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Quantum Phase Shift Keying 

 Ordinary M-PSK -- Carrier signal is phase-modulated by one of M 
uniformly spaced phase shifts. 

 Quantum-optical M-PSK 
◦ RF carrier  Spatiotemporal complex field mode             at optical frequency with 

associated annihilation operator  

◦ Number operator                 ; proportional to energy for quasi-monochromatic fields  

◦ Phase shift unitary operator                      ; M uniformly spaced phase shifts  

◦ Allow multiple transmitted (signal) modes               and ancilla modes                  for pre-
shared entanglement between transmitter and receiver 

Transmitter 

Phase shifts for M=3 

Receiver 



Applications 

 Communication 

 
◦ Appreciable loss 

 Phase sensing 
◦ Low to moderate loss 

◦ Entanglement-assisted sensing feasible 

 Reading a phase-encoded digital memory 
 

◦ M=2 (bits) 

◦ Low to moderate loss; entanglement-assisted readout 
feasible 



Notations & Problem Setup (I) 
 J signal (S) modes, J’ ancilla (A) modes 

 General pure transmitter state: 

 

 

     with                                     & 

     multimode ancilla and signal number states.  

 For a (uniformly distributed) message                , and 

                      , the corresponding received states are  

 

 

   where 

 

 The received states form a symmetric set. 



Notations & Problem Setup (II) 
 For a given transmitter, the minimum error probability achievable at 

the receiver is 

 

  

    optimization over all POVM’s. 
 Signal energy constraint                                 .  

 

 

 

 

 

 Definition  

   

 

 Until further notice, we limit discussion to pure-state transmitters.  

pn : p.m.f. of signal  
photon number 

For a given NS, we seek the transmitter state yielding minimum error probability. 



Characterization Theorem (CT) 

P 

Proof sketch: Received states 

Performance completely determined by the Gram matrix of the states : 



Immediate Consequences of CT 
 Since    is a function of the signal photon p.m.f. alone, 

any given   can be realized using a signal-only state, i.e., 
entanglement with ancillas is unnecessary. 

 Contrasts with general situation in distinguishing finite-
dimensional unitaries and CP-maps: 

 

 

 Since any given    can be realized using a single-mode 

signal state,  J=1 is sufficient. 
 Contrasts with general situation in which multiple 

applications of unitaries helps in their discrimination: 



Proof sketch: 

 

(a) By CT, we consider only single-mode states. Then, optimum use  
       of available energy is to concentrate probability on low photon 
       numbers.  
 
(b) Corresponding received states comprise the (orthonormal)  
       Fourier basis. 



 

 

 

 

 

 

 

 

      (a) Error probability of optimal (Square-root) measurement      

    known to be: 

Proof sketch: 



Proof sketch (Contd) 

where                                   is an ordered eigenvalue vector of the 
Gram matrix, given by the Fourier transform of the first row               
of the Gram matrix: 

 

Recall that: 

 

 

so that 

 

 Therefore,                    and 

 

Result follows from constrained optimization over   . 

(b) Calculation. 



Mixed-state transmitters 

Proof sketch: 

(Knowledge of j cannot hurt) 

(States have the same    ) 

(Concavity of       in    ) 

(Definition of optimal state) 

: Theorem 2 state with the same    as   

: Theorem 2 state with   

: Optimum Theorem 3 state of energy  NS 



Measurement operators of SRM 
 The optimal square-root measurement consists of rank-

one POVM elements                                , with 

  

 
 For the optimal state of Theorem 3, the POVM is a von 

Neumann measurement of the Pegg-Barnett unitary 
phase operator, i.e., the QFT on                               
with the measurement vectors: 

 

 

 No practical realization of this measurement is known. 



Optimum performance vs.      
Coherent state performance  



Performance of some standard states (M=2) 

 

Opt: Optimum state 
CS: Coherent state 

TMSV: Two-mode squeezed vacuum 
PCS:  Pair-coherent state 

SS: Single-mode amplitude-squeezed state 



Performance of some standard states (M=8) 

 

Opt: Optimum state 
CS: Coherent state 

TMSV: Two-mode squeezed vacuum 
PCS:  Pair-coherent state 

SS: Single-mode phase-squeezed state 



Optimum binary state 
• For                ,   the optimum transmitter state is 

     

• Achievable error probability 

 

 

• An implementation of the optimal performance using linear 
optics and single-photon sources: 

 

 • Even with loss, the error 
     probability conditioned  
     on no erasure is optimal.  



Conclusion and Outlook 
 We have studied a natural generalization of phase-based 

communication in quantum optics. 

 We have characterized and obtained the optimum 
transmitter states and performance under a signal 
energy constraint.  

 We have obtained a realizable implementation of the 
binary case. 

 For general M, both transmitter preparation and the 
required POVM measurement appear to be hard to 
implement. 

 Performance bounds under realistic limitations including 
loss are desirable. 

• Reference: eprint arxiv.org/1206.0673 


