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The cumulative reaction probability is calculated for the H,+OH+H+H,O reaction in its full (six) 
dimensionality for total angular momentum J=O. The calculation, which should give the 
(numerically) exact result for the assumed potential energy surface, yields the cumulative reaction 
probability directly, without having to solve the complete state-to-state reactive scattering problem. 
Higher angular momenta (J>O) were taken into account approximately to obtain the thermal rate 
constant k(T) over the range 300”<T<700”. The result deviates significantly from the experimental 
rate constant, suggesting that the potential energy surface needs to be improved. A systematic series 
of reduced dimensionality calculations is carried out in order to characterize the behavior and 
reliability of these more approximate treatments; a comparison of the full dimensional results with 
previous reduced dimensionality calculations is also made. 

I. INTRODUCTION 

The most detailed theoretical description of a chemical 
reaction, i.e., the state-to-state differential scattering cross 
section at a well defined collision energy, requires that one 
solves the Schrodinger equation to obtain the S matrix 
s “p,nr(J,E), the state-to-state transition amplitudes as a 

function of total energy E and total angular momentum J. 
(n, and np denote reactant and product quantum states, re- 
spectively.) All attributes of the reaction can be expressed in 
terms of the S matrix, from the most detailed cross sections 
noted above to the least detailed quantity, namely, the ther- 
mal rate constant k(T) which resolves neither reactant nor 
product quantum states. All of the averaging over initial and 
final quantum states inherent in the definition of the rate 
constant are conveniently contained in the cumulative reac- 
tion probability (CRP), 

N(E)= i t=+ 1) c IPnp,nrww7 (1) 
J=O “r .“p 

in terms of which the thermally averaged rate constant is 
given by 

where Q, is the reactant partition function per unit volume. 
[The microcanonical rate constant, which is usually of most 
interest for unimolecular reactions, is also given in terms of 
the CR& 

~(E)=C~~~P,(E)I-'N(E), (3) 
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where pr is the reactant density of states.] Therefore, if one is 

interested only in the rate constant itself, it would clearly be 
desirable to be able to calculate the CRP directly, without 

having to determine the complete S matrix. The purpose of 

this paper is to describe such a theoretical approach to the 
reaction H,+OH-+H+H20. (Some of the results of this 
work have been reported in an earlier Communication.‘) 

Though accurate reactive scattering calculations have 
been carried out in recent years for several atom-diatom 
systems, e.g., H,+H,* F+H2,3 C1+HC1,4 there are just be- 
ginning to be such calculations for four atom systems. The 
first system studied was the H,+CN--+H+HCN reaction.5 

More recently the H,+OH+H+H,0,6-9 the 
OH+CO-+H+CO,‘” and the Cl+HOD-+HCl+OD 

reactions” have been studied by quantum calculations. In 
particular the H,+OH--+H+H,O reaction seems to be be- 
coming a benchmark system for the development of theoreti- 
cal methods. This reaction has also been the subject of a 
variety of experimental investigation, and is important in 
modeling atmospheric and combustion processes. In addition 
to rate constants measurements, more sophisticated experi- 
ments have studied the mode selectivity of the reaction 
process.i2’13 

Most of the theoretical treatments of the titled reaction to 
date have involved “reduced dimensionality” approxima- 
tions. Wang and Bowman6 developed a model for the 
H,+OH+H+H,O reaction where the three distances are in- 
cluded exactly in a 3D-scattering calculation. The remaining 
three angles are treated in an adiabatic approximation. Clary7 
introduced a rotating bond approximation, effectively reduc- 
ing the scattering calculation to three dimensional with the 
H, distance, the H,-OH distance, and the OH rotation in- 
cluded exactly. In a more recent calculation* the H2 rotation 
was also included exactly, resulting in a four-dimensional 
full-scattering calculation. Differences from the original 
three-dimensional treatment were found to be rather small. 

Zhang and Zhang’ employed a time-dependent technique to 
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FIG. 1. Atomic displacements for motion along the six normal mode coordinates of the H,+OH saddle point. (a)-(f) correspond to Q , - Q6, arranged as in 
Table I. The Cartesian x and z coordinates define the plane of the transition state. The arrows are drawn to scale. 

investigate initial state-selected reaction probabilities for the mation they reported reaction probabilities for a set of 
H,+OH+H+H,O reaction. The reactant asymptotic region vibrationally and rotationally excited H, and rotationally ex- 
was included exactly, so that reaction probabilities for a cited OH initial states. 
given initial (vibrational and rotational) state could be calcu- As noted above, our interest is the direct (but correct, 

lated. Five degrees of freedom were included in their calcu- i.e., without approximations) calculation of the CRP of Eq. 
lation, neglecting only the OH vibration. Within this approxi- (11). Seideman and Miller’6-i8 developed a practical scheme 
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TABLE I. Frequencies and grid parameters. 

