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Quantum majorization and a complete set of
entropic conditions for quantum thermodynamics
Gilad Gour1,2, David Jennings3,4, Francesco Buscemi5, Runyao Duan6,7 & Iman Marvian 8

What does it mean for one quantum process to be more disordered than another? Inter-

estingly, this apparently abstract question arises naturally in a wide range of areas such as

information theory, thermodynamics, quantum reference frames, and the resource theory of

asymmetry. Here we use a quantum-mechanical generalization of majorization to develop a

framework for answering this question, in terms of single-shot entropies, or equivalently, in

terms of semi-definite programs. We also investigate some of the applications of this fra-

mework, and remarkably find that, in the context of quantum thermodynamics it provides the

first complete set of necessary and sufficient conditions for arbitrary quantum state trans-

formations under thermodynamic processes, which rigorously accounts for quantum-

mechanical properties, such as coherence. Our framework of generalized thermal processes

extends thermal operations, and is based on natural physical principles, namely, energy

conservation, the existence of equilibrium states, and the requirement that quantum

coherence be accounted for thermodynamically.
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Irreversibility—the loss of order and the increase of disorder—
is a fundamental and ubiquitous feature of physics that is
typically described through thermodynamics and thermo-

dynamic entropy. However, its scope goes above and beyond
what one would ordinarily consider thermodynamic in nature.
For example, the use of quantum entanglement within photonic
quantum computing is subject to a form of irreversibility that
need not be attached to either a particular energy scale or an
equilibrium environment. Increasingly, a broader notion of irre-
versibility has been developed, that has been shown to include
thermodynamic irreversibility as a special case, and has also
allowed us to study intrinsically quantum mechanical order (such
as entanglement or coherence) in contrast to classically ordered
systems. Majorization is at the core of this development.

Majorization is a fundamental tool that finds application across
a wide range of subjects from economics and statistics, to physics,
chemistry, and pure mathematics1. At its core lies a notion of
“deviations from uniformity”, and the theory ties together
mathematical techniques in convexity, combinatorics, and
mathematical statistics.

An example of its use is in statistical mechanics of a physical
system with N energy levels. If we assume, for the sake of dis-
cussion, that the system is fully degenerate in energy, its thermal
equilibrium state is described by the uniform probability dis-
tribution γ ¼ 1

N ; ¼ ; 1N
� �

over the energy levels. Given any two
other probability distributions p ¼ ðp1; ¼ ; pNÞ and
q ¼ ðq1; ¼ ; qNÞ, one might wish to say whether one is more or
less out of equilibrium than the other. Majorization provides a
concrete way of stating this. The distribution p is more ordered
than q (or “p majorizes q”, written q � p) if q=Dp for some
doubly stochastic matrix D1. A crucial property of majorization is
that it can be equivalently formulated in terms of a complete set
of monotones. For example, it is well-known that q � p if and
only if

P
k f ðpkÞ �

P
k f ðqkÞ for all continuous real-valued con-

vex functions f. Therefore, the value of any continuous convex
function f on statistical distributions can never increase under
doubly stochastic transformations. Such functions are therefore
monotones that quantify the deviation from equilibrium; more-
over, they constitute a complete set of monotones because the
comparison of their values provides a sufficient condition for the
existence of a doubly stochastic transformation.

Majorization also finds extensive use in various parts of quantum
information theory, such as in entanglement theory2 and recent
formulations of resource theories3. In particular, it has a central role
in the recent thermodynamic frameworks using the quantum
information theory3–14. In particular, it was found that state
transformations with zero coherences in energy are fully char-
acterized by thermo-majorization5 (see also earlier works15,16),
which is a natural generalization of majorization4,17. However, it
was shown in ref. 10 that such thermo-majorization results are
insufficient for describing quantum coherence under thermal
operations, and that novel coherence measures are required. Low
temperature coherence regimes were shown to admit solvable
analysis9, general coherence bounds were developed11, and a fra-
mework for coherence based on the concept of asymmetry under
time-translations was proposed10,12. However, a complete specifi-
cation of the structure of non-equilibrium quantum states was still
lacking.

A natural question is therefore whether there exists a gen-
eralization of majorization (or thermo-majorization) that can
accommodate such intrinsically quantum-mechanical orderings.
Several candidate generalizations exist1,18,19, however, the one
most relevant to our present work is called matrix majorization16,
which is a specialization to linear algebra of ideas coming from
the theory of statistical comparison (see ref. 20 and references
therein). Given two matrices of real numbers A and B, we say that

A matrix-majorizes B, and write B �m A, if and only if B= AX
for some row stochastic matrix X. It is easy to see that this is a

generalization of majorization: for the two-row matrices A ¼
p
e

� �
and B ¼ q

e

� �
, with e � ð1; 1; :::; 1Þ, the relation B �m A is

equivalent to q � p. Similarly, other variants of majorization, like
thermo-majorization, are special cases of matrix majorization.
However, such an ordering is inherently classical, being ulti-
mately based on stochasticity, as opposed to coherent quantum
processes.

