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Abstract

We give a short exposition of new and known results on the “standard method”

of identifying a hidden subgroup of a nonabelian group using a quantum computer.

1 Introduction

1.1 Overview

The hidden subgroup problem is the archetypical problem in quantum computation. Al-
though the abelian case is well solved, the nonabelian hidden subgroup problem is a
major challenge. The purpose of this paper is to describe the state of knowledge about
this problem, focusing on the natural generalization of the technique used successfully in
the abelian case, which we will refer to as the “standard method”. Indeed, this is arguably
the only technique that has been significantly developed to date.

The “hidden subgroup problem” is this. We are given a function �����	� 
 , with the
property that � is constant on cosets of an unknown subgroup � �� , and distinct on
distinct cosets. Here � is given as an oracle or as an efficient classical program, and 
 is
an arbitrary set. The problem is to determine the hidden subgroup � . (A closely related
problem, the “stabilizer problem”, was formulated by Kitaev [6].)

The difficulty of the task depends on the type of group � . The abelian case can be
effectively computed with a quantum computer by repetition of coset state preparation

�
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and Fourier sampling — the “standard method” developed by Simon [11] and Shor [10].
In particular this is the heart of Shor’s solution of the discrete logarithm and factoring
problems.

In the nonabelian case, the standard method is known to be efficient for some “nearly
abelian” groups, the dihedral groups [4], although it is only known to be efficient in the
information theoretic, rather than computational sense. But more general solutions are
unknown; a solution for the symmetric group would yield, for example, the graph au-
tomorphism problem (see Section 3.3). In the nonabelian case the transform may again
be computed (at least for some groups of interest such as the symmetric group, see for
example [1, 3, 8, 2]), but we do not know how to convert similar measurements into a de-
termination of the subgroup. In this paper we give a short summary of these matters. We
focus on the statistical information provided by the standard method, rather than group-
specific computational issues. We give several “structural” statements, and the following
results about the standard method:

1. Normal subgroups: a short derivation of the result of Hallgren, Russell, and Ta-
Shma [5] showing that the standard method works efficiently in the case that the
hidden subgroup is normal.

2. Involutions: a negative result showing the inefficiency of the weak form of the
method in distinguishing between hidden subgroups of size

�
and � in arbitrary

groups, and particularly in 
�� . Part of this result was independently obtained by
Hallgren, Russell, and Ta-Shma [5].

3. Random basis: a negative result, showing the inefficiency of the strong form of the
method, for determining the hidden subgroup in a general group, when the irre-
ducible representations are computed (in the Fourier transform) in a random basis.

1.2 The Fourier transform and the standard method for hidden sub-
group computation

We first recall some basic group representation theory [9]. Given a group � , a matrix rep-
resentation is a group homomorphism � � � � �����
	��� C � , where ������	� C � is the group of
invertible 	���	 complex matrices. A finite group � has a finite list of inequivalent irre-
ducible representations ����� , which we henceforth call its irreps. Without loss of generality
we may assume the irreps are unitary. The sum of the squares of irrep dimensions � � 	���
equals � ��� , the order of the group.
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To every group element � we associate a complex vector of dimension � � � , indexed by
triples � �� �� where � is an irrep and

��� � �� � 	 � indicate an entry of the matrix � . The

vector associated with � has value
� 	�
 �� �������� � ��� in the � �� �� entry.

The Fourier transform over � is the extension of this mapping by linearity to the vec-
tor space C

�
of complex linear combinations of group elements. This linear mapping

(whose matrix we will denote � ) is unitary; this fact is a consequence of the orthogonal-
ity relations for group representations.

