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Quantum many-body models with cold atoms

coupled to photonic crystals
J. S. Douglas1*, H. Habibian1, C.-L. Hung2†, A. V. Gorshkov3, H. J. Kimble2 and D. E. Chang1

Using cold atoms to simulate strongly interacting quantum systems is an exciting frontier of physics. However, because
atoms are nominally neutral point particles, this limits the types of interaction that can be produced. We propose to use
the powerful new platform of cold atoms trapped near nanophotonic systems to extend these limits, enabling a novel
quantum material in which atomic spin degrees of freedom, motion and photons strongly couple over long distances. In
this system, an atom trapped near a photonic crystal seeds a localized, tunable cavity mode around the atomic position.
We find that this effective cavity facilitates interactions with other atoms within the cavity length, in a way that can be
made robust against realistic imperfections. Finally, we show that such phenomena should be accessible using one-
dimensional photonic crystal waveguides in which coupling to atoms has already been experimentally demonstrated.

T
rapped ultracold atoms are a rich resource for physicists.
Isolated from the environment and routinely manipulated,
they can act as a quantum simulator for a wide variety of phys-

ical models1. However, although short-range interactions between
atoms can be adjusted by Feshbach resonance, these systems typi-
cally lack the long-range interactions required to produce some of
the most interesting condensed-matter phenomena. For example,
exotic phases such as supersolids are predicted in systems with
long-range interactions2, as well as Wigner crystallization3 and topo-
logical states4. Long-range interactions can also lead to the break-
down of concepts such as additivity in statistical mechanics5,6 and
the violation of speed limits (Lieb–Robinson bounds) for the propa-
gation of information7–9. As a result, there are active efforts to
achieve long-range interactions using specific properties of the
atoms10, such as their magnetic moment11,12, Rydberg excitation13

or by using polar molecules14.
In this Article we investigate another paradigm, where, instead of

relying on atomic properties, we design the medium through which
the atoms interact—specifically, by coupling the atoms via the
photon modes of a photonic crystal. Our proposal is inspired by
demonstrations of strong coupling of photons in nanophotonic
systems with individual solid-state emitters15 and, more recently,
with cold atoms16–19. For example, systems of ∼103 atoms have been
trapped by and coupled to the evanescent guided modes of nano-
fibres16,17, and single atoms have been coupled to photonic crystal
cavities18 and waveguides19. One aim of these efforts is to utilize
strong, controlled light–matter interactions for quantum information
processing and networks20. Here, we show that atoms interfaced with
photonic crystals can also have remarkable consequences for the
exploration of quantum many-body physics21–23.

A photonic crystal is a periodic dielectric structure that controls
the propagation of light24. By introducing a defect into this regular
structure, it is possible to induce cavity modes for the light. We
demonstrate that a single atom trapped near an otherwise perfect
photonic crystal can also seed a localized cavity mode around
the atom. The physics of the atom coupled with the photonic
crystal can then be understood by a direct mapping to cavity

quantum-electrodynamics (QED), allowing intuition and results to
be transferred from this well-developed field. When many atoms
are trapped, these dynamically induced cavities mediate coherent
interactions between atoms25,26. The interactions can extend over
distances on the order of 100 optical wavelengths and we describe
here, for the first time, the principles of how this long-range coup-
ling between atoms can be achieved and tuned in the framework of
current experiments.

In particular, going beyond earlier work in this area6,25–30, we
show how the spatial range and type of effective spin interaction,
with the spin encoded in atomic internal degrees of freedom, can
be engineered and dynamically tuned using the available atomic
structures and by external control of the laser fields. Furthermore,
we validate in detail the limits of the applicability of our theoretical
model, comparing it with full numerical simulation (Green’s func-
tion calculations) of an actual one-dimensional photonic crystal
waveguide used in experiments. Importantly, we provide realistic
descriptions of the fields and atoms, taking into account photon
loss and localization of photons due to imperfections in the dielectric
structure and loss resulting from free-space atomic emission.

