), and (26) can be combined

to obtain

A = −iΞR− 1

2
ΞV †JV ;

B = −1

2
ΞV †

[

S iS

−S# iS#

]

;

C = ΦV ;

D =
1

2

[

S + S# i
(

S − S#
)

−i
(

S − S#
)

S + S#

]

; (27)

where

Ξ = Ξ† = ΦΨΦ† = ΦTJT †Φ†. (28)

Note that the matrix ΦTΦ−1 is real and

ΦJΦ† = 2i

[

0 I

−I 0

]

= 2iJ̃ (29)

where

J̃ =

[

0 I

−I 0

]

.

Hence, the matrix

Ξ = ΦTΦ−1ΦJΦ†
(

Φ†
)−1

T †Φ†

must be purely imaginary.

III. PHYSICAL REALIZABILITY

Not all QSDEs of the form (12), (13) correspond to

physical quantum systems. This motivates a notion of phys-

ical realizability which has been considered in the papers

[11], [12], [14]–[16], [19]–[21], [38], [51]. This notion is of

particular importance in the problem of coherent quantum

feedback control in which the controller itself is a quantum

system. In this case, if a controller is synthesized using

a method such as quantum H∞ control [11], [14], [16]

or quantum LQG control [12], [38], it important that the

controller can be implemented as a physical quantum system

[19], [22]. We first consider the issue of physical realizability

in the case of general linear quantum systems and then

we consider the issue of physical realizability for the case

of annihilator operator linear quantum system of the form

considered in Subsection II-B.

A. Physical realizability for general linear quantum systems

The formal definition of physically realizable QSDEs

requires that they can be realized as a system of quantum

harmonic oscillators.

Definition 1: QSDEs of the form (12), (13) are physically

realizable if there exist complex matrices Ψ = Ψ†, M̃ =
M̃ †, Ñ , S such that S†S = I , Ψ is of the form in (17), M̃

is of the form in (15), and (16) is satisfied.

A version of the following theorem was presented in [21];

see also [11], [12] for related results.

Theorem 1: The QSDEs (12), (13) are physically realiz-

able if and only if there exist complex matrices Ψ = Ψ† and

S such that S†S = I , Ψ is of the form in (17), and

F̃Ψ + ΨF̃ † + G̃JG̃† = 0;

G̃ = −ΨH̃†

[

S 0
0 −S#

]

;

K̃ =

[

S 0
0 S#

]

. (30)

Proof: If there exist matrices Ψ = Ψ†, M̃ = M̃ †, Ñ ,

S such that S†S = I , M̃ is of the form in (15), Ψ is of

the form in (17), and (16) is satisfied, then it follows by

straightforward substitution that (30) will be satisfied.

Converely, suppose there exist complex matrices Ψ = Ψ†

and S such that S†S = I , Ψ is of the form in (17), and (30)

is satisfied. Also, let

M̃ =
i

2

(

Ψ−1F̃ − F̃ †Ψ−1
)

;

Ñ = H̃.

It is straightforward to verify that this matrix M̃ is Hermitian.

Also, it follows from (30) that

G̃ = −ΨÑ †

[

S 0
0 −S#

]

as required. Furthermore, using S†S = I , it now follows that

G̃JG̃† = ΨÑ †JÑΨ.

Hence, (30) implies

F̃Ψ + ΨF̃ † + ΨÑ †JÑΨ = 0

and hence

F̃ †Ψ−1 = −Ψ−1F̃ − Ñ †JÑ

From this, it follows that

M̃ =
i

2

(

2Ψ−1F̃ + Ñ †JÑ
)

and hence,

F̃ = −iΨM̃ − 1

2
ΨÑ †JÑ

as required. Hence, (16) is satisfied.

We now use Lemma 1 to show that M̃ is of the form in

(15). Indeed, we have TΣ = ΣT#, T#Σ = ΣT , T−1Σ =
Σ
(

T#
)−1

,
(

T#
)−1

Σ = ΣT−1, F̃Σ = ΣF̃#, F̃#Σ = ΣF̃ ,

and ΣJ = −JΣ. Hence,

ΣM̃# = − i

2

(

Σ
(

T T
)−1

J
(

T#
)−1

F̃#

−ΣF̃T
(

T T
)−1

J
(

T#
)−1

)

=
i

2

(

(

T †
)−1

JT−1F̃

−F̃ †
(

T †
)−1

JT−1

)

Σ

= M̃Σ.

Therefore, it follows from Lemma 1 that M̃ is of the form

in (15) and hence, the QSDEs (12), (13) are physically

realizable.

Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems – MTNS 2010 •  5–9 July, 2010 • Budapest, Hungary

2179



Remark 1: In the canonical case when T = I and Ψ = J ,

the physical realizability equations (30) become

F̃ J + JF̃ † + G̃JG̃† = 0;

G̃ = −JH̃†

[

S 0
0 −S#

]

;

K̃ =

[

S 0
0 S#

]

. (31)

Following the approach of [21], we now relate the physical

realizability of the QSDEs (12), (13) to the dual (J, J)-
unitary property of the corresponding transfer function ma-

trix

Γ(s) =

[

Γ11(s) Γ12(s)
Γ21(s) Γ22(s)

]

= H̃
(

sI − F̃
)−1

G̃+ K̃.

(32)

Definition 2: (See [21], [52].) A transfer function matrix

Γ(s) of the form (32) is dual (J, J)-unitary if

Γ(s)JΓ∼(s) = J

for all s ∈ C+.

Here, Γ∼(s) = Γ(−s∗)† and C+ denotes the set {s ∈ C :
ℜ[s] ≥ 0}.

Theorem 2: The transfer function matrix (32) correspond-

ing to the QSDEs (12), (13) is dual (J, J)-unitary if and only

if

KJK† = J,

and there exists a Hermitian matrix Ψ such that

F̃Ψ + ΨF̃ † + G̃JG̃† = 0;

KJG̃† + H̃Ψ = 0. (33)

Theorem 3 (See also [21].): If the QSDEs (12), (13) are

physically realizable, then the corresponding transfer func-

tion matrix (32) is dual (J, J)-unitary.

Conversely, suppose the QSDEs (12), (13) satisfy the

following conditions:

(i) The transfer function matrix (32) corresponding to the

QSDEs (12), (13) is dual (J, J)-unitary;

(ii) K̃ =

[

S 0
0 S#

]

where S†S = I;

(iii) The Hermitian matrix Ψ satisfying (33) is of the form

in (17).

Then, the QSDEs (12), (13) are physically realizable.

Proof: If the QSDEs (12), (13) are physically realizable,

then it follows from Theorem 1 that there exist complex

matrices Ψ = Ψ† and S such that S†S = I and equations

(30) are satisfied. However, it follows from (30) that

G̃† +

[

S† 0
0 −ST

]

H̃Ψ

which implies that
[

S 0
0 −S#

]

G̃† + H̃Ψ = 0

and hence

KJG̃† + H̃Ψ = 0.

That is, the conditions (33) are satisfied and hence it fol-

lows from Theorem 2 that the transfer function matrix (32)

corresponding to the QSDEs (12), (13) is dual (J, J)-unitary.

Conversely, if the QSDEs (12), (13) satisfy conditions (i)

- (iii) of the theorem, then it follows from Theorem 2 that

there exists a Hermitian matrix Ψ of the form in (17) such

that equations (33) are satisfied. Hence,
[

S 0
0 −S#

]

G̃† + H̃Ψ = 0

and therefore

G̃† +

[

S† 0
0 −ST

]

H̃Ψ.

From this it follows that equations (30) are satisfied. Thus,

it follows from Theorem 1 that the QSDEs (12), (13) are

physically realizable.

Remark 2: For a real QSDEs of the form (22) with

corresponding transfer function

Υ(s) = C(sI −A)−1B +D

It is straightforward using equations (21) to verify that this

transfer function is related to the transfer function (32) of the

corresponding complex QSDEs (12) according to the relation

Υ(s) = ΦΓ(s)Φ−1. (34)

Now if the real QSDEs (22) are physically realizable, it

follows that the corresponding complex QSDEs (12), (13)

are physically realizable. Hence, using Theorem 3, it follows

that the corresponding transfer function matrix (32) is dual

(J, J)-unitary; i.e.,

Γ(s)JΓ∼(s) = J

for all s ∈ C+. Therefore, it follows from (34) and (29) that

Υ(s)J̃Υ∼(s) = J̃

for all s ∈ C+.

B. Physical realizability for annihilator operator linear

quantum systems

For annilhilator operator linear quantum systems described

by QSDEs of the form (18) the corresponding formal defi-

nition of physical realizability is as follows.

Definition 3: (See [14], [15], [51].) The QSDEs of the

form (18) are said to be physically realizable if there exist

matrices Θ1 = Θ†
1 > 0, M̃1 = M̃

†
1 , Ñ , and S such that

S†S = I and (19) is satisfied.

The following theorem from [14], [15], [51] gives a

characterization of physical realizability in this case.