A key component of our work is to generalize matrix major-
ization in a natural way into the quantum-mechanical setting,
and to provide applications to a number of topics. Our first
contribution to this is to provide a complete entropic description
of a fully quantum-mechanical form of majorization. We then
outline the core features of the solution and discuss the inclusion
of quantum-mechanical symmetries. Our final contribution is to
define a natural framework for quantum thermodynamics that is
based on three physical assumptions, provide a complete set of
entropic conditions and discuss limiting thermodynamic regimes
of the theory.

Results
Definition of quantum majorization. Our generalization of
matrix majorization, which we call quantum majorization, defines
a relation on bipartite quantum states, and consequently, due to
the channel-state duality property of quantum theory, also defines
a relation on quantum processes, i.e., completely positive and
trace-preserving (CPTP) maps. Notice that notions equivalent
to quantum majorization have previously been considered in
refs. 21–25 in the contexts of quantum statistics and quantum
information theory.

Definition 1: Let ρAB 2 BðHA �HBÞ and σAC 2 BðHA �HCÞ
be two bipartite quantum states. We say that ρAB quantum
majorizes σAC, and write σAC �q ρ

AB, if and only if there exists a
CPTP map E : BðHBÞ ! BðHCÞ such that id� EðρABÞ ¼ σAC.

Remark 1: The preorder σAC �q ρ
AB is not symmetric with

respect to the action of ε. It means that ρAB quantum majorizes
σAC on B. However, in the remaining of this paper, it will be clear
from the text that the action of E is on system B.

It is clear from Definition 1 that ρA= σA is a necessary
condition, called the compatibility condition, for the ordering of
states to hold since E is trace-preserving, and when it holds the
two states are said to be compatible. Moreover, in the special case
that the marginals satisfy ρA ¼ σA ¼ 1

dA
1A, we can express the

bipartite states as the Choi matrices ρAB ¼ id�D φAA′

þ
� �

and

σAC ¼ id� F φAA′

þ
� �

, where D : BðHA′Þ ! BðHBÞ and F :

BðHA′Þ ! BðHCÞ are two quantum processes (CPTP maps),
and ϕAA

′

þ is the projection on the maximally entangled state

jϕAA′

þ i ¼ 1ffiffiffiffi
dA

p PdA
i¼1 jiii, where fjiigdAi¼1 is an orthonormal basis for

A. Therefore, in this case the condition id� EðρABÞ ¼ σAC

becomes equivalent to the degradability of D into F , that is,
F ¼ E � D, and we denote it simply by F �q D.

Quantum majorization hence generalizes classical stochasticity
and captures the notion that the process F is in some sense
“more disordered” than D, since it can be obtained from D via E.
However, it does not say anything about E, which can be a
completely general quantum process. Typically, in resource
theories, it is important to place some additional restrictions on
allowed (or “free”) processes, and demand that E is a free
operation of the theory. Many resource theories, such as
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entanglement theory, do not admit a simple specification,
however, as we shall see shortly, in both the resource theories
of asymmetry and thermodynamics, such a restriction of E to lie
in a subset of free (symmetric or thermodynamic) processes can
be made with a natural modification of our core result.

Characterization of quantum majorization. Given the two
bipartite states ρAB and σAC, how can we determine whether ρAB

quantum majorizes σAC? One simple and intuitive necessary
condition, that follows from the data processing inequality, is that

SðAjBÞρ � SðAjCÞσ ; ð1Þ

where SðAjBÞ ¼ SðA;BÞ � SðBÞ is the conditional entropy, and
SðρÞ ¼ �Tr½ρ log ρ	 is the von-Neumann entropy. The intuition is
that, if σAC �q ρ

AB, then information about system A is more
accessible from system B than from system C. Hence, the
uncertainty of A given B, i.e., SðAjBÞ, can only be smaller than the
uncertainty of A given C, i.e., SðAjCÞ. However, only one entropic
condition is far from being sufficient to completely characterize
quantum majorization.

In order to produce more necessary conditions, one can use a
similar intuition to generate infinitely many necessary conditions
that follows from the following observation (Fig. 1):

σAC �q ρ
AB ) Φ� id σAC

� � �q Φ� id ρAB
� � ð2Þ

for any quantum process Φ : BðHAÞ ! BðHA′Þ. Note that Φ is
acting on system A while E in Definition 1 is acting on system B.
We therefore conclude that if σAC �q ρ

AB then, for any quantum
process Φ, we must have:

SðA′jBÞΦ�id ρABð Þ � SðA′jCÞΦ�id σACð Þ : ð3Þ

While the conditions above are necessary, again they are not
sufficient, and even in the purely classical case: there exist classical
states ρAB and σAB such that σAC 6�q ρ

AB, even though the above
equation holds of all Φ (and any dimensions of A′)26,27.

On the other hand, in the following central result of our paper,
we show that if one replaces the conditional (von-Neumann)
entropy in (3) with the conditional min-entropy28, then the
inequalities in (3) indeed provide, if all simultaneously satisfied, a
sufficient condition for quantum majorization. Moreover, we can
restrict Φ to be an entanglement breaking channel, and bound the
dimension of system A′ to be no greater than the dimension of
system C. Similar results, dubbed “reverse data-processing
theorems,” have been obtained before18,25,27,29, although in a
different framework involving extra ancillas and a classical

reference system, while the present relations are fully quantum
and do not need additional external systems.