The principles that we elaborate have broad applicability to
atom–photon interactions in nanophotonics, including, signifi-
cantly, two-dimensional photonic crystal geometries31. We focus
here on implementation in one-dimensional waveguides, and
show how such phenomena should be accessible using photonic
crystal waveguide geometries in which coupling to atoms has
already been experimentally demonstrated19,32. More generally,
our work provides a platform to realize new regimes of physics
involving simultaneous strong and long-range coupling between
spins, phonons and photons, enabled by the strong atom–light
interactions possible in the nanophotonic system.

Effective long-range interactions
Long-range interactions between particles often occur through the
exchange of photons. A simple example consists of two-level
atoms with transition frequency ωa = 2πc/λ interacting via a single
mode of a Fabry–Perot cavity that has resonance frequency ωc , as
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shown in Fig. 1a. Momentarily neglecting losses, a single atom in the
cavity is described by the Jaynes–Cummings model33, H = ħωaσee +
ħωcâ

†â + ħgc(σegâ + h.c.), where σμν = |μ〉〈ν| operate on the internal
atomic state and the cavity mode excitation has associated annihil-
ation operator â. The coupling between the atom and the cavity
mode gc = deg

�������������

ωc /(2h
− e0V)

√

depends on the strength of the dipole
matrix element deg of the two-level transition and on the cavity
mode volume V. For a single excitation, the eigenstates are
dressed states—superpositions of the excitation being purely
atomic and purely in the cavity mode—given by |ψ1〉= cos θ|e〉|0〉 +
sin θ|g〉|1〉 and |ψ2〉 = − sin θ|e〉|0〉 + cos θ|g〉|1〉.

When the detuning between the cavity mode and the atomic res-
onance is large, such that Δc = ωa− ωc≫ gc , the mixing angle
becomes θ ≈ gc/Δc≪ 1, and |ψ1〉 is predominantly an atomic exci-
tation with a small photonic component. A second atom introduced
into the cavity can then exchange an excitation with the first via the
weakly populated cavity mode, leading to an effective interaction.
For N atoms this gives33

HI =
h− g2c
Δc

∑

N

j,l

σ j
egσ

l
ge (1)

which describes the exchange of excitations between atoms with a
strength that does not diminish with distance, only being
bounded by the volume of the physical cavity. These effectively infi-
nite-range interactions, while interesting in their own right34–37,
remove the spatial complexity of the system, and can often be
described using collective operators or mean-field methods.

To realize long-range interactions that decay with distance we
utilize photonic crystals. Key to our proposal is that through con-
structive interference of light scattering from the crystal’s periodic
structure, frequency windows known as bandgaps can be created
in which no propagating modes exist. Figure 1c shows a typical dis-
persion relation of photon frequency ωk versus Bloch wavevector k
with a bandgap. Conventionally, a localized photonic crystal cavity
mode is created by introducing a local dielectric defect (Fig. 1b) that
pulls a discrete mode into the bandgap from the continuous band
spectrum24. Here, we show that an atom trapped near the photonic
crystal is itself a dielectric defect capable of seeding a cavity mode
localized around the atomic position, via which it can interact
with other atoms (Fig. 1d).

Atom-induced cavities and long-range interactions
The interaction between atoms and band edges has been discussed
in a number of contexts, such as the formation of atom–photon
bound states27, radiative coupling between atoms25,26,28 and spin-
entanglement30 and thermalization6 mediated by long-range inter-
actions. Here, we provide an elegant interpretation of this physics
in terms of atom-induced cavities and cavity QED. This mapping
enables the powerful toolbox of cavity QED to be transferred to
these systems and enables one to identify key figures of merit
(such as mode volume and cooperativity parameter). We exploit
this mapping to demonstrate that the type of spin interaction and
the spatial range can be manipulated dynamically, enabling
tunable access to a wide range of long-range interacting models.
We also identify the limits imposed by system imperfections
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Figure 1 | From cavity-QED to atom-induced cavities in photonic crystals.

