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The results of an accurate quantum mechanical treatment of the planar H + H, exchange reaction on a 

realistic potential energy surface are presented. Full vibration-rotation convergence was achieved in the 

calculations, and this, together with a large number of auxiliary convergence and invariance tests, indicates 

that the cross sections are accurate to 5% or better. The reactive differential cross sections are always 

backward peaked over the range of total energies from 0.3 to 0.65 eV. Nonreactive j = 0 to j' = 2 cross 

sections are backward peaked at low energy (0.4 eV) shifting to sidewards peaking forE> 0.5 eV. Quantum 

symmetry interference oscillations are very significant in the j = 0 to j' = 2 para-to-para cross sections 

for E;:::: 0.6 eV. Reactive integral cross sections show two distinct kinds of energy dependence. At low 

energy ( <0.5 eV), barrier tunneling gives them a largely exponential energy dependence while above 0.5 eV 

(the effective threshold energy) the cross sections vary nearly linearly. Comparison of collinear and 

coplanar transition probabilities indicates similar ID and 20 energy dependence but with a shift in energy 

from I D to 20 due to bending motions in the transition state. An analysis of rotational distributions 

indicates surprisingly good correspondence with temperaturelike distributions. The results of a one­

vibration-approximation calculation are examined, and errors of as much as three orders of magnitude are 

found at some energies. Shapes of angular distributions are, however, accurately predicted by this 

approximate method. Additional analyses include comparisons with previous distorted wave and coupled­

channel results, and calculations of thermal rate constants. 

I. INTRODUCTION 

A reaction of fundamental interest in the field of 

chemical dynamics is the H + H2 hydrogen atom exchange 

reaction. This simplest of chemical reactions has 

been the subject of numerous dynamical studies by 

quasiclassical, 1
•
2 semiclassical, 3

-
5 and quantum me­

chanical6-16 methods and has been the focal point for 

the development of many approximate reaction rate 

theories. 17 In addition, this system provides the funda­

mental example for characterizing quantum effects in 

chemical reactions and determining their importance on 

experimental observables. For these reasons, the cal­

culation of accurate quantum mechanical cross sections 

for H + H2 is of great importance. Unfortunately, until 

recently there existed neither the proper methods for 

efficiently solving the Schrodinger equation for this sys­

tem nor adequately powerful computers to handle the 

computations involved without the introduction of ap­

proximations of unknown accuracy. 

In the preceding paper16 (hereafter referred to as I) 

we presented a method for accurately and efficiently 

solving the Schrodinger equation for reactive collisions 

of an atom with a diatomic molecule moving on a fixed 

plane. The planar motion restriction was introduced 

for computational simplicity only, with no fundamental 

limitations involved in applying a similar procedure 

to three-dimensional collisions as well. In this paper, 

we present the results of an application of this method 

to planar H + H2 on a realistic potential energy sur­

face. 19 The results to be discussed include reactive 

and nonreactive transition probabilities, differential 

cross sections and integral cross sections, product ro­

tational state distributions, and rate constants. In a 

preliminary communication, 11 we examined the impor­

tance of closed vibrational channels in a vibration­

rotation coupled-channel (i, e., close-coupling)20 ex­

pansion and found that the errors associated with an 

early truncation of the vibrational basis set expansion 

could be very serious in many cases although qualita­

tive trends obtained with the truncated basis were often 

properly described. We will examine the one vibra­

tional basis function approximation in somewhat greater 

detail in this paper, and will, in addition, compare 

our results with the approximate results of others in 

which different methods, types of approximations, and 

potential surfaces were used. 

As pointed out in Paper I, the method we have de­

veloped for solving the Schrodinger equation for planar 

atom plus diatomic molecule collisions can be extended 

to 3D systems without significant conceptual changes, 

so an additional reason for undertaking the current cal­

culations was to test the feasibility of the method in 

preparation for its application to 3D reactive systems. 

The calculations for the 3D H + H2 system have now been 

completed and are presented in detail in the following 

two papers. 21 A preliminary communication of the 

results of this 3D work and its relationship with some 

of the coplanar results presented here has already been 

published. 12 

In Sec. II we describe the reactive scattering calcula­

tions, including convergence tests and computational 

considerations, and the representation of the potential 

energy surface. The results of the calculations are 
presented and discussed in Sec. III. Section IV con­

tains a general summary and discussion. 
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II. QUANTUM MECHANICAL CALCULATIONS FOR 

PLANAR REACTIVE H + H 2 

A. General description of the method 

The method used to solve the Schrodinger equation 

for planar reactive and nonreactive H +Hz collisions 

has been extensively described in Paper I. As out­

lined there, the procedure for obtaining the full set 

of primitive solutions to the partial-wave Schrodinger 

equation is divided into two stages. In the first one, a 

coupled-channel20 method is used to generate solutions 

to the Schrodinger equation in each of the three arrange­

ment channel regions of internal configuration space. 

These solutions are then smoothly matched to one an­

other in the second stage, and the resulting primitive 

solutions, which are everywhere smoothly continuous, 

are then linearly combined to yield the appropriate re­

actance and scattering matrix solutions. This proce­

dure is then repeated for a sufficient number of partial 

waves to obtain converged reactive, inelastic, and (if 

desired) elastic cross sections. The potential energy 

surface used in all the calculations was the semi­

empirical ground electronic state H3 surface of Porter 

and Karplus 19 (all coupling to excited electronic sur­

faces being neglected). In solving the Schrodinger equa­

tion for these reactive collision systems, great care 

must be exercised to insure adequate invariance of the 

results with respect to a change in (a) the number of 

vibration-rotation basis functions used, (b) the refer-

ence potential v •• r used to generate these functions, (c) 

the representation of the potential surface (see Sec. 

n. B), and (d) the nature of the functions used to repre­

sent the wavefunction on the matching surface (i.e., the 

"matching surface basis functions" of Paper I). 

As discussed in Paper I, a number of symmetry 

properties inherent in H + H2 and similar systems may 

be utilized to reduce the computation time involved in 

doing these calculations, Most significant in this re­

spect are (a) cyclic permutational symmetry of the 

three-atom system which allows one to consider only 

one arrangement channel region in doing all calcula­

tions, and (b) two-atom permutational symmetry, which 

allows one to decouple the even and odd rotational 

states throughout most of the calculation. These same 

symmetry properties allow us to reduce the number of 

different distinguishable atom scattering amplitudes 

between a given initial vibration-rotation state of the 

reagent Hz and a given final state of the product H2 to 

just two: one reactive and one nonreactive amplitude. 

We shall denote the reagent diatomic states by the vi­

bration-rotation quantum numbers vj and the product 

ones by v'j'. Distinguishable-atom reactive transi­

tions will be designated by the superscript R, non­

reactive ones by N, and (indistinguishable) antisym­

metrized ones by A. In this notation, the relation be­

tween the antisymmetrized differential cross sections 

and the distinguishable-atom dimensionless scattering 

amplitudes [Eqs. (6, 5) of Paper I] is 

1 

k 
lt~~v'J'- fv~~v'J' lz (j, j' even, para-para) 

vJ 

3 

k 
ltv~~v'J'Iz=3a: 1 .v'J' (j even, j' odd, para-ortho) 

vJ (2. 1) 

1 If :1• v' J' 12 = a:1• v' J' (j odd, j' even, ortho - para) 
kvJ 

f (I fv~-v'J.+ fv~-v'J' 1
2 

+ 21 fv~-v'J' 1
2

) (j, j' odd, ortho- ortho) 1 

vJ 

where kvJ is the (unsealed) wave number (ii"1 of Paper I), 

di N dfR d t db /AAv'J' dfAvv'J' an vJ• 11'J' an 111• 11 , 1, were eno e y AvJ an AvJ , 

respectively, in Paper I. For planar systems, the di­

atom rotational quantum number j is an algebraic in­

teger and may be either positive, negative, or zero. 