Number of grid points 

Frequency EC0.2 0.2 eVsESO.4 EB0.4 

Coordinate (ax) eV eV eV 

QI 0.016 153 4 4 4 

it 

0.003 907 4 5 6 

0.003781 5 5 7 

Q4 0.002 607 4 4 6 

Composite grid 71389 89 017 216363 

to perform such calculations. (One should also note other 
related approaches that deal with the flux-flux time correla- 
tion function.“) Their approach requires the use of some 
basis set (or grid) to represent the Hamiltonian in the transi- 
tion state region of the potential energy surface. The CRP is 
expres:ed in terms of a modified Green’s function 
[E - (H - i>)] - ‘, where E is an absorbing potential at the 
edge of the grid that imposes outgoing wave boundary con- 
ditions for the Green’s function. The numerical grid for such 
calculations is considerably smaller than for a full scattering 
calculation, resulting in considerably less computational ef- 
fort for the rate calculation than for a complete state-to-state 
calculation. 

The original formulation of the direct CRP 
calculationi7*‘* involved the solution of a system of equa- 
tions with a large number of right-hand side vectors: the 
action of the Green’s function on each grid point in the re- 
actant absorbing strip had to be computed. More recent 
work*’ has circumvented this difficulty: a Hermitian reaction 
probability operator was introduced which was shown to 
have only a small number of nonvanishing eigenvalues. 
These eigenvalues, which have shown to lie between 0 and 
1, can be viewed as the rigorous generalization of the trans- 
mission probabilities of the transition state theory. The cu- 
mulative reaction probability is simply the sum of the eigen- 
values of the reaction probability operator. A efficient 
iterative scheme for calculating the eigenvalues of the reac- 
tion probability operator was also presented. Again a set of a 
linear equations has to be solved, but compared to the origi- 
nal formulation’7*18 the number of right-hand side vectors, 
and therefore the computational effort, is drastically reduced. 
Now not the number of grid points in the reactant absorbing 
strip but the number of nonvanishing eigenvalues of the re- 
action probability operator determines the number of right- 
hand sides in the system of equations to be solved. 

This article is organized as follows. In Sec. II the general 
methodology is reviewed and the numerical details are pre- 
sented. Section III shows results for the cumulative reaction 
probability for vanishing total angular momentum (J=O). 
These results are used to calculate to thermal reaction rate as 
described in Sec. IV. Comparison to experimental data and to 
theoretical results of reduced dimensionality calculations is 
given. In Sec. V aspects of reduced dimensionality treatment 
are discussed extensively. Series of five-dimensional, four- 
dimensional, three-dimensional, and two-dimensional calcu- 
lations are presented and compared to the full-dimensional 

result. Errors induced by the different reduced dimensional- 
ity models are analyzed. 

II. CALCULATION OF N(f) 

Following the approach developed by Seideman and 
Miller’7>‘8 and Manthe and Mille?’ the cumulative reaction 
probability is computed as 

Na=tr[ml=C Pk(mv 
k 

(4) 

where 1; is the reaction probability operator, defined by 

@(E)=~J;;&(E)+E~~(E)&, (5) 

and pk(E) are its eigenvalues, the eigen reaction probabili- 
ties. The Green’s function 

@E)=[E-(B-G)]- (6) 

involves the Hamiltonian operator of the molecular system, 
and i= >,+ $ is an absorbing potential, E,( EJ being the part 
in the reactant (product) region. 

Normal coordinates of the transition state are employed 
which results in a Watson form of the Hamiltonian2’ In the 
present work we limit attention to zero total angular momen- 
tum and neglect vibrational angular momentum terms, since 
they were seen in earlier work” to have negligible effect, 
which is expected be also the case here. The resulting Hamil 
tonian reads 

6 

I;r=c -;-$ t-V(Q), (7 
n=l II 

‘1 

where Q, are the mass-weighted normal coordinates of the 
six vibrational modes at the transition state. These normal 
coordinates are depicted in Fig. 1. Q i is best characterized as 
an O-H stretching mode. Q2 describes mainly an in-plane 
H2 rotation with approximately unchanged OH position, 
while Qs is the analogous out-of-plane motion. H2-OH 
bending, or a simultaneous H2 and OH rotation, is given by 
Q4. The coordinates Q, and Qs are most strongly influenced 
by the reactive rearrangement. Qs is the H, stretch mode and 
coordinate Q6 represents the motion of the H, hydrogen 
atom towards OH. Harmonic analysis at the transition state 
geometry results in real frequencies for the coordinates Q t to 
Qs, while an imaginary value is found for the reaction coor- 
dinate Q6. The frequencies are displayed in Table I. The 
potential V(Q) is taken from the Schatz-Elgersma fitI to 
ab-initio results of Walch and Dunning” which was em- 
ployed also in previous calculations of the 
H,+OH+H+H,O reaction.6-9 