a, Two atoms are coupled with strength gc to a single mode of a Fabry–

Perot cavity, enabling an excited atom (atom 1) to transfer its excitation to

atom 2 and back. The coherence of this process is reduced by the cavity

decay (rate κ) and atomic spontaneous emission into free space (rate γ).

b, Photonic crystals are alternating dielectric materials, shown here as oval

air holes in a dielectric waveguide, with unit cell length a. A defect, such as

that caused by removing or altering the hole sizes, can lead to a localized

photonic mode (red). Atoms coupled to such a system may then interact

via this mode in an analogous manner to that in a. c, A typical band

structure of a one-dimensional photonic crystal, illustrating the guided

mode frequency ωk versus the Bloch wavevector k in the first Brillouin

zone. We are interested in the case where atoms coupled to the crystal

have resonance frequency ωa close to the band edge frequency ωb, with

Δ≡ωa −ωb. d, An atom near a photonic crystal can act as a defect,

inducing its own cavity mode with an exponentially decaying envelope

(red). A second atom can couple to this mode to produce an interaction

similar to that in a and b, but where the strength now depends on the

inter-atomic distance.
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Figure 2 | Effective cavity mode properties. a, Energy level diagram for the

photonic crystal dressed state |ϕ1〉 (blue). The dressed state energy ω is

detuned by δ from the band edge into the bandgap (band shown in red).

The atom is coupled to an effective cavity mode with frequency

�ωc = ωb − δ formed by superposition of modes in the band. b, The detuning

δ approaches 0 when Δ/β≪ −1 and approaches Δ when Δ/β≫ 1. c, The

photonic component of the dressed state has an exponentially decaying

envelope around the atomic position. Increasing Δ decreases the length

scale L of the exponential decay and the photonic part of the bound state

superposition. d, The atomic excited state population of |ϕ1〉, Pe = cos2(θ)

(green), increases as a function of Δ, while the population of the photon

mode, Pp = sin2(θ) (red), decreases as the state switches from photonic to

atomic. e, The length of the effective cavity decreases with Δ. Here L is in

units of the lattice constant a, calculated for α = 10.6 and β = 4.75 × 10−7ωb,

which is consistent with the ‘alligator’ photonic crystal waveguide (see

main text)32.
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(such as losses and disorder), and analyse in detail a realistic struc-
ture wherein this novel long-range physics can be realized.

A simple model to illustrate this mechanism consists of two-level
atoms coupled to the photonic crystal modes, where the atomic res-
onance is close to one of the band edges of the photonic crystal
(Fig. 1c) with detuning Δ = ωa – ωb. We assume that the detuning
to any other band edge is much larger than Δ, so the influence of
other bands is negligible. When the atomic resonance is close to
the band edge, the atom is dominantly coupled to modes close to
the band edge wavevector k0 due to the van Hove singularity in
the density of states. In this case we can approximate the dispersion
relation to be quadratic ωk ≈ ωb(1 – α(k – k0)

2/k0
2) about k0 , where α

characterizes the band curvature27. Due to the periodicity of the
photonic crystal the photonic modes are of Bloch form and the
modes with wavevector k ∼ k0 take the form Ek(z) ≈ eikzuk0 (z),
with annihilation operator âk. Furthermore, for these modes,
the coupling g = deg

���������������

ωb / (4πh
− ε0A)

√

is approximately independent
of k, where A is the mode cross-sectional area38.

A system with one atom trapped at z = 0 coupled to the photonic
crystal is then described by the Hamiltonian

H = h− ωaσee + ∫ dkh− ωkâ
†
k âk + h− g ∫ dk(σeg âkEk(0) + h.c.) (2)

For a single excitation in the system, solving the Schrödinger
equation, H|ψ〉 = h− ω|ψ〉, yields the dressed state |f1〉 = cos θ|e〉|0〉+
sin θ|g〉|1〉, where the atom is dressed by a localized photonic mode
|1〉= ∫ dkckâ

