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Quantum loss sensing 
with two‑mode squeezed vacuum 
state under noisy and lossy 
environment
Sang‑il Park 1, Changsuk Noh 1* & Changhyoup Lee 2*

We investigate quantum advantages in loss sensing when the two-mode squeezed vacuum state is 
used as a probe. Following an experimental demonstration in PRX 4, 011049, we consider a quantum 
scheme in which the signal mode is passed through the target and a thermal noise is introduced to 
the idler mode before they are measured. We consider two detection strategies of practical relevance: 
coincidence-counting and intensity-difference measurement, which are widely used in quantum 
sensing and imaging experiments. By computing the signal-to-noise ratio, we verify that quantum 
advantages persist even under strong thermal background noise, in comparison with the classical 
scheme which uses a single-mode coherent state that directly suffers from the thermal noise. Such 
robustness comes from the fact that the signal mode suffers from the thermal noise in the classical 
scheme, while in the quantum scheme, the idler mode does. For a fairer comparison, we further 
investigate a different setup in which the thermal noise is introduced to the signal mode in the 
quantum schemes. In this new setup, we show that the quantum advantages are significantly reduced. 
Remarkably, however, under an optimum measurement scheme associated with the quantum Fisher 
information, we show that the two-mode squeezed vacuum state does exhibit a quantum advantage 
over the entire range of the environmental noise and loss. We expect this work to serve as a guide for 
experimental demonstrations of quantum advantages in loss parameter sensing, which is subject to 
lossy and noisy environment.

Optical spectroscopy is a powerful experimental technique for investigating various physical systems and is 
applied to diverse areas of science and technology from both fundamental and practical viewpoints1–6. In trans-
mission spectroscopy, for example, one shines a light beam on an analyte and measures the intensity of the 
transmitted light. The measurement followed by a post-processing step yields the transmittance T of an analyte 
with a noise �T representing the uncertainty in the estimated value of T. In most cases, the figure of merit used to 
quantify the quality of the measured signal is the signal-to-noise ratio (SNR) and thus it is of utmost importance 
to increase the SNR. To this end, one can simply crank up the power of the illuminating light, thereby increasing 
the intensity of the transmitted light. This is not always acceptable, however, due to optical damages that could 
occur when a photo-sensitive analyte is under inspection7. In such cases, the energy of the illuminating beam 
is constrained and the SNR cannot be increased arbitrarily. Here, quantum sensing techniques developed over 
the past few decades can be used to further enhance the SNR. By carefully choosing the quantum state of the 
probe beam as well as the measurement performed on the scattered light, one can enhance the SNR without 
increasing the intensity of the probe beam8. Among various types of parameter estimation problems treated in 
the framework of quantum sensing, the so-called loss sensing, understood to be conjugate to phase sensing, 
is directly related to optical spectroscopy in that it aims to precisely measure the amount of energy that is lost 
during propagation through an analyte9–15.

One of the most practical states used in quantum sensing is the two-mode squeezed vacuum (TMSV) state, 
which can be generated via spontaneous parametric down-conversion in a nonlinear crystal16,17. The TMSV 
state possesses strong quantum correlations between the two modes in photon number, frequency, time, and 
position. By exploiting such correlations, the TMSV state has proven to be extremely useful in many quantum 
technological applications1,18–23 including single9–14 and multi-parameter loss sensing15. In particular, the recent 
experimental work demonstrated that a loss sensing scheme that uses the TMSV state along with coincidence 
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detection is more robust to thermal noise compared with a classical scheme that uses the coherent state1. In 
other words, the SNR for the quantum scheme is larger than that of the classical scheme in the presence of large 
thermal noise. Such behavior is very interesting because classical schemes usually outperform quantum schemes 
when noise dominates.

In the first part of this work, we perform a quantum theoretical analysis of the experimental setup studied in 
Ref. 1, by comparing the SNRs for the quantum and classical schemes. In the quantum scheme, the TMSV state 
is used along with a coincidence-counting measurement, while in the classical scheme the coherent state is used 
along with the intensity measurement, i.e., photon counting. Our calculations show that a significant advantage 
is observed when there is large thermal noise, supporting the conclusion of the experimental work. We also 
investigate the performance of an alternative quantum scheme where the number-difference measurement is 
employed and show that it is the preferred scheme when thermal noise is weak and the sample transmission is 
large. We then compare the aforementioned particular detection schemes against the optimal ones that can be 
determined using quantum estimation theory, both for the classical and quantum setups.