Discrete variable representations (DVR)22723 are used for 
the representation of the Hamiltonian and the absorbing po- 
tentials. A Gauss-Hermite DVR is employed in the coordi- 
nates Q, to Q4. Depending on the specific coordinate and 
energy four to seven grid points per coordinate are required 
to reach convergence. For the reaction coordinate Q6 and the 
Q, coordinate which is strongly coupled a sine-function 
DVR23 is employed. The grid spacing is chosen to allow for 
a maximum kinetic energy of 2.2 eV. The composite 6D grid 
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TABLE II. Parameters for absorbing potentials, 

Cl 

0.375 

c2 

0.625 

A 

1.5 eV 

Qo 

18 ax. 

4rm.x 

37 a.u. 

is truncated at a potential cutoff of 2.2 eV. The final grid 
consist of about 100 000 points for lower energies up to 
about 200 000 points for higher energies. More details are 
given in Table I. 

The absorbing potentials are taken as functions of the 
two strongly coupled degrees of freedom, Qs and Q6, and 
defined as follows: 

IO, for 690 

+d = 
i 

tq-qo)4 
x (q,,-qo)4 7 for 4’40’ 

G?)=q -q), 

where 

q=c,Qs+M&. (9) 

Only the part of the surface for -qmax<q<qmax is included 
in the description. The parameters are given in Table II. The 
results obtained with these parameters are stable, and should 
be accurate, to at least 10% for all but the lowest energies 
(EC0.05 eV) reported. 

As can be seen from the above description, a number of 
parameters must be adjusted in the calculation. Elaborate ad- 
justment of each parameter in a full six-dimensional calcula- 
tion of N(E) would clearly be prohibitive because of the 
extreme computational effort of such calculations. Therefore 
the following scheme was employed. First two-dimensional 
calculations including only the coordinates Qs and Q6 were 
performed for a set of total energies E. The parameters X, qo, 

and q max were adjusted by systematic parameter variation in 
these calculations. Since the numerical effort of two- 
dimensional calculations is comparatively small, a large 
numbers of calculations can be performed easily. Next the 
kinetic and potential energy cutoffs employed in the delini- 
tion of the DVR grid were likewise obtained from two- 
dimensional calculations. The number of DVR-grid points 
required in the other four coordinates Q, to Q4 was deter- 
mined by three-dimensional calculations. For each of these 
coordinates calculations including the coordinates Q, , Q6, 
and the coordinate in question were performed and the num- 
ber of DVR-grid points in the coordinate in question is in- 
creased until convergence was achieved. It should be noted 
that the number of DVR-grid points required depends on the 
total energy E. Therefore this procedure was repeated for 
different energy regions. Finally a few full six-dimensional 
calculations were performed for different sets of parameters 
to ensure that the parameter values were sufficient also for 
the full calculation. 

The eigenvalues pk of the reaction probability operator 
6 were calculated by the Lanczos scheme described in Ref. 
20. Starting from a random initial vector I+$ a Lanczos- 
iteration sequence including reorthogonalization 

n-l 

Ic/n=hl-l -c ~k(@kklphl) 
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k=O 

is used to generate a orthonormal basis spanning the Krylov 

space {*oTP*o,fJ2@ o,...,P@o}. The representation of P 
within the basis {r/~~,&,...,fi~} is then used to calculate the 
pk’s by direct numerical diagonalization. N(E) is calculated 
directly by summing the diagonal elements 

N(E)= i ($kibk). 

k=O 

(11) 

The order n of the scheme is taken sufficiently large to yield 
converged results. At low energies 3 to 4 iterations are suf- 
ficient for this purpose while for the highest energies the 
required iterations increases up to 44. 

The symmetry of the H2 reactant in the 
H,+OH+H+H,O reaction causes a degeneracy of the eigen 
reaction probabilities pk. The reaction can proceed equiva- 
lently in two ways: The OH can attack either the one side of 
the H, or the other. At the energies under consideration these 
two pathways do not interfere with each other. The normal 
coordinates employed here are constructed so that only one 
of the two pathways is explicitly included in the calculation. 
Therefore only one of each two degenerate pk’s is obtained. 
To account for the second set of pk’s the resulting N(E) of 
Eq. (8) is multiplied by two. 

