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A method is presented for accurately solving the Schri:idinger equation for the reactive collision of an 

atom with a diatomic molecule in three dimensions on a single Born-Oppenheimer potential energy 

surface. The Schri:idinger equation is first expressed in body-fixed coordinates. The wavefunction is then 

expanded in a set of vibration-rotation functions, and the resulting coupled equations are integrated in 

each of the three arrangement channel regions to generate primitive solutions. Next, these are smoothly 

matched to each other on three matching surfaces which appropriately separate the arrangement channel 

regions. The resulting matched solutions are linearly combined to generate wavefunctions which satisfy the 

reactance and scattering matrix boundary conditions, from which the corresponding R and S matrices are 

obtained. The scattering amplitudes in the helicity representation are easily calculated from the body fixed 

S matrices, and from these scattering amplitudes several types of differential and integral cross sections are 

obtained. Simplifications arising from the use of parity symmetry to decouple the coupled-channel 

equations, the matching procedures and the asymptotic analysis are discussed in detail. Relations between 

certain important angular momentum operators in body-fixed coordinate systems are derived and the 

asymptotic solutions to the body-fixed Schri:idinger equation are analyzed extensively. Application of this 

formalism to the three-dimensional H + H 2 reaction is considered including the use of arrangement channel 

permutation symmetry, even-<Jdd rotational decoupling and postantisymmetrization. The range of 

applicability and limitations of the method are discussed. 

I. INTRODUCTION 

One of the most important goals of chemical dynamics 

is the accurate calculation of cross sections for reactive 

bimolecular collisions. Such calculations can be used 

to develop and test approximate reaction dynamic the

ories and statistical theories, to advance our under

standing of dynamical processes governing reactive col

lisions, and to interpret, analyze, and make predictions 

concerning the results of experiments. 

In recent years, a number of attempts have been 

made to solve this problem accurately (i.e. , quantum 

mechanically) for the simplest possible such chemical 

reaction, the collision of an atom with a diatomic mole

cule on a single electronically adiabatic potential ener

gy surface. One of the major difficulties in achieving 

this goal in the past has been the absence of computa

tionally efficient procedures for obtaining accurate so

lutions to the Schrodinger equation for reactive colli

sions. For the simple case in which the three atoms 

are confined to move on a space-fixed straight line, 

adequately accurate and efficient methods have been de

veloped within the last several years and applied to a 

variety of systems. 1
-

13 However, when the collinearity 

restriction is eliminated, the problem becomes more 

difficult, especially when the atom is permitted to react 

with either end of the diatom. To tackle such noncollin

ear problems, several different techniques have been 

proposed and to a certain extent tested. Baer and 

Kouri14 have developed an integral equation method and 

have applied it to a simple three-dimensional model 

atom plus diatom system in which reaction with only one 

end is permitted. Saxon and Light, and Altenberger

Siczek and Light, 15 have investigated the coplanar H + H2 

reaction using a coupled-equation (i.e., close-coupling) 

procedure which ignored closed vibrational channels, 

while Wyatt and co-workers16 have developed a some-

what different coupled-equation procedure in which 

closed channels are included and for which the use of 

hindered rotor basis functions leads to simple bifurca

tion properties. Quite recently, Elkowitz and Wyatt1
6a 

have applied this procedure to the three-dimensional 

H + H2 reaction. Wolken and Karplus 17 have applied an 

integrodifferential equation method proposed by Miller18 

to 3D H + H2 using a one-vibrational-basis-function ap

proximation. 

In a previous paper 19 (hereafter referred to as Paper 

I) we described a method for accurately solving the 

Schrodinger equation for reactions of the type A+ BC 

- AB + C or AC + B on a single electronic potential ener

gy surface with the restriction that the motions of the 

three atoms be constrained to lie in a single space-fixed 

plane. An extensive application of this method to the 

planar H+H2 exchange reaction has now been made. 20
•

21 

The present paper describes an extension of this method 

to three-dimensional atom-diatom collisions. It yields 

a computationally practical procedure for accurately 

calculating reaction cross sections for many atom

diatom chemical reactions. A number of additional con

cepts not present in the planar problem are introduced, 

and the simplifications occurring in an application to 

three-dimensional H + H2 are discussed. Preliminary 

results of an application of this method to the H + H2 re

action on a realistic potential surface have recently 

been published, 22 providing the first fully converged 

quantum mechanical cross sections for a chemical re

action. The extension of these calculations to energies 

above the threshold for vibrational excitation has lead 

to the discovery of an internal excitation resonance23 

for that reaction, a phenomenon whose experimental 

detection may be an important tool in the characteriza

tion of reactive potential energy surfaces. A more 

complete description of these results for H + H2 follows .24 
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The method utilizes a coupled-channel (i.e. , close

coupling) propagation technique to generate complete 

sets of solutions in each of the three arrangement chan

nel regions of configuration space, followed by a 

"matching procedure" in which the solutions are 

smoothly matched to one another on a set of three ap

propriately chosen surfaces which separate these three 

regions. The scattering matrices, amplitudes, and 

cross sections are then determined by analyzing the 

asymptotic behavior of these matched solutions. As 

thus formulated, the method is similar in spirit to the 

corresponding planar theory described in Paper I and, 

for this reason, many of the concepts presented in that 

paper and which carry into the three-dimensional world 

without modification will only be summarized briefly. 

There are, however, some aspects which are different, 

most notably in the matching procedure, and these will 

be discussed in detail. In addition, the concepts of 

angular momentum coupling, of body- and space-fixed 

coordinate systems, and of parity symmetry decoupling 

will be developed thoroughly as their utilization is of 

great importance to the three-dimensional method. 

In Sec. II we discuss the body-fixed partial wave 

Schrodinger equation along with angular momentum cou

pling and the division of configuration space into ar

rangement channel regions. The fully coupled Schro

dinger equation for the four different internal configura

tion space regions of each arrangement channel region 

is discussed in Sec. III and the matching procedure is 

described in Sec. IV. In Sec. V. the body-fixed R and 

S matrices are defined and their relationships to the 

helicity representation' scattering amplitudes and cross 

sections are derived. In Sec. VI we discuss the limita

tions of the method and its possible generalizations. In 

each section, where appropriate, the simplifications 

pertinent to the H + H2 exchange reaction are indicated. 

Appendix A outlines the derivation of the body-fixed 

Schrodinger equation and indicates relationships between 

several important angular momentum operators. Ap

pendix B includes a discussion of parity symmetry and 

the simplifications in the method which may be gained 

by explicitly including it. 

II. THE BODY-FIXED ROTATIONALLY COUPLED 

SCHRODINGER EQUATION 

A. Separation of internal configuration space into 

arrangement channel regions 

We consider the three-dimensional collision of an 

atom A with a diatomic molecule BC and, in parallel, 

the B plus CA and C plus AB collisions. A convenient 

procedure for specifying the locations of A(= A"), 

B (= A8 ), and C (= Ay) in the center of mass system is 

depicted in Fig. 1. R" is the vector from the center of 

mass of BC to A, and r" is the B to C internuclear vec

tor. As I :R" I- oo, with I r" I remaining finite, we obtain 

the separated A+ BC arrangement channel (denoted by 

the symbol a). The vectors Ra' ra and R,., ry are de

fined analogously for the arrangement channels {3 (B + AC) 

andy (C + AB), respectively. Note that the arrangement 

of the vectors in Fig. 1 is cyclic in the indices a{3y. We 

let X vK represent any one of the cyclic permutations 

A 

B 

c 

FIG. 1. Vectors used to specify the location of the three atoms 

A, B, and C relative to the center of mass 0. G8c, GAc, and 

GAB denote the locations of the centers of mass of the diatoms 

BC, AC, and AB, respectively. The vectors R,, r", R3 , i'a, 

Rr, r r are defined in text. 

a{3y, {3y a, andy a{3, and define the vectors fix, i\, R.,, rv, 
and R.., :r. accordingly. We also introduce the scaled 

variables R:~,, r:~. which are related to~' r:~_ by 

where 

a:~,= ({J:~,, v.f f..!v.)l/4 ' 

(2. la) 

(2. lb) 

(2. 2a) 

and f..!:~. v• and f..!v• are the reduced masses corresponding 

to R:~. ~nd r:~. motion, respectively: 

fJ:~.,v• = m:~, (mv + m.)/(m:~, + mv + m.) , 

f..!v• = mvm./(mv + m.) . 

