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Low�capacitance Josephson junction systems as well as coupled quantum dots� in a parameter
range where single charges can be controlled� provide physical realizations of quantum bits� discussed
in connection with quantum computing� The necessary manipulation of the quantum states can be
controlled by applied gate voltages� In addition� the state of the system has to be read out� Here
we suggest to measure the quantum state by coupling a single�electron transistor to the q�bit� As
long as no transport voltage is applied� the transistor in�uences the quantum dynamics of the q�bit
only weakly� We have analyzed the time evolution of the density matrix of the transistor and q�bit
when a voltage is turned on� For values of the capacitances and temperatures which can be realized
by modern nano�techniques the process constitutes a quantum measurement process�

I� INTRODUCTION

Recent proposals��� suggested to use nanoscale devices� such as low�capacitance Josephson junctions or coupled
quantum dots as quantum bits �q�bits�� which are the basic elements of quantum computers� The two logical states are
di	erent charge states of the system���� Applied gate voltages allow the necessary controlled manipulations �single�bit
and two�bit operations� of the quantum states� In addition to these manipulations� a read�out device is required to
perform quantum measurements of the resulting state of the q�bit� We suggest to use single�electron transistors for
this purpose�

The requirements to perform� on one hand� quantummanipulations and� on the other hand� a quantummeasurement
appear to contradict each other� During the manipulations the dephasing should be minimized� while a quantum
measurement should dephase the state of the q�bit as fast as possible� The option to couple the measuring device to
the q�bit only when needed is hard to achieve in mesoscopic systems� The alternative� which we discuss here� is to
keep the measuring device permanently coupled to the q�bit in a state of equilibrium during the quantum operations�
The measurement is performed by driving the measuring device out of equilibrium� in a way which dephases the
quantum state of the q�bit� Similar nonequilibrium dephasing processes have recently been considered by a number
of authors����

For de
niteness we discuss in this paper the measurement process performed by a single�electron tunneling �SET�
transistor coupled capacitively to a Josephson junction q�bit� however� this type of measurements may be performed
for any quantum system with two di	erent charge states� We describe the measuring process by considering the time�
evolution of the density matrix of the coupled system� We show that the process is characterized by three di	erent
time scales� the dephasing time� the time of measurement� which may be longer than the dephasing time� and the
mixing time� i� e� the time after which all the information about the initial quantum state is lost due to the transitions
induced by the measurement� Thus� we arrive at a new criterion for a good� quantum measurement� the mixing
time should be longer than the time of measurement�

II� THE QUANTUM SYSTEM AND THE MEASURING DEVICE

The system is shown in Fig� �� The two superconducting islands in the upper part are the realization of a q�bit� Its
state is characterized by a discrete variable� n� the number of extra Cooper pairs on the lower superconducting island�
The lower part �a normal island between two normal leads� stands for a SET transistor� which is coupled capacitively
to the q�bit� It�s charging state is characterized by the extra charge on the middle island� eN � A similar setup has
recently been studied in the experiments of Refs� � �� ��� with the purpose to demonstrate that the ground state of a
single Cooper pair box is a coherent superposition of di	erent charge states� We discuss the relation of our proposal
to these experiments below�

As shown earlier� the quantum operations with the q�bit are performed by controlling the applied gate voltage Vqb �
At this stage the transport voltage V across the SET transistor is kept zero� Therefore no dissipative currents �ow
in the system� and dephasing e	ects due to the transistor are minimized� To perform a measurement one applies a
transport voltage V � The resulting normal current through the transistor depends on the charge con
guration of the
q�bit� since di	erent charge states induce di	erent voltages on the middle island of the SET transistor� In order to
check whether the dissipative current through the SET transistor contains information about the quantum state of
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the q�bit� we have to discuss various noise factors �shot noise� and the measurement induced transitions between the
states of the q�bit� It turns out that for suitable parameters� which can be realized experimentally� the dephasing by
the passive SET transistor is weak� When the transport voltage is turned on the dephasing is fast� and the current
through the transistor � after a transient period � provides a measure of the state of the q�bit� At still longer times
the complicated dynamics of the composite system destroys the information of the quantum state to be measured�

The Hamiltonian of the composite system consists of three main parts� the charging energy� the terms describing the
microscopic degrees of freedom of the metal islands and electrodes� and the tunneling terms� including the Josephson
coupling� The charging term is a quadratic form in the variables n and N �

Hcharge � Eqbn
� � EsetN

� � EintnN �

�enVn � eNVN � const� � ���

The charging energy scales Eqb� Eset and Eint are determined by the capacitances between all the islands� Similarly�
the e	ective gate voltages Vn and VN depend in general on all three voltages Vqb� Vg and V � but for a symmetric bias
�see Fig� ��� Vn and VN are controlled only by the two gate voltages� Vqb and Vg �
The microscopic terms HL� HR and HI describe noninteracting electrons in the two leads and on the middle island

of the SET transistor� respectively�
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X
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�rk�c
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k� �r � L�R� I� � ���

The index � labels the transverse channels including the spin� while k labels the wave vector within one channel�
Similar terms exist for the two islands of the q�bit� Here we use the macroscopic� description of the superconductors�
assuming that the microscopic degrees of freedom have already been integrated out���
The tunneling terms include the Josephson coupling HJ � �EJ cos�� which describes the transfer of Cooper pairs

between the two islands of the q�bit �ei�jni � jn��i�� and the normal tunneling Hamiltonian for the SET transistor�
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Apart from the microscopic degrees of freedom� ��� contains two macroscopic� operators� e�i� and e�i�� The 
rst
one describes changes of the charge on the transistor island due to the tunneling� ei�jN i � jN ��i� It may be treated
as an independent degree of freedom if the total number of electrons on the island is large� We include one more
operator e�i� which describes the changes of the charge in the right lead� It acts on m� the number of electrons
which have tunneled through the SET transistor� ei� jmi � jm � �i� Since the chemical potential of the right lead
is controlled� m does not appear in any charging part of the Hamiltonian� However� e�i� allows us to keep track of
the number of electrons which have passed through the SET transistor� which is related to the current through the
device�

We de
ne the q�bit�s Hamiltonian as the part of the total one which governs the q�bit�s dynamics in equilibrium
�N � ���

Hqb � Eqb�n� Qqb�
� � EJ cos � � ���

Here Qqb � ��eVn��Eqb is the q�bit�s gate charge� measured in units of �e� We concentrate on the values of Qqb in
an interval around the degeneracy point Qqb � ���� so that only the low energy charge states n � � and n � � are
relevant� These states� however� are not appropriate logical states of the q�bit since they are not the eigenstates of the
Hamiltonian ���� We diagonalize ��� in the two charge states subspace for a 
xed value of Qqb �which is kept constant
between the quantum manipulations and during the measurement� and denote the corresponding logical states j�i
and j�i� In the new basis� up to a constant� Hqb � �������E �z� where �z is the Pauli matrix and

�E �
q
�Eqb��� �Qqb��� � E�

J � ���

The price which we pay for this simpli
cation is that the number operator n� which appears in the mixed term of ����
becomes non�diagonal�

n �
�

�
� �

�
cos � �z � �

�
sin� �x � ���

with mixing angle � given by tan � � EJ�Eqb�� � �Qqb�� In the quantum regime� which we are considering here�
Eqb � EJ and� therefore� one can choose Qqb so that tan � � ��
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The interaction Hamiltonian �part of the mixed term in ���� now becomes

Hint � ��

�
EintN �cos � �z � sin � �x� � ���

while the rest of the mixed term �EintN��� as well as all other remaining terms are collected in the Hamiltonian of
the SET transistor�

Hset � Eset�N � Qset�
� �HL �HR �HI �HT � � �

The transistor�s gate charge �measured in the units of e� became Qset � ��eVN�Eint�����Eset� The total Hamiltonian
reads H � Hqb � Hset � Hint� One should understand� however� that the division chosen is rather arbitrary� The
terms Hqb and Hset would not describe the q�bit and the SET transistor if they were decoupled�

III� QUANTITATIVE DESCRIPTION OF THE MEASUREMENT� TIME EVOLUTION OF THE

REDUCED DENSITY MATRIX

The total system is described by a reduced density matrix ��t� � TrL�R�If��t�g� where the trace is taken over the
microscopic states of the leads and of the island� In general� the density matrix ��i� j�N�N ��m�m�� is a matrix in
i� j� which stand� for the quantum states of the q�bit �j�i or j�i�� in N � and in m� However� as has been shown in��

a closed set of equations describing the time evolution of the system can be derived where the o	�diagonal elements
in N have been eliminated� The same is true for the o	�diagonal elements in m� Therefore� we need to consider only
the following elements of the density matrix �N�mi�j � ��i� j�N�N �m�m�� We assume now that at time t � �� when
the q�bit is prepared in the quantum state aj�i� bj�i as a result of previous quantum manipulations� we switch on a
transport voltage to the SET transistor� To proceed we can further reduce the density matrix in two di	erent ways
to obtain dual descriptions of the measuring process�

The 
rst widely used procedure� is to trace over N and m� This yields a reduced density matrix of the q�bit
�i�j �

P
N�m �N�mi�j � Assuming that at t � � it is in the state

�i�j��� �

� jaj� ab�

a�b jbj�
�

� ���

the questions are how fast the o	�diagonal elements of �i�j vanish �dephasing�� and how fast the diagonal elements
change their original values �for instance due to transitions induced by the measurement�� This description is enough
when one is interested in the quantum properties of the measured system only �q�bit in our case� and the measuring
device is used as a source of dephasing��	��� It does not tell us much� however� about the quantity measured in an
experiment� namely the current �owing trough the SET transistor�

The second procedure is to evaluate the probability distribution of the number of electrons m which have tunneled
trough the SET transistor during time t�

P �m� t� �
X
N�i

�N�mi�i �t� � ����

This quantity gives a complete description of the measurement� At t � � no electrons have tunneled� so P �m� �� � 	m�
�
Then this delta�peak starts to shift in positive m direction and� at the same time� it widens due to shot noise� Since
two states of the q�bit correspond to di	erent conductivities �and shift velocities in m space�� one may hope that after
some time the peak splits into two� If after su!cient separation of the two peaks their weights �integrals� are still
close to jaj� and jbj�� a good quantum measurement has been performed� Unfortunately� there exist further processes
which destroy this idealized picture� After a long time the two peaks transform into a broad plateau� since transitions
between the q�bit�s states are induced by the measurement� Therefore� one should 
nd an optimum time for the
measurement� so that� on one hand� the two peaks are separate and� on the other hand� the induced transitions have
not yet happened� In order to describe this we have to analyze the time evolution of the reduced density matrix
quantitatively�

IV� DERIVATION OF THE MASTER EQUATION

The Bloch�type or master equations with coherent terms have only recently been analyzed in the condensed matter
physics����� In Ref� � ��� a diagrammatic technique has been developed which provides a formally exact master
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equation as an expansion in the tunneling strength� Only the tunneling term HT is considered a perturbation� while
all other terms constitute the zeroth order HamiltonianH
 � H �HT� which is treated exactly� The master equation
reads

d��t�

dt
� i

"h
���t��H
� �

Z t




dt�#�t� t����t�� � ����

where the matrix elements of #�t�� t� can be calculated diagrammatically using the real�time Keldysh contour
technique��� The simplest diagram describing the tunneling through the left junction in 
rst order perturbation
theory �sequential tunneling� is shown in Fig� �� The dashed lines crossing the diagram contribute the following factor
to the rate���

�
L
� �
�h� �

�e�i�L�t�t
�

sinh�
h
�
�h� �t � t� � i	�

i � ����

where 
L � "h�����e�RTL�� �L is the electro�chemical potential of the left lead� and 	 � ��c is the inverse frequency
cut�o	� The sign of the i	 term depends on the time�direction of the dashed line��� It is minus if the direction of the
line with respect to the Keldysh contour coincides with its direction with respect to the absolute time �from left to
right�� and plus otherwise� For example the right part of Fig� � should carry a minus sign� while the left part carries
a plus sign� For the sign in front of i�L�t � t�� the rule is as follows� minus� if the line goes forward with respect to
the absolute time� and plus otherwise�

For a single SET transistor the horizontal lines correspond to trivial exponential factors�� eiEt� In our case� however�
we have to account for the nontrivial time evolution of the q�bit� Therefore the upper line in the left part of Fig� �
corresponds to hN � �� jje�iH��t�t

�jN � �� j�i� while the lower line corresponds to hN� ijeiH��t�t
�jN� i�i� To calculate

these matrix elements we diagonalize Hqb � Hint for each value of N � The eigenenergies are