†
k|0〉 (Supplementary Section 1). The eigenfrequency ω

lies within the bandgap, with detuning δ =ω –ωb > 0 from the band
edge, as shown in Fig. 2a,b. The detuning δ is the positive real root
of (δ − Δ)

��

δ
√

= 2β3/2 for β = (πg2|uk0(0)|
2k0 /

������

4αωb

√ )2/3.
Importantly, the photonic component is localized around the

atomic position, as illustrated in Fig. 2c, with spatial mode function

f(z)= ∫ dkc*kEk(z) =

���

2π

L

√

e−|z|/LEk0 (z) (3)

The photon decays exponentially with distance z from the atomic
position with length scale L =

�����������

αωb /(k
2
0δ)

√

, reflecting the fact
that within the bandgap at energy ω, the field propagation
equation has complex solutions with attenuation length L.

This confined photonic cloud has the same properties as a real
cavity mode, enabling a mapping onto the Jaynes–Cummings
model. Specifically, one can associate an effective atom–cavity inter-
action strength �gc = g

������

2π/L
√

with the bandgap system, which
depends on the mode volume, expressed here as the effective
cavity length given by the decay length L for fixed mode area A.
We can also identify an effective cavity mode frequency that is
the average frequency of the photon mode, ∫ dk|ck|

2ωk = ωb – δ.
The effective atom–cavity detuning is �Δc = Δ + δ, as shown in
Fig. 2a (note that for Δ = –β the effective cavity is resonant with
the atom �Δc = 0). The state |f1〉 then maps to the dressed state
|ψ1〉 from the Jaynes–Cummings model; that is, the mixing
angle and energy are the same for �Δc � Δc and �gc � gc. This
mapping breaks down when we consider the second dressed
state, which is not an eigenstate in the photonic crystal model
because of the continuum of propagating modes for frequencies
below ωb.

The atomic excited-state population Pe = cos2θ for |f1〉 is plotted
in Fig. 2d. For Δ≫ β, most of the excitation resides in the atom,
while for Δ≪ –β the state becomes mostly photonic, a cavity
mode dressed by the atom. Physically, although the atomic fre-
quency can lie well within the band, the atom still provides a
weak refractive index contrast at frequencies within the gap, and
in one dimension, arbitrarily weak dielectric defects can seed a
cavity mode39. In this regime (Fig. 2e), the weak dielectric contrast

yields a very long effective cavity length. In practice, this length is
only limited by the finite size of the photonic crystal structure or
by disorder in the photonic crystal structure (as discussed below).

It is now apparent that two atoms can exchange an excitation via
the induced cavity mode provided they are separated by a distance
on the order of the decay length L. In the limit where the photonic
modes are weakly populated (Δ≫ β), this leads to an effective
dipole–dipole interaction between atoms, with positions zj, of the
form (Supplementary Section 2)

HI ≈
h− �g2c
�Δc

∑

N

j,l

σ j
egσ

l
ge f (zj, zl) (4)

The effective atom–cavity detuning is �Δc = 2Δ (since δ ∼ Δ) and
f (zj, zl) = e−|zj−zl |/LEk0

(zj)E
*
k0
(zl)(ref. 30).

Compared to the case of a conventional cavity (equation (1)), the
main feature of interactions emerging from atom-induced cavities is
that the spatial function f(zj,zl) is finite in range and tunable, both
through the effective interaction length L and the Bloch functions
(for example, from which changes in sign can be engineered). In
addition, this dynamic cavity mode follows the atomic position
rather than being a static property set by boundary conditions.
Note that although exponentially decaying interactions are identified
as short-range in the thermodynamic limit, the length scale L can be
on the order of the length of experimental systems, and thus effec-
tively long-range over the system size6,30. Furthermore, as we show
below, the interaction can approximate long-range power laws
over a finite system, similar to the case in trapped ion exper-
iments8,9,40,41. These results also generalize to higher dimensions
(Supplementary Section 2). For example, in a two-dimensional
photonic crystal atom-induced cavities lead to the function
f (zj, zl) ≈ Ek0 (zj)E