The trivial representation is the
�
-dimensional homomorphism which assigns to every

group element the number
�
. For a subset 
 of � , define � 
���� �� � ��� � �� � � � � and ��� 
 �!�

��� � 
�� �"� �� � �#� � �� � ��� � � . The orthogonality relations imply that ��� � � is $ � � � when � is

the trivial representation, and a zero matrix otherwise. (As mentioned above, the Fourier
transform has a scalar factor $ 	 �&% � ��� , so this corresponds to the fact that the Fourier
transform of the unit norm uniform superposition on � , is

�
on the trivial representation

and ' elsewhere.)
C
�

has an additional structure beyond its vector space structure: it is also an algebra
over C, using the product which is the extension of the group product by linearity. This
structure is preserved by the Fourier transform, simply because each irrep is a group
homomorphism. This is what is often known, for abelian groups (where each irrep is
1-dimensional), as the “convolution-multiplication” property of the Fourier transform.

In the “standard method” for the hidden subgroup problem we begin by forming
the uniform superposition over a random coset � � of the hidden subgroup � : in other
words, we form1 the uniform distribution over vectors � � �(� . First suppose that we know� (or at least � � ), then we have the pure superposition � � �(� . We then apply the Fourier
transform to this superposition, obtaining the vector

�

$ � � � � � �*)�,+ -.+ / $ 	 � )0  21 �3-4/�� �65 � � � �� ����87
1To form this mixture of superpositions, we first form the uniform-amplitudes superposition9: ; <=; �?>�@ <BA CED�F&G , we then compute H obtaining the superposition

9: ; <I; �?>J@ <BA CKD HML CONPG . We then measureHML CON , which determines the coset C2Q . The result is the superposition
9: ; RS; �UT�@ RVA COWEG for a uniformly ran-

dom C .
By not using HML CXN to affect the subsequent computation, we are discarding some potentially useful infor-

mation. No proposal, however, exists for taking advantage of this information.
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This gives rise to the probability distribution

� �J1 � � � �� ���� � � 	 �
� � � � � �

������ )0  1 �3- /�� �65 �
������

� � 	 �
� � � � ���

� � ��- / � � 7
Since we actually do not know � , and � is distributed uniformly, we sample � �� �� with the
probability

� 1 � � � �� ���� � � �� ��� � �� � � ��1 � � � �� �� � � .
The success of this method depends on how much statistical information about � is

present in this distribution. In particular: do a polynomial number of samples suffice to
identify � with high probability? In the following � � � � � denotes the character of � at � ,
which is simply the trace of ��� � � .
Lemma 1.1 ��� � �?� �� � 1 � � 0  21 ��� 5 � is $ � � � times a projection matrix, and rank �
��� � � � �
�� 1 � � 0  21 ����� 5 � .

Proof: Restricted to � , � decomposes into the direct sum of several irreps � � 27 7 7 ���� . ��� � � is
the direct sum of � - � � � ; as discussed above � - � � � is $ � � � if �M- is the trivial representation
of � , and zero otherwise. �

A certain amount of information about � is given just by sampling � , and ignoring
the matrix indices � and � . We refer to this as the “weak form” of the standard method.
In the normal case this more limited information is already enough, and in fact no fur-
ther information is available in the indices. For general subgroups further information is
present in the indices, and in the “strong form” of the method, these are sampled as well;
we will discuss this issue below. First we show that, when we Fourier sample the unit
norm uniform superposition on � � , (i.e. sample from the probability distribution defined
by the Fourier transform of this superposition), the probability

� �J1 � � ��� � of sampling � is
independent of � .

Lemma 1.2 2 The probability of measuring � is the same for the uniform superposition on the
coset � � (or � � ), as for the superposition on � .

Proof: ��� � � � � ��� � � ��� � � and ��� � � is unitary. �

Corollary 1.3
� �J1 � � ��� � � � 1 � � ��� � � 	�
� ��� � 0  1 ����� 5 � � � 1 � 	�
� ���	��
��� ����� � � � .

Corollary 1.4 The probability of sampling � is the same for the subgroup � as it is for a conjugate
subgroup ��� � � � .

