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We present a scheme to realize the basic two-qubit logic gates such as the quantum phase gate and the
controlled-NOT gate using a detuned optical cavity interacting with a three-level Raman system. We discuss the
role of Stark shifts, which are as important as the terms leading to the two-photon transition. The operation of
the proposed logic gates involves metastable states of the atom and hence is not affected by spontaneous
emission. These ideas can be extended to produce multiparticle entanglement.
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I. INTRODUCTION

The performance of a quantum computer relies on certain
universal one-qubit and two-qubit logic gates. Any quantum
computation[1] can be reduced to a sequence of these gates
[2,3]. There have been a number of experimental systems
proposed as candidates for implementing these logic gates,
and many of these have been implemented. We may mention
trapped ions[4], cavity quantum electrodynamics[5–7],
nuclear magnetic resonance[8,9], quantum dots[9,10], and
neutral atoms in an optical lattice[11] as examples. Some of
the basic two-qubit logic gates are the conditional quantum
phase gate(QPG) [12], the controlled-NOT (CNOT) gate,
which is a universal two-qubit gate[3,9], theSWAP gate, etc.
It should be mentioned that ap shift of QPGand appropriate
rotation of the second qubit realize theCNOT gate.

The QPG operation can be performed using a three-level
atom interacting with a detuned cavity. The two-photon tran-
sitions are especially attractive in this case as then one can
work with long-lived ground states of the atom. In such a
situation, the excited state does not participate in the transi-
tion and thus it is possible to minimize the effect of decoher-
ence associated with the finite lifetime of the excited state
[13,14]. However, the two-photon transitions have complica-
tions associated with Stark shifts of the energy levels. The
Stark shifts are quite natural to any two-photon process as
one considers single-photon transitions which are detuned
from the intermediate levels. If one ignores Stark shifts, as is
very often done, then the nature of the two-photon process
becomes similar to the one-photon process and many of the
results such as Rabi oscillations carry over to two-photon
processes. In this paper, we consider a situation where a
three-level atom in theL configuration interacts with a bi-
modal cavity where the modes are highly detuned from the
corresponding one-photon transition. We demonstrate the
possibility of performing a number of logic operations(e.g.,
QPG, CNOT, and SWAP) using the two-photon Raman transi-
tion. We show this in spite of the nonzero Stark shifts in the
Raman transitions.

The structure of the paper is as follows. In Sec. II, we
present the model system and its theoretical description. In
Sec. III, we show how different two-qubit logic gate opera-
tions can be performed using this model. In Sec. IV, we
discuss the role of Stark shifts in quantum logic gate opera-
tions.

II. MODEL

Let us consider a three-level atomic configuration(Fig. 1).
The atom passes through a bimodal cavity. The modes with
annihilation operatorsa andb interact with theuel↔ ugl and
uel↔ ufl transitions, respectively. The Hamiltonian under the
rotating-wave approximation can be written as

H = "fveguelkeu + v fguflkf u + v1a
†a + v2b

†b

+ hg1uelkgua + g2uelkf ub + H.c.jg, s1d

where vlgsl Pe, fd is the atomic transition frequency,visi
P1,2d is the frequency of the cavity modesa andb, andgi

is the atom-cavity coupling constant. We assumegi to be
real. The interaction Hamiltonian in the interaction picture
can be written as

H = "fg1uelkguaeiD1t + g2uelkf ubeiD2t + H.c.g, s2d

where Di =veg,f −visi P1,2d is the one-photon detuning of
the cavity modes.

If the initial number of photons in thea andb modes are
n andm, respectively, then the state vector of the atom-cavity
system can be expanded in terms of the possible basis states
in the following way:

FIG. 1. Three-level atomic configuration with levelsugl, ufl, and
uel interacting with two orthogonal modes of the cavity, described
by annihilation operatorsa and b. Here g1 and g2 represent the
atom-cavity coupling of thea andb modes with the corresponding
transitions, andDi’s si P1,2d are the respective one-photon
detunings.
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ucstdl = c1uglun,ml + c2uelun − 1,ml + c3uflun − 1,m + 1l,

s3d

whereci’s si P1,2,3d are the probability amplitudes for the
corresponding states. The amplitude equations can be ob-
tained from the Schrödinger equation as

ḋ1 = − ig1
Înd2,

ḋ2 = − ifg1
Înd1 + g2

Îm + 1d3g − iD1d2, s4d

ḋ3 = − ig2
Îm + 1d2 − isD1 − D2dd3,

where the following transformations have been used:

c1 → d1, c2e
−iD1t → d2, c3e

−isD1−D2dt → d3.