For j =f. 0, the two states j and - j are degenerate and 

said to have different polarizations. Differential cross 

sections which have been summed over final rotational 

polarizations and averaged over initial ones will be 

indicated by the symbol rf
111

.v'J' and the corresponding 

integral cross sections by QvJ-v'J'. For example, the 
integral cross section Q~ 1 - 02 is given by 

In Sec. V, B of Paper I we found that the symmetry of 

the Hamiltonian with respect to reflection through the 

triatom plane leads to the following relations between 

cross sections within the same rotational manifolds 

(valid for R, N, or A transitions): 

(2. 3) 

and 

(2. 4) 

As defined in Paper I, the scattering angle 0 is the 

angle between the directions of motion of the final and 

initial H atoms in the center of mass system and 

spans the range 0 :S (} :S 21T. For reactive differential 

cross sections, the more customary angle to use is 

the angle 0 R of the direction of the product Hz with re­

spect to the direction of the incident H, and is related 

to 0 by 

Therefore, the backward reactive scattering direction 

corresponds to 0 R = 1T and 0 = 0. 
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B. Representation of the potential energy surface 

In setting up the coupled differential equations which 

must be solved in each arrangement channel region 

A=O!, {3, y, the potential energy surface V~(r~, Ru yJ 

is expanded (see definitions in Paper I) in a cosine 

Fourier series of the angle y~ [Eq, (3. Sa) of Paper I]: 
00 

v~(r~, R~, y~)= L v;(r~, R~)cosky~. (2.6) 
k=O 

In the case of the H+H2 reaction, v~(r~, R~, h) is 

symmetric about y~ = JT/2 and 3JT/2 [Eq. ( 6. 1) of Paper 

I], so only even k terms need be included in Eq. (2. 6). 

Once the coefficients v;(r~, R~) are determined, the 

rotational coupling in the Schrodinger equation can be 

analytically evaluated [as in Eq. (3, 9) of Paper I]; this 

greatly facilitates the determination of the potential 

matrix elements needed in the integration procedure. 

Unfortunately, in general, the v;(r~, R~) must be cal­

culated numerically from the relation 

1 

2 

0 

1 
-2 

For a small number of terms in the potential function 

expansion, the above interpolative procedure yields a 

representation of the full potential function V~(r~, R~, 

y~) which is computationally more efficient but has 

about the same accuracy as the one generated using 

Eq. (2. 7). Of course, the goodness of this procedure 

depends very significantly on the nature of the potential 

energy surface being considered, but for the Porter­

Karplus H3 surface, it allows an adequate representa­

tion of the potential while requiring an exact evaluation 

of v~ at only three or four values of y~ [and the use of 

Eq. {2. 6) for all others]. In Fig. 2, of Paper I 18 we 

depicted equipotential contours of the potential energy 

surface at y~ = 0, JT/4, and JT/2, the values required in 

the evaluation of Eq. (2. 8). 

C. Convergence and accuracy tests 

It is of crucial importance in coupled-channel cal­

culations to establish that the resulting reaction prob­

abilities and cross sections have converged adequate­

ly. Indeed, we shall see later that premature trunca­

tion of the vibration-rotation basis set expansion can 

result in errors in the final integral cross sections by 

several orders of magnitude, even though other tests, 

such as conservation of flux, may be approximately 

satisfied. Furthermore, many approximation quantum 

methods involve various kinds of truncations and/or 

other approximations, and it is highly desirable to ob­

tain fully converged results which are of sufficient ac­

curacy to assess the validity of those methods. 

The most obvious criteria which must be satisfied 

by the results of an accurate quantum calculation are 

conservation of flux and time reversal invariance. 

These two principles require that the scattering matrix 

(2. 7) 

and the effort involved in computing this integral 

negates the advantage of using an expression which is 

analytical in y~ such as Eq. (2. 6). However, for the 

Porter-Karplus potential surface 19 (and for many others 

as well), in the regions of internal configuration space 

sampled in the calculation, the expansion Eq. {2. 6) con­

verges very rapidly (after only three or four terms). 

We can then redefine the V~ by requiring that, instead 

of satisfying Eq. (2. 7), they force Eq. (2. 6), with a 

finite number n of even terms, to be satisfied exactly 

at n values of y~, For example, if three terms are 

included, then we can find v~. VL and v~ by solving 

the three algebraic equations obtained when Eq. (2. 6), 

truncated after three even terms, is evaluated at y = 0, 

JT/4, and JT/2. The result is 

(2, 8) 

I 
SJ be unitary and symmetric for each total angular 

momentum quantum number J and therefore that the 

corresponding probability matrix PJ [defined by Eq. 

{5. 20) of Paper I] be symmetric and that the sum of the 

elements of each of its rows (or columns) should equal 

unity. These criteria are necessary but not sufficient 

to insure accurate results. 

In the results to be discussed in detail in Sec. III, 

we consider a range of total energies E from 0. 30 to 

0. 75 eV (translational energies relative to the v = 0, 

j = 0 reagent H2 state of 0. 03-0.48 eV). Flux conserva­

tion and microscopic reversibility were checked in 

each calculation, and for E :s 0. 60 eV, deviations from 

flux conservation were never worse than 1% and from 

symmetry less than about 5% (for nonnegligible transi­

tion probabilities). For 0. 60 eV < E :s 0. 75 eV, devia­

tions from flux conservation were less than 3% and 

from symmetry less than 10%. In order to insure satis­

factory convergence (better than 5%) in the calculation, 

vibration-rotation basis sets including 40-60 terms 

{channels) were required. For energies less than 0. 50 

eV, a 40 channel basis consisting of 5 vibrational 

wavefunctions combined with 10, 10, 8, 6, and 6 rota­

tional wavefunctions for v = 0, 1, 2, 3, and 4, respec­

tively, were used in generaL In the 0, 50-0.60 eV 

range, a 48 channel basis set of 4 vibrations and 12 

rotations per vibration was adequate, while for energies 

above 0. 60 eV, a 60 channel basis of 5 vibrations and 

12 rotations per vibration was used. Typical probabili­

ty matrices from these calculations (for a 48 channel 

calculation at o. 55 eV) are given in Table I. Both the 

reactive and nonreactive transition probability ma­

trices are highly symmetric, and the sums of the prob­

abilities in each row or column differs from unity by a 
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TABLE I. Nonreactive (N) and reactive (R) probability matrices for £=0.55 eV, J=2.a 

(vj) (v'j')=(OO) (01) (0,-1) (02) (0, -2) (03) (0, -3) 

N 

(00) 0.0186 0,263(-8) 0.113(-6) 0.404 0.276 0.370(-7) 0.248(-7) 
(01) 0.287(-7) 0.0134 0.477 0.689(-7) 0.104(-7) 0.199 0.0629 
(0,-1) 0.337(-7) 0.477 0.0899 0.897(-7) 0.112(-7) 0.129 0.140 
(02) 0.406 0.204(-7) 0.228(-7) 0.240 0.172 0.289(-7) 0.108(-7) 
(0,-2) 0.277 o. 530(-8) 0.298(-7) 0.171 0.474 0.287(-8) 0.496(-8) 
(03) 0.633(-8) 0.199 0.129 0.126(-8) 0.343(-8) 0.636 0.651(-2) 
(0,-3) 0.527(-8) 0.0624 0.140 0.327(-8) 0.468(-8) 0.653(-2) 0.785 

R 

(00) 0.0436 0.0380 0.0265 0.0167 0.0803(-1) 0.0347(-1) 0.911(-3) 
(01) 0.0380 0.0357 0.0219 0.0178 0.0567(-1) 0.0378(-1) 0.621(-3) 

(0, -1) 0.0261 0.0220 0.0167 0.0980(-1) 0.0502(-1) 0.0181(-1) 0.664(-3) 
(02) 0.0174 0.0175 0.0961(-1) 0.0857(-1) 0.0246(-1) 0.0211(-1) 0.232(-3) 
(0, -2) 0.0774(-1) 0.0588(-1) 0.0518,(-1) 0.0232(-2) 0.0180(-1) 0.412(-3) 0.243(-3) 
(03) 0.0356(-1) 0.0373(-1) 0.0184(-1) 0.0206(- 1) 0.412(-3) 0.500(-3) 0.407(-4) 
(0,-3) 0.879(-3) 0.619(-3) 0.655(-3) 0.237(-3) 0.234(-3) 0.398(-4) 0.386(-4) 

Sumsb 1.0014 0.9997 1. 0003 0.9980 1. 0001 0.9999 1. 0005 

aNot all allowed transitions are shown. Numbers in parentheses indicate powers of 10 by which numbers pre-
ceding them should be multiplied. 

bSum of probabilities from a given initial state over all possible final states and arrangement channels. 

very small amount in every case. In Table II we exam­

ine the convergence behavior of the transition prob­

abilities both as the number of vibrations per rotation 

is increased and as the number of rotations per vibra­

tion is increased (all at 0. 6 eV). In Part A of that table 

we see that the results change by less than 5% in going 

from 12 to 14 rotations per vibration and by somewhat 

larger amounts in going from 10 to 14. With fewer 

than 10 rotations, errors of 10% to nearly 100% are ob­

served in certain transition probabilities. When vibra­

tional convergence is examined (Part B) of Table II), 

we find that 2% convergence is attained with 4 vibra­

tions and that the use of fewer than that number can 

lead to errors as large as 50% along with poor flux 

conservation. 