2For methods that measure � but discard � and � , Lemma 1.2 implies that there is no loss in discardingHML CON as well. In particular we may discard HML CON when � is commutative.
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2 Normal
�

Recall that in the “standard method” for the hidden subgroup problem we sample from
the Fourier transform of the uniform superposition over a random coset � � of the hidden
subgroup � . We first show that when we restrict attention to normal subgroups, all the
information about � is present in the label of the sampled irrep. By the last lemma, the
probability of sampling � is independent of the particular coset � � : so we will examine
the uniform superposition on � .

Lemma 2.1 If � is a normal subgroup, ��� � � is a nonnegative scalar multiple of the identity � ,
nonzero if and only if � ���������
��� .

Proof: Let � �  7 7 7 ���� be the decomposition of � for � . We claim that if � � is trivial, so are
all the rest.

Let � be the space � acts on. Let 	 be the 1-dimensional subspace of � which � �
acts on. Since � is irreducible over � , the elements � of � carry 	 to a set of subspaces
spanning � . Since � � � � � � � for every � , each of the images � 	 is invariant for � . �

By the above lemma, � has non-zero probability of being sampled if and only if � is
in its kernel. The task of reconstructing � from a sequence of such samples is just that of
intersecting the kernels of the sampled irreps. The computational complexity of this task
depends upon the underlying group. In this paper we focus on the sample complexity.
In order to distinguish � from all other contending subgroups ��
 , it suffices to make
the probability of mistaking � 
 for � , less than inverse in the number of contending
subgroups.

How many subgroups can a group � have? No more than ������
� ���

: every subgroup has
a generating set of size at most ����� � � � � , so the number of subgroups is at most � � ����� �

� ��� � �
�������

� ���
.

We will show that the variation distance between the distributions on irreps for any
two normal subgroups � and � 
 , is bounded from below by a fixed constant. By a large
deviation bound, � ������ � � � � � repetitions of the sampling process suffice so that the sam-
ples uniquely identify the hidden subgroup � .

We begin with the two uniform superpositions � �(� � �� � 1 � � 0  21 � 5 � and � � 
 � �
�� � 1 � � � 0  1!� � 5 � . The � � distance between � �(� and � �"
 � is a constant because �$# �"
 is

at most half the size of one of these groups, wlog �%
 . So, examining only the elements in
�&
(' � , � � �(�)' � �&
 ��� �� * � % � . (Exercise: improve the lower bound to �+' � � .)� � �(� and � � � 
 � are the Fourier transforms of � �(� and � � 
 � . What we want is a lower
bound on the � � distance between the distributions arising from measuring these super-
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positions (whose probabilities are the norm squares of the amplitudes). We know that
�4� � �(� ' � � �&
 ��� � � � � � � ' � �&
 ��� � but this alone isn’t enough to get an � � distance state-
ment, because two superpositions can have nonzero � � distance while their distributions
have zero � � distance. However, this is not a problem for us because of the particular
form of � � �(� and � � � 
 � : recall from the above lemma that all their amplitudes are non-
negative reals.

We are now in the following situation: we have two nonnegative vectors � � � � and� � �&
 � , which we’ll now denote � and � . Each of these is of unit � � norm, and � � '�� � �
*

$ �+' � � . We wish to lower bound � � � '�� � � � .
Lemma 2.2 � � � '�� � � � * � � '�� � �� .

Proof: � � � '�� � � � � � / � � �/ '�� �/ �E� � / � � / '���/ ����� � / � ��/ � * � / � � / '���/ � � � � � '�� � �� . �

We conclude:

Theorem 2.3 � ������ � � ��� � repetitions of Fourier sampling suffice to identify, with high probabil-
ity, a normal subgroup of a group � .

3 General
�

Up to now we have focussed on the extent to which information about � can be detected
from the measuring just the name of the irrep, � . Of course we can actually measure more,
namely the row � and column � within � . It is possible that this contributes substantially to
our power. In particular, conjugate subgroups give rise to identical distributions on irreps
and so cannot be told apart without measuring the matrix indices within the irreps. In
this section, we establish limits on what further information can be obtained from the row
and column labels.