Every action of the reaction probability operator 6 on a 
vector employed in the Lanczos iteration sequence requires 
two operations of the Greens function 6 (or its Hermitian 
conjugate) on a vector, or equivalently, the solution of two 
complex systems of linear equations of the form 

L=f, 

where in the present case 

(12) 

A=E-(Ei-ie)=&.~)-~, 

and 

(13) 

f=#, x=&E)& (14) 

Given the size of basis involved in a six-dimensional prob- 
lem, a direct solution, which requires storage of the Hamil- 
tonian matrix in the core memory of the computer, is not 
feasible. Moreover, direct methods scale in time roughly as 
the cube of the order of the linear system and hence become 
prohibitively expensive as the dimensionality increases. It- 
erative methods do not require storage of the matrix and are 
particularly efficient for the case of sparse matrices which 
arise from discrete variable representations. 

A variety of iterative methods for solving linear systems 
exists, a number of which are, at least in principle, applicable 
also to complex problems. In the present work we extended 
the generalized minimal residual (GMRES) algorithm, pro- 
posed by Saad and Schultz,24 to the case of a general com- 
plex matrix. GMRES can be considered as a generalization 
of the minimal residual (MINRES) method25 to nonsymmet- 
ric systems. It is based on application of the Arnoldi 
process26 to compute an I,-orthonormal basis of the Krylov 
subspace K, = u , ,A IJ i , . . . ,A k- ‘u , , where the initial vector 
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u, is a normalized residue, u 1 = ~-Axo)l~~Cf-Axo)~~, x0 is 
an initial guess for the solution vector X, and k numbers the 
iterations. In this representation the system is upper Hessen- 
berg and hence inexpensive to solve. Saad and Schultz24 pro- 
posed a solution which minimizes the residual norm over 
K, , by analogy to the MINRES method. In the present work 
we extended the algorithm of Ref. 24 to the case of a com- 
plex matrix and implemented it with a preconditioning ma- 
trix, as suggested in Refs. 27. Equation (12) is thus replaced 

by 

&&&‘f (15) 

where the preconditioner B is chosen to be as similar as 
possible to A (so as to minimize the number of iterations by 
operating with a matrix g-‘i that is similar to unity) but 
such that i-’ is easy to compute. Several preconditioners 
were tested and found to improve the performance of the 
method to various degrees. These include a separable and an 
adiabatic two- and three-dimensional approximations to the 
Hamiltonian and a diagonal preconditioner B =diag A. Ex- 
tensive comparisons found the optimal preconditioner to be 
the simple diagonal matrix, consisting of the diagonal ele- 
ments of A. The other more sophisticated (but more expen- 
sive to apply) preconditioners were found to reduce the num- 
ber of iterations but result in an overall increase in the 
computational time as compared to the diagonal precondi- 
tioner. We stress, however, that this result is problem depen- 
dent, namely, it depends on the structure of the Hamiltonian 
matrix and hence on the choice of coordinate system. Par- 
ticular care was taken to fully exploit the sparsity of the 
Hamiltonian as fully as possible by rearranging the matrix 
repeatedly so as to perform only nonzero multiplications. In 
the course of this work we tested several alternative iterative 
methods that are adaptable to complex systems, including a 
variation of Davidson’s method” and the generalized conju- 
gate Gradient algorithm.29 We found GMRES to outperform 
these methods. This finding is to a certain extent also prob- 
lem dependent, namely it depends on the desired accuracy 
and on the availability of an initial guess. We expect it to 
hold more generally in calculations of the Green’s matrix, 
however, regardless of the precise structure and dimension- 
ality of the Hamiltonian. Most of the comparisons of differ- 
ent algorithms were performed for the H+H, reaction, using 
normal mode coordinates as discussed in Ref. 18, and for 
reduced dimensionality versions of the H,+OH problem. 

Ill. RESULTS FOR H,+OH+H+H,O 

Figure 2 displays the cumulative reaction probability for 
zero total angular momentum (J=O) as a function of the total 
energy. The zero of energy is chosen to be the energy of the 
reactants H, and OH in their respective ground state, i.e., 
including zero point vibrational energy. One interesting ob- 
servation, in contrast to the findings for simple three-atom 
reactions, is that there is no remnant of the staircase structure 
predicted by classical transition state theory. This difference 
in behavior results from the increased number of degrees of 
freedom in the four-atom reaction H2+OH-+H+H20 and 
can be understood by examining the different eigen reaction 
probabilities pli, displayed in Fig. 3. As pointed out in earlier 

0.2 0.3 
E WI 

FIG. 2. Cumulative reaction probability N(E) for J=O: present full dimen- 
sional calculation (full line), 3D calculation of Refs. 6 and 30 (dotted line), 
and experiment (crosses). 

work2’ the pk’s can be interpreted as the contributions of the 
different states of the activated complex to the cumulative 
reaction probability. Figure 3 shows that all pk’s increase 
from 0 to 1 with increasing energy, but before an individual 
pk has even nearly reached its final value the next pk has 
already gained a considerable value. The different pk contri- 
butions to N(E) are thus overlapping, resulting in a smoothly 
increasing structure for N(E). 