We now work under the limit of large one-detunings. We
assume thatg1=g2=g, Di @g, andsD1−D2d!g. In this limit,

we put ḋ2<0 and the amplitude equations(4) reduce to

ḋ1 =
ig2În

D1
fÎnd1 + Îm + 1d3g, s5ad

ḋ3 = − isD1 − D2dd3 +
ig2Îm + 1

D1
fÎnd1 + Îm + 1d3g.

s5bd

We note that Eqs.(5a) and (5b) can be obtained from an
effective Hamiltonian given by

Heff = −
"g2

D1
fuglkgua†a + uflkf ub†bg

−
"g2

D1
fuglkf ua†b + uflkguab†g + "sD1 − D2duflkf u.

s6d

Here the first two terms represent the Stark shifts and the
next two terms give the interaction leading to a transition
from the initial state to the final state. The last term repre-
sents a shifting of the levelufl due to the two-photon detun-
ing. From the Hamiltonian(6), one can easily see that the
Stark-shift terms are of thesame order of magnitudes
="g2/D1d as the coupling term, and thus are as important as
the coupling term and should be kept in further discussion.
So one cannot ignore these Stark-shift terms from the Hamil-
tonian. The solution of Eqs.(5a) and (5b) is

d1std = eint/2HFcosSVt

2
D +

i

V
sD1 − D2dsinSVt

2
DGd1s0d

+
2ig2

D1V
sinSVt

2
Dd3s0dJ , s7ad

d3std = eint/2HFcosSVt

2
D −

i

V
sD1 − D2dsinSVt

2
DGd3s0d

+
2ig2

D1V
sinSVt

2
Dd1s0dJ , s7bd

where

V = FS2g2

D1
D2

+ sD1 − D2d2G1/2

,

s8d

n = F2g2

D1
− sD1 − D2dG ,

and we have consideredn=1 and m=0. Under the two-
photon resonance conditionD1=D2=D, the solution reduces
to

d1std =
1

2
fd1s0d + d3s0dgseiu − 1d + d1s0d, s9ad

d3std =
1

2
fd1s0d + d3s0dgseiu − 1d + d3s0d, s9bd

whereu=2g2t /D.
We note that, if we exclude Stark-shift terms from the

Hamiltonian(6), and work under two-photon resonance(i.e.,
D1=D2=D), then the effective Hamiltonian reduces to

Heff8 = −
"g2

D
sS−a†b + S+ab†d, s10d

where S+= uflkgu and S−= uglkf u are the atomic two-photon
creation and annihilation operators, respectively. The solu-
tion of the Schrödinger equations using this Hamiltonian is

d1std = cosSg2t

D
Dd1s0d + i sinSg2t

D
Dd3s0d, s11ad

d3std = cosSg2t

D
Dd3s0d + i sinSg2t

D
Dd1s0d, s11bd

which represents a Rabi oscillation of the vectorsd1,d3d.

III. QUANTUM LOGIC GATE OPERATIONS

In this section, we will show how different kinds of two-
qubit logic gates can be performed using the present model.

A. QPG operation

Let us first consider the solutions of Eqs.(5a) and (5b)
under the total effective Hamiltonian(6) (with D1ÞD2),
given by Eqs.(7a) and (7b). From these solutions one can
easily see that, if

D1 − D2

g
=

2

sD1/gd
, s12d

then, for an interaction timet=T defined by
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gT=
p

Î2
SD1

g
D =

Î2p

sD1 − D2d/g
, s13d

d1std becomes −1 for the initial conditiond1s0d=1. At this
particular interaction time, one can perform the following
QPG operation:

u0alu0b,gl → u0alu0b,gl,

u0alu0b, f l → u0alu0b, f l,

s14d
u0alu1b,gl → u0alu1b,gl,

u0alu1b, f l → − u0alu1b, f l,

which clearly involves theatomic ground-statebasis and the
Fock statebasis inb mode. It should be mentioned here that
we have verified the above analytical results by solving Eqs.
(4) numerically for the amplitudesdi also. The numerical
results reveal that the adiabatic approximation used in the
present problem holds well.