In the second part, noting that the quantum scheme’s robustness against noise stems from the difference in 
the way the noise is introduced in the classical and quantum setups, we move on to investigate a new quantum 
setup, in which the noise is introduced in a fairer fashion. Analyzing the performance of the TMSV state under 
the new setup, we find that the classical scheme is preferred over a much larger parameter regime in the large 
noise limit, in contrast to the original setup. Even in the parameter regime in which a quantum scheme outper-
forms the classical scheme, the advantages are significantly diminished.

Background
The classical and quantum spectroscopy setups of Ref.1 are illustrated schematically in Fig. 1. To generate a 
classical probe, a halogen lamp was used in Ref. 1, which generates a multi-mode thermal light. Instead of 
using a thermal state as a probe, however, we consider a coherent state as the classical probe, which is the most 
commonly used classical benchmark in quantum sensing and outperforms the thermal states in the sensing 
tasks described below. This leads us to set the classical scheme, where the probe field is prepared in a coher-
ent state and passes through the sample and a thermal background as shown in Fig. 1a. The resulting output 
is then detected by a photon counter. In the quantum scheme, the probe field is prepared in the TMSV state 
cosh−1 r

∑∞
n=0 e

inθ tanhn r|n, n� (with θ = 0 in the rest of this work), and its signal beam goes through the sample 
while the idler beam experiences the thermal background. The resulting two modes are subsequently detected 
by separate photon counters.

The sample is modeled by a beam splitter with transmittance T, with the vacuum entering the unused port, 
and the thermal noise is modeled by another beam splitter with transmittance η with a thermal field entering the 
unused port. To ensure that the number of thermal photons entering the detectors is fixed to nth independently 
of η , the input thermal state entering the unused port is assumed to have the photon number n′th = nth/(1− η) . 
In the experiment, both the input and the thermal lights were multi-mode and the frequency dependence of the 
sample transmittance was kept into consideration. For simplicity, we use a single mode description in which only 
a narrow frequency window is considered. There is no loss of generality, however, since by varying the central 
frequency of the probe beam one recovers the full spectral dependence of the sample transmittance T. Assuming 
that the thermal noise parameters are known beforehand, an unbiased estimator of the transmittance T–that 
yields the estimate T from the intensity measurement a†outaout–in the classical scheme can be set as

(1)T̂C = a†outaout − nth

ηn
,

Figure 1.   Diagrammatic illustrations of the classical and quantum setups investigated in Ref.1. (a) In the 
classical scheme, a coherent state probe first passes through the sample and then experiences a thermal noise 
with an average photon number nth . The latter is modeled by a fictitious beam splitter with transmittance η , into 
which a thermal noise n′th is injected from the background. (b) In the quantum scheme, the signal mode of a 
two-mode squeezed vacuum (TMSV) probe passes through the sample, while the idler mode experiences the 
thermal background.
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where aout is the annihilation operator of the field entering the photon counter and n is the mean photon number 
of the probe beam (see Supplementary Information). The expectation value and the variance of the estimator 
are then �T̂C� = T and

respectively.
In the quantum setup, on the other hand, we consider two different measurement schemes. The first scheme is 

the coincidence-counting scheme used in Ref. 1, whose measurement operator can be written as a†outaoutb
†
outbout . 

The second scheme is the number-difference detection scheme, whose measurement operator can be written as 
a†outaout − b†outbout . The latter is used most widely for the TMSV state in various quantum spectroscopy and imag-
ing applications24 due to strong photon-number correlations between the signal and the idler modes. An unbiased 
estimator for the coincidence-counting scheme yielding the estimate T can be algebraically worked out to be

where n is the average photon number in each mode. Its expectation value is T and its variance is

For the number-difference detection scheme, an unbiased estimator yielding the estimate T reads

which has the expectation value T and the variance

We are interested in finding the regimes in which one of the quantum schemes outperforms the classical scheme. 
The performance of a given scheme is quantified by the SNR defined as

In the following, we compare the performances of the introduced classical and quantum schemes using the SNR 
as a measure. Then, we compare these schemes with the optimal detection scheme for the chosen states. The 
optimal SNRs can be obtained using the quantum Cramér-Rao bound for the variance25–28: �(�T̂)2� ≥ 1/H , 
where H is the quantum Fisher information (QFI). Using a relation between the quantum fidelity and the QFI 
(see supplementary Information for a quick summary), one can calculate the QFIs for the classical and quantum 
setups, which can be written as

respectively.

