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A bstract
This paper investigates quantum logic from the perspective of cate­

gorical logic, and starts from minimal assumptions, namely the existence 
of involutions/daggers and kernels. The resulting structures turn  out to 
(1) encompass many examples of interest, such as categories of relations, 
partial injections, Hilbert spaces (also modulo phase), and Boolean alge­
bras, and (2) have interesting categorical/logical/order-theoretic proper­
ties, in terms of kernel fibrations, such as existence of pullbacks, factori­
sation, orthomodularity, atomicity and completeness. For instance, the 
Sasaki hook and and-then connectives are obtained, as adjoints, via the 
existential-pullback adjunction between fibres.

1 Introduction
Dagger categories D come equipped with a special functor j : Dop —*■ D with 

=  A" on objects and = ƒ on morphisms. A simple example is the cat­
egory R e l of sets and relations, where j  is reversal of relations. A less trivial 
example is the category Hilb of Hilbert spaces and continuous linear transfor­
mations, where j is induced by the inner product. The use of daggers, mostly 
with additional assumptions, dates back to [31, 35]. Daggers are currently of 
interest in the context of quantum  computation [1, 40, 7]. The dagger abstractly 
captures the reversal of a computation.

M ostly dagger categories are used with fairly strong additional assumptions, 
like compact closure in [1]. Here we wish to follow a different approach and start 
from minimal assumptions. This paper is a first step to understand quantum 
logic, from the perspective of categorical logic (see e.g. [32, 28, 41, 21]). It 
grew from the work of one of the authors [20]. Although tha t paper enjoys a 
satisfactory relation to traditional quantum  logic [18], this one generalises it, by 
taking the notion of dagger category as starting point, and adding kernels, to 
be used as predicates. The interesting thing is th a t in the presence of a dagger 
|  much else can be derived. As usual, it is quite subtle what precisely to take 
as primitive. A referee identified the reference [9] as an earlier precursor to this 
work. It contains some crucial ingredients, like orthomodular posets of dagger 
kernels, but without the general perspective given by categorical logic.
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Upon this structure of “dagger kernel categories” the paper constructs pull­
backs of kernels and factorisation (both similar to [14]). It thus turns out that 
the kernels form a “bifibration” (both a fibration and an opfibration, see [2 1 ]). 
This structure can be used as a basis for categorical logic, which captures substi­
tution in predicates by reindexing (pullback) ƒ and existential quantification 
by op-reindexing z1 ƒ, in such a way th a t 3ƒ H ƒ -1 . From time to  time we 
use fibred terminology in this paper, but familiarity with this fibred setting is 
not essential. We find tha t the posets of kernels (fibres) are automatically or- 
thomodular lattices [26], and tha t the Sasaki hook and and-then connectives 
appear naturally from the existential-pullback adjunction. Additionally, a no­
tion of Booleanness is identified for these dagger kernel categories. It gives rise 
to  a generic construction tha t generalises how the category of partial injections 
can be obtained from the category of relations.

Apart from this general theory, the paper brings several im portant exam­
ples within the same setting—of dagger kernel categories. Examples are the 
categories R el and PInj of relations and partial injections. Additionally, the 
category Hilb is an example—and, interestingly—also the category PH ilb of 
Hilbert spaces modulo phase. The latter category provides the framework in 
which physicists typically work [6]. It has much weaker categorical structure 
than  Hilb. We also present a construction to turn  an arbitrary Boolean algebra 
into a dagger kernel category.

The authors are acutely aware of the fact th a t several of the example cate­
gories have much richer structure, involving for instance a tensor sum © and a 
tensor product <g> with associated scalars and traced monoidal structure. This 
paper deliberately concentrates solely on (the logic of) kernels. There are in­
teresting differences between our main examples: for instance, R el and PInj 
are Boolean, but Hilb is not; in PInj and Hilb “zero-epis” are epis, but not in 
Rel; R el and Hilb have biproducts, but PInj does not.

The paper is organised as follows. After introducing the notion of dagger 
kernel category in Section 2, the main examples are described in Section 3. 
Factorisation and (co)images occur in Sections 4 and 5. Section 6 introduces 
the Sasaki hook and and-then connectives via adjunctions, and investigates 
Booleanness. Finally, Sections 7 and 8 investigate some order-theoretic aspects 
of homsets and of kernel posets (atomicity and completeness).

A follow-up paper [22] introduces a new category OMLatGal of orthomod- 
ular lattices with Galois connections between them, shows tha t it is a dagger 
kernel category, and tha t every dagger kernel category D maps into it via the 
kernel functor KSub: D —>■ OMLatGal, preserving the dagger kernel structure. 
This gives a wider context.

2 D aggers and kernels
Let us start by introducing the object of study of this paper.

Definition 1 A dagger kernel category consists of:
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1. a dagger category D, with dagger j:  D op —>■ D;

2. a zero object 0 in D;

3. kernels ker(ƒ) of arbitrary maps ƒ in D, which are dagger monos.

A morphism of dagger kernel categories is a functor F  preserving the relevant 
structure:

1- F( f l )  = F( f ) l ;

2. F(  0) is again a zero object;

3. F(k)  is a kernel of F ( f  ) if A: is a kernel of ƒ.

Dagger kernel categories and their morphisms form a category DagKerCat.

Definition 2 A dagger kernel category is called Boolean if to A n  =  0 implies 
m t o i i  =  0 , for all kernels to, n.

The name Boolean will be explained in Theorem 26. We shall later rephrase 
the Booleanness condition as: kernels are disjoint if and only if they are orthog­
onal, see Lemma 3.

The dagger j satisfies = X  on objects and / t t  =  ƒ on morphisms. 
It comes with a number of definitions. A map ƒ in D is called a dagger 
mono(morphism) if / t  o ƒ =  id and a dagger epi(morphism) if ƒ o / t  =  id. 
Hence ƒ is a dagger mono if and only if / t  is a dagger epi. A map ƒ is a dag­
ger iso(morphism) when it is both dagger monic and dagger epic; in tha t case 

= / t  and ƒ is sometimes called unitary (in analogy with Hilbert spaces). 
An endomorphism p : X  —>■ X  is called self-adjoint if = p.

The zero object 0 G D is by definition both initial and final. Actually, in 
the presence of j, initiality implies finality, and vice-versa. For an arbitrary 
object X  G D, the unique map X  —>■ 0 is then a dagger epi and the unique 
map 0 —̂ X  is a dagger mono. The “zero” map 0 =  0x , y  = {X  —>■ 0 —>■ Y)  
satisfies (Ox,y)^ =  0 y,x- Notice tha t f o 0  = 0 = 0 o g .  Usually there is no 
confusion between 0 as zero object and 0 as zero map. Two maps ƒ: X  —>■ Z  
and g ' . Y ^ Z  with common codomain are called orthogonal, written as ƒ _L g, 
if ° ƒ =  0—or, equivalently, / t  o g = 0 .

Let us recall th a t a kernel of a morphism ƒ: X  —>■ Y  is a universal morphism 
k: ker(ƒ) —>■ X  with ƒ o k = 0. Universality means tha t for an arbitrary 
g: Z  —>■ X  with ƒ o g =  0 there is a unique map g ' : Z  —>■ ker( ƒ) with k o g' = g. 
Kernels are automatically (ordinary) monos. Just like we write 0 both for a 
zero object and for a zero map, we often write ker(ƒ) to denote either a kernel 
map, or the domain object of a kernel map.

Definition 1 requires th a t kernels are dagger monos. This requirement in­
volves a subtlety: kernels are closed under arbitrary isomorphisms but dagger 
monos are only closed under dagger isomorphisms. Hence we should be more 
careful in this requirement. W hat we really mean in Definition 1 is th a t for each
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map ƒ, among all its isomorphic kernel maps, there is at least one dagger mono. 
We typically choose this dagger mono as representant ker(ƒ) of the equivalence 
class of kernel maps.

We shall write KSub(X) for the poset of (equivalence classes) of kernels 
with codomain X . The order (M >—► X )  < ( N  >—► X )  in KSub(X) is given 
by the presence of a (necessarily unique) map M  —>■ N  making the obvious 
triangle commute. Intersections in posets like KSub(X), if they exist, are given 
by pullbacks, as in:

M

In presence of the dagger j, cokernels come for free: one can define a coker­
nel coker(/) as ker(/t)t. Notice that we now write ker(ƒ) and coker(/) as mor- 
phisms. This cokernel coker(/) is a dagger epi. Finally, we define rri1- =  ker(mt), 
which we often write as m1- : M 1- >—► X if to: M  >—► X . This notation is espe­
cially used when m is a mono. In diagrams we typically write a kernel as >—s-
and a cokernel as ---- > .

The following Lemma gives some basic observations.

Lemma 3 In a dagger kernel category,

1. ker(X —> Y) =  [X  X ) and ker(X X ) =  (0 - i  X ) ; these yield great­
est and least elements 1,0 (E KSub(X); respectively;

2. ker(ker(ƒ)) =  0;

3. ker(coker(ker(/))) =  ker(ƒ), as subobjects;

4- rri^1- =  m if  m is a kernel;

5. A map ƒ factors through g1- iff ƒ _L g iff g _L ƒ iff g factors through f 1-; 
in particular rri < n1- iff n <  m1-, for monos m ,n ; hence (—)“*“: KSub(X) 
^  KSub(X)°P;

6. i f  rri <  n, for monos m , n, say via m =  n o ip, then:

(a) i fm ,n  are dagger monic, then so is (p;
(b) if  m is a kernel, then so is (p.