Theorem 4: The QSDEs (18) are physically realizable if

and only if there exist complex matrices Θ1 = Θ†
1 > 0 and

S such that S†S = I and

F̃Θ1 + Θ1F̃
† + G̃G̃† = 0;

G̃ = −Θ1H̃
†S;

K̃ = S. (35)

I. R. Petersen • Quantum Linear Systems Theory 

2180



In the case of QSDEs of the form (18), the issue of

physical realizability is determined by the lossless bounded

real property of the corresponding transfer function matrix

Γ(s) = H̃(sI − F̃ )−1G̃+ K̃. (36)

Definition 4: (See also [53].) The transfer function matrix

(36) corresponding to the QSDEs (18) is said to be lossless

bounded real if the following conditions hold:

i) F is a Hurwitz matrix; i.e., all of its eigenvalues have

strictly negative real parts;

ii)

Γ(iω)†Γ(iω) = I

for all ω ∈ R.

Definition 5: (See also, [14], [15], [51].) The QSDEs

(18) are said to define a minimal realization of the transfer

function matrix (36) if the following conditions hold:

i) Controllability;

rank
[

G̃ F̃ G̃ F̃ 2G̃ . . . F̃n−1G̃
]

= n;

ii) Observability;

rank















H̃

H̃F̃

H̃F̃ 2

...

H̃F̃n−1















= n.

The following theorem, which is a complex version of the

standard lossless bounded real lemma, gives a state space

characterization of the lossless bounded real property.

Theorem 5: (Complex Lossless Bounded Real Lemma;

e.g., see [14], [15], [53]). Suppose the QSDEs (18) define

a minimal realization of the transfer function matrix (36).

Then the transfer function (36) is lossless bounded real if

and only if there exists a Hermitian matrix X > 0 such that

XF̃ + F̃ †X + H̃†H̃ = 0;

H̃†K̃ = −XG̃;

K̃†K̃ = I. (37)

Combining Theorems 4 and 5 leads to the following result

which provides a complete characterization of the physical

realizability property for minimal QSDEs of the form (18).

Theorem 6: (See [14], [15], [51].) Suppose the QSDEs

(18) define a minimal realization of the transfer function

matrix (36). Then, the QSDEs (18) are physically realizable

if and only if the transfer function matrix (36) is lossless

bounded real.

The following theorem from [14], [16], is useful in

synthesizing coherent quantum controllers using state space

methods.

Theorem 7: (See [14], [16].) Suppose the matrices

F,G1, H1 define a minimal realization of the transfer func-

tion matrix

Γ1(s) = H1(sI − F )−1G1.

Then, there exists matrices G2 and H2 such that the follow-

ing QSDEs of the form (18)

dã(t) = F ã(t)dt

+
[

G2 G1

]

[

dA1(t)
dA2(t)

]

;

[

dAout
1 (t)

dAout
2 (t)

]

=

[

H1

H2

]

ã(t)dt

+

[

I 0
0 I

] [

dA1(t)
dA2(t)

]

(38)

are physically realizable if and only if F is Hurwitz and
∥

∥

∥H1 (sI − F )−1
G1

∥

∥

∥

∞
≤ 1. (39)

IV. COHERENT QUANTUM H∞ CONTROL

In this section, we formulate a coherent quantum control

problem in which a linear quantum system is controlled

by a feedback controller which is itself a linear quantum

system. The fact that the controller is to be a quantum system

means that any controller synthesis method needs to produce

controllers which are physically realizable. The problem we

consider is the quantum H∞ control problem in which it is

desired to design a coherent controller such that the resulting

closed loop quantum system is stable and attenuates specified

disturbances acting on the system; see [11], [14], [16]. In the

standard quantum H∞ control problem such as considered

in [11], [14], [16], the quantum noises are averaged out and

only the external disturbance is considered.

A. Coherent H∞ control of general quantum linear systems

In this subsection, we formulate the coherent quantumH∞

control problem for a general class of quantum systems of

the form (12), (13).