The dotted line in Fig. 2 displays approximate results for 
N(E) calculated by Wang and Bowman.6930 In this treatment 
all radial coordinate are included exactly, while all angular 
coordinates are treated by an adiabatic approximation. The 
description of the angle-type coordinates employs a har- 
monic approximation for the angular potential. The agree- 
ment with the full 6D results is quite good. At higher ener- 
gies the approximate values tend to be too small. This 
deviation is explained easily. The approximate results as- 
sume harmonic potentials for the angular motion, while the 
real potentials are anharmonic. Therefore the energy of states 
which show excitation in an angular coordinate is too high in 

‘.O/ 
0.8 

0.6 

0.4 

0.2 

All 
0.2 0.3 0.4 
E WI 

FIG. 3. Eigen reaction probabilities pt(E) for J=O. 
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the approximate description. Consequently, the total density 
of states, and also N(E), is too small at a given energy E. 
Since the harmonic approximation becomes less accurate for 

1 O-l2 

higher excited states, the deviations can be expected to in- 
crease with increasing energy as observed in Fig. 2. 

75 
0. 

IV. THERMAL RATE CONSTANT 
E lo-l3 
9 

\\ 
\.\ 

x ‘:\ 

A. 
-\. 

‘k;.* 

x--c 

The thermal rate constant is the quantity which is ob- 
served in experiment, and it is given by the Boltzmann av- 
erage of the cumulative reaction probability 

k(T)= e-E’kTN,,,(E)dE. 

Here N,,,(E) is the total cumulative reaction probability, 

1 o-l4 

N,,,(E) = c (25+ 1 W,(E), (17) 

where NJ(E) is the cumulative reaction probability for a 
total angular momentum J and Q, is the partition function of 
the reactants. Assuming separability of vibrational and rota- 
tional motion at the transition state (the “J shifting”31 or 
modified wave numbers2 approximation) each N,(E) can be 
calculated by shifting the .Z=O value by the appropriate ro- 
tational energy 

N.,(E)= 2 N,,o(E-E;:). (18) 
K= -J 

E$ is the rotational energy of the activated complex with 
the .Z,K-rotational quantum numbers. Inserting Eqs. (17) and 
(18) in Eq. (16) yields 

k(T)= e-E’kTNJ,o(E)dE, (19) 

where Qf is the rotational partition function of the activated 
complex. Within the parameter range under consideration it 
can be well approximated by its classical limit 

TV 
Q:U)=fi3 81,1,1, J (20) 

where I,, I,, and I, are the three principle moments of 
inertia of the activated complex. 

The reactant partition function Q,(T) consists of contri- 
butions from the vibrational and rotational motion of the H, 
and OH reactant molecules and from their relative transla- 
tional motion. For OH an electronic contribution 

Q $i( T) = 1 + e -AEelecJkT (21) 

(AEelec= 140 cm-‘) is included. It results from the spin-orbit 
splitting of the *II ground state of OH. Since only one of 
these electronic states correlates to the activated complex, no 
multiplying factors due to electronic degeneracy (or near de- 
generacy) are included. 

Before presenting calculated rate constants for the 
H,+OH--+H+H,O reaction a problem of the potential en- 
ergy surface employed has to be mentioned. The potential 
energy surface was constructed by Schatz and Elgersma14 as 

1.5 2.0 2.5 3.0 3.5 

IOOOiT [i/K] 

FIG. 4. Thermal rate constant k(T): present full dimensional calculation 
(full line), 3D calculation of Refs. 6 and 30 (dotted line), rotating bound 
approximation results (Ref. 7) (dashed line), present three-dimensional ap- 
proximation (dash-dot line), and experiment (crosses). 

a fit to the ab initiu results of Walch and Dunning.” How- 
ever, the geometry of the transition state given by the 
Schatz-Elgersma-fit differs significantly from the original 
Walch and Dunning transition state geometry. Therefore, two 
sets of moments of inertia of the activated complex can be 
used alternatively in Eq. (20): the Schatz-Elgersma-surface 
results in Z,=4079 a.u., I,=37 520 a.u., Zc=41 599 a.u., 

while the Walch and Dunning data gives 1,=983 a.u., 
Z,=42 288 a.u., Zc=43 270 a.u. Qf,, values derived from 
these moments of inertia are smaller by a factor of about 0.5 
for the Walch and Dunning data compared to the Schatz and 
Elgersma fit. To be consistent in the treatment of internal and 
rotational motion, rotational constants corresponding to the 
Schatz-Elgersma fit are used throughout the present work. 
This should enable comparison to other theoretical work, 
where the overall rotational motion was not approximated as 
separable. Analogous results employing the Walch-Dunning 
geometry can be obtained by multiplying the rates presented 
below by a factor of 0.53. 