Note that in the aboveQPG operation we have considered
D1ÞD2. But if we work under the two-photon resonance
condition sD1=D2=Dd, then the solutions of Eqs.(5a) and
(5b) are given by Eqs.(9a) and (9b). From these solutions,
one can easily notice that the time-dependent amplitude of
the initial state u0aluf ,1bl is now se2ig2T/D+1d /2 [see Eq.
(9b)], which never reachess−1d. Rather for a certain choice
of 2g2T/ D s=p /2d, this becomeseip/4/Î2. This clearly shows
that the system no longer remains in that state(as is obvious
from the factor 1/Î2). A transition takes place to another
basis stateu1alug,0bl. In this way, working with the total
effective Hamiltonian under two-photon resonance, one can-
not perform a phase gate operation. Thus in the present
model, theQPGoperation can be performed successfullyonly
by avoiding the two-photon resonance condition.

We emphasize that theQPG operation discussed above in-
volves the cavity modeb as well as the ground metastable
states(ugl and ufl) of the atom, the transition between which
is dipole-forbidden. This is unlike the case in[7], where the
authors used two Rydberg states(states with very large quan-
tum numbers) which are dipole-coupled. Thus, theQPG op-
eration discussed in the present paper is not affected by any
kind of decoherence due to spontaneous emission of the
atomic levels, though it is limited by the cavity lifetime as all
operations such as the storage of the photons after initial
preparation and detection of the photonic qubit are to be
done within the cavity lifetime. To realize theQPG operation
against the cavity decay, one has to meet the condition
pD1k /Î2g2,1, which directly follows from the condition
T,k−1 and Eq.(13), wherek is the cavity decay constant. A
possible parameter zone to satisfy the above condition is
D1=10g andk=0.01g. This, though challenging for an opti-
cal cavity, can be expected to be reached very soon.

Note that if we consider a third atomic metastable stateukl
which is an auxiliary state, it is possible to perform the fol-
lowing QPGoperation involving theatomic metastable states

(ugl and ukl) and the two-mode photonic basis(ugRl
;u0a,1bl and ueRl;u1a,0bl),

uklugRl → uklugRl,

uklueRl → uklueRl,

s15d
uglugRl → uglugRl,

uglueRl → − uglueRl,

at the time defined by Eq.(13). We should mention here that
there are several other schemes, which use noninteracting
levels to perform logic gates in a two-atom basis. Our model
is quite different from other schemes[15–17]. Note that we
use a single atom interacting with a two-mode cavity, unlike
the cases cited above, which use two atoms interacting with
a single-mode cavity.

B. CNOT operation

A CNOT gate can be implemented from aQPG operation
through a rotation of the second qubit before and after the
QPGoperation. We choose the atom as the second qubit in the
present problem. By applying the Hadamard transformation
on the atomic state, before and after theQPG operation(14),
we obtain the followingCNOT operation:

u0alu0b,gl→
Ĉ

u0alu0b,gl,

u0alu0b, fl→
Ĉ

u0alu0b, fl,

s16d

u0alu1b,gl→
Ĉ

u0alu1b, fl,

u0alu1b, fl→
Ĉ

u0alu1b,gl,

whereĈ represents theCNOT operation here. Here the Had-
amard transformation on the atomic qubit statesugl and ufl
can be implemented by applying two resonant cw fields with
equal Rabi frequencies in the respective transitions of the
atom. We identify the field qubit as the controlling qubit and
the atomic qubit as the controlled qubit. We note that re-
cently DeMarcoet al.demonstrated aCNOT gate operation in
a single trapped ion interacting with a single Raman pulse
[18].

C. SWAP gate operation

In order to arrive atSWAP gate, we rewrite the Hamil-
tonian (6) as an interaction between the two “qubits” in the
following way:
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H̃eff = −
"g2

D1
FS+R− + S−R+ − 2SzRz +

1

2
G

+ "sD1 − D2dSSz +
1

2
D , s17d

where

S+ = uflkgu, S− = uglkf u, Sz =
1

2
suf lkf u − uglkgud,

s18d

R+ = a†b,R− = ab†, Rz =
1

2
sa†a − b†bd.

Here we identify a single photon in a two-mode cavity as an
effective qubit with the two possible statesueRl andugRl. The
field operatorR acts like a spin-1/2 operator in this basis. We
now assume that the two-photon resonance condition is sat-
isfied sD1=D2=Dd so that the effective Hamiltonian reads

H̃eff = −
2"g2

D
fSxRx + SyRy − SzRz + 1

4g, s19d

whereSx=sS++S−d /2 andSy=sS+−S−d /2i. This signifies a
spin-exchange interaction between two spin-1/2 particles.
This kind of interaction is always responsible for swap op-
eration. Defining the unitary operation as

U = exps− iH̃efft/"d = expfiusSxRx + SyRy − SzRz + 1
4dg ,

s20d

where u=2g2t /D, a SWAP gate can be performed foru
=pfUSW=Usu=pdg,

uglugRl →
USW

uglugRl,

uglueRl →
USW

− uf lugRl,

s21d

uf lugRl →
USW

− uglueRl,

uf lueRl →
USW

uf lueRl.