E
�N

�� � ��

�

p
��E � EintN cos ��� � �EintN sin ��� � ����

and the mixing angles �N �analogous to �� are given by tan �N � EintN sin ����E�EintN cos ��� The matrix elements
�propagators� read�

hN� �je�iH��tjN� �i � �cos�
�N
�
e�iE

N
� �t � sin�

�N
�
e�iE

N
� �t� e�iE

�N�
set �t �

hN� �je�iH��tjN� �i � �cos�
�N
�
e�iE

N
� �t � sin�

�N
�
e�iE

N
� �t� e�iE

�N�
set �t �

hN� �je�iH��tjN� �i � �

�
sin �N �e�iE

N
� �t � e�iE

N
� �t� e�iE

�N�
set �t � ����

where E�N
set � Eset�N �Qset���

We analyze now the rates in Fig� � for di	erent choices of q�bit�s indices in the regime �E � Eint� EJ� There the
mixing angles are small� �N � NEintEJ���E��� for all relevant values of N � Hence� we keep only terms linear in �N �
The simplest transition �i� � �� j� � �� N � ��m�� �i � �� j � �� N�m� is described by

#
�� N���m�
�N�m�


N���m�
�N�m�
��t� �
�
L� �

�h� �
�e�i

�E�t

sinh�
h
�
�h� ��t� i	�

i � c�c� � ����

where $E stands here for �L � �E�N��
set �E

�N
set � � �EN��


 � EN

 ��

The form of the master equation ���� suggests the use of a Laplace transformation� after which the last term in

���� becomes #�s���s�� We Laplace transform ���� in the regime s � $E� i�e� we assume the density matrix � to

change slowly on the time scale given by "h� $E� This assumption should be veri
ed later for self�consistency� At zero
temperature �� �	� and for 	 � � we obtain�

#
�� N���m�
�N�m�


N���m�
�N�m�
�s� � �
LRe
h
�s � i $E�ei	�s�i

�EE��i	�s � i $E��
i


 ��
L $E�� $E�� �
Ls�� � � � ln�j	 $Ej�� � ����

where E������ is the exponential integral and � 
 ��� is Euler�s constant� Denoting the diverging factor �����ln�j	 $Ej��
by D� $E� and performing the inverse Laplace transform we arrive at�
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#
�� N���m�
�N�m�


N���m�
�N�m�
��t� 
 ��
L $E�� $E�	��t� ��� �
LD� $E�	���t� �� � ����

�Note that ���� is equivalent to ���� only as a kernel in the convolution ���� when applied to slowly changing matrix
elements of ��� The 
rst term of ���� is the usual Golden Rule tunneling rate corrected with respect to the additional
charging energy corresponding to the quantum state j�i of the q�bit� EN��
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 � The second �diverging� part of ����

produces a term proportional to d
dt
�N���m

�
 � One can take this term to the LHS of ���� so that the time derivative in

the LHS will look like d
dt
��N�m
�
 ��
LD� $E��N���m


�
 �� We analyze all possible choices of the q�bit�s indices in Fig� � and
arrive at the conclusion that the diverging terms have always the same structure as the coherent terms in the LHS
of ����� Moreover� if we neglect some energy corrections of order Eint� we may incorporate all of these terms to the
LHS of ����� so that the master equation reads�

�� � 
LA� 
RB�

�
d��t�

dt
� i

"h
���t��H
�

�
� %��t� � �� �

where A and B are three�diagonal matrices in the N and m spaces� composed of the diverging factors of the type of
D� $E�� while % is the regular local part of #�t� t���
We expect that without the approximation of energies in the diverging terms the structure of �� � would be the

same� with A and B being more complicated matrices� which would include some mixing in the space of the q�bit�s
states� Finally� we note that for any physically reasonable choice of the cut�o	 	� the logarithmically divergent factors
in the matrices A and B are of order one� and� therefore� the mixing corrections to the unit matrix in the LHS of �� �
are small� We multiply the master equation �� � by ���
LA�
RB��� 
 ���
LA�
RB� from the left� so that the
mixing corrections move to the RHS� Since % is linear in 
L and 
R� the mixing corrections are quadratic� We drop
them in the framework of the 
rst order perturbation theory� The master equation to be analyzed thus becomes�

d��t�

dt
� i

"h
���t��H
� � %��t� � ����

If the applied voltage is not too high �the exact criterion to be speci
ed� we may consider only two charge states

of the SET transistor� N � �� �� We perform a Fourier transform in m space �Ni�j�k� �
P

m �N�mi�j eikm� To shorten

formulas we introduce AN � �N
�
�k�� B
N � �N����k�� C

N �P
m

Re�N�m
�� eikm� and DN �P
m

Im�N�m
�� eikm� This enables

us to rewrite ���� as�

&A
 � �%L�A
 � %R�e
ikA� � LC


 � Re
ikC� ����

&A� � %L�A

 � %R�A

� �'D� � LC

 � RC

� ����

&B
 � �%L�B
 � %R�e
ikB� � LC


 � Re
ikC� ����

&B� � %L�B

 � %R�B

� �'D� � LC

 � RC

� ����

&C
 � ��E
D
 � %LC

 � %Re

ikC� � L
�
�A
 �B
� � R

�
eik�A� �B�� ����

&C� � ��E�D� � %LC

 � %RC

� �
L
�
�A
 � B
� �

R
�
�A� �B�� ����

&D
 � �E
C
 � %LD

 � %Re

ikD� ����

&D� � �E�C� � %LD

 � %RD

� �
'

�
�A� � B�� � ����

Here �E
�� � E
��
� � E
��


 are the energy di	erences between the q�bit�s states for N � � and N � � respectively�
and ' � Eint sin � is the coe!cient in the mixing term in Hint for N � � �see ����� The terms proportional to �E
��

and ' originate from the coherent part of ����� The tunneling rates which appear in the four last equations for the
o	�diagonal elements ������� are given by

%L � ��
L��L �Eset��� �Qset��

%R � ��
R���R � Eset��� �Qset�� �� �

The rates

%L��� � %L ��%L

%R��� � %R ��%R ����
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appearing in the equations for the diagonal elements ������� are corrected due to the charging energy induced by the
q�bit�

�%L � ��
L�E



 �E�


�

�%R � ���
R�E


 �E�


� � ����

These correction are� actually� responsible for the separation of the peaks� In the regime tan �� �� which we assume
here� j�%L�Rj 
 ��
L�REint� The rest are small mixing terms� L�R � �
L�R sin ���E

�� which also originate from
diagrams of the type in Fig� �� Note� that we assume that only the two rates given in �� � are nonzero �two�state
approximation�� Moreover we assume that the q�bit�s charging energy corrections can at most change these two rates�
but they can not switch on any other rate or switch o	 one of the two in �� ��

V� QUALITATIVE ANALYSIS OF THE MASTER EQUATION

First� we analyze the system ������� qualitatively� Imagine that we can switch o	� the Josephson coupling during
the measurement� Then all the mixing terms in �������� i� e� those proportional to ' and L�R disappear� and the
system factorizes into three independent groups� The 
rst one ��������

&A
 � �%L�A
 � %R�e
ikA�

&A� � %L�A

 � %R�A

� � ����

has plain wave solutions �� ei
t�� The standard analysis gives for eigenvalues�

��� �
i

�
�%L� � %R��

�
��

�
� �

�%
�e
ik � ��

%L� � %R�

� �
�

�
� ����

where

%
 � %L�%R�

%L� � %R�

����

is the total transport rate corresponding to the q�bit is in the state j�i� When k is small � 
 i�%L� � %R� �� while
� 
 %
k � i%
�� �

���
�L���R�

�k�� Since � is a large imaginary number� already after a short time� ��j�j� only the

second eigenvector �A��A
 � %L��%R�� survives� This eigenvector multiplies a wave packet propagating with the
group velocity %
� The wave packet widens due to shot noise of the single electron tunneling� it�s width being given
by
p
%
t �the second imaginary term in the expression for ���

Analogously the second group of equations ������� gives a wave packet with the group velocity %� � �L��R�
��L���R� 

and

the width 
 p%�t� The two peaks correspond to the q�bit in the states j�i and j�i� respectively� They separate when
their width is smaller then the distance between their centers

p
%
t�

p
%�t � j%
 � %�jt� After this time�

tms � j
p
%
 �

p
%�j�� � ����

which we denote as the measurement time� the process can constitute a quantum measurement� Similar expressions
have been obtained in Refs� � ����� where they have been denoted as dephasing time�

To get a clue for the dephasing we analyze the third group of equations ������� at k � � �the trace over m is
equivalent to k � ��� These equations may be combined into two complex ones�

&�

�� � i�E
�

�� � %L�



�� � %R�

�

��

&��
�� � i�E���
�� � %L�



�� � %R�

�

�� ����

The standard analysis shows that if dE � j�E���E
j 
 Eint � �%L�%R� the imaginary parts of the eigenvalues are

Im� 
 �%L�%R� and Im� 
 dE�

���L��R
� In the opposite limit dE � �%L�%R� the imaginary parts are Im� 
 %L

and Im� 
 %R� The 
rst limit is physically more relevant �we have assumed parameters in this regime�� although
the second one is also possible if the tunneling is too weak or the coupling between the q�bit ant the SET transistor
is too strong� In both limits the dephasing time� which is de
ned as the the longer of the two times�

�



�� � maxf�Im��
��� �Im��

��g ����

is parametrically di	erent from the measurement time ����� In the 
rst limit� dE � �%L � %R�� it is

�� �
��%L � %R�

dE�
� 
L�R ����

while tms � 
��L�R� One can check that in the whole range of validity of our approach the measurement time exceeds
the dephasing time� tms � ��� This is consistent with the fact that a good� quantum measurement should completely
dephase a quantum state� In Refs� � ����� where di	erent systems have been discussed� the expressions for the resulting
dephasing time were given by expressions similar to ����� thus �� � tms�

In our example the dephasing time is shorter than the measurement time� The reason for this is� probably� the
presence of the additional uncontrolled environment provided by the middle island of the SET transistor� The
transport of electrons occurs via a real state of the island N � �� In di	erent transitions the island may be left in
di	erent microscopic states� even though the same number of electrons have passed� To put it in the language of
Ref� � ���� the initial state of the system �aj�i� bj�i� j�i jm � �i evolves into aj�i j�
i jm
i� bj�i j��i jm�i� where j�i
stands for the quantum state of the uncontrolled environment� One may imagine a situation when m
 � m�� but j�
i
and j��i are orthogonal� In this situation the dephasing has occured but no measurement has been performed�
The additional environment plays� actually� a positive role� i� e� it helps us to perform a quantum measurement�

provided it dephases the state of the q�bit only when the system is driven out of equilibrium� This is because the
dephasing suppresses the transitions between the states of the q�bit �Zeno e	ect��

VI� THE MIXING TIME

Finally� we analyze what happens if we take into account the mixing terms in the system �������� We assume
k � � and investigate the eigenvalues of the eight by eight matrix formed by the coe!cients of �������� Note that
in the discussion above we have calculated all the eight eigenvalues for EJ � � �the two eigenvalues of the complex
system ���� are doubled when one considers it as a system of four real equations�� In the diagonal part there were
two zeros� which corresponded to two conserved quantities� A
�A� � �
�
 and B
�B� � ����� Six other eigenvalues
were large compared to the amplitudes of the mixing terms� It is clear� that switching on the mixing changes only
slightly the values of the six large eigenvalues� Moreover� one of the eigenvalues is always zero� This corresponds to
the conservation of the total trace A
 �A� �B
 �B� � �� The last � th� eigenvalue acquires now a small imaginary
part and this gives the time scale of the mixing between the two states of the q�bit�
We do not have an analytical expression for the mixing time� but we can estimate it for a concrete physical

situation� At the degeneracy point� we have %L � %R� and the corrections to the rates ���� cancel each other� thus�
no measurement is performed� Therefore� we choose Qset far enough from the degeneracy point� which is Qset � ����
so that %L � %R and the Coulomb blockade energy ECB � Eset�� � �Qset� is of the order of Eset� To satisfy the
conditions for the Golden Rule �see ���� and the discussion thereafter� we assume the chemical potential of the left
lead �L � V�� to exceed the Coulomb blockade energy by an amount of the order of ECB � Eset and assume ECB to
be the largest energy scale of the system� ECB � �E� The transport voltage should not� however� exceed the limit�
after which the third charge state of the SET transistor N � �� becomes involved� Thus V�� � Eset�� � �Qset� and
Qset should be chosen far enough from zero as well� In this regime we estimate the mixing time as

t��mix � ��

E�
intE

�
J

��E��
Eset � �� �

where 
L � 
R � 
� The measurement time in the same regime is given approximately by

t��ms � ��

E�
int

Eset
� ����

The exact values of Qset and V would determine the numerical coe!cients in front of �� � and ����� Thus� tms�tmix �
E�
JE