(2. 2b) 

(2. 2c) 

This notation is identical to that used in Paper I and is 

dictated by the considerable mathematical convenience 

associated with using scaled variables. 25
-

27 

We are interested in solving the six-dimensional 

Schrodinger equation for the motion of the three nuclei, 

on a single electronically adiabatic potential energy sur

face, obtained after the motion of the center of mass 

of the system is removed. The surface (in the absence 

of external fields) is a function of only three appro

priately chosen variables which specify the internal con

figuration of the system. A convenient representation 

of this potential V is afforded by the use of the variables 

R:~,, r:~,, and Y:~. (x = a, {3, or y ), where Y:~. is the angle be

tween R:~, and r:~, defined by 

_1 R:~. • r:~. 
Y:~. =cos I R:~. II r:~_ I (2. 3) 

in terms of which V= vA(rx, Rx,Yx). As was discussed in 

Paper I (Sec. III. A), the variables ~. r:~. are useful for 

describing the triatomic motions only for configurations 

in which R:~. is significantly larger than, say, Rv or R •• 

This is most easily understood by representing VA in 

terms of variables 1: = (r:~, 2 
+ RV112 [which, as shown in 

Eq. (A6) of Paper I is independent of X], w:~, = 2 tan- 1 (r:~,/ 

R:~,) (in the 0 to rr range), and 'Y:~.· The properties of such 
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a representation have been discussed elsewhere, 28 the 

most important one being that a change from polar co

ordinates 1:, W;u h to 1:, wv, 'Yv rotates the map of V 

without distorting it. For the Porter-Karplus H3 sur

face, this representation of Vis given in Fig. 2 of Pa

per I and discussed in Sec. III. A of that paper. How

ever, the range of y v in the 3D case if 0 to 7T rather than 

the 0 to 27T of the 2D case. From that figure one can 

see that the three-dimensional internal configuration 

space is naturally divided into arrangement channel re

gion subspaces, labeled by the indices A= 0!, {3,y. In re

gion A, for large 1:, R~ is approximately equal to z~ and 

r~ is approximately half of the distance of the point 

P(i;, w~,'Y.1.) to the z~ axis. Therefore, in that region, 

Ru r~, y~ are the "natural" variables for describing 

the translational, vibrational, and rotational motions, 

respectively, of the three atoms, but these same vari

ables are both awkward and inefficient for representing 

the corresponding motions in arrangement channels v 

and K. As a result, we will use R~, r~, y~ in region A 

only. Associated to these, we will pick a set of three 

additional external variables (which specify the orienta

tion of the instantaneous three-atom triangle with re-_ 

spect to a laboratory system) which will also be differ

ent for different arrangement channel regions. Accord

ingly, our procedure for solving the Schrodinger equa

tion involves first the generation of solutions in each of 

the three arrangement channel regions A = 0!, {3, y in 

separate calculations using variables appropriate to 

each region. This is followed by a matching procedure 

which yields a set of smooth and continuous solutions 

throughout all of configuration space. To complete the 

problem, we need to linearly combine these "primitive" 

solutions to generate ones which satisfy the desired 

asymptotic boundary conditions. 

The procedure thus outlined is general and can be 

applied to any nondissociative reactive system, but in 

any specific application, we must specify the boundaries 

(in internal configuration space) of the three arrange

ment channel regions. As was discussed in Sec. III. A 

of Paper I, the choice of boundary surfaces is primarily 

determined by the nature of the potential surface, but 

for H + H2 and many other reactive systems, a very 

useful separation is obtained by the use of the three 

half-planes 1Tv~, 7T""' and 7T~· of Fig. 2 of I and defined 
by Eq. (3. 2) of that paper. They are limited by and 

intersect on the OY ~ axis. 1Tv~ makes an angle f3v~ (in 

the 0 to 7T/2 range) with the OY~Z~ plane given by 

cos!3 = " ~ ( 
m m ) 112 

"~ (m~ + m.Hmv + m.) ' 
(2. 4a) 

(2. 4b) 

where 

(2. 5) 

Analogous expressions are valid for the angles between 

7T"" and OY~Zv and between 7T~• and OY~z.. These 1Tv~ 
surfaces (v:\ = 0!/3, !3y, y 0!), hereafter called the matching 

surfaces, are analogous to those used in Paper I, and 

their properties are described in great detail in Appen-

dix A of that paper. They are of great importance in 

the matching procedure of Sec. IV, and the method of 

solution of the Schrodinger equation in each arrangement 

channel region must include a procedure for determin

ing the wavefunction of these surfaces. The remainder 

of this section will be concerned with the rotationally 

coupled Schri:idinger equations for each arrangement 

channel region. 

B. Partial wave analysis 

In the system of coordinates specified by the index \, 

the Schrodinger equation for the motions of the three 

nuclei is 

( 
li

2 
2 li

2 
2 ~(- - ) ) ~(- - ) --

2
-- 'Vn --

2
- 'Vi'+ V r~, R~,y~ - E 1¥ ru Rx = 0, 

il~, VK ~ ilvK ~ 

(2. 6) 

where vj~ and 'V~ are the appropriate Laplacian opera

tors, and E is the total energy excluding that associated 

with the motion of the center of mass. Upon introduc

tion of the scaled coordinates of Eq. (2. 1), Eq. (2. 6) is 

converted to 

where the reduced mass il is given by 

!l = (!l~. v< !lv.P
12 = [m~mvm./(m~ + mv + m.)]1

12 
(2. 8) 

and is independent of the choice of arrangement channel. 

We now introduce the space fixed coordinate system 

Oxyz (Fig. 2) centered on the center of mass 0 of the 

triatom system and whose axes are constantly parallel 

to the axes of a laboratory-fixed system of coordinates. 

In Oxyz the polar and azimuthal angles of R~ and r~ are 

e~, ¢~and e,~, ¢,~, respectively. By expressing the 

Laplacian operators in Eq. (2. 7) in terms of R~, r~ and 

these angles, the Schrodinger equation can be rewritten 

F1G. 2. Space-fixed coordinate system OxYz and body-fixed 

systems OX~YAZ~ and Ox).y 'z~ (Sec. ITB). The origin 0 of 

this figure is the same as that of Fig. 1. 
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as 

[ -If ( _!_ ~RA + _!_ ~rA) 
2/J RA aRA rA arA 

+ ~ + 2 JiR2 + VA(rA, RA, )\)- EJ -¥A(rA, R,.) = 0 ' 
2J.J.rA J.J. A 

(2. 9) 

where 1A and h are the usual orbital and rotational an

gular momentum operators expressed in the spherical 

coordinates eA, ¢A and 8, , ¢, and are given in Appendix 
A A • 

A. The total angular momentum operator J 1s the vec-

tor sum of 1A and h, 

J= lA + h ' (2. 10) 

and is independent of arrangement channel. 

The operators J 2 and J~ (the z component of J) com

mute with each other and with the Hamiltonian H. In 

the partial wave analysis procedure, we expand -¥A{rA,R,.) 

in terms of simultaneous eigenfunctions -v~M(rA, RA) of 

J 2
, J~, and H with eigenvalues lf2J(J + 1), lfM, and E, 

respectively: 

J 

-vA(rx. RA) = I: L c~M -v~M(rA, R,.) • (2.11) 
J=O M=-J 

The -v}M still satisfy Eq. (2. 9). 

C. The body-fixed Schrodinger equation 

In the standard space-fixed theory (as formulated, 

for example, by Arthurs and Dalgarno29
), one now ex

pands -¥}M in terms of a set of simulataneous eigenfunc

tions of J2
, J

11
, 1~, and j~, thereby obtaining a set of 

coupled equations in the quantum numbers jA and ZA. 

This derivation is summarized in Appendix A. A more 

convenient and computationally efficient procedure for 

our purposes is to transform to a system of body-fixed 

coordinates. These coordinate systems were applied 

to quantum mechanical problems long ago by Hirsch

felder and Wigner30 and have been discussed extensively 

by Curtiss, Hirschfelder, and Adler31 and more recent

ly by Pack, 32 and much of the present development will 

follow that of Pack. In a fully converged calculation, 

both the body-fixed and space-fixed formalisms lead to 

the same number of coupled equations and, for fully 

converged nonreactive atom diatom calculations, they 

may be implemented with comparable ease. However, 

body-fixed coordinate systems lead to an approximate 

decoupling of certain degrees of freedom which is not 

naturally present in the space-fixed analysis and which 

is useful in the development of approximate theories. 

More important, the body-fixed analysis leads to both 

computational and conceptual simplifications in the 

matching procedure, thus providing a considerable ad

vantage in reactive scattering calculations over the cor

responding space-fixed theory. 

We now introduce the two different body fixed coor

dinate systems OXAYAZA and Ox~y' z~ (see Fig. 2) as fol

lows: (1) OXAYAZA (not to be confused with the, internal 

configuration space coordinate system OXAYAZA of Fig. 