1. Booleanness amounts io ro A n  =  0 < S -m in , i.e. disjointness is orthog­
onality, for kernels.

P r o o f  We skip the first two points because they are obvious and start with 
the third one. Consider the following diagram for an arbitrary ƒ: X  —>Y\

k
V

/
KCI [ J  ) I'

: A 
k r : ; i !

Y i

A
j Jƒ'

ker (coker (ker (ƒ))) coker(ker(/)).
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By construction ƒ o k =  0 and c o k =  0. Hence there are f  and k' as indicated. 
Since f o £  = f  o c o £  = f  o 0  = 0 one gets t ' . Hence the kernels I  and k 
represent the same subobject.

For the fourth point, notice that if m =  ker(ƒ), then

m~L~L =  ker(ker(m^)t) =  ker(coker(ker(/))) =  ker (ƒ) =  to.

Next,

ƒ factors through g1- -<=> g^ o ƒ =  0
-<=> / t  o g =  0 <*=>• g factors through

If, in the sixth point, m =  n o ip and to, n are dagger monos, then ^  o ip =  (n^ o 
m )t o p =  m)  o n o ip  =  m ^om  = id. And if m =  ker(/), then p) =  ker(/ o n), 
since: (1) f o n o t p  = f o m  = 0, and (2) if ƒ o n o g =  0, then there is a tp with 
m  o rip = n  o gy and this gives a unique tp with <p o ijj = g, where uniqueness of 
this tp comes from cp being monic.

Finally, Booleanness means that m  A n =  0 implies m) o n =  0, which is 
equivalent to v) o rri =  0, which is m _L n by definition. The reverse implication 
is easy, using that the meet A of monos is given by pullback: if m  o ƒ =  n  o g, 
then f  = m ) o m o f  = m t o n o g  = Q o g  =  Q. Similarly, g =  0. Hence the 
zero object 0 is the pullback m  A n  of m, n.

Certain constructions from the theory of Abelian categories [14] also work in 
the current setting. This applies to the pullback construction in the next result, 
but also, to a certain extent, to the factorisation of Section 4.

Lemma 4 Pullbacks of kernels exist, and are kernels again. Explicitly, given a 
kernel n  and map f  one obtains a pullback:

r \ n ) k e r ( c o k e r (n )  o ƒ ) .

I f  f  is a dagger epi, so is f .

By duality there are of course similar results about pushouts of cokernels.

P r o o f  For convenience write m for the dagger kernel / _ 1 (n) =  ker(coker(n) o 
ƒ). By construction, coker(n) o ƒ o m  = 0, so tha t ƒ o m  factors through 
ker(coker(n)) =  n, say via f ' \ M —>N  with n o f  =  ƒ o to, as in the diagram. 
This yields a pullback: if a: Z  —>■ X  and b: Z  —>■ N  satisfy ƒ o a = n  o b, then 
coker(n) o ƒ o a = coker(n) o n o 6  =  0 o 6  =  0 , so tha t there is a unique map 
c: Z  —>■ M  with to o c =  a. Then f  o c = b because n  is monic.
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In case ƒ is dagger epic, ƒ o / t  o n =  n. Hence there is a morphism f "  
making following diagram commute, as the right square is a pullback:

Then f "  = m ) o rri o f "  = m )  o / t  o n  =  (ƒ o m)t o n  = (n o f')^ o n =  /'t  o 
n-t o n =  f t .  Hence f  is dagger epic, too.

C orollary  5 Given these pullbacks of kernels we observe the following.

1. The mapping X  i—> KSub(X) yields an indexed category Dop —>■ PoSets, 
using that each map ƒ: X  —>■ Y  in D yields a pullback (or substitution) 
functor f ^ 1 : KSub(y) —>■ KSub(X). By the “pullback lemma”, see e.g. [2, 
Lemma 5.10] or [29, III, 4-, Exc. 8], such functors ƒ preserve the order 
on kernels, and also perserve all meets (given by pullbacks). This (posetal) 
indexed category KSub: D op —>■ PoSets forms a setting in which one can 
develop categorical logic for dagger categories, see Subsection 2.1.

2. The following diagram is a pullback,

ker(ƒ) -----

r
-^ 0

- + Y

showing that, logically speaking, falsum—i.e. the bottom elements £  KSub(y) — 
is in general not preserved under substitution. Also, negation/orthocomplementation 
(—)■*■ does not commute with substitution, because 1 =  0^ and f ~ 1 ( 1) =  1.

Being able to take pullbacks of kernels has some important consequences.

L em m a 6 Kernels are closed under composition—and hence cokernels are, too.

P r o o f  We shall prove the result for cokernels, because it uses pullback results 
as we have just seen. So assume we have (composable) cokernels e, d; we wish 
to show e o d =  coker(ker(e o d)). We first notice, using Lemma 4,

ker(e o d) =  ker(coker(ker(e)) o d) =  d_1(ker(e)),

yielding a pullback:

m = k e r ( e o d )

k >-
k e r (d) I

B
V

k e r (e )

->d - -> e .
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We intend to prove e o d = coker(m). Clearly, e o d o m  = e o  ker(e) o d' =  0 o 
d! =  0. And if ƒ : X  —>■ Y  satisfies ƒ o m  =  0, then ƒ o ker(d) =  ƒ o m  o y  =  0, 
so because d =  coker(ker(d)) there is f ' \ D —> Y  with f ' o d = f .  But then: 
f  o ker(e) o d '  = f  o d o m = f o m  =  0. Then f  o ker(e) =  0, because d! 
is dagger epi because d is, see Lemma 4. This finally yields f " : E ^ Y  with 
f "  o e =  ƒ'. Hence f "  o e o d =  ƒ .

As a result, the logic of kernels has intersections, preserved by substitution. 
More precisely, the indexed category KSub(—) from Corollary 5 is actually a 
functor KSub: Dop —>■ M SL to the category M SL of meet semi-lattices. Each 
poset KSub(X) also has disjunctions, by to V n  =  (t o A  n ^ ) ^ ,  but they 
are not preserved under substitution/pullback ƒ -1 . Nevertheless, m V rri1- =  
(rri1- A =  (rri1- A rri)1- =  0^ =  1.

The essence of the following result goes back to [9].

P ro p o sitio n  7 Orthomodularity holds: for kernels m < n, say via ip with n  o 
tp =  m, one has pullbacks:

This means that rri V (m ^ A n) = n.

P roof The square on the left is obviously a pullback. For the one on the right 
we use a simple calculation, following Lemma 4:

n _1(m^) =

(*)

where the marked equation holds because n o tp =  rri, so th a t <p = n ^ o n o <p  = 
« .to  rri and thus =  m t 0 n.  Then:

j j (  ̂
to V (to A n ) =  (n o y>) V (n o ip ) =  n  o (<p V <p ) =  n  o id =  n.

The (newly) marked equation holds because n  o ( —) preserves joins, since it is 
a left adjoint: n o k < m i f [ k <  n _1(TO), for kernels k, rri.

The following notion does not seem to have an established terminology, and 
therefore we introduce our own.

ker(coker(to ) o n) 
ker(coker(ker(TO.t)) o n)
ker(mt o n) since m) is a cokernel

ker(y>t)

7



Definition 8 In a category with a zero object, a map to is called a zero-mono 
if m o ƒ =  0 implies ƒ =  0, for any map ƒ. Dually, e is zero-epi if ƒ o e =  0 
implies ƒ =  0. In diagrams we write >-o-> for zero-monos and — a»- for 
zero-epis.

Clearly, a mono is zero-mono, since m o f  =  0 =  m o 0  implies ƒ =  0 if m is 
monic. The following points are worth making explicit.

Lemma 9 In a dagger kernel category,

1. m is a zero-mono iffkei(m) =  0 and e is a zero-epi iff coker(e) =  0;

2. ker(m o ƒ) =  ker(ƒ) i f  m is a zero-mono, and similarly, coker(/ o e) =  
coker(/) i f  e is a zero-epi;

3. a kernel which is zero-epic is an isomorphism. □

We shall mostly be interested in zero-epis (instead of zero-monos), because 
they arise in the factorisation of Section 4. In the presence of dagger equalis­
ers, zero-epis are ordinary epis. This applies to Hilb and PInj. This fact is 
not really used, but is included because it gives a better understanding of the 
situation. A dagger equaliser category is a dagger category that has equalisers 
which are dagger monic.

Lemma 10 In a dagger equaliser category D where every dagger mono is a 
kernel, zero-epis in D are ordinary epis.

P r o o f  Assume a zero-epi e: E  —>■ X  with two maps f , g :  X  —>■ Y  satisfying 
f  o e =  g o e. We need to prove ƒ =  g. Let to : M  >—► X  be the equaliser of ƒ, g, 
with h =  coker(m), as in:

E
I

v I
Y

M

This e factors through the equaliser to, as indicated, since f  o e =  g o e. Then 
h o e  =  h o m o i p  =  0 oip =  0 . Hence h =  0 because e is zero-epi. But m, 
being a dagger mono, is a dagger kernel. Hence m =  ker(coker(m)) =  ker(/i) =  
ker(0) =  id, so that ƒ =  g.