We consider quantum plants described by linear complex

quantum stochastic models of the following form defined in

an analogous way to the QSDEs (12), (13):

[

dã(t)
dã(t)#

]

= F

[

ã(t)
ã(t)#

]

dt

+
[

G0 G1 G2

]





dv (t)
dw (t)
du (t)



 ;

dz (t) = H1

[

ã(t)
ã(t)#

]

dt+K12du (t) ;

dy (t) = H2

[

ã(t)
ã(t)#

]

dt

+
[

K20 K21 0
]





dv (t)
dw (t)
du (t)





(40)

where all of the matrices in these QSDEs have a form as in

(13). Here, the input

dw(t) =

[

βw(t)dt+ dA(t)
β#

w (t)dt+ dA(t)#

]

Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems – MTNS 2010 •  5–9 July, 2010 • Budapest, Hungary

2181



represents a disturbance signal where βw(t) is an adapted

process; see [11], [14], [42]. The signal u(t) is a control

input of the form

du(t) =

[

βu(t)dt+ dB(t)
β#

u (t)dt+ dB(t)#

]

where βu(t) is an adapted process. The quantity

dv(t) =

[

dC(t)
dC(t)#

]

represents any additional quantum noise in the plant. The

quantities

[

dA(t)
dA(t)#

]

,

[

dB(t)
dB(t)#

]

and

[

dC(t)
dC(t)#

]

are

quantum noises of the form described in Section II.

In the coherent quantumH∞ control problem, we consider

controllers which are described by QSDEs of the form (12),

(13) as follows:
[

dâ(t)
dâ(t)#

]

= Fc

[

â(t)
â(t)#

]

dt

+
[

Gc0
Gc1

Gc

]





dwc0

dwc1

dy









du(t)
du0(t)
du1(t)



 =





Hc

Hc0

Hc1





[

â(t)
â(t)#

]

dt

+





Kc 0 0
0 Kc0 0
0 0 Kc1









dwc0

dwc1

dy





(41)

where all of the matrices in these QSDEs have a form as in

(13). Here the quantities

dwc0
=

[

dAc(t)
dAc(t)

#

]

, dwc1
=

[

dBc(t)
dBc(t)

#

]

are controller quantum noises of the form described in

Section II. Also, the ouputs du1 and du2 are unused outputs

of the controller which have been included so that the

controller can satisfy the definition of physical realizability

given in Definition 1.

Corresponding to the plant (40) and (41), we form the

closed loop quantum system by identifying the output of the

plant dy with the input to the controller dy, and identifying

the output of the controller du with the input to the plant

du. This leads to the following closed-loop QSDEs:

dη (t) =

[

F G2Hc

GcH2 Fc

]

η (t) dt

+

[

G0 G2 0
GcK20 Gc0

Gc1

]





dv (t)
dwc0

(t)
dwc1

(t)





+

[

G1

GcK21

]

dw (t) ;

dz (t) =
[

H1 K12Hc

]

η (t) dt

+
[

0 K12 0
]





dv (t)
dwc0

(t)
dwc1

(t)



 (42)

where

η (t) =









ã(t)
ã(t)#

â(t)
â(t)#









.

For a given quantum plant of the form (40), the coherent

quantum H∞ control problem involves finding a physically

realizable quantum controller (41) such that the resulting

closed loop system (42) is such that the following conditions

are satisfied:

(i) The matrix

Fcl =

[

F G2Hc

GcH2 Fc

]

(43)

is Hurwitz;

(ii) The closed loop transfer function

Γcl(s) = Hcl (sI − Fcl)
−1
Gcl

satisfies

‖Γcl(s)‖∞ < 1 (44)

where

Hcl =
[

H1 K12Hc

]

, Gcl =

[

G1

GcK21

]

.

Remark 3: In the paper [11], a version of the coherent

quantum H∞ control problem is solved for linear quantum

systems described by real QSDEs which are similar to

those in (22). In this case, the problem is solved using a

standard two Riccati equation approach such as given in

[54], [55]. A result is given in [11] which shows that any

H∞ controller which is synthesized using the two Riccati

equation approach can be made physically realizable by

adding suitable additional quantum noises.

B. Coherent H∞ control of annihilator operator quantum

linear systems

In this subsection, we consider the special case of coherent

quantum H∞ control for annihilation operator quantum

linear systems of the form considered in Subsection II-B

and present the Riccati equation solution to this problem

obtained in [14], [15]. The quantum H∞ control problem

being considered is the same as considered in Subsection

IV-A but we restrict attention to annihilation operator plants

of the form (18) as follows:

dã(t) = F ã(t)dt +
[

G0 G1 G2

]





dv (t)
dw (t)
du (t)



 ;

dz (t) = H1ã(t)dt+K12du (t) ;

dy (t) = H2ã(t)dt+
[

K20 K21 0
]





dv (t)
dw (t)
du (t)



 .

(45)
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Also, we restrict attention to annihilation operator controllers

of the form (18) as follows:

dâ(t) = Fcâ(t)dt

+
[

Gc0
Gc1

Gc

]





dwc0

dwc1

dy



 ;





du(t)
du0(t)
du1(t)



 =





Hc

Hc0

Hc1



 â(t)dt

+





Kc 0 0
0 Kc0 0
0 0 Kc1









dwc0

dwc1

dy



 .