The conditional min-entropy, HminðAjBÞΩ, of a bipartite state
ΩAB, is defined as28

HminðAjBÞΩ :¼ �log inf
τB�0

fTr τB
	 


: 1A � τB � ΩABg: ð4Þ

It is known to be a single-shot analog of the conditional (von-
Neumann) entropy. This analogy is particularly motivated by the
fully quantum asymptotic equipartition property30, which states
that in the asymptotic limit of many copies of ΩAB, the smooth
version of HminðAjBÞ approaches the conditional (von-Neumann)
entropy. The conditional min-entropy has numerous applications
in single-shot quantum information (e.g., ref. 30 and references
therein), quantum hypothesis testing (e.g., refs. 19,27 and
references therein), and quantum resource theories31.

Theorem 1: Let ρAB 2 BðHA �HBÞ and σAC 2 BðHA �HCÞ
be two compatible bipartite quantum states. Let fMA

j g be an
arbitrary, but fixed, informationally complete POVM on system
A. Denote the dimension of any system X as dX 2 N. The
following are equivalent:

1. The state ρAB quantum majorizes σAC,

σAC �q ρ
AB: ð5Þ

2. For any quantum process (CPTP linear map)
Φ : BðHAÞ ! BðHA′Þ, with dA′= dC,

HminðA′jBÞΦ�id ρABð Þ � HminðA′jCÞΦ�id σACð Þ ð6Þ

3. Eq. (6) holds for any measure-and-prepare quantum channel
Φ : BðHAÞ ! BðHA′Þ of the form:

Φ ηA
� � ¼ Xd2A

j¼1

Tr MA
j η

A
h i

ωA′
j ; ð7Þ

while the states fωA′

j g can freely vary.
4. gðρAB; σACÞ � 1, where the the function g is defined by the

following semidefinite programming:

gðρAB; σACÞ ¼ max

y j 8j yσTj � TrB τCBðI � ρjÞ
h i

; τCB � 0; τB � I
n o

ð8Þ

where

ρj �
TrA MA

j � 1B
� �

ρAB
h i

Tr MA
j ρ

A
h i and

σ j �
TrA MA

j � 1C
� �

σAC
h i

Tr MA
j σ

A
h i : ð9Þ

The proof of the above theorem is postponed to Supplementary
Note 1.

Remark 2: In the classical case, both ρAB ¼ P
x;y pxyjxihxj �jyihyj � P and σAC ¼ P

x;z qxzjxihxj � jzihzj � Q are diagonal,
where P (and Q) is the matrix whose components are the
probabilities pxy (qxz). Therefore, the relation σAC ¼ id� E ρABð Þ
can be expressed as Q= SP, where S is a column stochastic
matrix, so that QT �m PT (The relation Q= SP is equivalent to
QT ¼ PTST, with ST being a row stochastic matrix.). Dahl

B
C

A

C

A′

C

A

C

A′

B

A A ΦΦ

�

�

�

�

�

�

Fig. 1 Quantum majorization. The condition of quantum majorization
σAC �q ρ

AB implies the infinite set of relations ðΦ� idÞðσACÞ �q ðΦ� idÞ
ðρABÞ, where Φ is any CPTP map acting on system A (cfr. Eq. (2) in the
main text). Theorem 1 provides a complete set of monotones for quantum
majorization, expressed as entropic functions of the bipartite state and the
channel Φ acting on it
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obtained in ref. 16 that P matrix-majorizes Q if and only if for all
sub-linear functionals f, that can be written as a maximum of a
finite number of linear functionals, the following holds:X

j

f ðpjÞ �
X
k

f ðqkÞ ; ð10Þ

where pj and qk are the rows of P and Q, respectively. Since
classically 2�HminðAjBÞ is a sub-linear functional (see more details in
the Supplementary Notes 1 and 4), our theorem above provides
the same result for the classical case, with a slight improvement
that f can be restricted to sub-linear functionals that can be
written as a maximum of at most dC linear functionals.

Remark 3: The conditions in Eq. (6) are given in a form of
monotones; i.e., functions that behave monotonically under
certain operations (in our case under quantum majorization). In
quantum resource theories monotones quantify resources as they
do not increase under free operations. As we will see below, the
conditional min-entropies that appear in Theorem 1 can be used
to quantify asymmetry in the resource theory of quantum
reference frames32, and athermality in quantum thermodynamics.
Since Eq. (6) has to hold for any CPTP map Φ : A ! A′ (or
measurement-prepare channels with any set of density matrices
fωA′

j g), quantum majorization is characterized in Theorem 1 by
means of an infinite number of monotones. This can be related
with the fact that here we consider exact transformations, and
typically an exact (algebraic) solution to such an SDP feasibility
problem is NP-hard. However, part 4 of the theorem demon-
strates that the question of weather or not ρAB quantum
majorizes ρAC can be solved efficiently using semidefinite
programming. A discussion comparing the two formulations,
i.e., one SDP versus infinite monotones, is presented the
supplementary material Note 3.