�
set���E��� One recognizes two competing ratios here� EJ��E� which is small� and Eset��E� which is large� The

condition tms�tmix � �� thus� imposes an additional restriction on the parameters of the system�

�



VII� DISCUSSION

To show that all the conditions assumed in this paper are realistic we calculate the charging energies Eset� Eqb and
Eint for the following case� the capacitance of the Josephson junction CJ � ��������	F� the capacitances of the normal
junctions CN � ���� �����F and the capacitances of all other capacitors C � ���� �����F� We obtain� Eset 
 ��K�
Eqb 
 ��K� Eint 
 ���K� Taking Qqb � ����� Qset � ���� and eV � � K we get �E 
 �K� ECB 
 ��K� and
V���ECB 
 ��K� We also assume ��
 � ���� The measurement time in this regime is tms 
 ��� � ���"h��kB �K� 

��� � ����s� For this choice of parameters we calculate tmix numerically� assuming 
rst EJ � ���K� and we obtain
tmix 
 ���� ���"h��kB �K� 
 ���� ���	s� Thus tmix�tms 
 �� and the separation of peaks should occur much earlier
than the transitions happen� Indeed� the numerical simulation of the system ������� for those parameters given
above shows almost ideal separation of peaks �see Fig� ��� Then� we calculate tmix for EJ � ����K� and we obtain
tmix�tms 
 �� This is a marginal situation� The numerical simulation in this case shows �see Fig� �� that the peaks�

rst� start to separate� but� later� the valley between the peaks is 
lled due to the transitions�

In this paper we have demonstrated that the current through a single�electron transistor can serve as a measurement
of the quantum state of the q�bit� in the sense that in the case of a superposition of two eigenstates it gives one or the
other result with the appropriate probabilities� This should be distinguished from another question� namely whether
it is possible to demonstrate that an eigenstate of a q�bit can actually be a superposition of two di	erent charge
states� i�e� whether it depends on the mixing angle � as described by Eq� ���� This question has been addressed in the
experiments of Refs� � �� ���� They used a setup similar to the one shown in Fig� �� a single�Cooper�pair box coupled
to a single�electron transistor� They could demonstrate that the expectation� i�e� the average value of the charge in
the box varies continuously as a function of the applied gate voltage as follows from ����
Our theory can also describe the type of measurements performed in Refs� � �� ���� For this purpose we analyze

the rates in the master equation ���� for general values of the mixing angle �� relaxing the requirement tan � � ��
Then� for our approach to be valid� we must have Eint � EJ� so that tan �N � �� In this regime each eigenstate of
the q�bit� j�i or j�i� corresponds to a single� though ��dependent propagation velocity �%
 or %��� Thus� if the q�bit
is prepared in one of its eigenstates� then even at the degeneracy point �� � ���� where the eigenstates are equally
weighted superpositions of two charge states� one would observe only one peak� We have calculated %
 as a function
of � using �� �� ����� ����� and ���� and obtained curves �not shown here� very similar to those in the experiments�
It should be added that near degeneracy our setup would not be e!cient in projecting onto the eigenstates anymore�
since the di	erence between the velocities of the peaks� j%
 � %�j� vanishes near the degeneracy point�

To conclude we have shown that a single�electron transistor capacitively coupled to a q�bit may serve as a quantum
measuring device in an accessible range of parameters� We have described the process of measurement by deriving the
time evolution of the reduced density matrix and we have discussed two dual ways to further reduce it� One way� in
which the density matrix of the q�bit is obtained� provides the dephasing time� while the other� in which the number
of tunneled electrons is counted� provides the time of measurement� We have shown that� in our case� the dephasing
time was shorter than the measurement time� and we have discussed the physical meaning of this result� Finally� we
have estimated the mixing time� i� e� the time scale on which the transitions induced by the measurement occur� We
have shown that it may be made longer than the measurement time with current technology�
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