Another important accuracy test in these calculations 

is the invariance of the results to changes in the char­

acter of the vibration-rotation basis set. There are 

two important ways to test this. First, one should be 

able to change the number of rotations per vibration or 

the number of vibrations per rotation without changing 

the results as long as convergence has been attained. 

Second, the results should be independent of the ref­

erence potential vref(rA, RA) [Eq. (3. 36) of Paper I] 

which serves to define the vibrational basis functions 

as long as Vref becomes equal to the correct diatomic 

potential v(rA) in the limit RA- oo. In Table III we pre­

sent the results of these two kinds of tests. The first 

column tabulates representative nonreactive and re­

active transition probabilities for E = 0. 50 eV, J = 0 

calculations with a 48 channel basis (4 vibrations, 12 

rotations/vibration) and a reference potential vref 

= V(rA, RA, YA = 0) (the one actually used in most of the 

calculations). In the second column we give the corre­

sponding probabilities obtained when the reference po­

tential vref = V~(rA' RA) is used [Eqs. (2. 6) and (2. 8) ]. 

Finally, in the last column we give the transition prob-

abilities obtained with the va<rA, RA) reference poten­

tial and a 50 channel basis (5 vibrations, 12, 12, 10, 8, 

and 8 rotations in v = 0, 1, 2, 3, and 4, respectively). 

The deviations between the corresponding probabilities 

is less than 5%. This result is typical of the accuracy 

for energies E::s0.60 eV. Somewhat larger changes 

are found for 0. 6 eV < E ::= 0. 75 eV, but usually less than 

10%. 

Two additional accuracy tests are (a) convergence of 

the results with respect to the number of terms in the 

expansion of the potential [Eq. (2. 6)], and (b) invariance 

TABLE II. Rotational and vibrational convergence of coplanar 
transition probabilities at£=0.60 eV, J=1. 

N ua Pro-o2 Po~-o-1 P~-oo Pro-o, p:!-o-1 

A. Rotational convergence (with 4 vibrations and N rotations 
per vibration) 

6 1.035 0.293 0.435 0.0738 0.0667 0.0356 
8 1.020 0.276 0.339 0.0743 0.0525 0.0380 

10 1.010 0.202 0.257 0.0840 0.0706 0.0416 
12 1.004 0.194 0.230 0.0829 0.0645 0.0396 
14 1.002 0.189 0.221 0.0821 0.0673 0.0397 

B. Vibrational convergence (with M vibrations and 12 rotations 
per vibration) 

1b 1.003 0.259 0.260 0.0404 0.0372 0.0295 
2 1.063 0.161 0.204 0.0895 0.0738 0.0477 
3 1.063 0.238 0.315 0.0749 0.0578 0.0329 
4 1.004 0.194 0.230 0.0829 0.0645 0.0396 
5 1.007 0.195 0.233 0,0832 0,0646 0.0396 

au indicates the sum of all transition probabilities from a 
specific vj state which differs by the largest amount from 
unity and hence is a conservative measure of deviations from 
flux conservation. 

l>rhe one vibration results were calculated according to the pro­
cedure outlined in Sec. II. D. 
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TABLE III. Nonreactive and reactive transition probabilities 

for E=0.50 eV, J=O. 

N=48, Veal! 
a N=48, Vob N=50, Voe 

P~-oo 0.180 0.180 0.183 

P~-0±2 0.383 0.383 0.383 

Prf•1•0±1 0.207 0.207 0.211 

P:•1·0'<1 0.583 0.582 0.580 

Pto-oo 0.787x10·2 o. 787 x1o·2 o. 755 x 1o·2 

Pto.o±1 o. 580 x1o·2 o. 578 x 10·2 o. 557 x1o·2 

P~•1·0±1 0.422 X 10·2 o.419 x 1o·2 0.404 X 10·2 

P~•1·0'<1 o .413 x 1o·2 o .410 x 1o·2 o.395x1o-2 

"48 channels (v = 0-3; 12 rotations/vibration), Vre! =Veal! 

=V(r~.> Rx, 'Yx=O). 

b48 channels (v= 0-3; 12 rotations/vibration), Vrer= Vt<rx, Rx). 
0 50 channels (v= 0-4; 12, 12, 10, 8, 8 vibrations for v = 0, 1, 

2, 3, 4, respectively), Vrer=Vt<rx,Rx). 

of the results with respect to a change in the matching 

surface basis functions B"x [Eq. (4. 7) of Paper I]. We 

find that the reaction probabilities change by less than 

5% in going from three to four terms in Eq. (2. 6) [with 

the coefficients calculated as described before Eq. 

(2. 8)] and virtually not at all in going from four to five 

terms. All calculations reported in this paper were 

done with three terms in Eq. (2. 6) and using Eq. (2. 8) 

to calculate V0 , V2 , and V4 • The effects of complete­

ness of the expansion of the wavefunction on the match­

ing surface were studied in two ways. First, several 

different choices of matching surface basis functions 

nvx were used [different sine and cosine combinations 

(see Paper I) and Legendre polynomials] and invariance 

of the results to within 2% was found. Best unitarity of 

SJ was obtained with the basis set (c) of Sec. IV. A of 

Paper I, and this choice was used in all further cal­

culations. Second, the degree of completeness of the 

matching surface basis functions nvx determines the 

degree of orthogonality of the matrix stx of Eq. (4. 32) of 

Paper I which transforms the solution in v coordinates 

to that in coordinates i\. This property of stx determines 

the unitarity property of the scattering matrix SJ to a 

certain extent but it is also necessary if the nonreactive 

transition probabilities between even and odd rotational 

states are to vanish as required by the symmetry of the 

H3 system [see Eq. (6. 4) of Paper 1]. Examples of the 

effects of a nonorthogonal stx are seen in Table I, where 

the nonreactive ortho to para transition probabilities 

typically have magnitudes of 10·7 rather than 10·25
, 

which is more typically the case22 when the orthogonality 

is built in through the use of Eq. (4. 30) of Paper I. In 

that equation, the matrix s;A (the complex counterpart of 

st11) is related to a real symmetric matrix tJJ.vA via 

s;A = exp(iJtJJ.vA) . (2. 9) 

This expression is inherently unitary even when a 

truncated basis is used to calculate tJJ.Y\ It should be 

apparent that this error is of negligible importance for 

the example given in Table I, but as J increases, the 

deviations from orthogonality of s;;A also increase. 

Fortunately, the reaction probabilities decrease rapidly 

as this happens and since a nonorthogonal matching 

procedure has no effect on inelastic transition probabili­

ties in the absence of reaction, 23 the problem with com­

pleteness of the matching surface functions disappears 

at higher J. No artificial orthogonalization procedures 

were introduced in the calculation (such as were used by 

Saxon and Light8
), and therefore unitarity of SJ and 

zeroness of the even-to-odd reactive transition prob­

abilities are tests of the completeness of B vx. 

We conclude this section by quoting some computa­

tion times for these calculations. Both the integration 

and matching times vary roughly as N
3 for N> 20, 

where N is the number of channels. For 48 channel 

calculations using an IBM 370-158 computer, about 22 

min of computation time per partial wave J was re­

quired, of which 17 min was spent in the integration of 

the coupled equations and the rest in the matching and 

asymptotic analysis. About 13 partial waves (J = 0-12) 

were required for convergence of the reactive cross 

sections and 30 partial waves (J = 0-29) for conver­

gence of the inelastic nonreactive cross sections at 

energies near E = 0. 50 eV. 

D. The one-vibrational-basis-function approximation 

(OVA) 

An often used8
-

10 (but seldom justified) approximation 

in quantum calculations has been the neglect of closed 

vibrational channels in the vibration-rotation coupled­

channel expansion. For H + H2 at low energies, only 

the ground vibrational level is open, so this approxi­

mation involves the use of only one vibrational basis 

function plus a complete set of rotational functions for 

that vibration, The main reason for using this approxi­

mation is the large reduction in computation time (by 

1-2 orders of magnitude for H + H2 ) compared to a vibra­

tionally converged calculation. One of the objectives 

of this paper is to examine the accuracy of this approxi­

mation by comparing the results of its application with 

the fully converged ones. 