The rate constant calculated using Eq. (16) is shown as 
the solid curve in Fig. 4. The energy range considered allows 
calculation of the rate constant for temperatures between 300 
and 700 K. For lower temperatures energies below 0.05 eV 
contribute and for higher temperatures energies above 0.5 eV 
would have to be included. The experimental reaction rates’* 
are indicated by crosses in Fig. 4. One sees that the calcu- 
lated reaction rate is larger than the experimental one, and 
that it decreases more slowly with increasing l/T than the 
experimental one. We do not believe that the J-shifting ap- 
proximation can be this much in error at these relatively low 
energies, so the conclusion is that this lack of agreement is 
due to inaccuracies in the potential energy surface. 

Independent of agreement with the experimental data, 
the results of the full-dimensional calculation are interesting 
for comparison with approximate calculations. There have 
been a number of reduced dimensionality quantum calcula- 
tions of the H,+OH-+H+H,O reaction based on the 
Schatz-Elgersma surface. The Wang and Bowman6T30 calcu- 
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lation mentioned earlier is displayed in Fig. 2. The corre- 
sponding reaction rate, computed within the J-shifting ap- 
proximation, is displayed as dotted line in Fig. 4. The 
deviation from the full-dimensional calculation is quite 
small, the somewhat weaker temperature dependence follows 
from the approximate topology of the surface, discussed in 
Sec. III. 

Clary7 studied the H,+OH reaction in a different re- 
duced dimensionality calculation where the system is con- 
strained to planar geometry and the H2 rotation as well as the 
OH stretching is frozen. The resulting reaction rate is dis- 
played in Fig. 4 as a dashed line. Clary’s rate decreases less 
strongly with increasing l/T than the full-dimensional result. 
It is in better agreement with experiment than the exact full- 
dimensional calculation, but we believe that this agreement 
is fortuitous (see below). 

To get more insight into the effects of reduced dimen- 
sionality approximation, reduced dimensionality calculations 
based on the normal coordinates employed in this work were 
performed. Details are described in Sec. V. For comparison 
with Clary’s results k(T) was calculated including only the 
normal coordinates Q4, Q,, and Qs. This set of normal co- 
ordinates resembles most closely the set of Jacobi-type coor- 
dinates employed in Clary’s work. The resulting reaction rate 
is displayed in Fig. 4 as dash-dotted line. The difference 
from Clary’s result is rather small, especially the temperature 
dependence is very similar. This suggests that the deviation 
between Clary’s calculation and the present full-dimensional 
one results from the neglect of three internal degrees of free- 
dom in Clary’s calculation and not from a failure of the 
J-shifting approximation invoked in the full-dimensional cal- 
culation. We conclude that Clary’s calculation is less accu- 
rate than the present one for the given potential energy sur- 
face but cancellation of errors produces better agreement of 
his results with experiment. 

V. EFFECTS OF DIMENSIONALITY 

The previous section has demonstrated that theoretical 
results for the H,+OH--+H+H,O reaction rate depend sen- 
sitively upon how the different degrees of freedom are taken 
into account. Many theoretical studies of reaction dynamics, 
especially in larger systems, are based on models where mo- 
tion in several degrees of freedom is neglected or treated 
adiabatically. Since such approximations will remain essen- 
tial, it is important to investigate their effect. To this end we 
have tested several reduced dimensionality models. 

Though one expects such “reduced dimensionality” ap- 
proximations to work best if local mode (or bond) coordi- 
nates are used, it may often be the case for complex systems 
that one will have only a normal mode description of the 
transition state region. Thus our reduced dimensionality cal- 
culations are defined in terms of normal coordinates, assum- 
ing motion in different sets of these coordinates to be sepa- 
rable. These separable coordinates are described in a 
harmonic approximation employing the frequency at the 
transition state geometry. The reduced dimensionality reac- 
tion probability is calculated employing the remaining coor- 
dinates as described in Sec. II for the full-dimensional prob- 

lem. For example, if motion in the OH stretch-type normal 
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FIG. 5. N&N ratio as a function of energy for different five-dimensional 
approximations. Modes being separated are Q, (full line), Q, (long dashed 
line), Q, (dashed line), and Q4 (dotted line). 

coordinate Q, is assumed to be separable, a reduced dimen- 
sionality cumulative reaction probability N,,(E) is calcu- 
lated employing a Hamiltonian where the Q, coordinate is 
frozen at its equilibrium value Q,=O. The Q, mode is then 
convoluted in the usual microcanonical fashion to produce 
the approximate cumulative reaction probability for the full 
system, 

Na&)=C W3-~d~~+~)l. (22) 
"I 

Analogous procedures are employed when separability of 
other degrees of freedom is assumed. The ratio of such ap- 
proximate cumulative reaction probability to the exact full- 
dimensional one, [Napp(E)I is used to measure the 
accuracy of the approximative treatment. 