(46)

The quantum plant (45) is assumed to satisfy the following

assumptions:

i) K
†
12K12 = E1 > 0;

ii) K21K
†
21 = E2 > 0;

iii) The matrix

[

F − iωIn G2

H1 K12

]

is full rank for all ω ≥
0;

iv) The matrix

[

F − iωIn G1

H2 K21

]

is full rank for all ω ≥
0.

The results will be stated in terms of the following pair

of complex algebraic Riccati equations:
(

F −G2E
−1
1 K

†
12H1

)†

X +X
(

F −G2E
−1
1 K

†
12H1

)

+X
(

G1G
†
1 −G2E

−1
1 G

†
2

)

X

+H†
1

(

I −K12E
−1
1 K

†
12

)

H1 = 0; (47)

(

F −G1K
†
21E

−1
2 H2

)

Y + Y
(

F −G1K
†
21E

−1
2 H2

)†

+Y
(

H
†
1H1 −H

†
2E

−1
2 H2

)

Y

+G1

(

I −K
†
21E

−1
2 K21

)

G
†
1 = 0. (48)

The solutions to these Riccati equations will be required to

satisfy the following conditions.

i) The matrix F − G2E
−1
1 K

†
12H1 +

(

G1G
†
1 −G2E

−1
1 G

†
2

)

X is Hurwitz; i.e., X is a

stabilizing solution to (47).

ii) The matrix F − G1K
†
21E

−1
2 H2 +

Y
(

H
†
1H1 −H

†
2E

−1
2 H2

)

is Hurwitz; i.e, Y is a

stabilizing solution to (48).

iii) The matrices X and Y satisfy

ρ(XY ) < 1 (49)

where ρ(·) denotes the spectral radius.

If the above Riccati equations have suitable solutions, a

quantum controller of the form (46) is constructed as follows:

Fc = F +G2Hc −GcH2 + (G1 −GcK21)G
†
1X ;

Gc = (I − Y X)
−1
(

Y H
†
2 +G1K

†
21

)

E−1
2 ;

Hc = −E−1
1

(

g2G
†
2X +K

†
12H1

)

. (50)

The following Theorem is presented in [14], [15].

Theorem 8: Necessity: Consider a quantum plant (45)

satisfying the above assumptions. If there exists a quantum

controller of the form (46) such that the resulting closed-loop

system satisfies the conditions (43), (44), then the Riccati

equations (47) and (48) will have stabilizing solutionsX ≥ 0
and Y ≥ 0 satisfying (49).

Sufficiency: Suppose the Riccati equations (47) and (48) have

stabilizing solutions X ≥ 0 and Y ≥ 0 satisfying (49). If

the controller (46) is such that the matrices Fc, Gc, Hc are

as defined in (50), then the resulting closed-loop system will

satisfy the conditions (43), (44).

Note that this theorem does not guarantee that a controller

defined by (46), (50) will be physically realizable. However,

if the matrices defined in (50) are such that

‖Hc (sI − Fc)
−1
Gc‖ < 1,

then it follows from Theorem 7 that a corresponding phys-

ically realizable controller of the form (46) can be con-

structed.

V. CONCLUSIONS

In this paper, we have surveyed some recent results in

the area of quantum linear systems theory and the related

area of coherent quantum H∞ control. However, a number

of other recent results on aspects of quantum linear systems

theory have not been covered in this paper. These include

results on coherent quantum LQG control (see [11], [38]),

and model reduction for quantum linear systems (see [51]).

Furthermore, in order to apply synthesis results on coherent

quantum feedback controller synthesis, it is necessary to

realize a synthesized feedback controller transfer function

using physical optical components such as optical cavities,

beam-splitters, optical amplifiers, and phase shifters. In a

recent paper [22], this issue was addressed for a general

class of coherent linear quantum controllers. An alternative

approach to this problem is addressed in [19] for the class of

annihilation operator linear quantum systems considered in

Subsection II-B and [14]–[16]. For this class of quantum sys-

tems, an algorithm is given to realize a physically realizable

controller transfer function in terms of a cascade connection

of optical cavities and phase shifters.

An important application of both classical and coherent

feedback control of quantum systems is in enhancing the

property of entanglement for linear quantum systems. Entan-

glement is an intrinsically quantum mechanical notion which

has many applications in the area of quantum computing and

quantum communications.

To conclude, we have surveyed some of the important

advances in the area of linear quantum control theory.

However, many important problems in this area remain open

and the area provides a great scope for future research.
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