D. Role of phases of the coupling constants
in a SWAP gate

In all the above calculations, we have assumed that the
field coupling constantsg1 and g2 are equal andin phase.
However if they are not so, the general expression for the
Hamiltonian[Eq. (6)] under two-photon resonance would be

H8 = −
"

D
fug1u2uglkgua†a + ug2u2uf lk f ub†b + g1g2

puglkf ua†b

+ g1
pg2uf lkguab†g. s22d

Now if we impose the conditions

ug1u = ug2u = g, g2 = − g1 , s23d

then the above Hamiltonian can be written as

H8 ;
2"g2

D
fSxRx + SyRy + SzRz − 1

4g =
2"g2

D
fSW ·RW − 1

4g

s24d

instead of Eq.(19). Then the corresponding unitary operation
U8 becomes

U8 = e−iH8t/" = expF− iuSSW ·RW −
1

4
DG = f1 + se−iu − 1dP̂geiu.

s25d

HereP̂= 3
4 +SW ·RW is the projection operator with the eigenval-

ues 0 and 1. TheSWAP gate of Sec. III C can also be imple-
mented using the above unitary operator foru=p. It is also
very interesting to note that not only for a particular phase
relation betweeng1 and g2, but for any arbitrary phase be-
tween them, theSWAP gate works in the following way:

uglugRl → uglugRl,

uglueRl → − eifuf lugRl,

s26d
uf lugRl → − e−ifuglueRl,

uf lueRl → uf lueRl,

wheref is defined through the relationeif=g1g2
p / ug1u ug2u.

We should emphasize that all these universal logic gates
are the key resource in quantum computation. Our method
and system can also be used to prepare two-particle and
three-particle entangled states involving metastable states of
the atoms. This can be done by sequentially addressing the
atoms by the two-mode cavity under the two-photon reso-
nance condition(cf. [19,20]).

IV. ROLE OF STARK SHIFTS IN QUANTUM
LOGIC OPERATIONS

Next we investigate the role of the Stark-shift term in
performing the logic gates. Let us consider the Hamiltonian
(10) under the two-photon resonance condition whichex-
cludes the Stark-shift term. From the corresponding solutions
of Eq. (11a) and(11b) for the probability amplitudes, one can
obtain the following QPG operation with a 2p pulse
s2g2T/ D =2pd:

u0alu0b,gl → u0alu0b,gl,

u0alu0b, f l → u0alu0b, f l,

s27d
u0alu1b,gl → u0alu1b,gl,

u0alu1b, f l → − u0alu1b, f l.

But as soon as we keep the Stark-shift term in the Hamil-
tonian [see Eq.(6)] and continue to work under the two-
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photon resonance condition, we cannot achieve phase gate
operation. It should be borne in mind that one cannot ignore
the Stark-shift terms as they are as important as the coupling
term in the Hamiltonian. Our Sec. III A shows how to per-
form the QPG in spite of the Stark-shift term. We used the
extra freedom provided by two-photon detunings in our
model. We should mention here that many authors have uti-
lized an additional field to cancel the unwanted Stark shifts
[21–23]. We also note that in the context of other models,
Stark shifts have been used for two-qubit logic[24], the
Deutsch-Jozsa algorithm[25], and quantum holography[26].

Note that, recently, Solanoet al. reported aQPGoperation
based on the interaction of a three-level atom in a ladder
configuration and two modes of a cavity(each mode can
have either zero or one photon). The cavity modes are highly
detuned from a single-photon transition(see Fig. 2 of[27]),
but are two-photon-resonant. They showed that by excluding
the self-energy terms in the effective Hamiltonian, one can

perform a QPG operation in photonic Hilbert spacesu0,0l
→ u0,0l , u0,1l→ u0,1l , u1,0l→ u1,0l , u1,1l→−u1,1ld.

V. CONCLUSIONS

In conclusion, we have presented a system in which a
three-level atom in theL configuration interacts with a high-
Q bimodal optical cavity, with the cavity modes being highly
detuned from the corresponding single-photon transitions.
We have shown how a variety of logic operations can be
performed using the ground states of the atoms. The associ-
ated decoherence due to spontaneous emission is thus negli-
gible, though the quality of the cavity would lead to some
decoherence. We further emphasize that Stark shifts are sys-
tematically included in our case. Further, the present system
can be used to prepare bipartite and tripartite entangled states
involving the metastable states of the atoms.
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