Quantum M-ary Phase Shift Keying

Ranjith Nair & Brent J. Yen

Department of Electrical & Computer Engineering National University of Singapore, Singapore 117583

Saikat Guha

Quantum Information Processing Group Raytheon BBN Technologies, Cambridge, MA 02138, USA

<u>Jeffrey H. Shapiro</u>

Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Stefano Pirandola

Department of Computer Science, University of York York YO10 5GH, United Kingdom

Quantum Phase Shift Keying

- Ordinary M-PSK -- Carrier signal is phase-modulated by one of M uniformly spaced phase shifts.
- Quantum-optical M-PSK
 - RF carrier \rightarrow Spatiotemporal complex field mode $\mathcal{E}(\boldsymbol{\rho},t)$ at optical frequency with associated annihilation operator $\hat{a}; [\hat{a}, \hat{a}^{\dagger}] = 1$.
 - \circ Number operator $\hat{N}=\hat{a}^{\dagger}\hat{a}$; proportional to energy for quasi-monochromatic fields
 - \circ Phase shift unitary operator $\,\hat{U}_{\theta}=e^{i\theta\hat{N}}$; M uniformly spaced phase shifts
 - \circ Allow multiple transmitted (signal) modes $\{\hat{a}_S^{(j)}\}_{j=1}^J$ and ancilla modes $\{\hat{a}_A^{(j')}\}_{j'=1}^{J'}$ for preshared entanglement between transmitter and receiver

Transmitter

Receiver

Phase shifts for M=3

Applications

Communication

[M. J. W. Hall and I. G. Fuss, Quant. Opt. 3, 147 (1991)]

- Appreciable loss
- Phase sensing
 - Low to moderate loss
 - Entanglement-assisted sensing feasible
- Reading a phase-encoded digital memory

[O. Hirota, e-print arXiv:1108.4163 (2011)]

- *M*=2 (bits)
- Low to moderate loss; entanglement-assisted readout feasible

Notations & Problem Setup (I)

- J signal (S) modes, J' ancilla (A) modes
- General pure transmitter state:

$$|\psi\rangle_{AS} = \sum_{\mathbf{k},\mathbf{n}} c_{\mathbf{k},\mathbf{n}} |\mathbf{k}\rangle_A |\mathbf{n}\rangle_S,$$

with $|\mathbf{k}\rangle_A = |k_1\rangle \otimes \cdots \otimes |k_{J'}\rangle$ & $|\mathbf{n}\rangle_S = |n_1\rangle \otimes \cdots \otimes |n_J\rangle$ multimode ancilla and signal number states.

• For a (uniformly distributed) message $m \in \mathbb{Z}_M$, and $\theta_M = 2\pi/M$, the corresponding received states are

$$|\psi_m
angle=\hat{V}^m|\psi
angle, \ \hat{V}^M=\hat{I}, \ \hat{V}^M=\hat{I}_A\otimes \bigotimes_{j=1}^J e^{i heta_M\hat{N}_S^{(j)}} \qquad \hat{a}_A^{(j')}$$
 where

• The received states form a symmetric set.

Notations & Problem Setup (II)

 For a given transmitter, the minimum error probability achievable at the receiver is

$$\overline{P}_e = 1 - \frac{1}{M} \max_{\{\hat{E}_m\}} \sum_{m=0}^{M-1} \operatorname{tr}\left(|\psi_m\rangle_{AR} \langle \psi_m | \hat{E}_m\right),$$

optimization over all POVM's.

• Signal energy constraint $\langle \hat{N}_S \rangle \equiv \left\langle \sum_{j=1}^J \hat{N}_S^{(j)} \right\rangle \leq N_S$.

$$\langle \hat{N}_S \rangle = \sum_{\mathbf{k}, \mathbf{n}} (n_1 + \dots + n_J) |c_{\mathbf{k}, \mathbf{n}}|^2$$

$$\equiv \sum_{\mathbf{n}} (n_1 + \dots + n_J) p_{\mathbf{n}}$$

$$\equiv \sum_{n=0}^{\infty} n p_n,$$

 p_n : p.m.f. of signal photon number

• Definition $\mathfrak{p} \equiv (\mathfrak{p}_0, \dots, \mathfrak{p}_{\nu}, \dots, \mathfrak{p}_{M-1})$

$$\mathfrak{p}_{\nu} := \sum_{n : n \equiv \nu \pmod{M}} p_n$$

• Until further notice, we limit discussion to pure-state transmitters.