2.1 Indexed  categories and fibrations
The kernel posets KSub(X) capture the predicates on an object X , considered as 
underlying type, in a dagger kernel category D. Such posets are studied system­
atically in categorical logic, often in terms of indexed categories D op —>■ Posets

/  K S u b ( D )  \
or even as a so-called fibration ( i ), see [21]. We shall occasionally
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borrow terminology from this setting, but will not make deep use of it. A con­
struction that is definitely useful in the present setting is the “total” category 
KSub(D). It has (equivalence classes of) kernels M  >—► X as objects. Morphisms 
(M >—► X )  — > (N >—► Y)  in KSub(D) are maps ƒ: X  —> Y  in D with

M -------------
Jn i.e. with to < / _ 1(n).

x ------- —  y

We shall sometimes refer to this fibration as the “kernel fibration” . Every 
functor F : D —>■ E in D agK erC at induces a map of fibrations:

K Sub(D )-------------- 5- KSub(E)

| | (1) 
D ----------------------- > E

because F  preserves kernels and pullbacks of kernels—the latter since pull­
backs can be formulated in terms of constructions that are preserved by F , see 
Lemma 4. As we shall see, in some situations, diagram (1) is a pullback—also 
called a change-of-base situation in this context, see [21]. This means that the 
map KSub(X) —>■ KSub(FX) is an isomorphism.

Let us mention one result about this category KSub(D), which will be used 
later.

Lem m a 11 The category KSub(D) for a dagger category D carries an involu­
tion KSub(D)op KSub(D) given by orthocomplementation:

_L

(M ^  X )  i— > (M l  ^  X ) and f  i— > p .

P r o o f  The involution is well-defined because a (necessarily unique) m ap cp 
exists if and only if a (necessarily unique) m ap tp exists, in com m uting squares:

M - ~ > N  N ± - ~ > M ±

mJ  J ” <̂ > (2)
X — - + Y  Y -----— X

ƒ

Given y>, we obtain tp because / t  o n 1- factors through ker(mt) =  rri1- since 

w) o p  o n =  p  o v) o n^ =  p  o 0 =  0.

The reverse direction follows immediately.

3 M ain exam ples
This section describes our four main examples, namely Rel, PInj, Hilb and 
PHilb, and additionally a general construction to turn a Boolean algebra into 
a dagger kernel category.
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3.1 T he category  R el o f sets and relations
Sets and binary relations R  C X  x Y  between them can be organised in the fa­
miliar category Rel, using relational composition. Alternatively, such a relation 
may be described as a Kleisli map X  —>■ V(Y)  for the powerset monad V; in line 
with this representation we sometimes write R(x) =  {y £ Y  \ R(x,y)} .  A third 
way is to represent such a morphism in R el as (an equivalence class of) a pair 
of maps (X R  Y)  whose tuple (ri, rq) : R  —>■ X  x Y  of legs is injective.

There is a simple dagger on Rel, given by reversal of relations: R^(y,x) =  
R(x,y).  A map R:  X  —>■ Y  is a dagger mono in R el if o R  =  id, which 
amounts to the equivalence:

for all x,x '  £ X .  It can be split into two statements:

• R( x 7 y) and ^x,x;^x • ^ y^Y• R(x,y)  A R{x  , y) x x . 

Hence such a dagger mono R  is given by a span of the form

with an surjection as first leg and an injection as second leg. A dagger epi has 
the same shape, but with legs exchanged.

The empty set 0 is a zero object in Rel, and the resulting zero map 0 : X  —>■ Y  
is the empty relation | C I  x Y .

The category R el also has kernels. For an arbitrary map R  : X  —>■ Y  one 
takes ker(i?) =  {x £ X  \ ->3yey ■ R(x,y)}  with map k:  ker(i?) —>■ X  in R el 
given by k(x,x' ) x =  x ' . Clearly, R  o k =  0. And if S:  Z  —>■ X  satisfies 
R  o S  =  0, then -> 3xex  ■ R(x,y)  A S(z,x),  for all z £ Z  and y £ Y .  This means 
that S(z,x)  implies there is no y with R(x,y).  Hence S  factors through the 
kernel k. Kernels are thus of the following form:

So, kernels are essentially given by subsets: KSub(X) =  V(X).  Indeed, R el is 
Boolean, in the sense of Definition 1. A cokernel has the reversed shape.

Finally, a relation R  is zero-mono if its kernel is 0, see Lemma 9. This means 
that R{x) ^  0, for each x £ X ,  so that R }s left leg is a surjection.

P ro position  12 In R el there are proper inclusions:

with K  =  {x  £ X  I R(x) =  0}.

kernel C dagger mono C mono C zero-mono.

Subsets of a set X  correspond to kernels in R el with codomain X .

10



There is of course a dual version of this result, for cokernels and epis.

P r o o f  We still need to produce (1) a zero-mono which is not a mono, and (2) a 
mono which is not a dagger mono. As to (1), consider R  C {0,1} x {a, 6} given 
by R  =  {(0, a), (1, a)}. Its first leg is surjective, so R  is a zero-mono. But it 
is not a mono: there are two different relations {(*, 0)}, {(*, 1)} C {*} x {0,1} 
with R  o {(*, 0)} =  {(*, a)} =  R  o {(*, 1)}.

As to (2), consider the relation R  C {0, l}x  {a, 6, c} given by R  =  {(0, a), (0, 6), 
(1, 6), (1, c)}. Clearly, the first leg of R  is a surjection, and the second one is 
neither an injection nor a surjection. We check that R  is monic. Suppose
S , T :  X  —>■ { 0 ,1} satisfy R  o S  =  R  o T.  If S(x,  0), then (R o S)(x, a) =  (R o 
T)(x,  a), so that T(x, 0). Similarly, S(x,  1) =>• T(x, 1).

We add that the pullback i?_1(n) of a kernel n =  (N =  N  >—► Y)  along 
a relation R  C X  x Y,  as described in Lemma 4, is the subset of X  given 
by the modal formula □^(n)(x) =  R ^ 1 (n)(x) (\/y. R(x,  y) =>• N(y)).  As 
is well-known in modal logic, preserves conjunctions, but not disjunctions. 
Interestingly, the familiar “graph” functor Q: Sets —>■ Rel, mapping a set to 
itself and a function to its graph relation, yields a map of fibrations

Sub(Sets)-------------- s- KSub(Rel)

| 1 (4)
S e ts ----------- -----------> R elif

which in fact forms a pullback (or a “change-of-base” situation, see [21]). This 
means that the familiar logic of sets can be obtained from this kernel logic on 
relations. In this diagram we use that inverse image is preserved: for a function 
ƒ: X  - ^ Y  and predicate N  C Y  one has:

G i f r H N )  =  n gU)(N) =  { x e X \ V y. g ( f ) ( x , y ) ^ N ( y ) }

=  { x 6 l  Vv. f (x)  =  y ^ N ( y ) }

=  {x  G X | N(f(x))}

=  r H N ) .

3.2 T he category PInj o f sets  and partial injections

There is a subcategory P In j of R el also with sets as objects but with “partial 
injections” as morphisms. These are special relations F  C X  x Y  satisfying 
F(x, y)  A F(x,y ' )  => y =  y'  and F(x, y)  A F(x' , y)  =4> x =  x ’ . We shall 
therefore often write morphisms ƒ: X  —>■ Y  in P In j as spans with the notational 
convention

x  ^  y) =  ̂ V ^ V 2 j  ,

where spans (X  « F  t ^ Y )  and (X are equivalent if there is an
isomorphism ip: F  —>■ G  with gi o <p =  /¿, for i =  1, 2—like for relations.
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Composition of X  Y  Z  can be described as relational composition, but 
also via pullbacks of spans. The identity map X  —>■ X  is given by the span of 
identities X  <—< X  >—►.X. The involution is inherited from R el and can be 
described as (X <—< F  ^  y ) ̂  =  (Y  <—< F  >—► X ) .

It is not hard to see that ƒ =  (X <—< F  >—► y )  is a dagger mono—i.e. satisfies 
ƒ t o ƒ =  id—if and only if its first leg fi'. F  >—► X is an isomorphism. For 
convenience we therefore identify a mono/injection m: M  >—► X in Sets with

, id m  >
the corresponding dagger mono (M <—< M  ^  X) in P In j.

By duality: ƒ is dagger epi iff / t  is dagger mono iff the second leg ƒ2 of ƒ 
is an isomorphism. Further, ƒ is a dagger iso iff ƒ is both dagger mono and 
dagger epi iff both legs ƒ 1 and ƒ2 of ƒ are isomorphisms.

Like in Rel, the empty set is a zero object, with corresponding zero map 
given by the empty relation, and 0̂  =  0. ƒ ƒ

For the description of the kernel of an arbitrary map ƒ =  (X <—< F  >—► y )  in

P In j we shall use the ad hoc notation -11F  >-L X  for the negation of the first 
leg f i : F  >—► X, as subobject/subset. It yields a map:

/
ker(ƒ) =

- 'î  F

y - i  F  X

It satisfies ƒ o ker(ƒ) =  0. It is a dagger mono by construction. Notice that 
kernels are the same as dagger monos, and are also the same as zero-monos. 
They all correspond to subsets, so that KSub(X) =  V(X)  and PInj is Boolean, 
like Rel.

The next result summarises what we have seen so far and shows that PInj 
is very different from R el (see Proposition 12).

Proposition 13 In PInj there are proper identities:

kernel =  dagger mono =  mono =  zero-mono.

These all correspond to subsets.

3.3 T he category H ilb  o f H ilb ert spaces

Our third example is the category Hilb of (complex) Hilbert spaces and contin­
uous linear maps. Recall that a Hilbert space is a vector space X  equipped with 
an inner product, i.e. a function (— | —): X  x X  —>■ C that is linear in the first 
and anti-linear in the second variable, satisfies (x\x) > 0  with equality if and 
only if x =  0, and (x\y) =  (y\x). Moreover, a Hilbert space must be complete 
in the metric induced by the inner product by d(x, y) =  \J(x — y \ x — y).