In the calculations presented below separability of dif- 
ferent sets of the coordinates Q, to Q4 will be investigated. 
Since the coordinate Q, is strongly coupled to the reaction 
coordinate Qs, nonsensical results are obtained if it is as- 
sumed to be uncoupled. Thus all calculations below include 
at least two degrees of freedom fully coupled, with the re- 
maining uncoupled ones convoluted microcanonical to ob- 
tain the approximate N(E) (all for J=O). 

Figure 5 displays Nap#N as a function of energy for 
various 5D calculations, i.e., where only one of the coordi- 
nates is assumed to be separable and harmonic. It is imme- 
diately seen that this approximation yields significant errors 
independent of the actual coordinate which is treated as be- 
ing separable. Deviations are especially strong in the tunnel- 
ing regime. There the approximate cumulative reaction prob- 
ability is lower by a factor of up to 20 compared to the exact 
6D result. Due to the exponential dependence of N( E) on the 
energy in this regime, even minor errors in the potential in- 
duced by the separability approximation result in crucial er- 
rors in the cumulative reaction probability. Since the assump- 
tion of separability and harmonicity tends to overestimate the 
potential energies, the approximate cumulative reaction 

probabilities are too small. For higher energies N(E), where 
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FIG. 6. N,rr/N ratio as a function of energy for different four-dimensional 
approximations. Modes being separated are Q, and Q2 (full line), Q, and Q3 
(long dashed line), Q, and Q., (dashed line), Q2 and Q, (dotted line), Q2 and 
Q4 (dash-dot line), and Q, and Q4 (thick full line). 

more states of the activated complex contribute to N(E), the 
precise energies of individual states are no longer of such 
crucial importance, and the deviation of N.&E) from N(E) 
decreases with increasing energy. But even for the highest 
energies under consideration errors can be significant. In Fig. 
5 the Napp are to low by 20% to 50% for three of the four 
cases studied. 

So far general trends have been discussed. We now con- 
sider the effect of assuming separability of individual vibra- 
tional modes and the immediate findings are rather surpris- 
ing. Separating (i.e., assuming separability for) the 
vibrational mode Q, , which describes O-H stretching mo- 
tion, shows a larger effect on the results than separating any 
other mode; even at the highest energies under consideration 
Napp barely reaches above 50% of the exact N(E). These 
findings are in apparent contradiction to the assumptions uti- 
lized in previous work on the H,+OH-+H+H,O reaction798 
where the O-H stretching motion is assumed to be the least 
important degree of freedom. However, care has to be taken 
in such comparisons, since in the present study normal coor- 
dinates are employed while previous work was typically 
been based on Jacobi-type coordinates. This will be dis- 
cussed more comprehensively below when the 4D results are 
presented. 

Separating the out-of-plane motion (Q3 results in the 
smallest error. While discrepancies remain large in the tun- 
neling regime even in this case, high energy results for N,, 
are in quite good agreement with the exact values; above 0.3 
eV errors are less than 10%. Therefore treating the reaction 
as occurring in planar geometry seems to be a good approxi- 
mation when studying activated H,+OH+H+H,O reaction 
processes. Motion in the other two modes Q, and Q4 is more 
strongly coupled to the reaction process, yielding significant 
errors of above 20% even in the activated regime. 

Figure 6 shows N,&N ratios for various 4D calcula- 
tions, i.e., when two coordinates are approximated as sepa- 
rable. The general appearance of the curves is similar to the 
findings of Fig. 5. In the tunneling regime N,, is much too 

E P4 

FIG. 7. N,rJN ratio as a function of energy for different three-dimensional 
approximations. Modes included in the exact calculation are Q,, Q, and the 
following one: Q, (long dashed line), Q, (dashed line), Q, (dotted line), and 
Q4 (dash-dot line). The full line indicates the two-dimensional result where 
only Qs and Qs are included exactly. 

small, but even for higher energies the approximate values 
are significantly too low. Two different sets of curves can be 
distinguished. If the coordinate combinations Q ,/Q4, 