The procedure that we have used to perform these 

one-vibration-approximation (OVA) calculations is al­

most identical to the fully converged one outlined in 

Paper I. The following modifications are, however, 

needed: 

(a) The overlap matrix S~ between the vibration-ro­

tation basis sets in subregions i and i + 1 [Eq. (3. 42) of 

Paper I] is orthogonalized according to the Schmidt 

procedure. 24 This is required because otherwise the 

strongly nonorthogonal overlap matrix associated with 

this severe truncation of the vibrational expansion re­

sults in an excessive lack of flux conservation. 

(b) The effective potential matrix in the strong in­

teraction region (and analogously in the matching re­

gion) is modified to [see Eq. (3. 48) of Paper I] 

( -A(sl)u~J~ ( I 2 [2JJ. [VA 0 (VA E EX<s>)] 
U J •xh = VA Px ""if!" hJ~- Jxli ref+ - •x 

( 
j~- t (J- j/- t 1 )~I 

+ (rx - Px cosq;x)2 + (Rx - Px sinq;x)2 
- 4p~ ~ v~) ' 

0 0 

(2. 10) 
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FIG. 1. Converged coplanar reaction probability~ ,oo-o1 (for 

the v = o, j = 0 -v' = o, j' = 1 transition) as a function of the total 

angular momentum quantum number J forE= 0.30 eV (crosses), 

0.35 eV (triangles), 0.40 eV (squares), and 0.45 eV (circles). 

Smooth curves have· been drawn through the points. 

where the only allowed values of v~ and Vx are zero. For 

a complete vibration-rotation basis set expansion, this 

expression is identical to that in Eq. (3. 48) of Paper I, 

but in the OVA they differ, the above expression being 

the more consistent oneo 25 

Even with these modifications, there are still many 

ambiguities in the application of this procedure. The 

most serious of these is the lack of invariance of the 

results to our choice of V rerCrx, Rx). In Sec. III we 

shall examine results for Vrer"' V(rx, Rx, h = 0) and 

Vre1 = V~(rx, Rx), with the hope that the range of results 

provided by these two calculations is representative of 

what can generally be obtained in this approximation. 
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FlG. 2. Reaction probability ~.oo-ot as a function of the total 
angular momentum quantum number J analogous to Fig. 1 but 

at total energies of o. 50 eV (crosses), o. 55 eV (triangles), 

0.60 eV (squares), and 0.65 eV (circles). 
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FIG. 3. Converged coplanar reaction probability ~.oo-oo as 
a function of the total angular momentum quantum number J. 

Symbols correspond to same values of energy E as in Fig. 2. 

Ill. RESULTS FOR COPLANAR H + H2 

A. Transition probabilities 

In this section we shall examine the J dependence of 

the distinguishable-atom reactive and inelastic non­

reactive transition probabilities. The reactive prob­

abilities P~, 00 _ 01 (for the v=O, j=O-v'=O, j'=l 

transition) are plotted in Figs. 1 and 2 for several en­

ergies as a function of J. The probabilities for negative 

J are obtained from those for positive J through the use 

of the relation [resulting from Eqs. (5. 20) and (5. 32) 

of Paper I and valid for R and N probabilities] 

(3.1) 

Figures 1 and 2 indicate that P~, 00 _ 01 has a maximum 

near J = 0 for small E with the peak gradually shifting 

to small positive J as E is increased. Furthermore, 

the number of values of J which must be included, in or­

der that the differential reaction cross sections [see 

Eq. (5. 30) of Paper I] should have converged to within 

approximately 2%, increases with E from about 9 at 

E=0.30 eV (i.e., IJI :-s4) to about 23 at E=0.65 eV 

(IJI :-s 11). The maximum in the reaction probabilities 

at small J indicates that only small impact parameter 

collisions contribute significantly to the reaction cross 

section. The semiclassical relation between the impact 

parameter b and the orbital angular momentum l [as 

given by Eq. (5. 21) of I] is 

(3. 2) 

where we define the sign of b to be the same as that of 

l, and kuJ is the wave number associated with the inci­

dent state. Since l = J- j, and j = 0 for the transitions 

considered in Figs. 1 and 2, we see that b is propor­

tional to J, and thus the range of impact parameters 

which contribute significantly to the reaction cross sec­

tion increases with E in those figures (from I b I :-s 1. 74 

bohr at 0. 45 eV to I b I :-s 2. 22 bohr at 0. 65 eV). In Fig. 

3 we plot the reaction probabilities vs J at several en­

ergies for the transition v = 0, j = 0- v' = 0, j '= 0. 

Equation (3. 1) indicates that this transition probability 

should be symmetric about J = 0, but aside from that 
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FIG. 4. Coplanar reactionprobahilitypl},00 • 00 for£=0.60 eV 

(translational energy £ 0 =0,33 eV) vs the total angular momen­

tum quantum number J. Squares indicate the converged re­

sult while circles indicate the OVA probability for the collinear 

reference potential [V 0011 =V(r~, R~, y~=O)j. 

restriction, we find that the curves in that figure are 

otherwise very similar in appearance to those in Fig. 

2. This conclusion applies quite generally to the re­

action probability vs J plots obtained for most other 

reactive transitions. A discussion of the energy de­

pendence of the reaction probabilities will be given in 

Sec, lli.D. 

In Fig. 4 we compare the converged reaction prob­

abilities P~,oo-oo with the corresponding OVA results 

for a collinear reference potential V0011 = V~(r~, R~, 

y~=O) at an energy of 0,60 eV. We see that the OVA re­

sult has the correct functional dependence on J but that 

the magnitudes of the probabilities at each J are nearly 

a factor of 2 too small. OVA calculations using Vret 
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FIG. 5. Coplanar converged inelastic probability P~,oo-o2 as a 
function of J for total energies E = 0.40 eV (dash-dot), 0. 50 eV 

(dashed), 0.60 eV (solid), and 0.70 eV (solid). 
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FIG. 6. Schematic representation of dominant collisions con­

tributing to thej=O-j' >0 collisional (nonreactive) excitation 

process. Shown are (a) the initial approach of the collision 

partners in the center of mass coordinate system, (b) the colli­

sion itself with the direction of the rotational polarization in­

dicated by curved arrows, and (c) the receding scattered parti­

cles. Collision I considers l (and hence b) initially positive 

(relative to the coordinate system shown). Collision II con­

siders negative initiall and b. Note that the diatomic rotor 

with j = 0 is classically motionless with equal probability for 

any rotational phase. The particular phase chosen was that 

believed to give significant rotational excitation for each situa­

tion pictured. 

= V~(r~, R~) yield probabilities which are only slightly 

different from the OVA results in Fig. 4. (For ex­

ample, the Vret = V~ OVA reaction probability for J = 0 

is 0. 0397 compared to 0. 0420 in Fig, 4). The analo­

gous comparison at other energies between 0. 3 and 

o. 6 eV indicates that the OVA probabilities for the two 

choices of V ref always have values within 30% of one 

another. More important, the OVA probabilities and 

converged results are generally in good agreement 

in their J dependence, but in very poor agreement in 

energy dependence, differing by several orders of 

magnitude at low energies. This difference in energy 

dependence has a dominant influence on the behavior 

of the reaction cross sections, as will be discussed in 

Sec. lll. C. 

In Fig. 5 we plot the inelastic nonreactive probabili­

ties for the transition v = 0, j = 0- v' = 0, j' = 2 vs J for 

several energies E, The inelastic probabilities are 

seen to span a much larger range of J' s than the re­

active ones, indicating that larger impact parameter 

collisions can contribute significantly to the inelastic 

processes. At all energies in Fig. 6, the maximum 

rotational excitation probability occurs for J positive 

(although a smaller magnitude negative J peak does 

appear at the higher energies). The increased likeli­

hood of exciting a positive rotational sublevel in a non­

reactive collision with J initially positive is in agree­

ment with the classical picture of the collision shown in 

Fig. 6 (Collision I) in which the incident atom having a 

positive impact parameter [see Eq. (3, 2)] impulsively 

strikes the "bottom" atom of the diatomic molecule in 

Fig. 6, I(a), thus exerting positive torque on that 
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FIG. 7. Converged coplanar reactive differential cross sec­
tion a~o~o 1 vs the scattering angle 9R for total energies E=0.30, 
0.35, 0.40, and 0.45 eV. 

molecule and exciting it into a rotational state with 

positive j'. For this collision, one would expect the 

dominant scattering angle 8 to lie between 180° and 360° 

relative to the y axis of Fig. 6. In the next section we 

shall see that this is precisely what the differential 

cross sections indicate. Still unexplained, however, 

are the double-peaked distributions at the higher ener­

gies in Fig. 5. Intuitively, one would expect that the 

positive J peak results from the mechanism described 

above (Collision I in Fig. 6). The negative J peak must 

arise from a different collision mechanism, quite pos­

sibly that pictured in Collision II of Fig. 6, in which the 

incident atom, having small negative impact parameter, 

still strikes the bottom atom of the diatom in Fig. 6, 

Ila, but rebounds into the oo:::: 8:::: 180° hemisphere. 