For a given N_S , we seek the transmitter state yielding minimum error probability.

Characterization Theorem (CT)

Theorem 1. Pure transmitters with the same \mathfrak{p} have the same error performance in M-ary PSK. This statement encompasses transmitters with differing J and/or J'.

Proof sketch: Received states $\{|\psi_m\rangle_{AR}\}_{m=0}^{M-1}$:

$$|\psi_m\rangle_{AR} = \sum_{\mathbf{k},\mathbf{n}} c_{\mathbf{k},\mathbf{n}} e^{im\theta_M(n_1 + \dots + n_J)} |\mathbf{k}\rangle_A |\mathbf{n}\rangle_R.$$

Performance completely determined by the Gram matrix of the states :

$$G_{mm'} =_{AR} \langle \psi_m | \psi_{m'} \rangle_{AR}$$

$$= \sum_{\mathbf{n}} p_{\mathbf{n}} e^{-i\theta_M (m-m')(n_1 + \dots + n_J)}$$

$$= \sum_{n=0}^{\infty} p_n e^{-i\theta_M (m-m')n}$$

$$= \sum_{\nu=0}^{M-1} \mathfrak{p}_{\nu} e^{-i\theta_M (m-m')\nu}.$$

Immediate Consequences of CT

- Since p is a function of the signal photon p.m.f. alone, any given p can be realized using a signal-only state, i.e., entanglement with ancillas is unnecessary.
- Contrasts with general situation in distinguishing finitedimensional unitaries and CP-maps:

```
[G. M. D'Ariano, P. Lo Presti, and M. G. A. Paris, Phys. Rev. Lett. 87, 270404 (2001)]
[M. F. Sacchi, Phys. Rev. A 71, 062340 (2005)]
```

- Since any given \mathfrak{P} can be realized using a single-mode signal state, J=1 is sufficient.
- Contrasts with general situation in which multiple applications of unitaries helps in their discrimination:

[A. Acín, Phys. Rev. Lett. 87, 177901 (2001)]

- **Theorem 2.** (a) For $N_S < (M-1)/2$, a single-mode transmitter state of the form $|\psi\rangle_S = \sum_{\nu=0}^{M-1} \sqrt{\mathfrak{p}_{\nu}} |\nu\rangle_S$ with $\mathfrak{p}_{\nu} \geq 0$ achieves the minimum error probability.
- (b) For $N_S \ge (M-1)/2$, the uniform superposition state $|\psi\rangle_S = \frac{1}{\sqrt{M}} (|0\rangle_S + \cdots + |M-1\rangle_S)$ achieves zero error probability.

Proof sketch:

- (a) By CT, we consider only single-mode states. Then, optimum use of available energy is to concentrate probability on low photon numbers.
- (b) Corresponding received states comprise the (orthonormal) Fourier basis.

Theorem 3. (a) Among all transmitter states satisfying $\langle \hat{N}_S \rangle \leq N_S < (M-1)/2$, the minimum error probability is achieved by a single-mode state with \mathfrak{p} given by

$$\mathfrak{p}_{\nu}^{\mathsf{opt}} = \frac{1}{\left(A + \nu B\right)^2}, \ \nu \in \mathbb{Z}_M, \tag{21}$$

where A, B are positive constants chosen to satisfy the constraints

$$\sum_{\nu=0}^{M-1} \mathfrak{p}_{\nu} = 1, \quad \sum_{\nu=0}^{M-1} \nu \, \mathfrak{p}_{\nu} = N_{S}. \tag{22}$$

(b) Any transmitter state achieving zero-error discrimination must have $\mathfrak{p} = (1/M, \dots, 1/M)$ and signal energy greater than or equal to (M-1)/2.