The Riesz representation theorem provides this category with a dagger. Ex­
plicitly, for ƒ: X  —>■ Y  a given morphism, ƒ t : Y  —>■ X is the unique morphism 
satisfying

(f(x)\y)Y =  (x\fHy))x

12



for all x £ X  and y £ Y . The zero object is inherited from the category 
of (complex) vector spaces: it is the zero-dimensional Hilbert space {0}, with 
unique inner product (0 | 0) = 0 .

In the category Hilb, dagger mono’s are usually called isometries, because 
they preserve the metric: o ƒ =  id if and only if

d ( f x , f y )  =  (f(x -  y ) \ f ( x  -  y))% =  (x -  y | (ƒ* o f ) (x -  y))% =  d(x,y).

Kernels are inherited from the category of vector spaces. For f  \ X  —>Y,  we can 
choose ker(ƒ) to be (the inclusion of) {x £ X  \ f {x) =  0}, as this is complete 
with respect to the restricted inner product of X . Hence kernels correspond to 
(inclusions of) closed subspaces. Being inclusions, kernels are obviously dagger 
monos. Hence Hilb is indeed an example of a dagger kernel category. However, 
Hilb is not Boolean. The following proposition shows that it is indeed different, 
categorically, from Rel and PInj.

Proposition 14 In Hilb one has:

kernel =  dagger mono C mono =  zero-mono.

P ro o f  For the left equality, notice that both kernels and isometries correspond 
to closed subspaces. It is not hard to show that the monos in Hilb are precisely 
the injective continuous linear functions, establishing the middle proper inclu­
sion. Finally, Hilb has equalisers by eq(ƒ,<?) =  ker(<? — ƒ), which takes care of 
the right equality.

As is well-known, the i 2 construction forms a functor i “2: PInj —>■ Hilb 
(but not a functor Sets —>■ Hilb), see e.g. [3, 15]. Since it preserves dag­
gers, zero object and kernels it is a map in the category DagKerCat, and 
therefore yields a map of kernel fibrations like in (1). It does not form a pull­
back (change-of-base) between these fibrations, since the map KSubpinj(X ) =  
V( X)  —> KSubHiib(^2(^Q) is not an isomorphism.

3.4 T he category PH ilb: H ilb ert spaces m odulo phase

The category PH ilb of projective Hilbert spaces has the same objects as Hilb, 
but its homsets are quotiented by the action of the circle group U( 1) =  {z £ 
C | \z\ =  1}. That is, continuous linear transformations f , g :  X  —>■ Y  are 
identified when x =  z ■ y for some phase z £ U( 1).

Equivalently, we could write P X  =  X\/U(\)  for an object of PHilb, where 
X  £ Hilb and X\  =  {x £ X  \ ||x|| =  1}. Two vectors x, y  £ X\  are therefore 
identified when x =  z • y for some z £ U( 1). Continuous linear transformations 
f , g : X ^ Y  then descend to the same function P X  —>■ P Y  precisely when they 
are equivalent under the action of U( 1). This gives a full functor P  : Hilb —>■ 
PHilb.

The dagger of Hilb descends to PHilb, because if ƒ =  z-g for some z £ U( 1), 
then

(ƒ(*) I y) = z ■ {g(x ) \ y) = z  - {x\ g \ y ) )  = { x \ z -  g \y ) ) ,
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whence also / t  =  z ■ g \  making the dagger well-defined.
Also dagger kernels in Hilb descend to PHilb. More precisely, the kernel 

ker(ƒ) =  {x G X  \ f {x)  =  0} of a morphism ƒ: X  —>■ Y  is well-defined, for if 
ƒ =  z • f  for some z G U( 1), then

ker(ƒ) =  {x £ X  \ z ■ f ( x )  =  0} =  { i G l  f ' (x)  =  0} =  k e r( / ') .

Proposition 15 In PH ilb one has:

kernel =  dagger mono C mono =  zero-mono.

P r o o f  It remains to be shown that every zero-mono is a mono. So let to : Y  —>■ 
Z  be a zero-mono, and f , g :  X  —>■ Y  arbitrary morphisms in PHilb. More 
precisely, let to, ƒ and g be morphisms in Hilb representing the equivalence 
classes [to], [ƒ] and [g\ that are morphisms in PHilb. Suppose that [m o f] =  
[to o g\. Then m o ƒ ~  to  o j ,  say m o f  =  z ■ (to o g) for z  G U(l).  So 
to  o (ƒ — z • g) =  0, and f  — z ■ g =  0 since to is zero-mono. Then f  =  z ■ g and 
hence ƒ ~  g, i.e. [ƒ] =  [g\. Thus to is mono.

The full functor P :  Hilb —>■ PH ilb preserves daggers, the zero object and 
kernels. Hence it is a map in the category DagKerCat. In fact it yields a 
pullback (change-of-base) between the corresponding kernel fibrations.

KSub(Hilb)-------------- s- KSub(PHilb)

r  i  (5)
H ilb ----------------------- > PHilb

3.5 From  B oolean  algebras to  dagger kernel categories
The previous four examples were concrete categories, to which we add a generic 
construction turning an arbitrary Boolean algebra into a (Boolean) dagger ker­
nel category.

To start, let B  with (1,A) be a meet semi-lattice. We can turn it into a 
category, for which we use the notation B . The objects of B  are elements x G B, 
and its morphisms x —>■ y are elements f  G B  with ƒ < x, y, i. e. ƒ < x A y. 
There is an identity x : x —>■ x, and composition of ƒ: x —>■ y and g: y —>■ z 
is simply ƒ A g: x —>■ z .  This B  is a dagger category with / t  =  ƒ. A map 
ƒ: x —>■ y is a dagger mono if ƒ t o ƒ =  ƒ A ƒ =  x. Hence a dagger mono is of 
the form x : x —>■ y where x < y.

It is not hard to see that the construction B  B  is functorial: a morphism 
h: B  —>■ C  of meet semi-lattices yields a functor h: B  —>■ C  by x i—> h(x). It 
clearly preserves j.

Proposition 16 I f  B  is a Boolean algebra, then B  is a Boolean dagger kernel 
category. This yields a functor BA —>■ DagKerCat.
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P r o o f  The bo ttom  element 0 £ B  yields a zero object 0 £  B, and also a zero 
m ap 0: x —>■ y. For an a rb itra ry  m ap ƒ : x —>■ y there  is a kernel ker (ƒ ) =  ->ƒ A x, 
which is a dagger m ono ker( ƒ ) : k e r( /)  —>■ x in B. C learly  ƒ o ker(ƒ) =  ƒ A 
-i ƒ A i  =  O A i  =  0. If also g: z  ^  x  satisfies ƒ o g =  0, then  g < x , z  and 
ƒ A g =  0. The la tte r yields g <  ->ƒ and thus g <  ->ƒ A x  =  ker(ƒ). Hence g 
forms the required m ediating m ap g: z  ^  ker(ƒ) w ith k e r( /)  o g =  g.

Notice that each dagger mono m : m —>■ x, where to < x, is a kernel, namely 
of its cokernel ->to A x: x —>■ (-im A x). For two kernels m: m —>■ x and 
n: n —>■ x, where m, n < x, one has m < n as kernels iff m < n in B. Thus 
KSub(x) =  jx , which is again a Boolean algebra (with negation =  ->m A 
x). The intersection to A n as subobjects is the meet to A n in B. This allows 
us to show that B  is Boolean: if to A n =  0, them m) o n  =  m o n  =  m A n  =  0 .

The straightforward extension of the above construction to orthomodular 
lattices does not work: in order to get kernels one needs to use the and-then 
connective (&, see Proposition 24) for composition; but & is neither associative 
nor commutative, unless the lattice is Boolean [30]. However, at the end of [22] 
a dagger kernel category is constructed out of an orthomodular lattice in a 
different manner, namely via the (dagger) Karoubi envelope of the associated 
Foulis semigroup. For more information about orthomodular lattices, see [26], 
and for general constructions, see for instance [16].

4 Factorisation
In this section we assume that D is an arbitrary dagger kernel category. We 
will show that each map in D can be factored as a zero-epi followed by a kernel, 
in an essentially unique way. This factorisation leads to existential quantifiers
3, as is standard in categorical logic.

The image of a morphism f  \ X  —> Y  is defined as ker(coker(/)). Since 
it is defined as a kernel, an image is really an equivalence class of morphisms 
with codomain X , up to isomorphism of the domain. We denote a representing 
morphism by i f , and its domain by Im (/). As with kernels, we can choose i f  to 
be dagger mono. Both the morphism i f  and the object Im (/) are referred to as 
the image of ƒ. Explicitly, it can be obtained in the following steps. First take 
the kernel k of

k e r( /t)> k > Y  —— X.

Then define i f  as the kernel of k \  as in the following diagram:

Im (/) =  ker(fct) > S > Y  —-—>ker(/t).
(6)

15



The map e / : X  —>■ Im (/) is obtained from the universal property of kernels, 
since o ƒ =  ( / t  o A;)t =  0^ = 0. Since i f  was chosen to be dagger mono, this 
ef is determined as ef =  id o ef =  (*/)t o i f  o ef =  (*/)t o ƒ.

So images are defined as dagger kernels. Conversely, every dagger kernel 
to =  ker(ƒ) arises as an image, since ker(coker(m)) =  m by Lemma 3.

The maps that arise as eƒ in (6) can be characterised.

P ro position  17 The maps in D that arise of the form ef, as in diagram (6), 
are precisely the zero-epis.

P r o o f  We first show that ef is a zero-epi. So, assume a map h: ker(fct) —>■ Z  
satisfying h o ef = 0. Recall that ef =  (if)^ ° ƒ, so that:

/ t  o (if o h)) =  (h o (i/)^ o / ) t  =  (h o ef)^ =  0 ^ = 0 .