B. Differential cross sections 

Figures 7, 8, and 9 depict the differential reactive 

cross sections corresponding to the same transitions 

and energy ranges as were used for the reaction prob-

-o 

2 
':::: 

0.08 

0.06 

-§ 0.04 
_o 

b 

0.02 

FIG. 8. Converged coplanar reactive differential cross sec­
tion ~~ 1 as a function of the scattering angle eR analogous to 
Fig. 7 but at total energies E=0.50, 0.55, 0.60, and 0.65 eV. 
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FIG. 9. Converged coplanar reactive differential cross sec­
tion ~o~·oo vs scattering angle 9R at same energies as in Fig. 8. 
These curves are symmetric about 9R = 180 o. 

abilities in Figs. 1, 2, and 3, respectively. The v = O, 

j = 0- v' = 0, j' = 1 distinguishable-atom reactive cross 

sections of Figs. 7 and 8 can be trivially converted to 

the corresponding antisymmetrized para- ortho quanti­

ties by multiplication by 3 [see (Eq. 2.1)]. Because of 

Eq. (2. 3), the curves in Fig. 9 are exactly symmetric 

about 8 R = 180°. We see that all reactive differential 

cross sections are strongly backward peaked. This is 

in agreement with the results of three- and two-di­

mensional quasiclassical calculations1
•
2 and with the 

results of experiments on D + H2 
26 and H + T 2 , 

27 and is 

consistent with a rebound-type collision mechanism. 

The magnitudes of the differential cross sections near 

8 R = 0 o are all sufficiently small to allow us to conclude 

that forward scattering contributions to the reactive 

angular distributions are negligible. The small-ampli­

tude oscillations in some of the higher energy differen­

tial cross sections in Figs. 8 and 9 are very likely 

spurious since they typically result from incomplete 

interference between different partial waves. This type 

of oscillatory behavior can be caused by as little as a 

5% relative error in the matrix elements of s, for a 

single partial wave, thus pointing out that equally ac­

curate calculations for each partial wave (even those 

contributing relatively little to the integral cross sec­

tions) are necessary if spurious effects of this type are 

to be avoided. Of course, if there were rotational reso­

nances in certain partial waves, then we would properly 

expect to see some form of oscillatory behavior in the 

angular distributions. Rotational resonances have in­

deed been observed in calculations on nonreactive atom 

diatom scattering, but these resonances have always 

been associated with attractive wells in the potential 

surfaces used. 28 In the case of the purely repulsive 

Porter-Karplus19 potential, such wells do not exist, 

and thus purely rotational resonances are unlikely. 29 

The full-width at half-maximum (FWHM) of the back­

ward-scattered peak in the differential cross section 

remains relatively constant over the energy range 

studied and roughly equal to 70° (i.e., 145°::::8R::::215°) 
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FIG. 10. Vibrationally converged and OVA differential cross 

section ~ 0 ~ 00 as a function of scattering angle eR at E = 0. 60 eV 

(E0 =0.33 eV). The OVA cross section was computed with a 

collinear reference potential [Vcoll = V(rA, RA, ')\ = 0) ]. The 

cross section for this transition is symmetric about eR = 180 °. 

in Fig. 9, Some broadening does, however, occur at 

the higher energies. 

The angular distributions for the OVA results pre­

viously considered in Fig. 4 are plotted in Fig. 10. As 

in Fig. 4, we see that the shape of the converged curve 

is qualitatively well approximated by that of the OVA 

one, but there is about a factor of 2 difference in the 

magnitudes of the cross sections. This similarity in 

shape continues to exist at other energies as well, but 

the differences in magnitude can become much larger, 

as discussed in Sec. Ill. C. 

In Fig. 11 we plot the distinguishable atom nonreac­

tive inelastic differential cross sections ag 0 ~ 02 at E 

= 0. 40, 0. 50, 0. 60, and 0. 70 eV. These angular dis-
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FIG. 11. Inelastic nonreactive (converged) differential cross 

section affo ~ oz for the coplanar v = 0, j = 0 -v 1 = 0, j 1 = 2 tran­

sition as a function of scattering angle at total energies E = 0. 40 

eV (dash-dot), 0.50 eV (dashed), 0.60 eV (solid), and 0.70 eV 

(solid). 
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FIG. 12. Nonreactive (solid), reactive (dashed), and antisym­

metrized (dash-dot) differential cross sections as a function of 

scattering angle for the coplanar v = 0, j = 0- v 1 = o, 1 j 1 1 = 2 

transition (summed over final rotational polarizations) atE 

=0.50 eV (E0 =0.23 eV). Note that the scattering angle used is 

e and e = 0 corresponds, for reactive scattering, to eR = 180 o 

[see Eq. (2. 5) ]. 

tributions clearly reflect the one- or two-peaked nature 

of the nonreactive probability plots of Fig. 5 and show 

predominantly backward to sidewards peaking with the 

position of the maximum shifting gradually to a more 

forward direction with increasing energy. The maxi­

mum value of aff 0 ~ 02 always occurs for 180° :s () :s 360°, 

in agreement with our qualitative classical ideas of 

Sec. III. A. At higher energies we see double-peaked 

distributions, possibly corresponding to the two mech­

anisms pictured in Fig. 6. There is little evidence of 

any high frequency oscillations in any of the cross sec­

tions plotted in Fig. 11, which indicates that the col­

lision process is predominantly direct (nonresonant). 

The small-amplitude oscillations occurring at () < 100° 

for E = 0. 60 and 0. 70 eV are probably spurious and of 

same origin as those for the reactive cross sections in 

Figs. 8 and 9. 

Since the v = 0, j = 0- v' = 0, j' = 2 transition considered 

in Fig. 11 corresponds to a para-to-para transition 

which can occur by both nonreactive and reactive mech­

anisms, the correct physically measurable quantity (in 

a 2D world) to consider is the antisymmetrized para­

to-para cross sections which can be obtained through the 

use of Eq. (2. 1). In Figs. 12, 13, and 14 we plot the 

resulting antisymmetrized angular distributions 17~ 0 ~ 02 
(summed over degenerate product rotational polariza­

tions) for total energies of 0. 5, 0, 6, and 0. 7 eV, re­

spectively. Also plotted for comparison are the cor­

responding distinguishable-atom nonreactive and re­

active cross sections where, for consistency, the angle 

B rather than BR [see Eq. (2. 5)] is used for plotting the 

reactive differential cross sections. In terms of B, the 

reactive cross section is forward peaked (i.e., back-

J. Chem. Phys., Vol. 65, No. 11, 1 December 1976 
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FIG. 13, Nonreactive, reactive, and antisymmetrized differ­

ential cross sections analogous to Fig. 12 at E=0.60 eV (E0 

= 0. 33 e V). See remark about II in the caption for that figure. 

ward peaked in terms of e R), while the nonreactive one 

is backward peaked at 0. 5 eV shifting to sidewards 

peaking at the higher energies. At 0, 50 eV (Fig. 12), 

the reactive cross section has a maximum value of 

0. 0045 bohr/rad, which is over 200 times smaller than 

the maximum value of the nonreactive one, 0. 92 bohr/ 

rad, This implies thatj~J~v'J' in Eq. (2.1) has a much 

larger absolute value thanf:J~v'J', so that the antisym­

metrized and nonreactive differential cross sections are 
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FIG. 14. Nonreactive, reactive, and antisymmetrized differ­

ential cross sections analogous to Fig. 12 atE=0.70 eV (E0 

=0.43 eV}, See remark about II in the caption of that figure. 
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FIG. 15. Converged integral reactive cross sections ~~ 01 , 

Qffo ~ 03 , and ~-os (summed over final rotational polarizations) 

vs total energy E and translational energy E0: (a) linear scale, 

(b) semilogarithmic scale. 

nearly identical. Some small amplitude oscillations are 

seen in <r&~o 2 at small e in the neighborhood of the region 

where the reactive cross section has a maximum, 

These oscillations are real and result from interference 

between the direct and exchange contributions to the 

antisymmetrized cross section. They are similar in 

origin to the quantum symmetry oscillations which 

have been observed in atom-atom elastic and inelastic 

scattering. 
30 

As the energy is increased, the reactive 

cross sections increase much more rapidly than do the 

nonreactive ones {at all scattering angles), and (as is 

indicated in Figs. 13 and 14) the oscillations in the anti­

symmetrized differential cross sections for e < 60° be­

come quite pronounced in the forward 9 (backward (} R) 

direction, {The oscillations in the antisymmetrized 

curve of Fig. 14 at 9> 80° correlate with those in the 

reactive curve. As for Figs. 8 and 9, the latter are 

probably spurious, and therefore the former should 

not be considered to be real either. ) A small increase 

in the oscillation frequency with increasing energy is 

also apparent from the figures. 