3.1 Rows provide no information

In this section we show that there is no point in measuring the row � . (Whether row or
column depends on whether the group acts on the left or right. Here we suppose the
group acts on the left.) This is because, conditional on measuring � and � , the distribution
on � is independent of � (actually it’s always uniform); we now show how this is due to
the fact that in the standard method we average over random cosets � � .

For a particular coset � � , the probability of sampling the entry � �� of � is propor-
tional to the norm squared of ��� � � �-4/ . Thus the probability of sampling entry � �� is
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the norm squared of the � � � -dimensional vector ����� � � �- / � �  � with entries indexed by � .
Since ��� � � � � ��� � � ��� � � , this vector is a linear combination of the � ��� -dimensional vec-
tors ����� � ��- ��� �� � , with coefficients ��� � � ��/ . By the orthogonality relations, the 	 � vectors
����� � ��- � � �� � are orthonormal, and therefore the norm squared of the � ��� -dimensional vec-
tor ����� � � ��- / � �� � is equal to the norm squared of the � -th column of ��� � � , and independent
of � .

If we keep track of the leading constants, this argument shows:

Theorem 3.1
� 1 � � � �� ���� � � �� ��� � ��� � � / � �� .

3.2 Random basis

The Fourier transform is uniquely defined only up to a change of basis within each irrep;
for abelian groups all irreps are one-dimensional so there is no ambiguity in the definition
of the transform, but for nonabelian groups there is an arbitrary choice of basis to be made
within each irrep. How much statistical information is available by measuring the matrix
entries � �� , in addition to the irrep � , may in general be basis dependent. In this section,
we show that if we choose a random basis for each irrep, then the additional information
available is negligible, provided that the subgroup � is sufficiently small and the group
� is sufficiently non-abelian. To formalize this we compare the actual distribution

� 1 �
� 1 � � � ���� � on irreps and columns (we omit the row � thanks to the previous section), with
the averaged distribution

� 1 � � 1 � � � �� � � � � � 1 � � � � � ��� ���� � 	�� � �	 
 � 1 � � ��� � , where 	�� is
the Haar measure for unitary matrices. (The last equality follows from the orthogonality

relations for representations.) Let � � � � ���� 1 � � � � � � where � � � � is the number of conjugacy

classes in � .

Theorem 3.2 Let �	� * �
���� ��� � �
� 

� ���
� . Then with probability at least

� '�� (over the choice of
random basis for the Fourier transform),

���
� 1 ' � 1 ��� � � � .

Proof: Given an irrep � in a particular basis, the probability of sampling the � -th column
of � is

	 
� ��� � ��� � � / � �� (where ��� � � / is the � -th column of ��� � � ). Suppose we instead choose
a random basis for � , which we do by replacing � by the isomorphic irrep � � � ��� for
� chosen with the Haar distribution in the unitary group. Let � / be the � -th column
of � , which is a vector chosen uniformly from the unit sphere. Then the probability of
measuring the � -th column in this modified irrep is

	�
� ��� � ��� � ��� / � �� . Our task is to show that
for sufficiently large � , this is with high probability close to �	 
 � 1 � � ��� � .
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Let � � � � 	 � . We upper bound � by applying the Cauchy-Schwartz inequality to
the two vectors � � � � and �
	�� � � . The norm squared of the first vector is simply ��� � � , the
number of irreps of � . Now � � � � � � � � � ��� � � 	��� � � � �!� � � � � � � � � ��� � � � .

To bound the � � distance between the vectors
� 1 and

� 1 we first bound the proba-
bility ��� of sampling an irrep � with ��
� � �
��� � � � bounded above by � . After that we will
bound the � � distance conditional on having sampled an irrep with ��
��� ����� � � ����� .

By Corollary 1.3,
� 1 � � ��� � � � 1 � 	 
� ��� rank �
��� � � � . So ��� � � �	��
����� � �,� 1 � ����� � 1 � � ��� � �� 1 � �� ��� � ����
������ � �,� 1 � ����� 	�� � � 1 � �� ��� � � 	 � � � 1 � ���� ��� which from the preceding argument is

bounded above by
� 1 � � � � � � �� � ��� ���!% � . We choose � � �	� %�� , giving ��� � �K%�� .