If only system A is classical, that is the states ρAB ¼P
i pi ij i ih j � ρi and σAC ¼ P

i pi ij i ih j � σ i are classical-quantum
states, we get that (5) is equivalent to

σ i ¼ EðρiÞ ð11Þ

for all i such that pi > 0. This is a classic problem in quantum
hypothesis testing, and the results presented here complement
previous results in the same direction22,23,25,27,33–35. In particular,
it can be shown (see Lemma 1 in the Supplementary Note 1) that
Theorem 1 above implies the following corollary:

Corollary 1: There exists E satisfying (11) if and only if for any
set of n density matrices fωA

i gni¼1, we have
HminðAjBÞΩ � HminðAjCÞΩ, where

ΩABC ¼ 1
n

Xn
i¼1

ωA
i � ρBi � σCi : ð12Þ

The same relation holds if the uniform distribution 1/n is
replaced with any other arbitrary distribution qi, with the only
condition that qi > 0.

A complete set of entropic conditions for the resource theory
of asymmetry. So far we considered the relation σAC ¼ id�
E ρABð Þ with arbitrary CPTP map E : BðHBÞ ! BðHCÞ. We now
impose additional constraint on E, requiring it to be G-covariant
with respect to a compact group G. That is, E is G-covariant with
respect to two unitary representations of G on systems B and C,
denoted, respectively, by fVggg2G and fUggg2G, if

UgEðρÞUg�1 ¼ EðVgρVg�1Þ 8 g 2 G : ð13Þ

We write σAC �G
q ρAB, if σAC ¼ id� E ρABð Þ with a G-covariant

CPTP map E.

Theorem 1 can be easily upgraded to accommodate G-
covariant maps: the formal statement is given as Theorem 2 in
Supplementary Note 5. Particularly, it can be shown that σAC �G

q
ρAB if and only if

HminðA′jBÞG Φ�id ρABð Þ½ 	 � HminðA′jCÞG Φ�id σACð Þ½ 	 ð14Þ

for all CPTP entanglement breaking maps Φ : BðHAÞ ! BðHA′Þ
of the form (7). Here G : B HA′ �HCð Þ ! B HA′ �HCð Þ is the
bipartite G-twirling map given by

G½τA′C	 ¼
Z

dg ðUg � UgÞ τA
′C ðUy

g � Uy
g Þ ; ð15Þ

where the over bar denotes the complex conjugation made with
respect to an arbitrary but fixed orthonormal basis.

In the special case in which both ρAB ¼ j0ih0jA � ρB and
σAC ¼ j0ih0jA � σC are product states, our theorem is simplified
to the following statement: ρB can be converted to σC by a G-
covariant map if and only if for any density matrix ηA

′
,

HminðA′jBÞG½ηA′�ρB	 � HminðA′jCÞG½ηA′�σC	 : ð16Þ

Therefore, the quantities HminðA′jBÞG½ηA′�ρB	, for varying reference
state ηA′, provide a complete set of asymmetry monotones for the
resource theory of asymmetry36–40. In other words, for any given
state ηA′, the functions HminðA′jBÞG½ηA′�ρB	 provide a single-copy
characterization of the G-asymmetry content of state ρB. That is
to say, even though asymmetry is not a state function in itself (as
it is not totally ordered), it can still be completely described in
terms of a complete set of such state functions. We are now ready
to discuss the application of this result to quantum
thermodynamics.

A complete set of entropic conditions for quantum thermo-
dynamics. While thermodynamics in macroscopic, equilibrium,
and classical regimes is well understood41, there is the funda-
mental question of how one can extend thermodynamic notions
into non-equilibrium, finite-sized systems42–44, and in particular
systems displaying highly non-classical properties such as quan-
tum coherence, contextuality, and entanglement45–49. One par-
ticular approach to this problem3–14 has been to utilize tools and
concepts developed in the study of entanglement, which is
understood within the framework of resource theories. A resource
theory provides a way to quantify physical characteristics that are
not simply given by Hermitian observables, and is defined once
we specify a set of free states, as those that do not have the
properties one wishes to study, together with set of free opera-
tions, that are compatible with the set of free states in the sense
that their action on any free state always yields another free state.

This approach of analyzing thermodynamics in terms of its
process structure (instead of starting with problematic terms such
as “heat” or “work” or “entropy”) turns out to have a long and
successful history dating back to the 1909 seminal work of
Carathéodory50. Other notable accounts were obtained in 1964 by
Giles51 and more recently in 1999 by Lieb and Yngvason52, who
provided a thorough analysis in terms of adiabatic accessibility.
Moreover, it has recently been shown in13 that the thermo-
dynamic structure of incoherent quantum states obtained from
an information-theoretic perspective coincides with the phenom-
enological analysis in ref. 52, which demonstrates the soundness
of the resource theoretic approach.

In thermodynamics, a preferred class of states are singled out
as free states from the condition of complete passivity53,54. In the
simplest case, the Gibbs state 1

Z e
�βH , with β ¼ ðkTÞ�1 and

Z ¼ Tr½e�βH 	, is the only quantum state that can be freely
admitted without trivializing the theory energetically. More
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generally, in the presence of additional additive conserved charges
fX1; ¼Xng, such as angular momenta and particle numbers, this
can be extended (under certain assumptions on external
constraints41,55–61) to the generalized Gibbs state

γA ¼ 1
Z e

�βðHA�
P
k

μkX
A
k Þ
; ð17Þ

with {μk} being Lagrange multiplier constants for the conserved

quantities and Z ¼ Tr½e�βðHA�
P

k
μkX

A
k Þ	. In the case that we just

have a single additional number operator N, the constant is the
usual chemical potential41.