C. Integral cross sections 

In Fig. 15 we plot the reactive integral cross sec­

tions Q~o~ 01 , Q~~ 03 , and Q~o~ 05 (summed over final ro­
tational polarizations) as a function of the total energy 

E and initial translational energy E0 • Both linear and 
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FIG. 16, Integral reactive cross section ?to (summed over 

all accessible final states) vs total energy E and relative 

energy E 0 • Circles represent vibrationally converged results 

and squares the OVA ones using a collinear reference poten­

tial: (a) linear scale, (b) semilogarithmic scale. 

semilogarithmic scales are used to show the functional 

dependence of these cross sections over a wide range 

of energies. If we define the effective threshold energy 

for a process as being that value of E for which the cor­

responding integral cross section is 0. 01 bohr, then the 

threshold energies for Q~ 0 ~ 01 , Q~o~ 03 , and Q~o~ 05 are 

0, 49 eV, 0, 55 eV, and> 0. 75 eV, respectively. A dis­

cussion of the significance of the effective threshold 

energies will be deferred to Sec. III, D, where we also 

compare the coplanar results with those of collinear 

calculations on the same potential energy surface, 

Above threshold, Q~ 0 ~ 01 rises in a nearly linear manner 

withE up to about 0. 65 eV and achieves a maximum 

value of 0, 31 bohr at about E = 0. 70 eV. Q~o~os and 

QCo~os increase monotonically in the energy range 

spanned by this figure but may level off at higher en­

ergies. At very low energies, the integral cross sec­

tions exhibit approximate exponential dependence on 

E. A characterization of the product rotational state 

distribution implicit in Fig, 15 is given in Sec. III. E. 

We should finally note that the reactive cross sections 

in Fig. 15 can be converted to the corresponding para 

- ortho quantities by multiplication by 3. 

In Fig. 16 we compare the reactive cross section 

Q~ 0 (summed over all product states) with the OVA re-

sult [using Vret = V(r~, R~, y~ = 0) ]. As mentioned in 

Sec. III. A, the results obtained using Vrer= V~(ru R~) 

have almost the same energy dependence. It is ap­

parent from the figure that the vibrationally converged 

integral cross section differs quite significantly from 

the OVA result over much of the energy range con­

sidered, the difference being about 3 orders of magni­

tude for total energies below 0. 36 eV. The two curves 

do cross near E = 0, 52 eV, which is quite interesting, 

since a previous analysis of the collinear H + H2 system 

(on a slightly different potential surface) indicated that 

this reaction is very nearly vibrationally adiabatic at 

this energy. 31 Since, as we shall see in the next sec­

tion, collinear and coplanar calculations can be re­

lated in a reasonably accurate manner, one might be 

able to assess the accuracy of OVA calculations in two 

and three dimensions by analyzing the extent of vibra­

tional adiabaticity in the corresponding collinear sys­

tems. 

In Fig. 17 we compare the nonreactive and antisym­

metrized integral cross sections Q~o~ 02 and Q~o- 02 as a 

function of E and E0 • The rotationally inelastic cross 

sections have much larger magnitudes than the reactive 

ones of Figs, 15 and 16 with a peak value of 3. 76 bohr 

near E = 0. 54 eV. Since the v' = 0, j' = 2 state of H2 

becomes energetically accessible at E = 0. 30 eV, we see 

that there is essentially zero threshold energy for the 

nonreactive process so that Q~ 0 _ 02 coincides almost ex­

actly with its distinguishable-atom counterpart Q~o~oz 

at all energies below 0. 50 eV. Thereafter, Q~ 0 _ 02 be­

comes progressively larger than Q~ 0 _ 02 with no apparent 

oscillatory behavior as a function of energy resulting, 

in contrast to the angular distributions of Figs. 12-14. 
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FIG. 17. Inelastic nonreactive integral cross sections Qfo_02 

and Qto-o2 (summed over final polarizations) vs the total 

energy E and relative translational energy E 0 • 
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D. Comparison of planar and collinear results 

Because planar cross sections have the dimensions 

of length while collinear ones are dimensionless (i.e., 

the collinear cross section is equal to the collinear re­

action probability), a direct comparison of these quanti­

ties is not possibleo One could devise models for con­
verting collinear results into planar ones by assigning 

a model impact parameter dependence to the collinear 

reaction probabilities. A more straightforward com­

parison can be effected instead by examining the be­

havior of the corresponding collinear32
•

33 and planar 

reaction probabilities (the latter for J == 0) as are plotted 

in Fig. 18. Probabilities for other J's or different 

initial vj states could have been used, but those for 

J == 0 and v == j = 0 were chosen for this comparison be­

cause they correspond more closely to the collinear 

conditions. This choice is furthermore justified by the 

fact that the form of the energy dependence of the planar 

probabilities for different J or j (for reasonably small 

values of these quantum numbers) is essentially the 

same as that of P~ 0 (J = 0), as is demonstrated in Fig. 

19 (where P~ 0 (J = 0), P~ 0 (J = 4), and ro1 (J = 0) are 

plotted]o The P~ 0 (J) curves, for J = 1, 2, 3, would all 

lie between the corresponding curves for J = 0 and J = 4. 

Figure 18 indicates that the collinear and coplanar re­

sults have nearly the same energy dependence, the en-

0.5 

0.4 

0.3 

>-
1- 0.2 
:::J 
CD 
<( 0.1 
CD 
0 

(a) 

~ o.oq---~---o~~~~~------~--------~---i 

z 
0 

i= 
u 1o-2 
<( 

w 
a:: 10-4 

(b) 

,o-12 ~-------::!-:--------:~-------::L-:-------:~---' 
0.3 0.4 0.5 0.6 0.7 

E(eV) 

FIG. 18. Total reaction probabilities Pr(lo) (collinear) and 

Pro(2D, J=O) (coplanar, J=O, v =0, j=O and summed over all 

final states) vs the total energy E and translational energy E 0: 

(a) linear scale, with the collinear results multiplied by 0. 6; 

(b) semilogarithmic scale. 
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FIG. 19. Coplanar total reaction probabilities P~(J= 0) (cir­

cles, solid curve), Pro(J=4) (triangles, dash-dotted curve), 

and P~ 1 (J= 0) (squares, dotted curve) summed over all final 

states vs total energy E and translational energy E 0: (a) linear 

scale, (b) logarithmic scale. 

ergy scale being shifted upwards by about 0. 055 eV in 

going from the collinear to the coplanar curves. In ad­

dition, the maximum value of the collinear reaction 

probability is 1. 0, whereas that of the coplanar one is 

about 0. 6. Both the energy shift and the difference in 

the maximum probability are explainable in terms of 

relatively simple concepts. To understand the energy 

shift, we examine the nature of the triatomic H3 sys­

tem in its transition state. In the linear case, this tri­

atomic pseudomolecule has two vibrational degrees of 

freedom: an asymmetric stretch mode, which is un­

stable and leads to motion along the reaction coordinate, 

and a stable symmetric stretch mode. When the reac­

tion occurs and the system passes through the transi­

tion state region, the total energy partitions itself be­

tween these two vibrational modes. Energy in the sym­

metric stretch mode is not easily converted into the 

asymmetric stretch mode making it unavailable to over­

come the potential surface barrier. This is a partial 

physical interpretation of the fact that the collinear 

threshold energy (the value of E at which the reaction 

probability is 0. 01) is 0. 42 eV, which is somewhat 

larger than the 0. 396 eV Porter-Karplus surface bar­

rier height. Collinear threshold phenomena such as 

this have been analyzed in detail elsewhere. 6•
31 In going 

from a linear to a planar transition state we add one 

bending degree of freedom to the internal motion of the 
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FIG. 20. Converged coplanar integral reaction cross sections 