∗
k0
(zl)e−|zj−zl |/L/

��������

|zj − zl|
√

(ref. 31).
Although equation (4) superficially looks like a long-range spin

model, the possible dynamics are in fact much richer. In particular,
treating the atomic positions themselves as dynamical variables, the
function f(zj,zl) can be interpreted physically as a mechanical poten-
tial acting on atoms6, which is turning on and off as spin degrees of
freedom change. Due to the large values of the effective vacuum
Rabi splittings �gc associated with the dynamic atomic cavities, the
strength of these spin-dependent potentials can be extremely large
compared to typical motional energy scales associated with ultracold
atoms. Furthermore, in the nanophotonic system, it is possible to
achieve strong spin–photon coupling (for example, an incident
photon can be absorbed by the atoms with high probability19).
Thus, our system produces a unique coupling over a long range
between spin, phonon and photon degrees of freedom.

Coherence and effective cooperativity
Key to any physical realization of the long-range physics we describe
above is how dissipation competes with the coherent interaction in
equation (4). Here, we go beyond previous discussions of this type of
interaction by detailing the limits imposed by realistic loss mechan-
isms and experimental imperfections and further show these inter-
actions should be observable in current state-of-the-art experiments.

Imperfections in the photonic crystal cause photon loss at rate κp ,
and because our structures of interest are not full three-dimensional
photonic crystals, an excited atom can spontaneously emit into free
space at rate γ (usually comparable to the vacuum rate γ0, ref. 38). The
effect of losses can be revealed, for example, by studying the exchange
of an excitation between two atoms separated by |z1 – z2| ≲ L.
From equation (4), the exchange time is given by τ ∼ π�Δc /(2�g

2
c),

while the total loss is given by τ(γ cos2 θ + κp sin
2 θ). Optimizing the

detuning, we find an exchange error of π/
��

C
√

, where C = �g2c /(κpγ)
is the single-atom cooperativity (see Methods). For a state-
of-the-art photonic crystal (Q ≈ 200,000) coupled to caesium atoms
(γ/(2π) ≈ 5 MHz), a cavity with volume V ≈ λ3 (that is, L = λ) could
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have �gc /(2π) ≈ 10 GHz, giving a feasible cooperativity of Cλ ≈ 104

(ref. 32). Assuming that κp is dominated by local imperfections in
the photonic crystal, we expect that it is independent of length L (as
compared to a Fabry–Perot cavity in vacuum, where κp ∝ 1/L). The
cooperativity of the dynamic cavity mode then scales with length as
CL = λCλ/L, which limits the length for which interactions remain
coherent. For Cλ ≈ 104, CL remains greater than 100 for lengths of
up to 100 wavelengths.

Beyond the photon losses already discussed, imperfections in
photonic crystal fabrication can yield disordered potentials for pro-
pagating fields. Disorder results in an Anderson localization length
over which optical fields tend to become trapped, limiting the inter-
action range between atoms. As discussed in Supplementary Section
4, the physics of weak disorder near a band edge leads to a universal
scaling for the localization length as a function of the level of dis-
order. This scaling predicts that localization lengths exceeding 100
wavelengths are possible with state-of-the-art fabrication and is con-
sistent with separate (unpublished) experimental characterization of
the ‘alligator’ structure from ref. 32, which reveals a localization
length longer than the structure length of ∼200 unit cells. On the
other hand, disorder may prove to be a feature of the system, provid-
ing access to physical models with interactions that have randomly
varying length scales.

Implementation in an ‘alligator’ photonic crystal waveguide
Our simple theoretical model should also approximate actual phys-
ical implementations. As a concrete example, we consider the one-
dimensional ‘alligator’ photonic crystal waveguide (APCW) as
experimentally demonstrated in refs 19 and 32. The APCW, as
shown in Fig. 3a, consists of two parallel, periodically corrugated
nanobeams, whose small distance of separation couples and hybri-
dizes their optical modes. A combination of far off-resonant guided
modes and Casimir–Polder forces allows atoms to be localized
between the beams at the periodic points indicated in red in Fig. 3a38.