2 of Paper I) is obtained from Oxyz by rotating through 

the Euler angles33 a= </>A, {3 = 8A, y = 0 so that the result

ing ZA axis points along the R,. direction and the YA axis 

lies in the xy plane; (2) Ox~y' z~ is obtained from OXAY,.ZA 

by rotating it counterclockwise about OZA (= Oz~) by an 

angle 1/JA (in the 0 to 21T range) so as to bring Ox~ into 

the R,., rA plane and Oy' (which is independent of ::\) per

pendicular to it and oriented in the direction of R,. x rA: 

A'- RA x rA 
Y-IRAxrAI' 

(2. 12) 

The Euler angles which rotate Oxyz into Ox~y' z~ are 

therefore a= ¢A, {3 = 8A, y =1/JA. In either of the body

fixed coordinate systems OXAYAZA or Ox~y' z~ the vari

ables used to describe the system are rx.RA, <Px. BA, 1/JA,/\• 

As seen from Fig. 2, 1/JA is the counterclockwise angle 

from OYA to Oy' or from OXA to Ox~ as viewed from the 

positive OZA axis. Since OYA is perpendicular to the 

OXAZA plane and therefore the RA, Oz plane, and Oy' is 

perpendicular to the RA, rA plane, we conclude that 1/JA 

is the angle between these last two planes. This can 

also be seen by noticing that the plane containing the 

three axes OXA, Ox~, and OYA is perpendicular to the 

RA vector and intersects the RA, Oz and R,., rA planes 

along the OXA and Ox~ axes, respectively. Therefore, 

the angle 1/JA between these two axes is equal to the angle 

between those two planes. A motion in which RA, ¢A, 

8A, rx, and yA are kept constant but 1/Jx varies is a "tum

bling" (i.e., rigid rotation) of the triatomic system 

around the RA vector, and for this reason the 1/JA angle 

will be called the tumbling angle. In what follows we 

will find it most convenient to use the coordinate sys

tem OXAYxZA for deriving the coupled form of the Schro

dinger equation and Ox~y' z~ in developing the matching 

procedure. The procedure for expressing the operators 

j~ and l~ of Eq. (2. 9) in variables ¢A, BA, 1/JA, YA is de

scribed in Appendix A. 

We now expand >Ir~M in terms of the elements of the 

Wigner rotation matrix D (a, {3, y) as follows32
: 

J 

-¥~M(rA, R,.) = L D~oA (¢A, BA, O)-¥~oA (rA,RA, YA, 1/JA) • 
11 A=-J (2.13) 

The notation used for the matrix elements is that of 

Davydov. 33 -¥~A is called a body-fixed wavefunction. 

The quantum number nA in Eq. (2.13) specifies the 

component of the total angular momentum J around RA 

or, equivalently, OZA. The component of lA (the angular 

momentum conjugate to Rx) around this axis vanishes 

and therefore nx also specifies the Zx component of the 

rotational angular momentum j>. in the body-fixed frame. 

The equality of J zx and j xzx is verified independently in 

Table I (which is described in Appendix A). We will 

refer to either J z or ixz as the tumbling angular mo-
>. A • 

mentum (since it describes the tumbling of the tnatom 

around R,.) and nA as the tumbling quantum number in 

arrangement channel ::\. 

As outlined in Appendix A, substitution of Eq. (2.13) 

into Eq. (2. 9) yields the following set of nA -coupled 

equations for the -¥~ 11 >. (rx, Rx, YA, l/JA): 

..,J>. -¥A HJA -v>- Hf..>. -¥A _ E-¥>. 
niJA,I1A JI1A + 11A,11x+l J ,11x+l + 11A,11x•l J ,11A•l- JI1A • 

(2.14) 

The H~>. 11• can be considered as the elements of a tri-
x• >. J 

diagonal Hamiltonian operator matrix H >-(rx,Rx, Yu 1/Jx) 

whose diagonal and off-diagonal elements are defined, 

respectively, by 
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TABLE I. Angular momentum operators in space-fixed and body-fixed coordinate systems. • 

Oxyz 

.J,=-ilf (-cosq,cote a~ 

. Q. + coscp £__) 
-sm¢ae sinO aljJ 

.JY = - iJf (-sin¢ cote ~ 
aq, 

a coscp a ) 
+cos¢ M +sinO a;f, 

.] = -ilf -~ 
• aq, 

J~x = -in[cosq, sinO +sin¢ sinljJ coty 

a 
-cos¢ cosO cosljJ coty) ij 

-(sin¢ cosq1 + coscp cosO sinljJ) ~ J 

j~> = -in[(sinq, sinO -cosq, sinljJ coty 

-sin<P cosO cosljJ coty) ij 
+(cos¢ cosljJ -sin¢ cosO sini/J) ~] 

j~z =-in ~cosO+ sinO cosljJ coty) ij 

+sinO simp~] 

( 
1 a a) 

Jx~ =-in -sinO a¢ +cosO ij 

Jy =-in Q. 
~ ae 

j~ x~ = -in (- cosljJ coty ij 
. a) 

- smljJ BY 

j~ y =-in (-sinljJ coty Q. 
~ aq, 

+cos<J; ~) 

. .,. a 
J~z = -z"-

~ ai/J 

Ox).y' z). 

. ( cosljJ a 
J,~ = -zn - -.-

0 
;;

s lfi u<b 

"sinljJ fe +cote cos</!~) 

J. = -m(sinljJ ~ 
> sinO a¢ 

+cosljJ Q.-cotOsinljJ £..) 
ae a~~ 

Jz~ =-in ij 

Jxr~ =-in (-coty ij) 

. ""'a Jx,. = -w BY 

-incoty )xy • 

+ j~y, J>, -ilf cotyJY, 

"The subscript;\. has been omitted from the symbols 0, q,, y, 1/J. The expressions for J 2
, j~, and h · J in terms of 

e, ¢, y, 1/1 are independent of coordinate system. 

(2. 15) 

and 

H~~.ox:t =- 2 :R~,fJ(J + 1) -Ox(Ox± 1) J~. (2. 16) 

The j~ are the lowering (-) and raising(+) operators of 

the rotational angular momentum h in the body-fixed 

OXxYxZx coordinate system. The 1/2/-LR~ term in Eq. 

(2. 15) results directly from the lU21-LR~ term in Eq. 

(2. 9). Defining >It~ as the (20x +!)-dimensional column 

vector whose elements are the >It~ox• Eq. (2. 14) can be 

put in the matrix form 

(2. 17) 

Equations (2.14) or (2.17) are the body-fixed partial 

wave Schrodinger equation. Equation (2. 14) is identical 

to the corresponding result of Pack32 and indicates that 

the kinetic energy operator is no longer diagonal in the 

body-fixed representation and is the sole mechanism 

which couples different tumbling quantum numbers Ox. 

J. Chern. Phys., Vol. 65, No. 11, 1 December 1976 
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The potential coupling is diagonal in 0~ and is respon

sible for coupling between states of different vibration

rotation quantum numbers v~ j~, as indicated later in 

Eq. (3.16) and its counterparts for the strong interac-

______________________ _j 

tion and matching regions. This separation of kine

matic and potential coupling is of prime importance in 

the development of approximate decoupling procedures, 

as will be discussed in the next section. 

D. The rotationally coupled Schrodinger equation; tumbling-decoupling approximations 

We now expand the body-fixed wavefunctions '11~ 0 ~ in terms of the spherical harmonics Yh 0 ~ (Yx, 1/J~) which, as dis

cussed in Appendix A, are the simultaneous eigenfunctions of j~ and j~zx: 

~ 

>¥~ 0 x(rx,Rx>>'x.1/Jx)= L Ylx 0 x(Yx.1/Jx)w~h 0 x(rx,Rx) Ox=-J, -J+1, ... ,J; J=0,1,2, ... 
Jx=IOxl 

(2. 18) 

If we substitute this into Eq. (2.14), multiply throughout by YAn~ (yx, 1/Jx) and integrate over Yx and 1/Jx (using the solid 

angle volume element sinyx dYxd1/Jx), and finally interchange the primed and unprimed quantum numbers, it becomes 

a Schrodinger equation in the two scaled distances rx,Rx: 