Generalized thermal processes. Our thermodynamic framework
is an extension of the resource theory of thermal operations
(TOs)4,5,7 to a set of transformations that contains TOs as a
proper subset. It is an extension in two ways: firstly, it makes a
weaker assumption about the underlying microscopic process,
and secondly it is defined in terms of a collection of distinguished
thermodynamic observables, such as those in the generalized
Gibbs ensemble, and not just in terms of energy. We elaborate on
the relation between the two classes in Supplementary Note 8. We
shall refer to these free transformations as generalized thermal
processes (abbreviated to TPs), and they are specified by the
following three physical assumptions:

● A1. Microscopic conservation: Each input quantum system
and output quantum system has a Hamiltonian H, and a
collection of distinguished observables X1; ¼Xn. The total
energy and the observables {Xk} are conserved microscopi-
cally in any free process, and moreover [H,Xk]= 0 for all
k ¼ 1; ¼ ; n.

● A2. Equilibrium preservation: For every (input or output)
system A, an equilibrium free state exists that is stable under
the class of free processes.

● A3. Incoherence: The free processes do not require any
sources of quantum coherence between eigenbases of
conserved quantities.

The microscopic conservation assumption ensures that every
quantum system A has a well-defined Hamiltonian HA at the
initial time and some other Hamiltonian HA′ at the final time. It
also allows for an arbitrary set of additional conserved charges, as
discussed. More precisely, any TP map E on A admits a
Stinespring dilation onto some larger system B such that

EðρAÞ ¼ TrCVðρA � σBÞVy ð18Þ

where B is some other quantum system defining the thermal
environment. The microscopic conservation assumption implies
that the isometry V obeys

VðHA � 1B þ 1A � HBÞ ¼ ðHA′ � 1C þ 1A
′ � HCÞV

VðXA
k � 1B þ 1A � XB

k Þ ¼ ðXA′

k � 1C þ 1A
′ � XC

k ÞV ð19Þ

for all k ¼ 1; ¼ n, which defines the microscopic energy
conservation and the conservation of the charges. Note that we
also allow the input system and output to differ, which may occur
due to the presence of strong-couplings that affect factorizability
into independent subsystems. It is also important to emphasize
that we do not assume or require microscopic control of V. It is
only the total process E that is experimentally relevant. The
particular set of observables are determined by the physical
context and we shall refer to them as the thermodynamic
observables for the system.

The equilibrium preservation assumption says that for every
system A there is a state ρA
 , such that EðρA
 Þ ¼ ρA
 for all TPs E.
However (A1) singles out a set of distinguished observables
fHA;XA

1 ; ¼ ;XA
n g that microscopically are additively conserved.

The fact that ρA
 is a free state of the theory implies58–60 that the
only form of ρA
 that can yield a non-trivial resource theory in
these observables is one for which log ρA
 is a linear combination
of the observables—namely it must be a generalized Gibbs state
γA as defined in (17), at some fixed temperature T= (kβ)−1 and
Lagrange multipliers μ1; ¼ ; μn. Therefore the free states of the
theory are defined uniquely by these parameters.

The final assumption on incoherence is a statement of non-
classicality within the theory and requires us to provide an
explicit accounting for coherence resources. It is known for
thermal operations that if the only coherences present are within
energy eigenspaces then the resultant theory is essentially
classical, and is described by thermo-majorization5. However,
coherences between energy eigenspaces behave differently and do
not have such a classical description10. Therefore one must
carefully account for these coherences thermodynamically. The
precise formulation of this requirement in the case of energy is
that if any free process E is discussed in Supplementary Note 6,
and has the consequence that any E can be represented as

EðρÞ ¼ TrCVðρA � σBÞVy ð20Þ

where V is a conserving interaction, and σB is an external state
incoherent in the energy eigenbases and obeys
σB ¼ limτ!1

1
τ

R τ
0dtUBðtÞσBUy

BðtÞ. This captures the notion that
E is realized without consuming any coherent resources from the
external degrees of freedom in B. At the level of quantum
operations on S, this implies that we have the following symmetry
property for all free operations

U ′ðtÞEðρAÞU ′ðtÞy ¼ EðUðtÞρAUðtÞyÞ ð21Þ

where UðtÞ ¼ exp½�itHA	 and U ′ðtÞ ¼ exp½�itHA′ 	 are respec-
tively free evolution of the input/output system for an interval of
time t. The operation E is said to be covariant under time-
translation. The more general case of multiple conserved charges
is discussed below.

The three physical assumptions specify the set of generalized
thermal processes, and it is readily seen that it contains the set of
thermal operations. In the case when the only conserved quantity
is H, there is no particular physical reason to choose one set of
operations over the other. However, in the case of multiple
conserved charges X1; ¼ ;Xn, the use of TPs has an advantage in
that it allows one to handle generalized Gibbs ensemble scenarios
more easily. The details of system B are, in general, not observed
thermodynamical degrees of freedom, and with an explicit
microscopic specification, such as with thermal operations,
subtleties arise in the case of additional charges. Particularly,
subtleties arise if one wishes to have non-trivial μk Lagrange
multipliers in the generalized Gibbs ensemble (17) and also satisfy
the microscopic conservation assumption. The formulation here
simply avoids this by not demanding a specific form for the
microscopic state ~σB in the definition of the free processes. The
incoherence assumption only constrains the microscopic details
to the extent that there are no observable effects of coherence at
the level of the process E.