The band structure of the APCW, calculated using the MIT
Photonic-Bands software package, is shown in Fig. 3a. The band
edge of the fundamental transverse electric (TE-like) mode,
located at ωb/2π = 333 THz, is closely aligned with the D1 transition
of atomic caesium to produce the desired long-range interactions. In
Fig. 3b, we plot the coefficients |Ujl|/γ0 for the effective atom–atom
interaction HI = h−

∑

j,l Ujl σ
j
egσ lge calculated numerically for the

full structure of the APCW (see Methods). Couplings are
plotted for detunings of the atom from the band edge ranging
from Δ/2π = 400 GHz to 2.8 THz, over atomic separations rjl/a
extending up to 55 lattice sites (a = 371 nm is the lattice constant
of the APCW). The predictions from our simple model, equation
(4) (solid lines in Fig. 3b), quantitatively agree with the numerical
simulation for structure band curvature α = 10.6 and coupling
�gc /2π =

����

a/L
√

× 12.2GHz (see Methods). The deviation between
the theoretical and numerical results at Δ/2π = 400 GHz is primarily
attributable to finite-size effects, as the interaction length becomes
comparable to the simulated structure size (75a between the
source and either end of the APCW).

At short atomic separations rjl/a ≲ 15, numerical results deviate
from the model at all detunings (Fig. 3b). We primarily attribute
this difference to the contributions coming from other guided
bands (see ref. 19 for the full band structure), as well as leaky and
free-space modes that are not included in our single-band theoreti-
cal model. The band edges of these modes are typically far from the
atomic transition frequency, leading to contributions of the order of
the interaction strength between atoms coupled via a nanofibre or
free space, that is, at most the free-space linewidth γ0 (refs 42,17).
The fractional error associated with these corrections will then
become smaller as experimental systems are optimized to increase
the interaction strength arising from the primary mode. This can
be done by working closer to the band edge (seen only to a

limited extent in Fig. 3b because of finite size effects), or by using
structures with smaller band curvature α to decrease the interaction
length. Even better agreement with the model can be reached by
approximately subtracting out the contributions from the other
modes (see Methods), as plotted in the inset of Fig. 3b, supporting
the validity of our simple model.

Designing interaction properties
The long-range interactions given in equation (4) depend on the
detuning from the band edge Δ and band curvature α, which
cannot be easily tuned given a physical structure. This is remedied
by considering atoms with an internal Λ-level structure, as shown
in Fig. 4a, introducing an additional metastable state |s〉. Here the
|g〉–|e〉 transition is coupled to the band edge as before, while |s〉–|e〉
is assumed to be de-coupled but addressable by an external laser
(for example, illuminating the photonic crystal from the side)
with Rabi amplitude Ω and detuning δL. This situation may be
achieved, for example, if the photonic crystal modes and external
laser have orthogonal polarizations. Alternatively, guided modes
of the photonic crystal with orthogonal polarization may be used.
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Figure 3 | Comparison of the single-band model with numerical

calculations. a, Band structure of the fundamental TE mode of the one-

dimensional ‘alligator’ photonic crystal waveguide (APCW), designed for

coupling to the D1 line of atomic caesium near the photonic band-edge

frequency ωb/2π = 333 THz (refs 19,32). The calculated band structure has a

curvature α≈ 10.6 near the band edge at k0 = π/a. Inset: the dielectric

profile of the APCW. Red circles denote the location of trapped atoms.

b, Atom–atom coupling strength Uij evaluated using FDTD simulations

(solid circles) and the single-band model from equation (4) (solid lines).