Proof sketch:

(a) Error probability of optimal (Square-root) measurement known to be: 2

$$\overline{P}_e = 1 - \frac{1}{M^2} \left(\sum_{m=0}^{M-1} \sqrt{\lambda_m} \right)^2,$$

Proof sketch (Contd)

where $\lambda=(\lambda_0,\ldots,\lambda_{M-1})$ is an ordered eigenvalue vector of the Gram matrix, given by the Fourier transform of the first row $\mathbf{G}_0\equiv\{G_{0m}\}$ of the Gram matrix:

$$\boldsymbol{\lambda} = \mathcal{F}\left[\mathbf{G}_0\right]$$

Recall that:

$$G_{mm'} = \sum_{\nu=0}^{M-1} \mathfrak{p}_{\nu} e^{-i\theta_M(m-m')\nu}$$

so that

$$\mathbf{G}_0 = M \cdot \mathcal{F}^{-1} \left[\mathbf{p} \right]$$

Therefore,
$$\lambda = M \, \mathfrak{p}$$
 and $\overline{P}_e = 1 - \frac{1}{M} \left(\sum_{m=0}^{M-1} \sqrt{\mathfrak{p}_m} \right)^2$.

Result follows from constrained optimization over \mathfrak{p} .

(b) Calculation.

Mixed-state transmitters

Theorem 4. Let ρ_{AS} be a mixed state with ensemble decomposition $\rho_{AS} = \sum_j \pi_j |\psi_j\rangle_{ASAS} \langle \psi_j|$ and with signal energy $\operatorname{tr}(\rho_{AS}\hat{N}_S) \leq N_S$. A transmitter preparing the ensemble $\{|\psi_j\rangle_{AS}\}$ with probabilities $\{\pi_j\}$ and a receiver making optimal measurements conditioned on knowledge of j cannot beat the performance of the state of Theorem 3.

Proof sketch:

$$\begin{split} \overline{P}_e \left[\rho_{AS} \right] & \geq \sum_j \pi_j \overline{P}_e \left[|\psi_j\rangle_{AS} \right] \quad \text{(Knowledge of j cannot hurt)} \\ & = \sum_j \pi_j \overline{P}_e \left[|\psi_j^*\rangle_S \right] \quad \text{(States have the same \mathfrak{p})} \\ & \geq \overline{P}_e \left[|\overline{\psi}\rangle_S \right] \quad \text{(Concavity of \overline{P}_e in \mathfrak{p})} \\ & \geq \overline{P}_e \left[|\psi^{\text{opt}}\rangle_S \right]. \quad \text{(Definition of optimal state)} \end{split}$$

 $|\psi_j^*
angle_S$:Theorem 2 state with the same $\mathfrak p$ as $|\psi_j
angle_{AS}$

 $|\overline{\psi}\rangle_S$:Theorem 2 state with $\mathfrak{p}=\sum_j \pi_j \mathfrak{p}_j$

 $|\psi^{
m opt}
angle_S$: Optimum Theorem 3 state of energy N_S

Measurement operators of SRM

• The optimal square-root measurement consists of rank-one POVM elements $\hat{\Pi}_m = |\chi_m\rangle_{AR}\langle\chi_m|$, with

$$|\chi_m\rangle_{AR} = \left(\sum_{n=0}^{M-1} |\psi_n\rangle_{AR}\langle\psi_n|\right)^{-1/2} |\psi_m\rangle_{AR}$$

• For the optimal state of Theorem 3, the POVM is a von Neumann measurement of the Pegg-Barnett unitary phase operator, i.e., the QFT on $\operatorname{span}\{|0\rangle_R,\ldots,|M-1\rangle_R\}$ with the measurement vectors:

$$|\chi_m\rangle_R = \frac{1}{\sqrt{M}} \sum_{n=0}^{M-1} e^{imn\theta_M} |n\rangle_R$$

No practical realization of this measurement is known.

Optimum performance vs. Coherent state performance

Performance of some standard states (M=2)

Performance of some standard states (M=8)

Optimum binary state

- For $N_S < 1/2$ the optimum transmitter state is $|\psi\rangle = \sqrt{1-N_S}\,|0\rangle_S + \sqrt{N_S}\,|1\rangle_S.$
- Achievable error probability

$$\overline{P}_e^{\text{binary}} = 1/2 - \sqrt{N_S(1 - N_S)}.$$

An implementation of the optimal performance using linear optics and single-photon sources:

 Even with loss, the error probability conditioned on no erasure is optimal.

Conclusion and Outlook

- We have studied a natural generalization of phase-based communication in quantum optics.
- We have characterized and obtained the optimum transmitter states and performance under a signal energy constraint.
- We have obtained a realizable implementation of the binary case.
- For general M, both transmitter preparation and the required POVM measurement appear to be hard to implement.
- Performance bounds under realistic limitations including loss are desirable.
 - Reference: eprint arxiv.org/1206.0673