Now for the high rank case, consider the distribution on � conditional on having ob-
served an irrep � with ��
��� �
��� � � ����� . We need to show that with probability at least� ' � (in terms of the random choice of � ), this distribution is within � � distance at most
� �K%�� of the uniform distribution. We will show slightly more: with probability at least� ' � , for all � and all � , � ��� � ���!/ � �� deviates from its expectation by at most a � �K%�� fraction.
(Since we are concerned here only with fractional error we have suppressed the leading
scale factor of the projection �� � 1 � ��� � � .)

What we are considering is the following process: a unit vector is chosen uniformly in
C
	


, then projected onto a fixed subspace of dimension  !�"� ; by appropriate change of
basis we can without loss of generality suppose that the subspace is spanned by the first  
basis vectors of C

	 

. Let # be the probability that the squared length of the projected vector

differs from its expectation  J% 	 � by a fraction greater than than � �K%�� . Since we will apply
a union bound over all � and � , it suffices to show that # � �K% � � � . To begin with, note
that, due to the isometric correspondence between the unit spheres in C

	�

and R �

	 

, the

problem is equivalent to the same problem in real spaces of twice the dimensions, namely
projection of the unit sphere in R �

	�

onto a �$ -dimensional subspace. Let % denote the

projection matrix; in the appropriate basis it is diagonal, with �& � ’s on the diagonal.
We analyze the uniform sampling from the unit sphere indirectly, approximating it

by the process of sampling a vector � from the spherically symmetric, � 	 � -dimensional
unit variance Gaussian distribution. Let the projection of � be � 
 �'% � . (Note that � 
 is
distributed according to a �& -dimensional Gaussian distribution of variance  J%�	 � .) Then
� 
 % � � � � has the same distribution as �� � 1 � ��� � ��� / (with the understanding that pairs of real

coordinates in the first vector form individual complex coordinates in the second). The
probability # that � � 
 % � � � � � � deviates from its expectation by fraction � �K%�� is bounded by
the sum of the probabilities that � � � � and � � 
 � � deviate from their expectations by fraction
�K%�� .
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We use the following Chernoff bound: if � � 27 7 7  ��� are independent Gaussian random
variables each with unit standard deviation, then

� � ��� � � � �- ' � � � � � ��� � � � � � � � � � � � ��� � �	� � .
For � � � , � � � ��� � � � � ��� � � � 
��� � ' � � � ��� � � , and therefore

� � � �� � � � �- ' � � � � � ���
� 
��� � '���� � � � � � � . Since this bound is decreasing in � , and we are applying it with
� � �& �� �&� , we conclude that #���� 
��� � ' �&��� �3%�� � � � ��� � � ��� 
��� � ' � �	� � ��� ��� � .

In order to ensure that # � �E% � ��� it suffices therefore that

� � � * � �
�+' �

�
� � � � ���

�
as assumed. �

Corollary 3.3 With probability at least
� ' � (over the choice of random basis for the Fourier trans-

form), � � � 

��� � � � ��� � � � � � � � � repetitions of Fourier sampling are required in order to achieve constant

bias in distinguishing any two (a priori equally probable) conjugate subgroups � and � 
 .
Proof: The Hellinger distance � 1 �������� � � � � � � � � ' � � � � � � between two distributions ��
and �� is additive across independent samples, and obeys the inequalities � �� '!�� � � � %"� �
�"1 �#���$�� � � � �� '!�� � � 7 �

As an example consider the symmetric group � � 
 � ; we know that � � � � �
��� �&% � � ' � � . If � � � � � � � � � � ��( for a fixed ) � ' then we need exponentially many samples
to gain useful information from � .

3.3 Distinguishing *,+-*/.10 from *2+-*3. 4
The graph automorphism problem reduces, via polynomial time reductions [7], to deter-
mining the size of the automorphism group in the special case where it is known to be at
most � . So, although sampling irreps cannot distinguish conjugate subgroups, one may
still hope that this method is useful for distinguishing subgroups that are not conjugate.