Results
In this section, we calculate the SNRs for the TMSV state under the coincidence-counting scheme, the number-
difference measurement scheme, and the optimal scheme in order to determine the parameter regimes in which 
the entangled state exhibits an advantage over the coherent state. For the latter, we consider the number counting 
and optimal schemes.

Since an experimentally generated TMSV state usually has a small mean photon number, we fix the signal 
strength to n = 2 and focus on nth = 0.1, 2, 4 , i.e., when the thermal noise is weak, comparable to, or larger than 
the signal strength. It is clear that such a choice of parameters provides rich information about general behaviors 
of the schemes under investigation. Furthermore, we use γ = 1− η , which enables us to explain the estimation 
performances in terms of the loss in the signal beam.

(2)�(�T̂C)
2� =

T(2nth + 1)+ nth(nth+1)
ηn

ηn
,

(3)T̂coin
Q = a†outaoutb

†
outbout

η(2n2 + n)+ nnth
,

(4)
�(�T̂coin

Q )2� = Tn

(η(2n2 + n)+ nnth)2

{

n2th(3Tn+ 2)+ nth[1+ 4η + 20Tηn2 + 2n(T + 4η + 7Tη)]

+ η[1+ 20Tηn3 + n(2+ 4T + 4η + 3Tη)+ n2(6T + 6η + 20Tη)]
}

.

(5)T̂diff
Q = a†outaout − b†outbout + ηn+ nth

n
,

(6)�(�T̂diff
Q )2� =

[

(T − η)2(n2 + n)+ nth(nth + 1+ 2ηn)+ T(1− T)n+ η(1− η)n
]

/n2.

(7)SNR = �T̂�
√

�(�T̂)2�
= T

√

�(�T̂)2�
.

(8)HC = ηn

T(2nth + 1)
,

(9)
HQ = n

T

{

n2th(2Tn+ 1)+ ηn[1+ ηn− T(1− η + ηn)] +nth
[

1+ Tηn2 + n(T + 2η − 3Tη)
]}

/

{[nth + Tnnth + ηn(1− T)] ×[1+ nth + 2Tnnth + n(T + η − 2Tη)]},
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The classical scheme.  The SNR under the photon counting scheme can be calculated from Eq. (2) and 
reads

It is clear that the SNR increases with both n and T, but decreases with increasing γ and nth . Such behavior is 
consistent with the experimental result of Ref. 1 and is illustrated in Fig. 2.

The quantum schemes with the thermal noise in the idler mode.  In order to examine possible 
quantum advantages of using the TMSV state, we compare the SNR of the two quantum schemes with the SNRC 
defined above. The quantum advantage is quantified by the ratio between the SNRs: Rκ = SNRκ/SNRC , where κ 
represents a measurement scheme, i.e., ‘coin’ or ‘diff ’. Rκ > 1 indicates that the quantum scheme κ outperforms 
the classical benchmark, while Rκ < 1 indicates that the classical scheme outperforms the quantum schemes.