This means that i f  o h) factors through the kernel of ƒ t, say via a: Z  —> ker(/t) 
with k o a =  i f  o h i  Since A: is a dagger mono we now get:

a =  k̂  o k o a =  k̂  o i f  o h) =  0 o h) =  0.

But then i f  o h <i =  k o a  =  k o 0 =  0 =  i f o 0y so that h) =  0, because i f  is 
mono, and h =  0, as required.

Conversely, assume g: X  —>■ Y  is a zero-epi, so that coker(gi) =  0 by 
Lemma 9. Trivially, ig =  ker(coker(<;)) =  ker(X —> 0) =  idx, so that eg =  g.

The factorisation ƒ =  i f  o ef from (6) describes each map as a zero-epi 
followed by a kernel. In fact, these zero-epis and kernels also satisfy what is 
usually called the “diagonal fill-in” property.

Lem m a 18 In any commuting square of shape 

■ ---

•>— >

making both triangles commute.
As a result, the factorisation (6) is unique up to isomorphism. Indeed, ker­

nels and zero-epis form a factorisation system (see [4]).

P ro o f  Assume the zero-epi e : E  —>■ Y  and kernel m  =  ker(/i) : M  >—► X  satisfy 
m o ƒ =  g o e, as below,

E - o ^ Y
ƒ 9

Then: h o g o e  =  h o m o f  =  0 o f  =  0 and h o g =  0 because e is zero-epi. 
This yields the required diagonal d: Y  —>■ M  with m o d =  g because m is the 
kernel of h. Using that m is monic we get d o e =  f .

there is a (unique) diagonal
Y>
•>-
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Factorisation standardly gives a left adjoint to inverse image (pullback), 
corresponding to existential quantification in logic. In this self-dual situation 
there are alternative descriptions.

Notice that this general prescription of quantifiers by categorical logic, when 
applied to our quantum setting, is of a different nature from earlier attempts 
at quantifiers for quantum logic [23, 38], as it concerns multiple orthomodular 
lattices instead of a single one.

P ro p o sitio n  19 For f :  X  —>■ Y , the pullback functor f _ i : KSub(y) —>■ KSub(X) 
from Lemma 4 has a left adjoint 3ƒ given as image:

3 f ( m ) = i f o
■Y

Alternatively, 3/(to) =  l(f^) 1 (m

P r o o f  The h eart of the m a tte r is th a t in the  following diagram , the m ap cp 
(uniquely) exists if and only if the m ap tp (uniquely) exists:

a
- + N

< r \ there is cp such th a t to =  / _1(n) o ip 

there is tp such th a t ƒ o m  = n  o tp 

3/(to) < n.

For the alternative description:

( / '0 _1(to-l )') < n  -<=> n 1- <  ( / t ) _1(TOJ A to <  ƒ 1(n).

, K S u b ( D )
This adjunction 3/ H ƒ makes the kernel fibration ( ^  j an opfi-

bration, and thus a bifibration, see [21]. Recall the Beck-Chevalley condition: 
if the left square below is a pullback in D, then the right one must commute.

KSub(P)

3r,

■ KSub(y)

3o (BC)

KSub(X) KSub(Z)
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This condition ensures that 3 commutes with substitution. If one restricts 
attention to the pullbacks of the form given in Lemma 4, then Beck-Chevalley 
holds. In the notation of Lemma 4, for kernels k: K  and g: Y  >—► Z:

ƒ 1(3S(A:)) =  ƒ 1 (g o k) because both g, k are kernels 
=  p o 1 (/c) by composition of pullbacks

=  M ^ rH k)).

In Hilb all pullbacks exist and Beck-Chevalley holds for all of them by [5, II, 
Proposition 1.7.6] using H ilb’s biproducts and equalisers.

The final result in this section brings more clarity; it underlies the relations 
between the various maps in the propositions in the previous section.

Lemma 20 I f  zero-epis are (ordinary) epis, then dagger monos are kernels.

Recall that Lemma 10 tells that zero-epis are epis in the presence of equalis­
ers.

P r o o f  Suppose to: M  >—► X  is a dagger mono, with factorisation m =  i o e 
as in (6), where i is a kernel and a dagger mono, and e is a zero-epi and hence 
an epi by assumption. We are done if we can show that e is an isomorphism. 
Since m =  i o e and i is dagger monic we get o to =  *t o * o e =  e. Hence 
et o e =  o m)t o e =  o i o e =  o m =  id because to is dagger mono. 
But then also e o et =  id because e is epi and e o eJ o e = e.

Example 21 In the category Rel the image of a morphism (X  R  Y) is 
the relation i r  =  (Y ' i ^ Y '  >—► y )  where Y ' =  {y £ Y  \ 3X. R(x,  y)}  is the image

r  i r 2of the second leg r2 in Sets. The associated zero-epi is e# =  (X  <— R  -» Y').  
Existential quantification 3r ( M)  from Proposition 19 corresponds to the modal 
diamond operator (for the reversed relation i?t):

3fl(M) =  {y £ Y  | 3xeM. R( x , y)} =  <>flt (M) =  (-M ).

It is worth mentioning that the “graph” map of fibrations (4) between sets and 
relations is also a map of opfibrations: for a function f \ X —> Y  and a predicate 
M  C X  one has:

3W ) W  =  { y \ 3x.g( f ) (x, y)  A M( x ) }

=  {y I 3*. f(x) =  y A M(x)}

= {ƒ(*) I M( x) }
=  3;(M ),

where 3/ in the last line is the left adjoint to pullback ƒ in the category Sets.

In PInj the image of a map ƒ =  (X /-< F  Y)  is given as i f  =  (F  <—<

F  Y).  The associated map ef  is (X  /-< F  ^  F),  so that indeed ƒ =  i f  o e f . 
Notice that this ef  is a dagger epi in PInj.
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In Hilb, the image of a map f  \ X  —> Y  is (the inclusion of) the closure of 
the set-theoretic image {y G Y  \ 3xex- y =  / ( x ) | .  This descends to PHilb: the 
image of a morphism is the equivalence class represented by the inclusion of the 
closure of the set-theoretic image of a representative.

The functor £2 : PInj -► Hilb is a map of opfibrations: for a partial injection 
fl ƒ 2ƒ =  (X  <—< F  >—► Y)  and a kernel to: M  >—► X  in PInj one has:

3£2u ) ( ( 2( m ) )  =  ImHiib(^2( /  o m))

=  ImHiib(^2(M) x Y  5 (<f, y) ^  ^  v{x)))
x e { f o m ) - 1{y)

=  {cp G £2(X) I supp(^) Ç F  fl M }

=  {(p g i 2(X)  | supp(^) ç f n  M}

=  ^ 2 ( / 2  o fiHm))
=  £2(3 f (m)).

Also the full functor P  : Hilb —> PHilb is a map of opfibrations: for ƒ : X  —>■ 
y  and a kernel m : M  ^  X  in Hilb one has:

3Pf(Pm) =  lm pn iih (P (f o m))

=  {/(x) | x G M }

=  P( { f ( x )  | x G M})

=  P (Im Hiib(/ o m))
=  P ( 3 f (m)).

In the category B  obtained from a Boolean algebra the factorisation of 
ƒ : x —>■ y is the composite x - ^ f - ^ y .  In particular, for m < x, considered as 
kernel to: m —>■ x one has 3/ (to) =  (to A ƒ : (m A ƒ) -» x).

Example 22 In [33] the domain Dom( ƒ ) of a map f \ X —> Y  is the complement 
of its kernel, so Dom(/) =  ker(ƒ)-*-, and hence a kernel itself. It can be described 
as an image, namely of ƒ t, since:

Dom(/) =  ker(/)^ =  ker(ker(/)t) =  ker(coker(/t)) =  if\.

It is shown in [33] that the composition ƒ o Dom( ƒ ) is zero-monic—or “total” , 
as it is called there. This also holds in the present setting, since:

ƒ o Dom(ƒ) =  o =  (i/t o e/ t )t o */t =  (e/ t )t o (*/ t )t o */t =  (e/ t )t .

This e/t is zero-epic, by Proposition 17, so that (ef t)^ is indeed zero-monic. In 
case ƒ : X  —>■ X  is a self-adjoint map, meaning ƒ t =  ƒ, then the image of ƒ is 
the same as the domain, and thus as the complement of the kernel.
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There is one further property that is worth making explicit, if only in exam­
ples. In the kernel fibration over Rel one finds the following correspondences.

KSub(X) =  V(X)  ^  Sets(X, 2) =  Sets(X, P (l))  ^ Rel(X, 1).

This suggests that one has “kernel classifiers” , comparable to “subobject clas­
sifiers” in a topos—or more abstractly, “generic objects” , see [21]. But the 
naturality that one has in toposes via pullback functors ƒ exists here via 
their left adjoints 3 f.  That is, we really have found a natural correspondence 
KSub(X) =  R el(l,X ) instead of KSub(X) =  Rel(X, 1). Indeed, there are 
natural “characteristic” isomorphisms:

KSub(X) =  V{X)

Then, for S:  X

char

( M C I )  h 

Y  in Rel,

—> R el(l, X)  

{(*, x) I x G M}.

S  o char(M ) =  {(*, y) \ 3X. char(M )(* , x) A S(x,  y)}

=  {(*> y) I 3x.M(x)  A S(x,  y)}

=  {(*,y) | 3s (M)(y)}

=  char(3 S(M)).

Hence one could say that Rel has a kernel “opclassifier” . This naturality ex­
plains our choice of R el(l,X ) over Rel(X, 1): the latter formulation more 
closely resembles the subobject classifiers of a topos, but using the former, 
naturality can be formulated without using the dagger. Hence in principle one 
could even consider “opclassifiers” in categories without a dagger.