In the Supplementary Note 7, we show that our core result on
quantum majorization can be adapted to the setting of general-
ized thermal processes to fully describe the state interconversion
structure. This is obtained by establishing the following lemma,
which is proved in the Supplementary Note 6.

Lemma 1: Consider two sets of thermodynamic observables
fHS;XS

1 ; ¼ ;XS
ng for quantum system S=A and quantum
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systems S= A′. Then, the set of all quantum processes from A
into A′ defined by (A1-A3) coincides with the set of all γ-
preserving processes on A that are covariant under the group G
generated by the thermodynamic observables on A and A′.

State conversions under thermal processes. Since TPs are G-
covariant we may make use of our earlier results on G-covariant
state interconversion of a collection of states fρAi g into fσBi g. We
first consider the case where energy is the only distinguished
thermodynamic observable that is conserved microscopically.
Combining the G-covariant version of Theorem 1 with the above
lemma we get the following theorem (see Supplementary Note 7
for more details).

Theorem 2: Let A and A′ be two quantum systems, with the
respective Hamiltonians HA and HA′ being the only thermo-
dynamic observables, and let 0 < q < 1 be an arbitrary but fixed
number. The state transformation ρA ! σA

′
is possible under

generalized thermal processes at a temperature (kBβ)−1 if and
only if for all reference frame systems R with the same dimension
as of A′ and with Hamiltonian HR ¼ �ðHA′ÞT, and for all pairs of
states η ¼ ðηR1 ; ηR2 Þ, we have

SηðρAÞ � SηðσA′Þ ; ð22Þ

where SηðρAÞ :¼ HminðRjAÞΩ and

ΩRA ¼ hqηR1 � ρA þ ð1� qÞηR2 � γAi : ð23Þ

Here, γA ¼ exp½�βHA	=Z is the Gibbs state on A, and hωRAi �
limτ!1 1=τ

R τ
0dt UðtÞωRAUyðtÞ is the channel that maps any

state of RA to its time-averaged version, and UðtÞ ¼
exp½�itðHR � 1A þ 1R � HAÞ	 is the unitary time-evolution
under the Hamiltonian for the composite system RA.

It is important to note that these conditions can be greatly
reduced. In particular one can simply consider q ¼ 1

2 alone,
however, in some cases it is useful to choose different values and
so we give the general case here. Also, it readily seen that the state
ηR2 can be chosen to be block-diagonal in the energy eigenbasis,
while ηR1 can be restricted to reference frame states that have the
same modes of coherence as ρA12,37.

Time-energy constraints on state conversions. Next, we show
that the necessary and sufficient condition found in Theorem 2
has an interesting physical interpretation; loosely speaking, it
implies that a state conversion is possible in quantum thermo-
dynamics, if and only if it does not lead to any net increase in
work or time-information.

A key obstacle in quantum thermodynamics is that to
determine the existence of the transformation ρA ! σA

′
, one

needs to consider two different types of physical properties of
states: (i) properties related to their energy distribution, which
leads to conditions such as thermo-majorization62, and (ii)
properties related to the coherence in the energy eigen-basis.
Roughly speaking, one needs to check that the initial state ρA has
(at least) as much as free energy and coherence as the desired
final state σA′.

It is not possible in general to quantify both of these
simultaneously in a measurement scheme. Coherences in energy
are precisely the time-dependent components of a quantum
system and thus one encounters an obstacle of complementarity
between time and energy measurements. Physically these two
aspects can be viewed as “clock” and “work” regimes of a
quantum system. Theorem 2 gets around this complementarity
by allowing the reference system R to act simultaneously as a
“clock/work reference”. In other words, one can interpolate

smoothly between the two regimes via the different choices of
quantum states ηR. This is illustrated schematically in Fig. 2.

To see this better, we first consider the case where either the
input or output state is incoherent in the energy eigenbasis. This
regime is described by an essentially classical stochastic energy
condition. The following result is shown in the Supplementary
Note 4.

Corollary 2: Let A and A′ be two quantum systems, with
respective Hamiltonians HA and HA′ being the only thermo-
dynamic observables. Let ρA and σA′ be quantum states on the
input and output systems, respectively. If either ½ρA;HA	 ¼ 0 or
½σA′

;HA′ 	 ¼ 0, then the state transformation ρA ! σA
′
is possible

under generalized thermal processes at a temperature T= (kβ)−1

if and only if ½σA′
;HA′ 	 ¼ 0 and ρA thermo-majorizes σA′.

This recovers previous results5 on quantum thermodynamics
for the case of one of the states having no coherences between
energy eigenspaces. Moreover, in the case of incoherent input ρA,
the use of a coherent reference state ηR does not yield any
additional constraint. Specifically, ΩRA ¼ q ηR1

� �� ρA þ 1� qð Þ
ηR2
� �� γA, and so the coherence of states ηR1 and ηR2 is irrelevant.