Figure 3 illustrates a comparison among the three schemes. The top row shows the maximum values of Rκ 
between the two quantum schemes for nth = 0.1, 2, 4 . The comparison reveals three separate regions for given 
values of γ , T, and nth . When one of the two quantum schemes outperforms the classical benchmark, the region 
is labeled by the best scheme κ , otherwise, the region is labeled ‘No enhancement’. Roughly speaking, the figure 
shows that the number-difference measurement is the best when the transmitted signal is sufficiently large 
compared to the thermal noise, while the coincidence-counting scheme works best in the opposite case (except 
in the region of large γ , which will be discussed later). Also noteworthy is the fact that the ‘No enhancement’ 
region occupies a significant portion of the parameter space when the noise is small, but the area shrinks as the 
thermal noise level increases. On the other hand, the coincidence-counting scheme dominates in almost the 
entire parameter space when the thermal noise is larger than the signal strength, which is in agreement with 
the experimental conclusion of Ref. 1. The region labeled ‘coin’ further shrinks as nth → 0 , but the overall shape 
remains similar to that of nth = 0.1 , as shown in Supplementary Fig. S1. Plots of Rκ provide useful information on 
quantum advantages but not on the actual sensitivities achieved by the quantum schemes. The latter is provided 
in Supplementary Fig. S2, which plots �T as a function of γ and T.

The dependence of Rκ on T for specific values of γ is more clearly shown on the bottom row of Fig. 3. In the 
quantum setup shown in Fig. 1b, the loss parameter γ determines how much of the idler beam is lost while the 
mean number of thermal photons entering the detector is fixed to nth . For a small value of nth , Rcoin diverges as 
T → 0 , making the coincidence-counting scheme the best option when the sample transmittance is very small, 
i.e., T ≪ 1 , whereas the number-difference scheme is the best when T ≈ 1 . For a sufficiently large value of nth , on 
the other hand, the coincidence-counting scheme outperforms the other two schemes for all values of T. Interest-
ingly, the observed quantum advantages increase as either the loss or the thermal noise level increases, i.e., as γ 
or nth increases. This is because it is the idler mode that suffers from the imperfections in the quantum scheme 
(Fig. 1b), while it is the signal mode that suffers from them in the classical scheme (Fig. 1a). This motivates a 
further investigation on an alternative quantum scheme shown in Fig. 5 as will be discussed later.

The optimal detection scheme.  As discussed in the previous section, the SNR depends on the chosen 
detection scheme, for a given input state. It means that the SNR can be maximized over all possible detection 
schemes, leading to the optimal SNRopt = T

√
H  , given by the quantum Cramér–Rao bound for the QFI H. 

For the coherent state input, one obtains SNRopt
C =

√

T(1− γ )n/(2nth + 1) , while for the two-mode squeezed 
vacuum state input, SNRopt

Q  can be obtained straightforwardly from Eq. (9) but is too cumbersome to write here. 
Incidentally, the classical scheme is optimal for nth = 0 , as can be verified by comparing SNRopt

C  with Eq. (10).
Let us now compare the optimal SNRs with the SNRs calculated in the previous section in order to examine 

the optimality of the considered detection schemes. To this end, we define the ratios Ropt
Coh = SNRC/SNR

opt
C  and 

(10)SNRC = T(1− γ )n
√

T(1− γ )n(2nth + 1)+ nth(1+ nth)
.

Figure 2.   The SNR for the coherent state as a function of γ and T under photon counting scheme. The average 
input photon number is n = 2 and the thermal photon number is nth = 0.1, 2, and 4. The SNR increases as (i) T 
increases, (ii) γ decreases, and (iii) nth decreases.
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R
opt
κ = SNRκ/SNR

opt
Q  for the classical and quantum schemes, respectively. The upper panels of Fig. 4 illustrate 

the ratios. In each plot, the regions are divided in accordance with Fig. 3. Interestingly, the number-difference 
scheme and the classical scheme are nearly optimal in a wide region of the parameter space when nth is small, but 
the coincidence-counting scheme is only sub-optimal. All three schemes become less optimal with increasing nth 
however, until the coincidence-counting scheme eventually dominates the entire parameter space.

Next, we compare the optimal SNRs of the coherent state and the TMSV state, as quantified by the ratio 
RQFI = SNR

opt
Q /SNR

opt
C  . The bottom panels of Fig. 4 plots RQFI . They clearly show that the optimum quantum 

scheme always outperforms any classical scheme regardless of the values of T and γ . Most remarkably, the 
quantum advantage increases with increase in either the thermal photon number nth or the loss rate γ . That is, 
the larger the environmental noise, the larger the quantum advantage observed. In fact, the ratio RQFI goes as 
2nth/(Tn+ 1)(1− γ ) , as nth → ∞.