The same thing happens in the dagger categories B  from Subsection 3.5. 
There one has, for x G B,

KSub(x) =  I x ----

(m < x) b

char
- + B {  l ,x)  

(to : 1 —>■ x)

As before, ƒ o char(TO-) =  ƒ A to =  3 ƒ (to) =  char (3 ƒ (to)).
The category OMLatGal of orthomodular lattices and Galois connections 

between them from [22] also has such an opclassifier. There is no obvious kernel 
opclassifier for the category Hilb. The category PInj is easily seen not to have 
a kernel opclassifier.

5 Im ages and coim ages
We continue to work in an arbitrary dagger kernel category D . In the previous 
section we have seen how each map ƒ: X  —>■ Y  in D can be factored as ƒ =  
i f  o ef  where the image i f  = ker(coker(/)): Im (/) >—► Y  is a kernel and ef  is a
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zero-epi. We can apply this same factorisation to the dual / t .  The dual of its 
image, =  coker(ker(/)) : X  -» Im (/t), is commonly called the coimage of
ƒ. It is a cokernel and dagger epi by construction. Thus we have:

X :

Im (ƒ)

Y Y :

y e/t

X

/ 1

By combining these factorisations we get two mediating maps to by diagonal 
fill-in (see Lemma 18), as in:

*~Y

Im (/t) Im (ƒ)

We claim that (rrif Ÿ =  rrif\. This follows easily from the fact that (*/t)^ is epi:

(m/ t )t o (if ] )t =  (if] o m / t )t =  (ef )^ =  ef =  m f o (if t )t .

Moreover, to ƒ is both a zero-epi and a zero-mono.
As a result we can factorise each map ƒ : X  —>■ Y  in D as:

X
(*/t )

->Im (/t) >—o4s> Im (/)
c o im a g e  im a g e

z e ro -e p i 
z e ro -m o n o

-+ Y . (7)

This coimage may also be reversed, so that a map in D can also be understood 
as a pair of kernels with a zero-mono/epi between them, as in:

X-
V - 3lm (/t)  >—°-»- Im (/) >- - + Y

The two outer kernel maps perform some “bookkeeping” to adjust the types; 
the real action takes place in the middle, see the examples below. The category 
P In j consists, in a sense, of only these bookkeeping maps, without any action. 
This will be described more systematically in Definition 28.

E xam ple 23 We briefly describe the factorisation (7) in Rel, P In j and Hilb, 
using diagrammatic order for convenience (with notation f ' ,g =  g o f ) .

For a map (X R  Y)  in R el we take the images X '  >—► X of r\ and 
Y 1 >—> Y  of t'2 in:

R
rV V 2x Y
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In PInj the situation is simpler, because the middle part to in (7) is the 
identity, in:

, F  ,V  V2
X Y

In Hilb, a morphism f  \ X  —> Y  factors a s /  =  * o m o e .  The third 
part i: I  —>■ Y  is given by i(y) =  y, where I  is the closure { f (x)  : x £ X } .  
The first part e: X  —> E  is given by orthogonal projection on the closure E  =  
{ f K v )  '■ V G explicitly, e(x) is the unique x'  such that x =  x'  +  x"  with 
x'  £ E  and {x" \ z) =  0 for all z £ E.  Using the fact that the adjoint : E  —>■ X  
is given by (x) =  x, we deduce that the middle part to : E  —> I  is determined 
by m(x) =  (i o m)(x) =  (ƒ o e^)(x) =  f(x).  Explicitly,

X  - ^ y ) =  ( x  - U Y

6 C ategorical logic
This section further investigates the logic of dagger kernel categories. We shall 
first see how the so-called Sasaki hook [26] arises naturally in this setting, and 
then investigate Booleanness.

For a kernel m: M  >—► X  we shall write 2:(m) =  m o m) : X  —>■ X  for the 
“effect” of m, see [11]. This 2:(m) is easily seen to be a self-adjoint idempotent: 
one has 2:(m)t =  2:(m) and 2:(m) o 2:(m) =  2:(m). The endomap 2:(m) : X  —>■ X 
associated with a kernel/predicate m on X maps everything in X  that is in to 
to itself, and what is perpendicular to to to 0, as expressed by the equations 
2:(to) o to =  to and 2:(m) o to^ =  0. Of interest is the following result. It 
makes the dynamical aspects of quantum logic described in [8] explicit.

P ro p o sitio n  24 For kernels to: M  >—► X , n: N  >—► X i/ie pullback 2:(rri)~1 (n) 
is the Sasaki hook, written here as D :

m Z )  n d=  2:(rri)~1(n) =  to^  V (to A n).

The associated left adjoint 3g(m) H 2:(to)_1 yields the “and then” operator: 

k & to d=  3£(m)(fc) =  to A (to^ V A:), 

so that the “Sasaki adjunction” (see [12]) holds by construction: 

k & to < n  -<=> k < m  D n.

Quantum logic based on this “and-then” & connective is developed in [30], 
see also [36, 37]. This & connective is in general non-commutative and non- 
associative1. Some basic properties are: to & to  =  to, 1 & to  =  t o & 1 =  to,

The “an d -th en ” connective & should not be confused w ith th e  m ultip lication  of a  quan- 
ta le  [39], since th e  la tte r  is always associative.
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0 & to  =  to & 0  =  0, and both k & to < n, k1- & to < n imply to < n (which 
easily follows from the Sasaki adjunction).

P ro o f  Consider the  following pullbacks.

P - + N Q .pA
J  7̂ J  \7

n  r ( m A n ) 1 =  k e r (p ^ o m ^

Then:

m1- V (to An) =  (to A (to A n)^)
=  ker ((to A (to A n)^)t)
=  ker (rt o mt)
=  ker ( ker(coker((TO A n)^) o to)̂  o mt)

by definition of r  as pullback, see Lemma 4 
=  ker ( ker(coker(ker(pt o m))) o to)^ o tot)
=  ker (ker(pt om^ o to)̂  o mt)

because o m) is a cokernel, see Lemma 6 
=  ker(coker(p) o tot)
=  (tô ) 1(p)

(tô ) (to 1(n))
=  2:(r

\ - i
TO
(n)

As we have seen, substitution functors ƒ in dagger kernel categories have 
left adjoints 3/. It is natural to ask if they also have right adjoints ¥ƒ. The 
next result says that existence of such adjoints \/f makes the logic Boolean.

P ro p o sitio n  25 Suppose there are right adjoints'i f  to ƒ :  KSub(y) —>■ KSub(X) 
for each ƒ: X  Y  in a dagger kernel category. Then each KSub(X) is a 
Boolean algebra.

P r o o f  [24, Lemma A1.4.13] For k ,l G KSub(X), define implication (k => I) =  
V^A;-1^)) G KSub(X). Then for any to G KSub(X):

TO < V fc^-^/)) =  (k => I) k 1(to) < k 1(l) 
m A k  =  k o k ~ 1 (m) < /,

where the last equivalence holds because k o — is left adjoint to k_1, since k is 
a kernel. Hence KSub(X) is a Heyting algebra, and therefore distributive. By 
Proposition 7 we know that it is also orthomodular. Hence each KSub(X) is a 
Boolean algebra.
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These universal quantifiers V/ do not exist in general because not all kernel 
posets KSub(X) are Boolean algebras. For a concrete non-example, consider the 
lattice KSub(C2) in the category Hilb—where C denotes the complex numbers. 
Consider the kernel subobjects represented by

K i : C ^ C 2, k2 =  ( k i A  C ^ c 2, A =  (id, id): C ^ C 2.

Since we can write each (z, w) G C2 as (z , w ) =  A ( z , z )  + K2 (w — z) we get 
A V «2 =  1 in KSub(C2). This yields a counterexample to distributivity:

«1 A (A  V «2) = k i A 1 =  k i ^ 0  =  0 V 0 =  (ki A A ) V («4 A «2)-

We now turn to a more systematic study of Booleanness. As we have seen, 
the categories Rel, PInj and B  (for a Boolean algebra B)  are Boolean, but 
Hilb and PHilb are not. The following justifies the name “Boolean” .

Theorem 26 A dagger kernel category is Boolean if  and only if  each ortho- 
modular lattice KSub(X) is a Boolean algebra.

P r o o f  We already know that each poset KSub(X) is an orthomodular lattice, 
with bottom 0, top 1, orthocomplement (—)_L (by Lemma 3), intersections A (by 
Lemma 6), and joins to V n  =  (t o A  n ^ ) ^ .  What is missing is distributivity 
raA (tiV fc) =  (m V n )A (ra V l;) . We show that the latter is equivalent to the 
Booleanness requirement m A n  =  0 =>m_Ln. Recall: to _L n  iff v )  o m  =  0 iff 
m < n1- =  ker(n-t).

First, assume Booleanness. In any lattice one has m  A (n V k) >  (m A n) V 
(m A k). For the other inequality, notice that

(m  A (m A n)^) A n =  (m A n) A (m A n )^  =  0.

Hence m A (m A n)1- <  . Similarly, m A (m A k)1 - < k ^ . So

m  A (m A n ) L A (m A k ) L < A k L =  (n V k ) L ,

and therefore
m A (m A n)~L A (m A k)1- A (n V k) =  0.

But then we are done by using Booleanness again:

m A (n V k) <  ((to A n)~L A (to A =  (to A n)  V (to A £;).

The other direction is easier: if to A n =  0, then

to =  t o A  1 =  r a A ( n V  n^)

=  (to A n) V (to A n^) by distributivity
=  0 V (to A n ^ )  =  to A n ^ ,

whence m < .
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The Booleanness property can be strengthened in the following way.