~ ~oJ, vs the final rotational energy at total energies E = 0. 50 

eV (triangles), 0.55 eV (triangles), 0.60 eV (squares), and 

0.65 eV (circles). The arrows in lower and upper abcissa indi­

cate the E 1• rotational energies. The curves are drawn 

smoothly through the points. 

transition state which also does not contribui.e effective­

ly to motion along the reaction coordinate and which will 

also tie up some of the energy needed to overcome the 

activation barrier. This additional energy in the bend­

ing motion is a plausible explanation for the 0. 055 eV 

upward energy shift observed in Fig. 18 and is approxi­

mately equal to the zero point bending energy of about 

0. 06 eV for the surface used. 34 Much of the above ex­

planation has its basis on an approximate statistical 

theory proposed by Marcus. 35 The difference in the 

maximum probabilities attained by the collinear and 

coplanar results can be understood by examining the 

orientation dependence of the reaction probability. In 

the planar case with j = 0 initially, the diatomic mole­

cule does not rotate and has equal probability of being 

in any orientation with respect to the direction of ap­

proach of the incident atom. Since the barrier height of 

the potential energy surface is 0. 396 eV for collinear 

collisions and increases to 2. 8 eV for perpendicular 

ones, we would expect that in the energy range being 

considered, the reaction probability should be greater_ 

for linear collisions and decrease to zero for perpendic­

ular ones. The coplanar probability should represent 

an average over all initial orientations and if we assume 

unit reaction probability for 0::;; Y:t::;; 54 o and 306 o ::;; h 

::;; 360 o and, by symmetry, for 1180 o - hI ::;; 54 o and zero 

probability elsewhere, we obtain a coplanar reaction 

probability of 0. 60 in agreement with Fig. 18. The 54o 

cut-off angle is in reasonable agreement with previous 

estimates of the orientation dependence of the reaction 

probability obtained from distorted wave results 15 and 

from classical trajectory results. 1 

E. Product state rotational distributions 

In Fig, 20 we plot the integral cross sections QCo~OJ' 
(summed over final rotational polarizations) as a func­

tion of the production rotational energy and quantum 

number for several total energies E. We see from the 

figure that only small j' rotational states are apprecia­

bly excited in these reactive collisions. The relative 

population of final rotational states is not strongly de­

pendent on total energy although some broadening of the 

distribution does occur at higher E. Not shown in the 

figure are the final rotational state distributions from 

initial states j ;<0, The qualitative shapes of these dis­

tributions are not strongly dependent on j and look very 

much like those for j = 0 in Fig, 20. However, the 

magnitudes of the QC 1 ~ or decrease monotonically with 

increasing j for a given j'. 36 

To a large extent, the distributions in Fig. 20 re­

semble rotational Boltzman-like distributions with a 

single temperature parameter. Distributions of this 

type, for a planar system, may be expected to have the 

form37 

(3, 3) 

where A(E) and T(E) are energy dependent constants 

and 2- li 1 ,0 i~ a degeneracy factor, In Fig. 21 we plot 

[2/(2-liJ' 0 )]QC 0 ~ 0 J' as a function of the product rota­

tional energy on a logarithmic ordinate scale. The re­

sulting curves for different E are approximately linear 

(most nearly so at the higher energies) in agreement 

with the predictions of Eq, (3. 3), with temperature 

parameters T(E) in the neighborhood of 250-400 K. 

We should point out that although the rotational distri­

butions are temperaturelike, we find no evidence of 

long lived compound state (i.e., complex) formation in 

this reaction at the energies being considered. 32 The 

rotational distributions seem to be determined to a 

large extent by the shape of the potential energy sur­

face in the transition state region of configuration space 

[see lower half of Fig. 2(c) of Paper I], In this transi­

tion state, the asymptotic free rotational motion has 

become a seriously restricted bending motion, This 

bending motion becomes again a free rotational motion 

after the reaction, and, at least qualitatively, the dis­

tribution of different product rotational states appears 

to be determined by the overlap of this bending wave­

function and the asymptotic free rotor wavefunction. If 

this reasoning is correct, the resemblance of the ro­

tational distribution in Figs. 20 and 21 to thermal dis­

tributions is at least partially coincidental. This phe­

nomenon should, however, be quite common since re­

stricted bending motion in the transition state region is 

a common feature of the potential energy surfaces for 

many reactions. 

In Fig. 22 we plot the OVA cross sections in a man-
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FIG. 21. Semilogarithmic plot of the integral reactive cross 

section ~o~oJ~ [x2/(2-c5J•o>l vs the final rotational energy at 

total energies E=0.50, 0,55, 0,60, and 0,65 eV (symbols 

analogous to those of Fig. 20). Straight lines are drawn con­

necting the low j 1 points. The arrows are as in Fig, 20. 
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FIG. 22. Semilogarithmic plot of the OVA reactive cross sec­

tion Qro~OJ' [x 2/(2- oJ •0)] as a function of the final rotational 

energy at energies E=0.50, 0.55, and 0.60 eV. The straight 

lines drawn connect the low j 1 points. The arrows are as in 

Fig. 20. 
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FIG. 23. Integral cross section ~o~ot vs total energy E and 

translational energy E0 for several exact and approximate co­

planar calculations. ~ ~ 1 (SK) refers to the present converged 

results, ~~ot (SK, OVA) are the present one-vibration-ap­

proximation results, for a collinear Vref• obtained as described 

in Sec. II.D, ~~ 01 (WW, WE) and Q~~ 01 (WW, SE) are there­

sults of distorted wave calculations of Ref. 15, and ~~ot (AL) 

is the OVA result (on a different potential surface and using a 

method somewhat different from ours) of Ref. 10. 

ner analogous to that done for the converged cross sec­

tions in Fig. 21. Figure 22 indicates that the OVA ro­

tational distributions fit the temperaturelike distribu­

tion given in Eq. (3. 3) to about the same accuracy as 

the converged results. However, the OVA tempera­

ture parameters are somewhat higher (450-620 K), in­

dicating that this approximate procedure predicts ro­

tational distributions which are much broader than the 

converged ones. 

F. Comparisons with other coplanar calculations 

In Fig. 23 we plot our converged QAb~ot (SK) and the 

corresponding one-vibration-approximation results 

QAb~ot (SK, OVA) using a collinear reference function 

(see Se.c. II. D), along with the results of two other 

studies on coplanar H+ H2 • Q~o~ot (WW, SE) and Q~o~ot 
(y/W, WE) come from two different applications of the 
distorted wave approximation by Walker and Wyatt15 on 

the Porter-Karplus surface. SE and WE refer, re­

spectively, to the strong and weak expansion path 

choices of the nonreactive reference potential used to 

generate the distorted wavefunctions. Q~o~ot (AL) is the 
coupled-channel result (using one variation of the OVA) 
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FIG. 24. Reaction probabilities P5,oo-oo and P5,oo-o1 and differ­
ential cross sections U:O-oo and of0 • 01 as a function of reactive 
scattering angle eR• WW refers to theSE results of Ref. 15 

with long dashed curves referring to 00-00 transitions and 
dash-dot curves to 00-01 ones. SK refers to the results of 
this paper (Figs. 2, 3, 8, and 9) with solid curves for 00 -oo 
and short dashed for 00-01 transitions. WW results are at 
E 0 =0.34 eV (E= 0.61 eV), while SK results are at E 0 =0,33 eV 
(E=0,60 eV). 

of Altenberger-Siczek and Light, 10 in which an earlier 

calculation of Saxon and Light6 is corrected. These 

calculations were done for an analytical surface fitted 

to the ab initio SSMK
36 

surface. The two approximate 

calculations of Walker and Wyatt seem to bracket our 

result at low energies, but for E> 0. 60 eV, the absence 

of conservation of flux in the distorted wave calculation 

results in a gross overestimation of the integral cross 

sections. Thus, the distorted wave method remains 

accurate only when the reaction probabilities or cross 

sections are small. A similar conclusion was also 

drawn from an analogous collinear comparison. 39 ·The 

shapes of the distorted wave differential cross section 

a~o-ao vs reactive scattering angle () R (Fig. 24) are in 

good agreement with the corresponding results of our 

converged calculations, but not the magnitude of those 

cross sections. A similar comparison of the cross 

sections a~- 01 in that figure indicates serious disagree­

ment in both shape and magnitude, apparently due to a 

much more rapid falloff in the distorted wave reaction 

probabilities with decreasing J(J < 0) than is the case 

with our results [as seen in Fig. 24(a)]. 

The results of Altenberger-Siczek and Lightl0 of Fig. 