Alternative quantum setup with the thermal noise in the signal mode
From the above considerations, we are led to conclude that the quantum schemes significantly outperform the 
classical schemes even when the thermal noise dominates. This sounds interesting at first, but puzzling on a 
second thought since quantum features are typically destroyed by noise and loss, leaving classical schemes as 
preferred options in noisy and lossy environments. Looking back to Fig. 1, it is not too difficult to see a potential 
source of this counter-intuitive behavior. In the classical setup, thermal noise is added to the same mode that 
goes through the sample, whereas in the quantum setup, it is added to the idler mode which is only used as a 
reference. Therefore, in the extreme case in which the noise intensity is much larger than that of the source, one 
would benefit by simply discarding the idler mode in the quantum scheme, while there is no such option in the 
classical scheme. This renders the quantum schemes more advantageous as the noise and loss increases.

To make a fairer comparison with the classical scheme we revise the previous quantum setup so that the 
thermal noise enters the signal mode, as depicted in Fig. 5. In the new quantum setup, the idler mode no longer 
experiences any thermal noise. The signal mode, on the other hand, experiences a thermal noise with an average 
photon number nth after passing through the sample.

Figure 3.   Top row: Quantum enhancement achieved by the TMSV state as quantified by Rκ . The region in 
which the coincidence-counting scheme outperforms the number-difference and classical schemes is enclosed 
by the red box and is labeled ‘coin’ while the region dominated by the number-difference scheme is enclosed 
by the blue box and is labeled ‘diff ’. The grey area indicates where no quantum advantage is observed by either 
schemes. Bottom row: The ratio Rκ as a function of T for γ = 0.1, 0.5, and 0.9. Note that the coincidence-
counting scheme becomes the best choice for all parameter values when nth is sufficiently large.
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As before, the thermal noise can be modeled as a beam splitter of transmittance η where a thermal field with 
the average photon number nth/(1− η) is fed into the unused port. At this point, the setup can be simplified by 
merging the two beam splitters into a single beam splitter of transmittance T ′ ≡ Tη in which the thermal field, 
entering the unused port of the beam splitter, has the average photon number n′th = nth/(1− Tη) . The beam 
splitters in the classical scheme can be merged in the same way. In the new number-difference scheme, the vari-
ance for T can be written as

which is clearly a function of T ′ . Similarly, the variance for the coincidence-counting scheme depends on T ′ but 
the complete expression is too cumbersome to write down here.

Quantum enhancement.  Quantum enhancements in the new quantum schemes are depicted in Fig. 6 
(also see Supplementary Fig.  S3 for plots of �T ). A quick comparison with Fig.  3 shows that the quantum 
enhancements are strongly suppressed in the new setup. The obvious symmetry in the (γ ,T) space stems from 

(11)�(�T̂diff
NQS)

2� =
[

n2(T(1− γ )− 1)2 + T(1− γ )n(2nth − 1)+ n+ nth(nth + 1)
]

/((1− γ )n)2,

Figure 4.   Top row: Ropt
κ  of the measurement schemes in their respective regions of dominance. Bottom row: 

RQFI , illustrating the upper bound on achievable quantum enhancement.

Figure 5.   Schematic illustration of an alternative quantum setup, in which the noise is introduced to the signal 
mode.
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the mentioned dependence on the total signal loss T ′ = Tη . When nth is small, quantum schemes are better 
in the two extreme limits of large or small total loss. For large total loss, i.e., T ′ ≈ 0 , the coincidence-counting 
scheme beats both the classical and number-difference schemes. In the opposite limit of small total loss ( T ′ ≈ 1 ), 
the number-difference scheme is the best choice.

As nth is decreased further from nth = 0.1 , the coincidence counting scheme loses its advantage over the clas-
sical scheme and Rcoin → 1 as nth → 0 . The number-difference scheme, on the other hand, keeps its advantage 
in roughly the same parameter region as for nth = 0.1 , but with increased values of Rdiff  . The behavior at nth = 0 
is shown in Supplementary Fig. S1. With increasing values of nth , the coincidence-counting scheme starts to 
dominate the parameter space until it covers the entire parameter space in the nth → ∞ limit (not shown). 
One obtains a simple formula Rcoin → (2n+ 1)2/(3n2 + 2n) in this limit, which is a monotonically decreasing 
function of n. It shows that there is a tremendous quantum enhancement for small n and a minimum of 33.33% 
advantage, i.e. Rcoin > 4/3 . On the other hand, the number-difference scheme becomes less and less effective, 
until its advantage over the classical scheme is completely lost. In fact, Rdiff → 1 in the limit of infinite thermal 
photon number.