J=0,1,2, ... ; Ox=-J, -J+1, ... ,J; }x=IOxl, loxl +1, ... , (2. 19) 

where 

l'i2 ( 1 a2 1 a2 ) j (j + 1)1'i2 l'i2 
t~x~x=- 2 - R- "R2Rx+-

8
H2rx +\A 2 +

2 
R2[JW+1)-20~+jx(jx+1)], 

X X fJ. X a X rx ?";\ tJ.rx fJ. X 

(2. 20) 

t~xJ~'*' =-21'iR2 2~,.(J,Ox)~,.{jx,nx)' 
X• A fJ. A 

~,.(J, Ox) =[J(J + 1)- Ox(Ox± 1)}' 12 I nx I :SJ' 

and 

v;~A<rx,Rx)=(jxOxl vx(rx,Rx,Yx)lj~Ox), 

Equation (2.19) is the three-dimensional generalization 

of an analogous equation for collinear and coplanar19 

reactions. None of the four angular coordinates lix, ¢x, 

rx, 1/Jx appear in it, with only the two scaled distances 

rx,Rx remaining. In the collinear case, none of the 

angular momentum quantum numbers J, Ox, or jx ap

pear, and we have only one such equation. For sys

tems confined to a space-fixed plane, Ox does not ap

pear (or it can be considered to have the fixed value 

zero) since the system does not tumble, and there is 

therefore no Ox coupling. In that case, jx assumes all 

integer values, including negative ones, and there is 

one set of jx -coupled equations for each J. In the pres

ent three-dimensional case, there is both ix and Ox 
coupling, but still no J coupling. Let us consider a ki

netic energy matrix t.n(rx,Rx) (which includes the cen

trifugal potential terms) and a potential energy matrix 

V"A(rx,Rx) whose rows and columns are scanned by the 

indices jx, Ox and j~, 0~, respectively. They are defined 
by 

(2. 24) 

( x)J' o' xo 
V A ~ = lin n' VJ J' ' Jx Ox ~ A X A 

(2. 25) 

respectively, where the several t and V were defined 

by Eqs. (2. 20)-(2. 23). It can be seen that t .n is diag

onal in jA (and tridiagonal in Ox) whereas vx is diagonal 

in Ox· Defining ~(rx,R~) as the column vector whose 

(2. 21) 

(2. 22) 

(2. 23) 

elements, scanned by jxO~, are the functions w~ 1 0 (rx,Rx) 
X ~ 

Eq. (2. 19) can be rewritten as 

(2. 26) 

Equation (2. 26) shows clearly that the potential cou

pling is diagonal in Ox· This, along with the weakness 

of the centrifugal coupling (due to the terms in ex of 

angular origin) for small J and j x has lead to the devel

opment of fairly accurate tumbling-decoupling approxi

mations by several workers32•34
•
35 in studies of nonreac

tive atom-diatom scattering. In such procedures, the 

t~~1~x±l terms in Eqs. (2.19) and (2. 24) are neglected, 

thereby making Eq. (2. 26) be diagonal in Ox. In addi

tion, the n 2 /2tJ.R~ term in Eq. (2. 20) [which arises 

from the l~ term in Eq. (2. 9)] is usually replaced by an 

approximate exgression. Pack32 replaces it by 

l'i2J(J + 1)/2tJ.R~, and McGuire and Kouri34 by l'i2lx{lx + 1)/ 

2tJ.R~, where lA is the orbital angular momentum quan

tum number in the space-fixed system of coordinates. 36 

Such additional approximations are unnecessary to pro

duce 0~ decoupling and may furthermore introduce ad

ditional errors without significant computational sim

plification; we suggest that they should be omitted. For 

the case of reactive scattering, an Ox decoupling re

quires neglect of the t~~1~x•' in Eq. (2. 19) for each 

arrangement channel region X= a, {3, y. The exact 

matching procedure described in Sec. III may be re

tained, or be replaced by approximate ones which re

tain the spirit of Ox decoupling. In a separate paper 
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we will present some results of an application of some 

of these possible procedures to 3D reactive scattering. 

The elements of the potential coupling matrix of Eqs. 

(2. 23) and (2. 26) may be conveniently calculated by ex

panding the potential V~(rx,RA> I\) in a series of 

Legendre polynomials 

"' 
vx(rx,Rx, }\) = L V~(rx.Rx)Pk(COS'}'~_) (2. 27) 

k=O 

which, when substituted into Eq. (2. 23), leads to32 

(2. 28) 

where the Clebsch-Gordan coefficients C are expressed 

in the notation of Rose. 37 For collisions of an atom 

with a homonuclear diatomic molecule (as in H + H2), the 

only nonzero terms in Eq. (2. 27) occur for even k 

[since Vx(rx,Rx>>'A) is symmetric about Yx = 7T/2l. Since38 

C(jxkj~;OOO)=O forjx+k+j~=odd, (2.29) 

we see that V). does not couple even with odd rotational 

states. Use of this decoupling in reducing the necessary 

calculations for reactions like H + H2 was discussed in 

Paper I for the planar case, and most of the simplifi

cations described there are valid for 3D collisions as 

well. Note that Eq. (2. 28) involves a single sum over 

products of Clebsch-Gordan coefficients, a substantial 

simplification over the corresponding space-fixed ex

pansion which requires 6-j symbols32 

Let us now define a new function ~hRx (rA> Rx) by 

~'x"x (rx,Rx) =Rxrxw~'x"x (r;~., Rx) . (2. 30) 

Substitution of this into Eq. (2.19) leads to 

(
- J).J ) ). 
t (j ()). - E F Ji).R;~. 

X X 

where 

n2 
+ 2 J.J.R~[J(J + 1)- 20~ +j;~_(jx + 1)] , 

(2. 31) 

(2. 32) 

and the remaining quantities are defined by Eqs. (2. 21)

(2. 23). In matrix form, Eq. (2. 31) can be written as 

(2. 33) 

where tn is defined similarly to ex and F~ similarly 

tow~. Equations (2. 31) and (2. 33) are called the body

fixed rotationally coupled Schrodinger equation. 

Ill. THE INTEGRATION IN ARRANGEMENT 

CHANNEL REGION "A 

A. Division of rx. Rx configuration space into regions 

To solve Eq. (2. 31) or (2. 33) we expand the wave

function ~hRx (r;~., Rx) in terms of a set of one-variable 

6 

I 

I 
III 

I 

5 I 

... 4 
..c 
0 
.0 

.-< 
0::: 3 

r---~~~~r+-r~ 

I 
I 
lm 
I 

r>-. 

6 

FIG. 3. Division of the Rx, rx space into four regions, I, II, 

III, and IV. The contours are equipotentials of the matrix ele

ment va (r;~_, R;~.) [see Eq. {2.27)] in eV for the Porter-Kar

plus H + H2 potential energy function. The dashed line is the 

line of steepest ascents for V~. The locations of the points 

Po, P 0 , and P 1 are discussed in Sec. III. A of the text. Q is 

the origin of this space. 

pseudovibrational functions which locally span the rx,Rx 

configuration space along cuts which are approximately 

perpendicular to a conveniently defined reaction coordi

nate. The resulting expansion coefficients satisfy or

dinary coupled differential equations which must be 

numerically integrated through the arrangement channel 

region X to generate a set of solutions to the Schrodinger 

equation in that region. In order to obtain an efficient 

representation of the pseudovibrational motion every

where, we must change both coordinate systems and 

basis sets frequently during this propagation. This may 

be done in many different ways depending on the bound

aries of the arrangement channel regions and the shape 

of the potential energy surface in these regions. For 

the H + H2 reaction, and most others for which the 

choice of matching surfaces is given by Eq. (3. 2) of 

Paper I, a convenient procedure consists of dividing the 

r;~.,Rx configuration space into four areas called regions, 

as depicted in Fig. 3. For reference contours of the 

potential matrix element V0(rx,Rx) of Eq. (2. 27) for the 

H3 Porter-Karplus surface39 are plotted on the same 

figure. The regions are denoted as follows: !-asymp

totic region; 11-weak interaction region; III-strong 

interaction region; and IV -matching region. The 

boundary points Pb, P 0, and P 1 are required to lie in 

the high-energy plateau region corresponding to disso

ciation of the triatomic system into A+ B + C (i.e., 

large rx and R;~.), in positions which are primarily de

termined by certain geometrical criteria. These are 
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described in detail in Sec. III. C of Paper I and are un

changed in the present application. Within each region, 

we choose a set of orthogonal coordinates which effi

ciently describe the local vibrational and translational 

motion. The choice of these coordinates is also the 

same as in Sec. III. C of Paper I. 

B. The coupled Schrodinger equation in the 

propagation variable 

We now consider the solution of Eq. (2. 31) in each of 

the four regions in arrangement channel region X. Much 

of this treatment is completely analogous to the corre

sponding coplanar theory (Sec. III. D of Paper I), and 

that paper should be consulted for a more detailed ex

planation of the concepts involved. 