Results are plotted for atomic detunings from the band edge Δ/2π = 400

(black), 800 (red), 1,300 (blue), 2,800 (magenta) GHz. Inset: FDTD results

where the contribution from all other photonic and free-space modes

in the APCW (open circles) has been estimated numerically and subtracted

(see Methods).
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The photons in the system are now Raman scattered from the
laser field with central frequency ωa + δL and intuitively the
photon cloud size will be determined by the attenuation length at
this frequency rather than at ωa as in the case of pure atomic
excitation. Specifically, by adiabatically eliminating the excited
state and the photonic modes (Supplementary Section 2) we
obtain an interaction within the ground-state manifold given by

HI =
h− |Ω|2�g2c
2ΔLδ

2
L

∑

N

j,l

σ j
sgσ

l
gsf (zj, zl) (5)

This interaction is of the same form as in equation (4) where
Δ = ωa – ωb is now replaced by ΔL = δL + ωa – ωb and �gc is replaced
by Ω�gc /δL. The strength of the interaction is reduced by a
factor of |Ω|2 /δ2L, leading to an increase in the time needed
for the spin exchange; however, the population of the atomic
excited state is also reduced by the same factor reducing the
rate of spontaneous emission. The Raman process effectively
narrows the natural line width of the excited state, and the coop-
erativity C, which characterizes the optimal fidelity of exchange,
remains constant.

By tuning the frequency and amplitude of the drive laser,
the interaction strength and length L =

�������������

αωb /(ΔLk
2
0)

√

can now be
dynamically altered. It also becomes feasible to build interaction
scalings other than exponential, by driving the |s〉–|e〉 transition
with two or more fields of different frequencies. This leads to an
interaction potential for the atoms that is the sum of the potentials
due to each individual drive field (the adiabatic elimination of drive
fields is additive). For example, a power law interaction
f (zj, zl) ∝ |zj − zl|−η can be approximated over a finite range, as we
show in Fig. 4b for η = 1/4 over 50 unit cells using two pump fields.

The full spin–phonon–photon dynamics resulting from the
coupling of atoms to the photonic crystal bands enables a wide
range of behaviour to be investigated. In addition, the limiting
cases of the model, found by freezing out degrees of freedom, are
in themselves interesting. For example, the motional modes may
be eliminated by trapping atoms tightly on a lattice to produce
quantum magnetism models, such as the XX-model and the

transverse Ising model (see Methods), where long-range inter-
actions lead to a breakdown of Lieb–Robinson bounds7–9.
Alternatively, in the opposite limiting case, we may focus on the
motional dynamics of the atoms, eliminating the spin dynamics
by driving the atoms weakly and off resonance. In this case the
interaction yields a purely mechanical potential for the atoms,
U ≈ (h− |Ω|2g2c /2(ωL − ωb)(ωL − ωa)

2) f (zj, zl). Engineering this
interaction to be a power law with η = 1, for example, would
enable simulation of charged particles using neutral cold atoms.

Discussion
In conclusion, we have demonstrated the utility of atoms coupled to
photonic crystal structures as a toolbox to achieve tunable long-
range interactions in many-body systems. Moreover, significant pro-
gress has been made to experimentally realize systems in which the
predicted rich interplay between spin, motional and photonic
degrees of freedom could be observed. Individual atoms have been
trapped and coupled to a photonic crystal cavity using optical twee-
zers18 and atoms may also be trapped in the evanescent field of
guided modes of photonic crystals19,32,38.

In these systems, many-body phenomena such as frustration43,
information propagation7–9 and many-body localization44 may be
investigated in the presence of long-range interactions. Such inter-
actions could also generate nonlocal nonlinearities for photons,
leading to photonic molecules and other exotic states45,46. Finally,
the use of band edges to manipulate interactions should find wide
use beyond the photonic crystal setting. In the context of atom–

photon interactions, band structure could be engineered using a
variety of fabrication techniques32,47, or using periodic arrange-
ments of atoms themselves48, while coupling of quantum bits via
phononic bands49 could be controlled in an analogous manner.