The optimal detection scheme.  A comparison between the chosen measurement schemes and the opti-
mal schemes is displayed in the upper row of Fig. 7, where Ropt

κ  s are plotted in regions classified according to 
Fig. 6. Compared to the original setup (see Fig. 4) we note that: (i) the two quantum schemes have smaller 
regions of dominance and subdued enhancements over the optimum quantum scheme; (ii) the optimality of all 
three schemes increases as T ′ increases; (iii) the optimality of all three schemes increases as nth decreases.

The bottom row of Fig. 7 illustrates the achievable quantum advantage as quantified by RQFI . The ratio 
RQFI = SNR

opt
Q /SNR

opt
C  increases with increasing T ′ and decreasing nth . Although quantum advantages are more 

moderate compared to those for the original setup (see Fig. 4), they persist for all parameter regimes. When nth 
is small, greater than two-fold enhancement is achieved when T ′ ≈ 1 . In fact RQFI → (1− T ′)−1/2 as nth → 0 , 
indicating that the quantum advantages, as quantified by RQFI , goes to infinity. Note that the dependence on 
the signal photon number n disappears in this limit. In the opposite limit of nth → ∞ , the quantum advantage 
becomes independent of T and γ : RQFI = [2(n+ 1)/(2n+ 1)]1/2 . Interestingly, quantum advantage persists even 
in the presence of strong thermal background and is more significant for smaller values of n. For the chosen 
value of n = 2 , RQFI ≈ 1.1 , i.e., a 10% advantage.

Figure 6.   Quantum enhancement achieved by the TMSV state as quantified by Rκ in the new quantum setup. 
The regions are labeled in the same way as in Fig. 3. Note the diminished quantum enhancement compared to 
Fig. 3.
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Summary and discussion
We have theoretically analyzed the experimental quantum spectroscopy setup presented in Ref. 1. Our calcula-
tions confirm the observed quantum advantages of the TMSV state under the coincidence-counting scheme 
when the thermal noise is strong. We have also studied the number-difference scheme and showed that it exhibits 
quantum advantages over a wide region in the (γ ,T) parameter space when the thermal noise is weak. In the 
latter case, we also showed that the classical scheme outperforms both the number-difference and coincidence-
counting schemes in a significant region of the parameter space.

We then compared the signal-to-noise ratios under the optimal classical and quantum schemes by calculat-
ing the QFI, which revealed that a significant amount of quantum enhancement is possible. Noting that this 
counter-intuitive behavior stems from the asymmetric way in which the noise is introduced in the classical and 
quantum setups, we moved on to introduce an alternative quantum setup in which the noise is introduced to the 
signal mode. The quantum enhancements of the number-difference and coincidence-counting schemes survive 
in the new setup, but are strongly suppressed compared to the original setup. We showed, however, that quantum 
advantages persist under an optimum measurement scheme.

An important future research direction is to find out the best implementable schemes. For example, a quick 
inspection of Figs. 6c and 7c demonstrates that the coincidence counting scheme is far from being optimal but 
still exhibits a significant quantum advantage compared to the chosen classical scheme. Figure 7f then suggests 
that not only the quantum scheme, but the classical scheme is also sub-optimum. It is therefore of interest to 
find better implementable classical schemes and compare the performances of the quantum schemes against 
them. One possible option is to split a thermal light into two modes 29, and investigate the performances of 
coincidence-counting or number-difference detection schemes. Finally, a more straightforward direction is to 
find the effects of thermal noise introduced to the idler mode. How robust are the schemes against such a noise? 
We are currently investigating this in detail.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Received: 8 February 2023; Accepted: 2 April 2023

Figure 7.   Top row: Ropt
κ  in their respective regions of dominance, for the alternative setup. Bottom row: RQFI , 

illustrating the upper bound on the achievable quantum enhancement.
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