1. The asymptotic region 

The coordinates for this region are r~, R~. In terms 

of these, the potential function V:>.( r;.., R;.., h) becomes 

the isolated diatomic potential v:>.(r;..) since the bound

aries of the asymptotic region are chosen19 so that in it 

the potential has assumed its asymptotic form. We now 

expand the wavefunction F~ho (r~., RJ of Eq. (2. 31) in 

terms of the eigenfunctions c,b~~i(r~) of the vibrational 

Hamiltonian: 

F ~<•> 1 R ) " ~<a> (R ) ,J..A(al ( ) 
J}).O~ r~, ~ = ~ g Jv),.J;.,O~ ~ 't'v~j;>. r;>. , 

V;., 

(3. 1) 

where the (a) refers to asymptotic region, and the ¢~~~ 

are vibrational basis functions which satisfy 

with boundary conditions 

,J..X<a>(r ) = ,J..X(al(O) = O 
't'v1J1 ;>.0 't'v~h • (3. 3) 

E~~j~ is the asymptotic diatomic vibration-rotation ener

gy, and r i: 1 ¢~ii~(r;..), except for a normalization con

stant, is the radial part of the corresponding diatomic 

eigenfunction. Substituting Eq. (3. 1) into Eq. (2. 31), 

using Eq. (3. 2), multiplying by c,b~~j~(r;..), integrating 

over r;>., and replacing v~ by 11)., we obtain the Schro

dinger equation for translational R1 motion in the 

asymptotic region: 

(d~~ -k[J(J+ 1)- 2n~ +j;.,(i;.. +1)] +k!~j~ 2 )~~j~ 0 :>.(R;..) 

+ k[UJ, fl;~.)~.(j~., n~.)g~<,:':J 1 ,o;>.•l(R~.) 

(3. 4) 

where 

k :>.<a>2 = 2/). (E- EX! a>) 
"Ah 1{J v;>.J); • (3. 5) 

Note that while no vibrational or rotational coupling 

exists in Eq. (3. 4), the kinetic energy coupling be

tween g's of different n,. persists in this asymptotic re

gion, decreasing only as R~ 2 (rather than exponential

ly or as Ri:6 as is often the case with potential coupling). 

Of course, as R~- oo (the "far" asymptotic region), 

Eqs. (3. 4) completely uncouple and the g~~~~;>.n;>. become 

solutions to 

( 
d2 k X<a>2) :\(a) (R ) - 0 ( ) 
dR~ + v;..h g Jv;>.J).n~ :>. - , 3. 6 

which are simply linear combinations of exp(± ik!~~R;>.) 

for open channels (E> E~~j~) and exp(± I k !~1~ I R~) for 

closed ones (E< e::~i~i). Equation (3. 4) may be solved 

analytically either by diagonalizing the Hamiltonian in 

that equation or by realizing that the corresponding 

space-fixed Schrodinger equation is already diagonal, 29 

and thus its solutions may be linearly combined to sat

isfy Eq. (3. 4). 35 The solutions of the space -fixed 

Schrodinger equation for open channels are related to 

the regular and irregular spherical Bessel functions 

j 1 ;>.(k!~j~R;>.) and y 1 ~(k~j~R~), 
29 

where z~ is the orbital 

angular momentum quantum number. The correspond

ing body-fixed solutions are found by equating Eqs. (A5) 

and (A13) of Appendix A and using Eq. (A14) to solve 

for the body-fixed coefficients w~hn;>.· Since Eqs. (2.30) 

and (3. 1) apply equally to space-fixed and body-fixed 

solutions, we can immediately write the asymptotic 

body-fixed solutions for open channels as linear com

binations of the regular and irregular solutions 

g:\(a) (R)=k;>.(a)R (2J+1)1/2(-l)h-0;>. 
Jv;.,iAO;>. ;>. V~h ;>. 41T 

(
j 11 (k~j~R~.)) 

XL c ( Jj;.,l;..; n;..- n~o) (k :\(a) R ) 
I~ Yz 1 v~.J~ ~ 

(E > E:>.ta>) (3. 7) 
V~i;>, J 

where the upper (lower) term in the large parentheses 

refers to the regular (irregular) solution. The use of 

Eq. (3. 6) in formulating the asymptotic R and S matrix 

boundary conditions will be discussed in Sec. V. A. 

For closed channels, the body-fixed solution is still of 

the form in Eq. (3. 7) but with the spherical Bessel 

functions j 1 ~ and y 1 ~ replaced by the modified spherical 

Bessel functions i 1 ~(1 k~~i!l R~.) and k1;.,(1 k~j~ I R~). 40 

Let us now introduce a matrix notation for the Schro

dinger equation [Eq. (3. 4)]. We consider the g}~~ 1 ~ 0 ~ 

as elements of a column vector g~<a> whose elements 

are labeled by the indices vd~.n~, which are assumed 

to scan a total of N values (in a truncated coupled-chan

nel expansion). This vector represents one of 2N pos

sible linearly independent solutions of Eq. (3. 4). These 

2N solutions which form 2N column vectors can be as

sembled into two matrices of dimension NXN which we 

label as g}<•>• and g}<•>-, where a set of indices v~j{Sl{ 

analogous to the row indices explained above is asso

ciated with each column. 41 The labels ± are in general 

arbitrary, but may be chosen to distinguigh the solu

tions generated in the propagation from Region I-IV 

(labeled plus) and from IV -I (labeled minus). Both 

propagations are necessary to generate all 2N solutions 

(we get N from the propagation in each direction). Us

ing this notation, Eq. (3. 4) may be written as 

d2g,~(a)z 

dR~ u;<a> (R~)g}(a)z ' (3. 8) 

where 
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-on +1 n' ~.(J, nxH)ix, Ox) 
X ' X 

(3. 9) 

(3.10) 

- Onx-l,n~ ~.(J, nx)Uix' nx)} . (3.11) 

The symbol tx stands for the set of indices vdxnx and 

the subscripts and superscripts on a matrix element 

designate its row and column, respectively. The u;x<a> 

matrix arises from the 1/R~ centrifugal terms. Equa

tion (3. 8) is the full coupled propagation equation for 

the asymptotic region I. 

2. The weak interaction region 

In this region we still use the variables rx and Rx to 

represent vibrational and translational motion, but the 

potential vx (rx, Rx, rx) is now dependent on Rx and Yx as 

well as rx, so we no longer use the asymptotic vibra

tional eigenfunctions of Eqs. (3.1) and (3. 2) to expand 

the wavefunction. Since it may be desirable to change 

vibrational basis functions several times within Region 

II, we subdivide that region into n~ 1 subregions sepa

rated by lines of constant Rx at 

Rx =R~ 0 , R~ 1 , ••• , R~x =Rx
0 

• 

II 

The range of Rx for the ith subregion is R~i-1 -:SRx -:SR~ 1 
and we choose the expansion basis functions for that 

subregion to be the eigenfunctions of a reference poten

tial V~.r(rx; R~ 1 ) at a point R~ 1 belonging to the subre

gion (such as the midpoint). The reference potential 

V~.r(rx ;Rx) is in general arbitrary provided that a com

plete vibration-rotation expansion is used, but an effi

cient representation of the vibrational motions can 

greatly reduce the number of closed channels required 

for such completeness. Examples of reference poten

tials are the V~(rx,RJ of Eq. (2. 27) and the exact po

tential vx(rx,Rx,YJ at fixed Yx· Once a reference po

tential is chosen, the vibrational basis functions for 

subregion i may be determined by solving 

(3. 12) 

subject to boundary conditions analogous to Eq. (3. 3) 

where the superscript (w) indicates weak interaction 

region. We now expand the wavefunction Fh xox in terms 

of these basis functions, 

(3. 13) 

Substituting this into Eq. (2. 31), using Eq. (3.12) to 

simplify, then multiplying by </>~~j~(rx ;R~ 1 ) and integrat

ing over rx, we obtain the following coupled differential 

equations (in the matrix notation of Sec. III.B.1): 

(3.14) 

where 

UX(w)- Kx<w> 2 ucHw> + UHw) 
J -- + J p (3. 15) 

The matrices Kx<w>
2 

and u~x<w> are given by Eqs. (3. 10) 

and (3. 11) with the superscript (w) substituted for (a), 

while the J -independent potential coupling potential ma

trix u;<w> is given by 

where t, was defined after Eq. (3 .11) and the Yx integral 

is performed as indicated in Eq. (2. 23). Equation 

(3.16) clearly shows that this potential energy matrix 

is diagonal in n, but couples states of different vibra

tion-rotation quantum numbers Vxix, as stated at the 

end of Sec. II.B. Equation (3.14) must now be inte

grated (as described in Sec. III. C) through each sub

region i of Region II. At the boundary between two sub

regions (say, i and i + 1 ), a vibrational basis set change 

is performed. If one makes both >~'~ax and its deriva

tive with respect to Rx continuous at this boundary Rx 

= R~ , the following relations between the "K" coeffi-
1 

cients in two adjacent subregions are obtained: 

(3.17a) 

dgx<w>•(R' R0 ) dg>.<w>•(R' · R0 ) 
J l.j; Ai+l = S~(w) J l.i' >.i 

dRx ' dRx 
(3.17b) 

where the overlap matrix s~<w> is given by 

(3.18) 

As discussed in Paper I (Sec. III.D), st<w> should be 

orthogonal for a complete vibrational expansion. For 

a truncated expansion, as required by practical con

siderations, st<w> must be nearly orthogonal in order 

for us to obtain scattering matrices which satisfy con

servation of flux (see Sec. V) to an acceptable degree 

of accuracy. The transformation between Regions I 

and II is accomplished by setting i = 0 in Eqs. (3. 17) and 

interpreting R~ 0 to mean R~ (Fig. 3) and t/J~~j~(rx; R~ 0 ) to 

mean ¢~~'1~ (rx). 