The only relevant constraints in state transformation ρA ! σA
′

are constraints related to the energy distribution of states.
On the other hand, if both the input-output states ρA and σA′

contain coherence, then by choosing reference states ηR1 which
contain coherence, we obtain new additional coherence con-
straints, i.e., constraints independent of thermo-majorization.
Note that coherence with respect to energy eigenbasis is
equivalent to symmetry-breaking (asymmetry) with respect to
time-translations generated by the system Hamiltonian. In other
words, coherence of states ρA and σA′ is related to how well time t
can be estimated from states ρAðtÞ ¼ e�iHAtρAeiHAt and
σA

′ðtÞ ¼ e�iHA′ tσA
′
eiHA′ t .

The TPs are both covariant under time-translation and
preserve the Gibbs state. In the Supplementary Note 6, we will
show that the converse is also true (i.e. a covariant Gibbs
preserving map is a TP). Therefore, previously discussed

�e

�c

Energy constraints

Time constraints

�1
R

�2
R

Fig. 2 Time-energy constraints for thermal processes. The entropic
conditions for a state transformation ρA ! σA

′
under TPs are defined with

respect to a quantum reference frame R and two states ηR1 and ηR2 . The
schematic vertical axis denotes states block-diagonal in energy (e.g., an
energy eigenstate ηe ¼ jEihEj), while the horizontal axis denotes states with
maximal time-dependent oscillations—‘clock’ states ηC of R. When ηR1 is
confined to being incoherent (the vertical axis) we recover thermo-
majorization. For R being macroscopic and ηR1 ¼ ηC , we obtain a
Page–Wootters clock constraint on the thermodynamic transformation.
Varying ηR1 smoothly interpolates between the time constraints and energy
constraints
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measures, such as those that are based on Renyi divergences of
the form AαðρAÞ ¼ SαðρAjjhρAiÞ, behaves monotonically under
TPs, and provide independent thermodynamic constraints
beyond thermo-majorization10. One can also use constraints on
modes of coherence12,37 and the Fisher Information63, to derive
other independent measures of athermality. However, the set of
conditional min-entropy measures obtained here is complete and
therefore sufficient to imply the monotonicity of all of these
measures.

In the Supplementary Note 4, we show that the entropic
conditions with ηR1 being incoherent in energy leads to thermo-
majorization, and captures the degree to which the system A is
ordered in energy. Since in quantum systems one has comple-
mentarity between time and energy one might expect that the
case of ηR1 being highly coherent in energy might therefore
capture the degree to which A is ordered in some temporal sense.

This turns out to be the case, although since time forms a
continuous one-parameter group there are technical obstacles to
making this statement precise. However, as we show in the
Supplementary Note 9, one can in general make finite precision
approximations and model time evolution for any finite
dimensional quantum system (which can be assumed to have
an energy spectrum of rational numbers and thus has periodic
dynamics under its Hamiltonian) with the discrete group ZN , for
some sufficiently large N and with t= nε. Here ε > 0 is the
minimal time interval that can be resolved. The representation of
this discrete group on A is given by n 7!UA

ε ðnÞ :¼ exp½�inεHA	
and so the system is modeled as evolving in discrete time steps.
Under these approximations, one can replace microscopic
conservation assumption with a slightly weaker version described
in Supplementary Note 9, and the interconversion conditions can
be repeated for G ¼ ZN instead.

We define clock-times as the discrete instances t ¼
0; ε; ¼ ; nε; ¼ ; ðN � 1Þε for the joint system HR �HA. As
shown in the Supplementary Note 10, there exist reference frame
systems R that can provide a perfect classical encoding of the
clock times into quantum states fj0Ri; j1Ri; ¼ ; jN � 1Rig, and
for which UR

ε ðnÞj0Ri ¼ jnRi for any n. Moreover, these clock
states are built from uniform superpositions in the energy
eigenstates of R, and so are in a sense “maximally” coherent in
energy. Given this, we can now demonstrate the claimed
complementarity between time and energy and how it relates to
the state of the reference R. We choose ηR1 ¼ j0iR and consider
the limit q→1, which corresponds to the condition of time-
translation covariance alone. For this one can show that

ΩRA ¼ 1
N

XN�1

k¼0

kj i kh jR�ρAðnÞ; ð24Þ

where ρAðnÞ :¼ UA
ε ðnÞρAðUA

ε ðnÞÞy is the state of the system A at
the nth clock time for the joint system. Now, since ΩRA is a
classical-quantum state, we have that64,65

HminðRjAÞΩ ¼ �log pguess; ð25Þ

where pguess is the optimal Helstrom guessing probability for the
ensemble of states fð 1N ; ρAðnÞÞgN�1

n¼0 on A. This implies that
2�HminðRjAÞΩ is the optimal guessing probability of the clock time t
= nε for the joint system, given the single copy of ρA.
Monotonicity of HminðRjAÞΩ under the thermal processes
therefore implies monotonicity of the clock time guessing
probability for the system. Phrased differently, the time-
translation covariance property of thermal processes implies that
the ability of the thermodynamic system A to act a quantum
clock66 can never increase. This demonstrates how the reference

frame system R functions to define both time and energy
constraints on the state interconversion for the system A.