23 cannot be quantitatively compared with ours because 

of the difference in potential energy surfaces used in the 

two calculations, but some qualitative observations are 

nevertheless appropriate. First, the effective threshold 

energies (defined in Sec. III. C) of the integral cross 

sections are about 0. 50 e V for the converged Q~o- 01 (SK), 

0.49 eV for the Q~ 0 _ 01 (SK, OVA), and 0. 53 eV for 

Q~ 0 _a 1 (AL). The difference of 0. 04 eV between these 

last two numbers is approximately equal to the 0. 03 

eV difference between the heights of the respective 

potential barriers (0. 396 eV and 0. 425 eV) in the sur­

faces used in the calculations. Since the properties of 

the saddle point regions of these surfaces are similar, 

one might expect that a small change in barrier height 

should indeed result in a correspondingly small change 

in effective threshold energy as observed. Second, 

even if the AL curve is shifted to lower energies by 0. 03 

eV to correct for this difference in barrier heights, it 

agrees neither with our converged nor with our OVA 

results; above the phenomenological threshold, it in­

creases more rapidly with energy and to larger values 

than either of the latter. This may be due to differences 

in the characteristics of the two surfaces other than the 

barrier heights. Third, except for some possibly 

spurious oscillations, the Altenberger-Siczek and Light 

angular distributions (Figs. 8-10 of Ref. 10) have 

shapes which are generally similar to ours (Figs. 8, 

9 of this paper) for all transitions considered. The 

dominant peak near 180° in their angular distributions 

is somewhat narrower than ours and their reaction 

probabilities fall off more rapidly with increasing IJI 

than do ours in Figs. 1-3. Both of these differences 

could be a result of the different potential surfaces 

used, since as seen in Figs. 4 and 10 the OVA does not 

strongly affect the shapes of aR vs (} R and pR vs J 

curves. 

G. Rate constants 

In this section we examine the behavior of the para­

to-ortho thermal rate constant kP_
0

(T). The ortho-to­

para rate constant can, of course, be obtained from 

kP-
0 

by using the easily calculable equilibrium constant 

for this reaction, 40 computed for the coplanar world 

of this paper. To obtain kP-
0
(!) we first require the 

para-to-ortho cross sections Q:
1 

[summed over all 

final ortho states and averaged over initial (para) ro­

tational polarizations]. These are listed in Table IV 

for both the converged and OVA calculations. 

The planar para-to-ortho rate constant is given by 

~ 

L (2- {jJo)e·EvJ!kTk:/T)' 
J=O 

(J=even) 

where Z is the planar partition function 

Z = t t (2- {jJO) e·EvJ/kT 
u=O J=O 

(J=even) 

and 

kA(T)=(~)l/2 _1_ s~ e·E~J/kT-QA(E' )E'1/2dE' • 
uJ JJ. kT 0 vi uJ uJ uJ 

(3. 4) 

(3. 5) 

(3. 6) 
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TABLE IV. Para-to-ortho integral cross sections (in bohr) for H + H2• 
a 

Converged OVA 

E Qto <to-2 
-A 
Qo4 Qo\ -A 

Qo2 ~ 

0.30 0.356(-11) 0.543(-8) 

0.35 0.144(-6) 0.137(-7) 0.343(-3) o. 221(-4) 

0.40 0.499(-4) 0.868(-5) 0.400(-4) 0.280(-2) 0.976(-.3) 0.228(-7) 

0.45 0.299(-2) 0.721(-3) 0.104(-5) 0.0249 0.958(-2) 0.288(-3) 

0.50 0.0543 0.0319 0.127(-3) 0.0918 0.0476 0.336(-2) 

0.55 0.391 0.140 0.309(-2) 0.294 0.166 0.0250 

0.60 0.841 0,361 0.0233 0.533 0.339 0.0727 

0,65 1.025 0.619 0.0724 b b b 

0.70 1.134 0.877 0.194 b b b 

0.75 1.204 1.088 0.344 b b b 

a All cross sections have been summed over final ortho (odd j ') states and averaged 

over initial rotational polarizations. The numbers in parentheses indicate powers 

of 10 by which the numbers preceding them are multiplied. 

bThese cross sections were not calculated, but estimates of their values (through various 

extrapolation procedures) were used in the rate constant calculations. Because they in­

volve higher energy results, their contributions to the rate constants are small, and the 

errors in these rate constants resulting from the extrapolations are usually less than 10%. 

4639 

EvJ is the vibration-rotation energy of the initial state 

with quantum numbers vj, and E~ 1 is the translational 

energy relative to that state (E~ 1 = E- Ev1). J.l is the 

reduced mass associated with the relative motion of 

the reagents and the factor 2- o 10 is introduced to ac­

count explicitly for rotational degeneracy. The initial 

spin degeneracy is 1 for all para states. The rate con­

stant thus defined has the units cm2 /molecule. sec, 

which is appropriate for a planar world in which con­

centrations are measured in molecule/cm2
• 

likely that similar ones will be done on more than the 

very simplest of chemical systems. Rather, the pri­

mary emphasis is to use these results as benchmarks 

against which approximate theories may be compared, 

with the hope that these theories may be in turn applied 

Using Eqs. (3.4)-(3.6) along with the data in Table 

IV, k~ 0 (T) has been calculated, and the resulting Ar­

rhenius plots for the vibrationally converged and OVA 

[V rer = V(rA, RA, YA = 0)] results are presented in Fig. 

25. As might be expected from the appearance of the 

integral cross sections in Fig. 16, the OVA rate con­
stant is considerably larger than the converged one at 

low temperatures, with the ratio of the two being 12. 4 

and 2. 83 at 200 K and 300 K, respectively. At high 

temperatures, the two rate constants approach each 

other quite closely, a reflection of the similar effective 

threshold energies of the converged and OVA cross 

sections. The high temperature portions of the Ar­

rhenius plots in Fig. 25 are nearly linear with resulting 

Arrhenius activation energies of 5. 2 and 5. 0 kcal/mole 

for the converged and OVA results, respectively. The 

high temperature Axrhenius straight line corresponding 

to the converged results is represented by the dashed 

line of Fig. 25. We will defer a detailed comparison of 

these rate constants with those of accurate one- and 

three-dimensional calculations and with approximate 

theoretical and experimental ones to a separate paper. 

IV. CONCLUSION 

It should be apparent from the wealth of dynamical 

information presented in Sec. III that these calculations 

can be extremely useful to our understanding of chemi­

cal dynamics. We would like to stress that these cal­

culations are not overly time consuming, but it is un-
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FIG. 25. Arrhenius plot of the converged and OVA para-to­

ortho coplanar thermal rate constants for H + H2 for the con­

verged and OVA (collinear reference potential) results. The 

dashed straight line is tangent to the converged one at high tem­
peratures. 
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to more complicated systems. The comparisons with 

approximate calculations presented in Sec. III. F were 

incomplete in that the results of quasiclassical and 

semiclassical coplanar calculations on the Porter­

Karplus H3 surface are needed to assess the quanti­

tative accuracy of these important approximate theories. 

Also requiring further consideration is the use of col­

linear-type theories to provide approximate coplanar re­

sults, and similarly of coplanar theories to describe 

the three-dimensional world, 41 This was discussed 

briefly in Sec. III. D and will be further investigated in 

a separate paper. 

The coplanar calculations are also important in 

elucidating what kinds of phenomena are significant in 

chemical reactions. The magnitude of the quantum 

symmetry oscillations in the para- to- para angular 

distributions (Sec. III. B) as a function of energy (Sec. 

III. C) and their absence in the corresponding integral 

cross sections are a good example. Such quantum 

symmetry effects may eventually be a useful experi­

mental tool for characterizing reactive potential sur­

faces. Also of great importance is the characteriza­

tion of the reaction in terms of direct and resonant 

mechanisms. This was briefly mentioned in Sec. 11. B, 

where we remarked that the reaction appeared to be 

completely dominated by the direct mechanism. A more 

detailed analysis at energies higher than were considered 

in this work indicates that in the neighborhood of cer­

tain energies (such as E- 0. 92 eV) this no longer seems 

to be correct as very significant resonantlike effects 

are observed. The importance of these resonant pro­

cesses is discussed elsewhere. 32 

Finally, as was mentioned in the introduction, these 

calculations are significant in that they demonstrate the 

feasibility of the method outlined in Paper I for doing 

quantum 2D scattering calculations. Extension of this 

method to the 3D problem has recently been accom­

plished, 12
•

21 and the results of these 3D calculations and 

their comparison with 2D and lD ones should be ex­

tremely useful to our understanding of chemical dynam­

ics. 
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