3. The strong interaction region 

In this region we use the polar coordinates P~~., 'h .. of 

Eq. (3.16) of I and regard 'Px as the propagation vari

able. Before we can expand the wavefunction in terms 

of a set of pseudovibrational eigenfunctions in the vari

able P>., we must first transform Eq. (2. 31) to these 

polar coordinates. The only important change in this 

transformation occurs in t ~l.~x [of Eq. (2. 32) ], which 
>. >. 

becomes 
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n2[J(J+l)- 2nf+i,(ix +1)] 

+ 2!-L(Rl.u- PJ,_ sincpx)2 
(3.19) 

As for Region II, we divide Region III into n~n subre

gions bounded by lines of constant 

¢~~·> independent of jl., which simplifies the matching 

procedure (Sec. IV) and should not seriously slow down 

the rate of convergence of the vibrational expansion. If 

we now expand F)h 0 l. in terms of these ¢~~·>, 

We choose our vibrational basis set to satisfy 

___ +VA {fl.. ,0 0 ) ,J,:I.(s) {fl.. ,0 0 ) = E:l.(s) (rr,O. )"':l.(s) 
( 

n-2 d2 ) 
2J.J. d~ rer ,...., '~"l.; ~Jvl. ,...., '1"&1 vl. 't':\. 1 'l'v:~_ 

(3. 20) 

with boundary conditions analogous to Eq. (3. 3). rp~. 
I 

is generally a point within the ith subregion and the 

d2 l.(S)% 
JL_ = if<•>(rr, •rnO )g.\(s)% 
drp~ J 'I" :I.• '1":\.j J ' 

(3. 22) 

where 

if<•>= n_2(rn0 )Ul.(s){m •r/10 ) 
J 1"'}. 't'}.i J '1":\.t't':l.j (3. 23) 

and reference potential has been re-expressed in the 

polar coordinates Pu rpl. so that it has the shape of 

a diatomic potential as a function of pl. for a given cp~ 1 
within Region III (see Fig. 3). The superscript (s) in 

Eq. (3. 20) refers to strong interaction region. Note 

that the centrifugal term appearing in Eqs. (3. 2) and 

(3.12) has been omitted. [It has been transferred to 

ul.<s> (rr. • o.0 ) =- Kl.<s> 2 + ucA<s> + ul.<s> (3. 24) 
J 't":\.o't'l.j J /> 

The matrix p~ (whose elements have the physical di

mension of the square of a length) is given by 

[p2(rpo )]tx = 1i J~o~ ( v 1 ~ 1 v') (3. 25) 
l. l.j t:~_ h"l. l. :1. ' 

Eq. (3. 26) below.] This results in a vibrational function while the centrifugal coupling matrix u~:~.<•> is 

1 

[Uc:l.(s)( • O)]ti.=(iJAOA[(v 1(--1-+J(J+1)-2n~+ja,{j>,+l)+ jA,{jl.+1) ) lv') 
J (/);~.,'Pl.; t:~, Jl.0 l. l. 4~ (R:~. 0 - Pl. sinrpl.)2 (r:~_ 0 - 0., cosrpl.)2 :~. 

-1iJA (vl.l (Rl. _ ~:~. sinrpJ21 v~)[1iol.•1,nt UJ, nl.)Uil,, nl.) +lio:~.-1·"1. ~-(J, nJUjl., nJl] 
0 

(3. 26) 

The matrices KA<s>
2 

and u~<s> are given by equations analogous to Eqs. (3.10) and (3.16) with superscripts and co

ordinates appropriate to the strong interaction region substituted where necessary. Note that the centrifugal cou

pling [Eq. (3. 26) is no longer diagonal in Vx. The effective potential matrix v;<•> is not symmetric in this region 

but rather is equal to the product of two symmetric matrices [Eq. (3. 23)], one of which (p~) is the matrix repre

sentation of a positive definite operator. The nonsymmetric nature of iJ}<s> complicates the integration of Eq. (3.22), 

and a way of handling this problem was described in Paper I (Sec. III. E and Appendix B). 

To solve the Schrodinger equation in Region III, we need to propagate the solution of Eq. (3. 22) through each 

subregion of that region, relating solutions in adjacent subregions by equations analogous to Eqs. (3.17) and (3.18). 

To relate the solutions at the boundary of Regions II and III, we use the following formula [which is derived in a 

manner analogous to Eq. (3.17)]: 

(3. 27a) 

dgl.<s>"(m -0· cp? )/drn =-p312[dgl.<w>z(R . RO )/dR J 
J '~".\- • ~1 '~"l. l. J l.o• l. l. l. • 

"n 
{3. 27b) 

where 

(3. 28) 

4. The matching region 

The polar coordinates ~. 7/l, of Eq. {3. 17) of I are used in Region IV with 7/l, acting as the propagation variable. 

Upon transformation of Eq. (2. 31) to these coordinates, the operator El.Jl. of Eq. (2. 32) becomes 
"l.'"l. 

rn 1 :~. = _ n2 (!. ~ ~ ~ + 1 8
2 )+ n2h. U:~. + 1) + n2

[J(J+1)- 2n~+i?.(iA + 1)] 
0 :~. 0 :~. 2/-L ~ 8~ 8~ ~"ii"171 21-L~ 2 sin 2 7)l. 21-L~ 2 cos 2 7):~_ ' 

(3. 29) 

In analogy with Region III, Region IV is divided into n~v subregions by lines of constant 77:~., with the vibrational 

eigenfunctions of each subregion satisfying an equation analogous to {3. 20): 

(3. 30) 

where the superscript (m) denotes matching region. Writing 
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the counterpart of Eq. (3. 22) becomes 

d2 
_ gA<m>•- ijA<m>(TJ . T}O )gA<m>• 
dT}~ J - J A' Ai J ' 

where 

ijA<m> = l:2(TJo )uA<m>(TJ . T}o ) 
J Al J A' Aj 

and 

u A(ml(TJ . T}o ) -- KA(m)2 + ucA(m) + UA(m) 
J A' AI - J P ' 

(3. 31) 

(3. 32) 

(3. 33) 

(3. 34) 

The matrix l: 2 (TJ~ 1 ) is defined analogously top~ of Eq. (3. 25) with {; substituted for PA. The matrices KA<m>
2 

and u~<m> 
are given by equations similar to Eqs. (3.10) and (3.16), respectively, with the superscript (m) inserted and the ap

propriate coordinate changes made. The centrifugal coupling matrix u1<m> is given by 

[ u~A<m>(TJA; TJ~ 1 )H~ = < vA I ~;- 2 1 v~) ({ o~~~~ {- i + [J(J + 1)- 2n~ + jA(jA + 1)] /cos2 TJA + jA(jA + 1 )/sin2 TJA} (3. 35) 

- OhoJ~ [o!lA+l,!l~ ~+(J, nA)~+(jA, nA) 

+ OnA-t,n~ UJ, nA)L(jA, nA)]/cos
2

T}A). 

To solve the Schrodinger equation in Region IV, one must integrate Eq, (3. 32) through each subregion, relating 

solutions in adjacent subregions by equations analogous to Eqs. (3.17) and (3. 18). The transformation between Re

gions III and IV is accomplished by equations analogous to Eqs. (30 27a) and (3. 27b) (with a plus rather than a 

minus sign in the right hand side of the latter) and the matrix tb substituted for PL where 

[ b t~- 1~0~ A(m) 0 I (-'-)bl A<s>{, . 0 )) 1 t ltA- olAllA (c!>vA (?;, T}At) PAo- {; cp"A fAa-{;, 'PA"~r b = 2' % • (3. 36) 

with PAo defined in Fig. 3. 

C. Integration of the Schrodinger equation 

We generate the solution g~ and its derivative with 

respect to the propagation variable by choosing at RA 

= R~ 0 (Fig. 3) arbitrary initial values for these two 

matrices and integrating numerically Eqs. (3. 8), (3. 14), 

(3. 22), and (3. 32) from the beginning of Region II to the 

end of Region IV. The solution u7 and its derivative are 

determined by integrating the same equations from the 

end of Region IV to the beginning of Region II. Any ap

propriate numerical procedure may be used to solve 

these coupled ordinary second order differential equa

tions. A particular one which is well suited to such 

equations and which we used is the Gordon method. 42 

More particulars of this procedure are described in 

Paper I (Sec. III. EL 

For the H + H2 reaction, the coupled equations need 

only be solved in one of the three equivalent arrange

ment channels. Reactions of the type A+ B2 involving 

two identical atoms will require two such integrations, 

and reactions with three different atoms will require 

three. For arrangement channels for which the target 

is homonuclear, Eq. (2. 29) implies zero potential 

coupling between odd and even rotational states. Since 

all kinetic energy coupling is diagonal in jA in all four 

regions, our matrix differential equations may be de

coupled into two separate ones for the even and odd 

rotational states with a consequent savings in computa

tion time. Both must be integrated before the matching, 

which mixes these two sets of solutions, is performed. 