Methods
Coherence and effective cooperativity. The optimal loss rate connected with the
cooperativity parameter is reached by adjusting the detuning of the effective cavity.
However, adjusting only the detuning also changes the length scale. To keep the

length L =
������������

αωb /(Δk
2
0)

√

fixed and achieve the optimal detuning we must also adjust
the band curvature α. The APCW photonic crystal structures to which atoms
have already been successfully coupled have curvature parameters on the order of
α ≈ 10, giving an optimal length of L ≈ 100λ with CL ≈ 100 for the parameters given
in the main text. Slight design changes should enable values of α ≈ 1 leading to
optimal length L ≈ 20λ and CL ≈ 600 (ref. 38). Reaching shorter interaction lengths
with a fidelity limited by CL requires structures with even flatter bands, and the
design of such systems that are also compatible with atom trapping is being
investigated further.

Implementation in an ‘alligator’ photonic crystal waveguide. Couplings Ujl are
calculated assuming the atoms are at the minima of the APCW trapping potentials
and the atomic transition is polarized along ŷ (the local direction of polarization
for the fundamental TE mode). The Ujl are directly proportional to the real part of
the dyadic electromagnetic The Green’s function Gyy(rj,rl,ωa)

50. The Green’s
function physically describes the field produced at position rj due to a source at rl and
frequency ωa and is obtained for the APCW by finite-difference time-domain
(FDTD) simulations. The coupling coefficients normalized by the free-space
emission rate are |Ujl|/γ0 = |ReGyy(rj,rl,ωa)|/(2Im Gyy,free(0,0,ωa)), where Gfree is the
free-space Green’s function. To check the validity of our theoretical model given by
equation (4), we use a parameter of α = 10.6 describing the actual curvature near the
band edge for the APCW32. The atom–field coupling strength �gc is obtained from
first principles by numerical quantization of the guided modes near the band edge
(Supplementary Section 3), yielding �gc /2π =

����

a/L
√

× 12.2GHz.
To estimate the contribution to the interaction coefficient from other modes, we

note that leaky and free-space modes should exhibit negligible frequency
dependence over the narrow range of detunings Δ considered. We then estimate the
multimode contribution by calculating the difference between the model and
numerical |Ujl/γ0| at Δ/2π = 3 THz.

Designing interaction properties. The interaction in equation (5) corresponds
to the XX-model,

∑

j≠l

(σ
j
xσ lx + σ

j
yσ ly)f (zj, zl), for spin-1/2 operators

(σx,σy,σz) = (σgs + σsg, i(σgs – σsg),σss – σgg)/2. Other level schemes, such as the
four-level structure in Fig. 4a, enable other spin models. Here, the Λ-structure is
extended by adding a transition |s〉–|e′〉 that also couples to the photonic crystal
modes, while a second pump with the same amplitude and detuning as the
first drives the |g〉–|e′〉 transition. Eliminating the excited-state manifold
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Figure 4 | Designing interaction potentials. a, Driven (black) Λ and

(black and blue) four-level system. In the Λ scheme, transition |g〉−|e〉

couples with strength g to the photonic crystal modes, while |s〉−|e〉 is

pumped by a laser with detuning δL and Rabi frequency Ω. Interactions

between the x-component of the effective spin can be achieved by adding

level |e′〉, where the transition |s〉−|e′〉 also couples to the modes of the

photonic crystal, while a second pump drives |g〉−|e′〉. b, Approximate power

law interactions between atoms over a finite region can be achieved by

summing the different exponential interactions associated with multiple drive

fields. This is illustrated here over 50 lattice sites, where two exponentials

are added to yield an η = 1/4 power law: f(z) = w1e
−s1z/a + w2e

−s2z/a ≈ z−1/4

(solid blue curve). Error f(z) − z−1/4 is given by the dashed curve. Here

w1 =0.5480, w2 = 0.5684, s1 =0.2916 and s2 = 0.0089 could be achieved by

detuning one laser from the band edge by 1.723 × 10–3ωb and the second by

1.612 × 10–6ωb for α =0.2.
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(Supplementary Section 2) now yields an effective Hamiltonian corresponding
to the transverse Ising model with long-range interactions,

H = h−ωs

∑

N

j

σ j
z +

2h− |Ω|2�g2c
ΔLδ

2
L

∑

N

j≠l

σ j
xσ

l
x f (zj, zl) (6)
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