We note that this result connects with foundational work by Page
and Wootters67, who considered how one can have dynamics in a
universe that is covariant in time. They proposed a conditional
probability formalism, which mirrors our present set up and relies
on covariant measurements with PðXR ¼ xjYA ¼ yÞ, the prob-
ability that some observable XR has a sharp value given a
measurement of YA yielding a particular result. These relational
expressions were shown to describe dynamics within the time-
translation invariant global state, such as ΩRA here.

We note that the condition in Theorem 2 that HR ¼ �ðHAÞT
can be understood in the context of global time-translation
covariance. Formally, it says that the free evolution of the reference
system R is via the representation dual to the time-translation
action on A. More physically, it says that the joint Hamiltonian
HRA ¼ HR � 1A þ 1R � HA admits a non-trivial eigenspace with
zero total energy in which coherent dynamics on A can be fully
encoded. This should be compared with the Wheeler de Witt
equation HtotjΨi ¼ 0 in quantum gravity, which also ensures global
covariance under time-translations for the universe68.

Multiple conserved charges. Finally, we can state the necessary
and sufficient conditions for the case of having additional, addi-
tively conserved observables fX1; ¼ ;Xng. In this case assump-
tion (A3) follows a similar argument to the one for energy, and
the auxiliary system can be assumed to be in a state σB for which
σB ¼ e�isXB

k σBeisX
B
k , for all s 2 R and for any thermodynamic

observable XB
k . Ranging over all the observables, this condition

can be expressed more compactly as σB ¼ UðgÞσBUyðgÞ, for all
unitary transformations U(g) in the Lie group G generated by the
observables fHB;XB

1 ; ¼ ;XB
ng. Note that this condition is

equivalent to σB ¼ R
Gdg UðgÞσBUyðgÞ, where dg is the uniform

(Haar) measure over this group. Therefore, this assumption,
together with (A1) imply that the process is covariant with
respect to group G, i.e., Ug � E ¼ E � Ug , where
UgðρAÞ :¼ UðgÞρAUyðgÞ. In other words, the process is covariant
under the symmetry group action generated by the thermo-
dynamic observables on the input/output systems. Our main
result on the thermodynamic structure of states under TPs is as
follows.

Theorem 3: [Generalized thermal processes] Let A and A′ be
two quantum systems, with thermodynamic observables
fHA;XA

1 ¼ ;XA
n g and fHA′

;XA′

1 ; ¼XA′

n g, respectively, and fix
0 < q < 1. The state transformation ρA ! σA

′
is possible under

generalized thermal processes at a temperature (kBβ)−1 and at
fixed Lagrange multipliers μ1; ¼ μn, if and only if for all reference
frame systems R of equal dimension to A′ with thermodynamic
observables HR ¼ �ðHA′ÞT and fXR

k ¼ �ðXA′

k ÞTgnk¼1, and for all
pairs of states η ¼ ðη1; η2Þ we have SηðρAÞ � SηðσA

′Þ, where
SβðρAÞ :¼ HminðRjAÞΩ and

ΩRA ¼
Z

G
dg UðgÞðqηR1 � ρA þ ð1� qÞηR2 � γAÞUðgÞy ð26Þ

where {U(g)} is the symmetry group generated by the additively
conserved observables fHR � 1A þ 1R �HA;XR

k � 1A þ 1R �
XA
k ; k ¼ 1; ¼ ; ng on the composite system RA, with group

parameters g, and γA ¼ exp½�βðHA �P
k μkX

A
k Þ	=Z, being the

generalized Gibbs ensemble on A.
This result is a fully covariant statement that is based on

minimal assumptions, namely microscopic conservation, equili-
brium preservation and incoherence, which reduces to Theorem 2
in the case of no additional thermodynamic observables beyond
the system’s energy.
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Discussion
In this work, we have considered a generalization of majorization
for quantum processes, found a necessary and sufficient condition
for this notion of majorization in terms of entropic quantities,
and demonstrated some of its applications in the context of the
resource theories of asymmetry and quantum thermodynamics.
In particular, we derived a complete set of entropic conditions for
state transformations in both of these resource theories. In con-
trast to the previous results, which are only applicable to
restricted families of states (such as incoherent states) our
approach can be applied to all states. Furthermore, these results
can be generalized to the case of approximate transformations in
which we only require transformations up to an epsilon
smoothing. However, the approximate case requires additional
tools and is left for future work.

Since our entropic monotones provide a full characterization of
the resource, it is interesting to study their operational inter-
pretations. We discussed some of these interpretations in the
context of clocks. Another possible interpretation could be pro-
vided by the results of ref. 69, which relates the smoothed entropy
Hε

maxðRjA′Þ to the minimal work cost to perform a quantum
process. The duality relation between min and max entropies tells
us that, where C purifies the state on RA′, and so this suggests a
potential interpretation of our results in terms of generalized
work costs on a purifying environment.

We also introduced a new framework for quantum thermo-
dynamics based on the notion of generalized thermal processes,
which extends thermal operations, and is based on natural phy-
sical principles. This explicitly handles coherences and is the first
framework of its kind for which a complete set of state conditions
has been derived.

Data availability
The authors declare that all the data supporting the findings of this study are within the
paper and its supplementary information files.
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