Any chemical reaction displays in addition parity 

(i.e., inversion through the center of mass) symmetry, 

as shown for triatomic systems in Appendix B. Al

though the body-fixed wavefunctions obtained from Eqs. 

(2.13), (2.18), (2. 30), and either (3.1), (3.13), (3. 21), 

or (3. 31) are not eigenfunctions of the parity operator, 

they may be linearly combined to yield solutions which 

are, and this transformation to the "parity representa

tion" results in a partial decoupling of Eqs. (3. 8), 

(3. 14), (3, 22), and (3. 32) into two sets, one for even 

and one for odd parity. A description of this trans

formation and other consequences of the parity opera

tion are given in Appendix B. By using parity eigen

functions, the integration in each arrangement channel 

is done in two separate steps (four for homonuclear tar

gets). Since the transformation between arrangement 

channels preserves parity (as shown in Appendix B), 

the matching procedure also can be done separately for 

solutions of each parity, as can the calculation of the 

reactance and scattering matrices. The final plane 

wave solution is not, however, an eigenfunction of the 

parity operator, and as a result the calculation of scat

tering amplitudes requires a transformation back to the 

body-fixed representation of the previous two sections. 

The enormous reduction in computation time more than 

outweighs the additional work involved in this trans

formation. Appendix B describes this in more detail. 

IV. THE MATCHING 

A. The 'A to v transformation 

At the completion of the integrations in each of the 

three arrangement channel regions, one has solutions 
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to the Schrodinger equation which span all of configura

tion space but which are neither smooth nor continuous 

at the internal configuration space boundaries of these 

regions. In this section we describe the procedure for 

linearly combining these solutions so as to produce a 

smooth matching at those boundaries, This procedure 

will also include the transformation from ,\ to v co

ordinates (appropriate for arrangement channels "-and 

v, respectively), a transformation which is both con

ceptually and numerically facilitated by the use of 

body-fixed coordinates. Our analysis will focus pri

marily on the behavior of the wavefunction in the vi

cinity of the half-plane matching surfaces defined in 

Eq. (3. 2) of I. 

Equations describing the ,\ to v transformation have 

been derived for coplanar. reactions in Appendix A of 

Paper I, and most of these expressions are still valid 

in 3D. However, some angles which span a range of 

27T in 2D become polar angles in 3D (with a range of 7T), 

so some care is required in making the analogy. The 

basic equations which govern the transformation are 

given by19 

(4. 1) 

where a.,x is the angle between 7T/2 and 7T defined by 

(4. 2) 

f3.,x having been given by Eqs. (2. 4). Equation (4. 1) 

may be easily derived from Fig, 1 and Eq. (2. 1). By 

taking the scalar products R., • R.,, r., · r.,, and R.,. r., 

and using Eqs. (4. 1) and (2. 3), we find the following 

expressions for the Rx, rA, h-R.,, r.,, Y., transforma

tion: 

(4. 3) 

re= sin 2 a.,xR~ + cos2a.,x ~ + sin2a.,x COSh rxRx , (4. 4) 

cosy.,= (R., r.,)- 1 [i(R~- r~) sin2a.,x 

+ Rx rx cos2a.,x cosyx] . (4. 5) 

Equations (4. 3) and (4. 4) may be combined to yield 

R~+r!=R~+~ (4. 6) 

which, together with Eq. (3. 17) of I proves the in

variance of t to arrangement channel. Also of use in 

our analysis below is the polar angle ~ .. x (in the 0 to 7T 

range) between Rx and R., which is determined by 

A - R ... Rx- Rx . rx 
cos~.,x- R R - cosa.,x R - sma.,x cosyx R 

v A v v 

(4. 7) 

We now examine the consequences of Eqs. (4. 3)-

(4. 7) on the matching surface 7TvA. Combining Eq. 

(3. 2a) of I with Eq. (4. 6) gives 

Rx=R.,, (4. 8) 

and this equation together with Eqs. (3. 2a) of I and (4. 3) 

leads to 

Rxlrx =- cota.,x cosh+ (1 + cot2a.,x cos2yx)112
, (4. 9) 

which is the equation of the matching surface 1T.,x in Rx, 

rx, h coordinates. If Eqs. (4. 8) and (4. 9) and Eq. 

(3. 2) of I are now substituted into Eq. (4. 5), we find 

cosy.,=- cosh, 

and since Yx and Y., are in the range 0 to 7T we conclude 

that on 7T.,x 

(4.10) 

Equations (4. 7)-(4. 9) and Eq. (3. 2) of I may be com

bined to yield 

cos~.,x = cosa.,x- sina.,x cosyx [cota .. x cosyx 

+ (1 + cot2a.,x cos2yx)1 
1

2
] , (4. 11) 

which implies that on 1Tvx the angle ~vx is a function of 

h only. 

It will also be useful to convert from Rx, rx to the 

polar coordinates ?:, TJx [of Eqs. (3. 17) of Paper I]. 

First, from Eqs. (3. 17) of Paper I and (4. 8), we have 

(4. 12) 

and, after some manipulation, Eq. (4. 9) becomes 

(4.13) 

which is the equation of 7Tvx in ?:, T/x, h coordinates. 

Since TJx=tan-1(rx/Rx) and is in the 0 to 7T/2 range, we 

conclude that 

where wx was defined after Eq. (2. 3). Therefore, 

Eq. (4. 13) is equivalent to 

cotwA =- cota.,x COSh , 

(4. 14) 

(4. 15) 

which is the equation of the 7Tvx half-plane of Fig. 2 of 

I in the polar coordinates ?:, wx, yA. Finally, Eq. 

(4.11) may be re-expressed in T/x, Yx coordinates as 

(4. 16) 

We now consider the transformation from the body

fixed coordinate system Ox~y'z~ (Fig. 2) to Ox~y'z~. 

Both systems have the same y' axis (which is per

pendicular to the three-atom plane), and from Eq. (4. 7) 

and Fig. 2 it can easily be shown that this coordinate 

transformation is a clockwise rotation about Oy' by 

~ .. x. 

Let us determine the effect of the (Rx, rx)- (R.,, r .. ) 

transformation on the wavefunctions. The complete 

body-fixed wavefunction, as obtained from Eqs. (2. 13), 

(2. 18), and (2. 30) is 

.T. "' DJ ( O) ( ,, ) F~l 0 (rx, Rx) 
"'JM= L...J MOx ¢x, llx, YJxOx Yx, n --=..;.,A,__,_A-.:;---

JxOx rxRx 

1 "' J A = ..f2ii L...JDMox(¢A, llx, if!x)XJox (rx, Rx, Yx), (4.17) 
ox 

where, from Eq. (A3), 

<P~xx (cOSh)~ h ox (r A, Rx) 

rxRx 

In the second line of Eq. (4. 17), the expinA 1/Jx part of 

Y~xox (h, 1/Jx) has been incorporated into the rotation 

matrix D£0 x which trivially converts >¥ JM from the 
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OXx Y~Z~ to the Ox~y' z~ coordinate system. If w JM is 

fully matched (i. e., a smoothly continuous solution of 

the Schrodinger equation), it may be expressed in the 

Ox~y' z~ coordinate system in an analogous way: 

1 
'if JM= ,; 21T L D£nv(¢,, e,, 1/!,lx~n,<rv, R,, y,) . 

n, 
(4. 19) 

We now define 'If 1 , X~(rx, RA, h), and X'J{r,., R,, y,) 

as the (2J +!)-dimensional column vectors whose com

ponents are, respectively, the 'if JM• X~nA• and X~nv' 

where each one of the indices M, nA, and n, assumes 

the values (top to bottom) J, J- 1, ... , - J. In ma

trix notation, Eqs. (4.17) and (4.19) can be writ~en as 

1 J A ) 
'if 1=,; 217 D {rf>x. e~, 1/J~lx.<rA, R~, h 

from which one gets 

X~= Dr
1
(¢A, Bu 1/!A)D"(¢,, e,, 1/!,)x".r. (4. 20) 

The Oxyz- Oxiy'zi transformation, which is a rotation 

defined by the Euler angles ¢A, eA, lj;A, can be ac

complished through a sequence of two rotations, the 

Oxyz- Ox~y'z~ one (Euler angles rf>v, 9,, IJ;,) followed 

by Ox~y'z~-Ox~y'z~ (Euler angles 0, ~ .. A, 0). From 

this results the relation D"{¢,, 9,, 1J;.,)=D"(¢x, BA, 

lj;A)d"(~,A), where d 1 (~,A)= D1 (0, ~"A' 0). Since the D" 

are unitary and d" is in addition real, we get from Eq. 