QdQc, t QdQs, 7 and Q2/Q3 are approximated as separable, 
the resulting errors are significantly smaller than for the com- 
binations Q t/Q2 and Q ,/Q3. In other words, if the coordi- 
nate Q, is separated then also Q4 has to be separated to avoid 
large errors. This is consistent with the findings of Fig. 5 
where separating only the Q, mode was found to result in 
especially large errors. The definition of the normal coordi- 
nates as displayed in Fig. 1 gives the key to the explanation. 
Q, describes mainly OH stretching motion, while the rota- 
tion of the OH group is primarily described by the coordinate 
Q4. However, associating the normal coordinates with 
stretching or rotational motion is correct only for small dis- 
placements from the reference geometry. Actual rotation of 
the OH group changes the values of Q4 and Q, . While OH 
stretching motion is generally assumed to be not very impor- 
tant in the reaction process, OH rotation is important. Sepa- 
rating Q , and assuming a harmonic potential for this coordi- 
nate therefore hinders the OH rotation and results in too 
small values for Napp. To keep the treatment balanced one 
has to separate also the Q4 mode in which case Q4 mimics 
the rotational-type motion by low frequency vibrational mo- 
tion. 

Finally, Fig. 7 shows the result of various 3D calcula- 
tions, i.e., N,&N ratios obtained when three modes are ap- 
proximated as separable. Differences compared to Fig. 6 are 
rather small, especially for higher energies. For lower ener- 
gies the reaction rates are further decreased which is easily 
explained by the above arguments. Results are rather inde- 
pendent of which coordinates are separated. Only when all 
coordinates except Q4 are separated, N,rrfN becomes consid- 
erably smaller than for any other combination. This finding is 
in agreement with results of Fig. 5 and Fig. 6: if Qt is treated 
as separable larger errors are caused unless Q4 is also ap- 
proximated as separable. 
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The Napr/N ratio for a the 2D calculation, including only 
Qs and Qh exactly, is also shown in Fig. 7. Differences from 
the 3D results are small, especially if the Q, coordinate is the 
third coordinate in the three-dimensional calculation. This 
implies that a simple minded investigation starting from 2D 
calculations and proceeding to higher dimensional ones 
could easily draw wrong conclusions. Since the 3D result 
which includes the Q, coordinate is not very different from 
the 2D result, the Q, coordinate could be judged to be un- 
important and consequently be dropped. Figure 5, however, 
shows that Q, has the largest effect when changing from a 
full dimensional to a five-dimensional calculation! This dem- 
onstrates that correlation between motions in different modes 
can be important (at least when using normal coordinates). 
Therefore care has to be taken in judging the importance of 
different coordinates in reduced dimensionality studies. 

VI. CONCLUSIONS 

An exact quantum, full-dimensional calculation of the 

(J=O) cumulative reaction probability for the 
H,+OH-+H+ H,O reaction has been presented. From this 
data the reaction rate is calculated for temperatures between 
300 and 700 K. 

This calculation is of interest for several reasons. First, it 
demonstrates that the technique developed in Refs. 17 and 18 
and Ref. 20 allows for efficient calculations of cumulative 
reaction probabilities and reaction rates for larger systems. 
Calculating these quantities for a four-atom reaction includ- 
ing all six internal degrees of freedom is demonstration of 
the power of this approach. To the best of our knowledge 
there have been no other exact quantum calculation of the 
cumulative reaction probability on a such a system up to 
now. 

When reaction rates are calculated by an exact full quan- 
tum method the only remaining source of errors is generally 
the potential energy surface employed. Therefore comparison 
to experimental rates provides an unambiguous test of the 
quality of the surface. In the example presented here reaction 
rates derived from the Schatz-Elgersma surface’4 for the 
H, + OH-H + H,O reaction showed significant deviations 
from the experimental rates. Improvement of this surface 

thus appears to be necessary in order to obtain a quantitative 
description of this reaction. 

Clearly the range of systems for which exact full- 
dimensional calculations are feasible is limited. Even for the 
H,+OH-+H+H20 reaction, which is a rather simple ex- 
ample of a four-atom reaction, the numerical effort of the 
full-dimensional calculation presented here is considerable: 
On an up to date workstation a few weeks of CPU time are 
required to compute the results presented. Therefore the de- 
velopment of approximate treatments is an important issue. 
But availability of exact reaction rates for a given potential 
energy surface is important, at least to serve as a reference 
when judging the quality of approximate results. As an ex- 
ample of the investigation of approximate treatments, re- 
duced dimensionality treatments have been investigated in 
this work. Comparison to reduced dimensionality calculation 
of other authors as well as a systematic study of normal 

coordinate based reduced dimensionality calculation have 

been presented. The findings indicates that correlation be- 
tween motion in different normal coordinates can be impor- 
tant. In the present case, this results in a strong effect of the 
OH stretching type normal coordinate. Out-of-plane motion 
of the activated complex is found to be the least important 
degree of freedom. 
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