P ro p o sitio n  27 The Booleanness requirement to A n =  0 =>• to < n1-, for all 
kernels to, n, is equivalent to the following: for each pullback of kernels:

P

M  o-

v

■X

one has p o q '.

P r o o f  It is easy to see that the definition of Booleanness is the special case 
P  =  0. For the converse, we put another pullback on top of the one in the 
statement:

0- p ±
v

NP  o-
V J

X

We use that p, q are kernels by Lemma 4. We see m A (n o p A 
Booleanness we obtain:

0, so by

m < (n o p1 =  ker [{n  o ker(pt))t 

=  ker(coker(p) o v))

=  {n^)-l {p),

where the pullback is as described in Lemma 4. Hence there is a map <p\ M  —>■ P  
with p o ip =  n-t o m. This means that cp =  p  ̂ o p o cp =  p  ̂ o o m =  (n o 

o to =  (m o g)t o to =  gt o mt o to =  gt. Hence we have obtained 
p o </t =  n t o to, as required.

D efinition 28 Let D be a Boolean dagger kernel category. We write D kck 
for the category with the same objects as D; morphisms X  -> 7  in D m
are cokernel-kernel pairs (c,k) of the form X —— —̂
X  —> X  is X ------>X>---- s-X , and composition of X —
Y —— \>Nt>—l-^~Z is the pair (</t o c, I o p) obtained via the pullback:

- Y . The identity 
—>M> k >Y  and

y j  y

(8)

To be precise, we identity (c, k) with x), for isomorphisms ip.
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The reader may have noticed that this construction generalises the definition 
of P In j. Indeed, now we can say P In j =  Relfccfc.

Theorem  29 The category T>kck as described in Definition 28 is again a Boolean 
dagger kernel category, with a functor D : D kck —> D that is a morphism of 
DagKerCat, and a change-of-base situation (pullback):

KSub(Dfccfc)-------------- 5- KSub(D)

I I
D

Dfccfc ^ D

Moreover; in T>kck one has:

kernel =  dagger mono =  mono =  zero-mono, 

and Dfccfc is universal among such categories.

P r o o f  The obvious definition (c ,k)  ̂ =  (A;t,ct) yields an involution on Dkck-

The zero object 0 G D is also a zero object 0 £ Dkck with zero map X  — >0 
consisting of a cokernel-kernel pair. A map (c, k) is a dagger mono if and only 
if (c, o (c, k) =  (A;t, k) is the identity; this means that k =  id.

The kernel of a map (d, I) =  (Y \ > ^ Z ) in D ¡-ck is ker(d, I) =  ( > ^ > 1"), 
so that ker(d,/) is a dagger mono and (d,l) o ker(d,l) =  0. If also (d,l) o 
(c , k ) =  0, then k A d) = 0 so that by Booleanness, k < (d^)^,  say via 
<p: M  —> N 1 - with (d^)1- o p =  k. Then we obtain a mediating map (c, <p>) =

(X — <— > M  > V >N 1- ) which satisfies k e r(d ,/) o (c, cp) =  (id, (d^)^) o (c,cp) =
(c, (d^)1- o <p) = (c, k). It is not hard to see that maps of the form (id, m) in 
D kck are kernels, namely of the cokernel (m-L,id).

The intersection of two kernels (id, m) =  ( M ^ =  M  ¡ > ^ X ) and (id, n) =

( N =  N t > ^ X )  in D kck is the intersection m A n: P  ^  X  in D, with pro­
jections ( P ^ =  P l ^ M )  and ( P ^ =  P t ^ i V ) .  Hence if the intersection of 
(id, m) and (id, n) in D kck is 0, then so is the intersection of m and n in D, which 
yields v) o rri =  0. But then in D kck, (id, n)t o (id, m) =  (n't, id) o (id, m) =  0.
Hence D kck is also Boolean.

Finally, there is a functor D kck —> D by X  i—> X  and (c, k) i—> k o c. 
Composition is preserved by Proposition 27, since for maps as in Definition 28,

( d, l ) o( c , k )  = (ijt o c, i o p) i— > l o p o g t o c  =  ( l o d ) o ( k o c ) .

We have already seen that KSub(X) in D kck is isomorphic to KSub(X) in D.
This yields the change-of-base situation.

We have already seen that kernels and dagger monos coincide. We now show 
that they also coincide with zero-monos. So let (d,l)\ Y  —>■ Z  be a zero-mono.
This means that (d,l) o (c, k) =  0 =>• (c,k) =  0, for each map (c,k). Using 
diagram (8), this means: dJ A k =  0 =>• k =  0. By Booleanness, the antecedent
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S  A k = 0 is equivalent to k < (d^)1- = ker(d), which means d o k = 0. Hence 
we see that d is zero-monic in D, and thus an isomorphism (because it is already 
a cokernel).

Finally, let E be a Boolean dagger kernel category in which zero-monos are 
kernels, with a functor F : E —>■ D in DagKerCat. Every morphism ƒ in E 
factors as ƒ =  i f  o ef for a kernel i f  and a cokernel ef.  Hence G:  E —>■ D f.ck 
defined by G(X)  =  F ( X )  and G(f )  =  (ef , i f )  is the unique functor satisfying 
F  =  D o G .

7 Ordering hom sets
This section shows that homsets in dagger kernel categories automatically carry 
a partial order. However, this does not make the categories order enriched, 
because the order is not preserved by all morphisms.

D efinition 30 Let ƒ, g: X  —>■ Y  be parallel morphisms in a dagger kernel cat­
egory. After factorising them as f  =  i f  o mf  o (if\)^ and g =  ig o mg o (*st)t 
like in (7) we can define ƒ < g if and only if there are (necessarily unique, dagger 
monic) <p: Im (/) —>■ Im(<?) and rtp: Im (/t) —>■ Im(cjr"l")  ̂ so that in the diagram

L em m a 31 The relation <  is a partial order on each homset of a dagger kernel 
category, with the zero morphism as least element.

P r o o f  Reflexivity is easily established by taking <p =  id and tjj =  id in (9). 
For transitivity, suppose that ƒ < g via <p and rtp, and that g < h via a  and ¡3 . 
Then the four conditions in the previous definition are fulfilled by a o <p and 
tjj o [3, so that ƒ < h. Finally, for anti-symmetry, suppose that ƒ < g via <p 
and rtp, and that g < ƒ via a  and ¡3. Then i f  o a o ¡p =  ig o ¡p =  i f y so that 
a o =  id. Similarly, ¡3 o tp =  id. By Lemma 3, a  is a dagger mono so that 
a t =  a t  o a  o ip =  p. Similarly, ¡31 =  tp, and thus:

ƒ =  i f  o rrif o (*ƒt)t =  i f  o a  o ip o rrif o ( i f \ Y  =  i g o m g o tp o ( i f \ )t

I m ( / t ) - ^ I m (/)

(9)

/3 to (* / t ) t

( v ) f

=  9-
Finally, for any ƒ we have 0 < ƒ by taking <p = tp =  0 in (9).
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L em m a 32 I f  ƒ < g, then:

1. (k o ƒ) < {k o g) for a kernel k;

2. ( f o c ) < ( g o  c) for a cokernel c;

3- P  < g'.

P r o o f  The first two points are obvious. The third one then follows because 
(m /)t =  nif] as shown in Section 5.

Exam ple 33 We describe the situation in PInj, R el and Hilb, using the fac­
torisations from Example 23. .

/ I  12 Q1 92
Two parallel maps ƒ =  [ X  <—< F  >—► Y)  and g =  (X <—< G  >—► Y)  in PInj sat­

isfy ƒ < g if an(l only if there are y>, tp : F  —>■ G  in:

This means =  tp and gi o ip =  f il for i =  1, 2, so that we obtain the usual 
order (of one partial injection extending another).

Next, R  < S' for R  = (X V- R  ^  Y)  and S  = (X  £- S  ^  Y)  in R el means:

Commutation of the triangles means Im(ri) Ç Im(si) and Im(r2) Ç Im(s2). 
The equations for the square in the middle say that:

to, all (  s M n l x I m j . « )
[ ( x , y )  G Im (r2) x Im (si).

This means R  Ç S, as one would expect.
The order on the homsets of the category H ilb can be characterized as 

follows [19, Example 5.1.10]: ƒ < g for ƒ, g : X  —> Y  if and only if g =  ƒ +  f  for 
some ƒ ': X  ~^>Y with Im (/) and Im (/t) orthogonal to Im (/') and Im ((//)t), 
respectively. To see this, suppose that g =  ƒ +  f  as above. Then Im(<?) is 
the direct sum of Im (/) and Im(f ' ),  and likewise Im(<?t) =  Im (/t) ® Im ((/') t . 
Moreover, mg is the direct sum of toƒ and mf/.  Therefore, taking tjj =  <p =  
makes diagram (9) commute, so that ƒ < g. Conversely, suppose that ƒ < g, so 
that diagram (9) commutes. Then the cotuple [y>, y>-*-] : Im (/)© Im (/)± —>■ Im(<?)
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is an isomorphism, and so is the cotuple [ip, ip-1 ]. Since p  o mg =  to / o tp\ 
there is a morphism n making the following diagram commute:

ker(i/.t )= i/ .± J

Im ^ t)  ■

Now, taking

Im(f ) 1 -

J v ±=ker(yt) 
- Im(gr) 

t

m/
V

■Ini (ƒ).

■Im(gr) Y

fulfills g =  f  +  f ,  and Im (/) and Im (/t) are orthogonal to Im (//) and Im ((//)t), 
respectively.