Now consider the special case of distinguishing � � � � �# � from � 
 � � � � . Let 5 ��# � be
the conjugacy class of # .

Theorem 3.4 The � � distance between the distributions on irreps due to Fourier sampling from
� � � and � �&
 � , is at most

� % $ ��5 ��# � � .
Proof: The equation

� 1 � � ��� � � 	�
� ��� � 0  1 ����� 5 � implies that for � 
 , � is sampled with prob-
ability 	 �� % � � � ; while for � , � is sampled with probability 	�����	 � � ������# � ��% � ��� . So the � �
distance between the distributions is �� ��� � � 	 � � ��� ��# � � .

We upper bound this using the Cauchy-Schwartz inequality and the following equal-
ities:
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1. � � 	��� � � ��� .
2. � � ��# � � ����5 ��# � �E� � ��� .
3. � � � ������# � � � � � � � # � � .

Here
� � # � is the centralizer of # .

(1) is basic. (2) follows by considering the action of � on itself by conjugation, since
under this action

� � # � is the stabilizer of # and 5 ��# � is the orbit of # . (3), which generalizes
(1), holds for the following reason. Recall that the unitary character table of G has con-

jugacy classes labeling columns, irreps labeling rows, and the �
� �# � entry is
� � � ��� � �� ��� � ��� # � .

Now since each column is unit norm,
� � � �

� � ��� � �� ��� � ������# � � � . With (2) this shows (3). Now
we can apply Cauchy-Schwartz.

��� � � � �(� � � ' � � � � 
 � � � ��� � � �
� � � ) � 	 � � � ��� # � �

� �
� � �

� ) � 	 �� � � � � � ) � � � ��� # � � � � �
� �

� � �
� � # � �
� ��� � � � � � ��5 ��# � � � � � � 7

�

There are examples in which it is challenging to compute # even though the conjugacy
class 5 ��# � is known. Observe that in such cases this quantum algorithm has at most a
quadratic advantage over the simple probabilistic strategy of checking whether � ��# 
 � �
� ��� � for a random conjugate #�
 .

We apply Theorem 3.4 in the case that # is an involution in � � 
 � , i.e. # is a product
of some � disjoint transpositions. In this case ��5 ��# � �8� ���

�
	 ���4� � � � �,��� ; as a convenient lower
bound on this quantity, count only those conjugates which transpose odd elements with
even elements, of which there are �� � � ������  � � � � ���� ��� * ��� . So the � � distance between the
distributions on irreps is at most ����� � � � � � . In the graph automorphism application � can
be proportional to

'
, in which case this is exponentially small.

Finally we combine this bound with Theorem 3.2. Note that � � � ���
��� ����� � !#"%$
��� � �� ' � � ' ' � � ' � � , so:

Corollary 3.5 If we apply the standard method, using a random basis, to the graph automorphism
problem, then with probability at least

� ' � the � � distance between the Fourier sampling distri-
bution given that the automorphism group is trivial, and the Fourier sampling distribution given
that the automorphism group is of size � and contains an involution with � transpositions, is at
most


��� � ' �& ' � � ' � � � ' � � � ��(') �� � ����� � � � � � .
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Just as in Corollary 3.3, the upper bound on � � distance implies a lower bound on
the number of samples which must be collected in order to distinguish the hypotheses
reliably.
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[8] D. Rockmore, Computation of Fourier Transforms on the Symmetric Group, in: E.
Kaltofen, S. M. Watt (eds.), Computers and Mathematics, Springer, 1989.

[9] Jean-Pierre Serre. Linear Representations of Finite Groups. Springer-Verlag, 1977.

[10] Peter Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Journal on Computing, 26(5), 1484–1509, 1997.

[11] Daniel Simon. On the power of quantum computation. SIAM Journal on Computing,
26(5), 1474–1483, 1997.

11