In Hilbert spaces there is a standard correspondence between self-adjoint 
idempotents and closed subsets. Recall that an endomap p\ X  —>■ X  is self- 
adjoint if pt =  p and idempotent if p o p =  p. In the current, more general, 
setting this works as follows, using the order on homsets.

P ro p o sitio n  34 The “effect”2 mapping to i—> (£(to) d=  m o  to t from Section 6 
yields an order isomorphism:

KSub(X) =  {p

=  {P0 )
=  {P

X  X  | pt =  p < id} 
X ^ X \ p ^ = p o p = p <  id} 

X ^ X \ p ^ = p o p  =  p \ ,

where the marked isomorphism holds i f  zero-epis are epis (like in H ilbj.

P ro o f  Clearly, (£(to) 
(£(to) <  id via:

to o m) is a self-adjoint idempotent. It satisfies

where the kernel to: M  >—► X  is a dagger mono so that Im(S(m)) =  M .
This mapping (£(—): KSub(X) —>■ {p \ p  ̂ =  p < id} is surjective: if p: X  —>■ 

X  is a self-adjoint with p < id then we first note that the factorisation from (7) 
yields p =  ip o rrip o By Definition 30 there are cp, ip\ Im(p) —>■ X  with

2T he nam e “effect” was chosen because of connections to  effect algebras [11]. For exam ple, 
in th e  so-called s tan d ard  effect a lgebra of a  H ilbert space [13], an effect corresponds a  positive 
operato r benea th  th e  identity.
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=  (*p)^ ¥  ° mp =  V1) P  =  mp °  P  and <p =  ip . This yields tp =  i p and 
rrip =  id. Hence p =  ip o ( i p ) t =  e: ( i p ), so that p is automatically idempotent. 
This establishes the second isomorphism.

The mapping (£(—) preserves and reflects the order. If to < n in KSub(X), 
say via <p: M  —>■ N  with n o <p =  to, then (£(m) < S(n) via:

Conversely if S(m) < S(n), say via <p: M  ^  N  and ip: M  ^  N,  then n o <p =  m 
so that m < n in KSub(X).

Finally, if zero-epis are epis, we write for a self-adjoint idempotent p ,

ip o ep =  p =  p o p =  pt o p =  (ep)t o (¿p)t o ip o ep =  (ep)  ̂ o ep,

and obtain =  (ep)t. Hence p =  2:(ip) and thus p <  id.

8 C om pleteness and atom icity  of kernel posets
In traditional quantum logic, orthomodular lattices are usually considered with 
additional properties, such as completeness and atomicity [34]. This section con­
siders how these requirements on the lattices KSub(X) translate to categorical 
properties. For convenience, let us recall the following standard order-theoretical 
definitions .completeness

Definition 35 For elements x, y of a poset, we say that y covers x when x <  y 
and x <  z < y implies z =  x (where z < y  if and only if z < y  and z =/= y). An 
element a of a poset with least element 0 is called an atom when it covers 0. 
Equivalently, an atom cannot be expressed as a join of strictly smaller elements. 
Consequently, 0 is not an atom. A poset is called atomic if for any x ^  0 in it 
there exists an atom a with a < x. Finally, a lattice is atomistic when every 
element is a join of atoms [10].

Proposition 36 For an arbitrary object I  in a dagger kernel category, the fol­
lowing are equivalent:

1. id/ =  1 is an atom in KSub(J);

2. KSub(J) =  {0, 1};

3. each nonzero kernel x : I  >—► X  is an atom in KSub(X).

P roof For the implication (1) =>• (2), let m be a kernel into / .  Because m < id/ 
and the latter is an atom, we have th a t m =  0 or m is isomorphism. Thus 
KSub(J) =  {0,1}.

30



To prove (2) =>• (3), suppose that m < x for kernels to: M  >—► X and 
x: I  >—► X . Say to =  x o <p for <p\ M  >—► ƒ. Then <p is a kernel by Lemma 3.
Since KSub(J) =  {0, 1}, either <p is zero or <p is isomorphism. Hence either 
to =  0 or to =  x as subobjects. So x is an atom. Finally, (3) => (1) is trivial.

Definition 37 If I  satisfies the conditions of the previous lemma, we call it a 
KSub-simple object. (Any simple object in the usual sense of category theory 
is KSub-simple.)

Similarly, let us call I  a KSub-generator if f  =  g: X  ^  Y  whenever ƒ o  

x =  g o x for all kernels x: I  >—► X . (Any KSub-generator is a generator in the 
usual sense of category theory.)

Example 38 The objects 1 £ PInj, 1 £ Rel, C £ Hilb and C £ PH ilb are 
KSub-simple KSub-generators.

The two-element orthomodular lattice 2 is a generator in the category OMLatGal 
from [22], because maps 2 —>■ X  correspond to elements in X . But 2 is not a 
KSub-generator: these maps 2 —>■ X  are not kernels.

Because 1 £ Rel is a KSub-simple KSub-generator, one might expect a 
connection between Definition 37 and the “kernel opclassifiers” discussed at the 
end of Section 4. There is, however, no apparent such connection. For example, 
the object 1 in the category PInj is a KSub-simple KSub-generator, but not a 
“kernel opclassifier” .

Lemma 39 Suppose that a dagger kernel category D has a KSub-simple KSub- 
generator I .  Then beneath any nonzero element of KSub(X) lies a nonzero 
element of the form x: I  >—> X . Hence KSub(X) is atomic, and its atoms are 
the nonzero kernels x : I  >—► X .

P r o o f  Suppose to: M  >—► X  is a nonzero kernel. Since /  is a KSub-generator, 
there must be a kernel x: I  >—► M  with r a o i ^ O .  By Proposition 36 this m o x  
is an atom. It satisfies t o  o  x < to, s o  we are done.

Corollary 40 I f  a dagger kernel category has a KSub-simple KSub-geraeraior 
I y then KSub(X) is atomistic for any object X .

P ro o f  Any atom ic orthom odular la ttice  is atom istic [26].

The categorical requirement of a simple generator is quite natural in this 
setting, as it is also used to prove that a certain class of dagger kernel categories 
embeds into Hilb [18].

We now turn to completeness, by showing that the existence of directed col­
imits ensures that kernel subobject lattices are complete. This, too, is a natural 
categorical requirement in the context of infinite-dimensionality [17]. Recall 
that a directed colimit is a colimit of a directed poset, considered as a diagram.
The following result can be obtained abstractly in two steps: directed colimits 
in D yield direct colimits in slice categories D /X , see [5, Vol. 2, Prop. 2.16.3].
The reflection KSub(X) D /X  induced by factorisation transfers these di­
rected colimits to KSub(X). However, in the proof below we give a concrete 
construction.
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Proposition 41 I f  a dagger kernel category D has directed colimits, then KSub(X) 
is a complete lattice for every X  G D.

P r o o f  A lattice is complete if it has directed joins (see [25, Lemma 1.4.1], 
or [27, Lemma 2.12]), so we shall prove that KSub(X) has such directed joins. 
Let (wj : Mi >—► X ) i ej  be a directed collection in KSub(X). For i <  j  we have 
TOj <  nij and thus nij o m t  o m ; =  rrii.

Let M  be the colimit in D of the domains Mj, say with coprojections 
Cj : Mi —>■ M . The (rrii : Mj >—► X ) i ej  form a cocone by assumption, so there is a 
unique map to: M  —>■ X  with t o  o  a  =  to*. The kernel/zero-epi factorisation (6) 
yields:

form a cocone in D because the to* are directed and k is monic: if * < j ,

As a result there is a unique i\ M  —>■ i f  with f o q  =  ki . Then k o £ =  m, 
by uniqueness since:

Example 42 The categories PInj, Rel, Hilb and PH ilb have directed col­
imits, and therefore their kernel subobject lattices are complete orthomodular 
lattices. Since they also have appropriate generators, see Example 38, each 
KSub(X) in PInj, Rel, Hilb or PH ilb is a complete atomic atomistic ortho­
modular lattice.

Any atom of a Boolean algebra B  is a KSub-simple object in the dagger 
kernel category B  from Proposition 16. But B  has a KSub-generator only if 
B  is atomistic. In that case the greatest element 1 is a KSub-generator. For 
if ƒ o a =  g o a for all a < 1 A x =  x and f , g < x A y ,  then, writing 
| a ' x =  {a G Atoms(B) | a < x}  we get:

We claim that n is the join in KSub(X) of the to*.
• TOj < n via e o Cj: Mj —>■ N  satisfying n o (e o a) =  m o a  =  TOj.

• If TOj < k, then k o k̂  o rrii =  TOj. Also, the maps ki =  k) o TOj: Mi —>■ K

then,

k o kj o rrij o rrii =  k o k̂  o mj °  o nij =  fc o fct o to; =  o fcj.

k o £ o Ci =  k o ki =  k o k1' o rrii =  rrii =  rri o Ci.

Hence we obtain n < k by diagonal-fill-in from Lemma 18 in:

M  — N
v

n

k ^ —^ xk

f  =  f A x  =  f A  ( V i Ai )  =  \ J { f A a \ a G  Atoms(B), a <  x}

=  V {g  A a | a G Atoms(B), a <  x}

=  9 A (V IA x) =  9 A x  =  g.

32



9 C onclusions and future work
The paper shows th a t a “dagger kernel category” forms a simple but powerful 
notion tha t not only captures many examples of interest in quantum  logic but 
also provides basic structure for categorical logic. There are many avenues for 
extension and broadening of this work, by including more examples (e.g. effect 
algebras [11]) or more structure (like tensors). Also, integrating probabilistic 
aspects of quantum  logic is a challenge.
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