{4. 20) 

x~= [d"{~,xl1- 1 xt =d 1 (~,Alxt, 

and therefore, in the notation of Davydov, 33 

(4. 21) 

This equation relating the matched solutions xA and x" 

is valid for any internal configuration of the triatom 

(i, e., is not restricted to those configurations corre

sponding to the 1T
11
x matching surface), 

B. Projection of the wavefunction onto the 

matching surface basis functions 

In this section we consider the evaluation of the un

matched wavefunctions and normal derivatives obtained 

from the integrations in both channels X and v on the 

matching surface 1r,A, and their expansion in a set of 

functions S,::~JAOX (b. h) which span that surface. The 

complete, unmatched wavefunction in the Ox~y' z~ co

ordinate system in Region IV of internal configuration 

space (subregion i) is (from Eqs. (4. 17), (4.18), and 

(3. 31)) 

'i'Aix* _ 
1 ""'n" (A-. 9 ,{, > -M~*(t- > '(4. 22> 

JM - {
2 

L..J MnA '~-'A> A> '+'A XJnA ,,7JA> YA , 
1T ()A 

where 

Here we have dropped the superscript (m), as it will be 

implicit throughout this section, but we have included 

the labels t~±,(v0~!2~±) to denote the 2N linearly inde

pendent solutions obtained (from an N coupled-channel 

calculation). Equation (4. 23) may be evaluated on 1r,A 

by using Eq. (4. 13) to relate 71A and YA· Since 0 ""''YA 

""'1T/2 on 1TvA> we find that 17A must lie between 17~ = (7T 

- a,;~)/2 and 17A
1 

= 1T/4 to satisfy Eq. (4. 13). In order to 

evaluate Eq. (4, 23) over this range of 17M it is conve

nient to change to a common set of vibrational basis func

tions rp~A(b) for all subregions i. This is accomplished 

by transformations analogous to Eq. (3. 17) and (3. 18), 

with the result that 

vAt~*= 2b-5/Z (sin2n rlq:,At~* 
"-JOA ·rx JnA' (4. 24) 

where 

<I>} 1 J~ = L CP ~: (cOS'J'A)¢~A(b) g~~\~Anx (7JA) • 
VA JA 

(4. 25) 

To insure a smooth matching, we must also consider 

the derivative of x normal to 1Tvx (other derivatives 

are possible) for points on this plane. Expressions for 

this normal derivative operator were derived in Paper 

I (Appendix A), where it was found that 

-=-~ -+cota siny-& 1 sina ( & & ) 

iJnvA b SinWA iJWA vi\. X IJyA 

1 sina (1 & • a ) 
=-~ --+cota Asmyx-

b sin21Jx 2 &1Jx " a'YA 

__ _!sinava(..!2..._ . _a_) 
- }- . 2 2 " cot a .. A sm 'YA a • 

" sm 71A u1], Y, 
(4. 26) 

Applying this operator to Eq. (4. 23), and evaluating the 

result on 1Tvx• we find 

(4. 27) 

where 

(4. 28) 

and 

In deriving Eq. (4. 29), the use has been made of Eq. 

(A2) and certain recursion relations between the 

associated Legendre polynomials. 38 

We now wish to expand Eqs. (4. 25) and (4. 28) on the 

matching surface in terms of a set of functions B~~hnx 

x(b, yil.) which are orthonormal and complete on it. (We 

choose b and Yx to be the independent variables which 

scan 1Tvx•) The B~~JAnA are given by 

(4. 30) 
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where the ct>!/s are those of Eq. (4. 25) and the Aj~ 01 are 

a set of rotational functions which must be orthonormal 

(with weight function siny1) and complete on the domain 

0.,; y 1 -'S rr/2. The reason for this choice of the domain 

of y1 is analogous to that used for the coplanar matching 

in Paper I (Sec. IV A). An important consequence of 

this procedure is that the number of functions B~~hox 

used to expand the wavefunction of Eq. (4. 25) for each 

v1, n 1 must be less than the number of vibration rota

tion basis functions cf>v 1 (?;)<J'~ 1 l(cosh) in that equation. 

For many reactions, including H + H2, the number of 

B~~h 0 /s should be half the number of vibration-rotation 

basis functions, and we shall use this number in the 

discussion below. This would imply that the number of 

j./s for each v1, n 1 used in the close coupling expansion 

must be even. An example of how this might be done 

would be to use a complete set of n 1's for each j 1 within 

a given vibrational manifold, except for the case j 1 

= j 1max' For this case (as long as J ""'- j 1max) one uses 

nx =jxrmx- 1, ixma.x- 3, • •.' -j>-max + 1. For J <ixmax' we 
use the same procedure and then eliminate those n 1 for 

which I n 1 1 >J. Other choices are possible, but this 

particular set of quantum numbers is useful because it 

leads, for h = j 1max, to an asymptotic uncoupling of those 

terms in Eq. (2. 31) which are not diagonal in n 1, and 

this allows us to solve for the asymptotic behavior of 

these partially truncated solutions in a simple way. 43 

Whatever the choice, this restriction on the method is 

seldom a serious limitation because it only affects the 

highest rotational state j 1 for each v1, nA, and this chan

nel is usually closed in a converged treatment. An ex

ample of a choice of AvJA 0 which is real and orthonor-
x• A 

mal over the 0 to rr/2 range (weighted by siny1) is 

Av>. ( )- { .fz-<J'~{(cosy 1 ) for j 1 +n1 =odd 
J

1
o

1 
Y:~. -

0 for j 1 +n1 =even. 

(4. 31) 

This choice is very appropriate for expanding the y1-

dependent part of Eq. (4. 25) for a collinearly dominated 

reaction such as H + H2 because these Av
1

1
0 vanish at 

A A 
h = rr/2 (where the interaction potential on the matching 

surface is high and the wavefunction very small) and are 

most effective in representing the wavefunction near 

h = 0 (where the potential is low). Other choices for the 

Aj~ 0 A may be made in analogy with those discussed for 

the planar problem in Paper I. 

We now expand Eqs. (4. 25) and (4. 28) in terms of the 

E VA bt . • 
v:~,JAO:~.• o ammg 

(4. 32) 

(4. 33) 

(4. 34) 

and 

where Eq. (4. 29) is to be used in evaluating Eq. (4. 35). 

Note that the row (lower) indices vJAn>. in Eqs. (4. 32)

(4. 35) can assume only N /2 values (from the discussion 

above), whereas the column (upper) indices v~j~n~ (im

plied in ~) scan N values. This means that the matri

ces h} and hj1 have dimensions N/2xN. 

We now consider the expansion of the wavefunction 

x~a-: obtained from the integration in arrangement 

channel region v on 7Tvl in a manner analogous to that 

for xY~~- The expressions for the wavefunctions are 

given by Eqs. (4. 24) and (4. 25) with v replacing A 

everywhere. To find the normal derivatives, the right

most side of Eq. ( 4. 26) is used. The resulting expres

sion is given by Eqs. (4. 27) and (4. 28) with v replaced 

by A and with the function G'f:1:ov given by 

vt't 

G
tvt'± _ ( 1)1 -o {.!"'0 ( ) dg.rv;Jvo)11v<Yx)] 

"· - - - v v 2 v- J v COS'}':~, 
.TvvJvOv " d17,. 

- cota,. 1 g~~~vOv [17,.( y 1)) ~" COSY:~,Cl'~: (cOSY>.) 

(4.36) 

Note that Eq. (4.10) has been used in Eq. (4. 36) [along 

with the property <J'j(-x) = (- 1)1•"'<J'j(x)] to express all 

quantities in terms of y1 • The relation between 17,. and 

Yx on rr,.1 is obtained from Eqs. (4.12) and (4.13). 

The expansions analogous to Eqs. (4. 32) and (4. 33) 

are given by 

(4. 37) 

( 4. 38) 

where BAv differs from B"1 by the use, in Eq. (4. 30), 

of cf>" instead of ¢ 1
• This approach is slightly different 

from the one followed previously, 19 in which the basis 

functions used to expand the <I>~ and <I>~ were the same. 

For homonuclear targets, this difference disappears. 

The f and f' are given by 

vt~± [ ( )] • d ) Xg.rv•"o 17vYA Slllh Y:~,, (4,39 
V'V V 

f , .. t• s ""['
2 

A"A ( ) , .. t~± ( ) . 
.rv~.,o = LJ J o Yx G .r J!'o 'YA smy1 dyA , 

" J~' 0 "
11 

v.,~ " (4.40) 

with Eq. (4. 36) being used to evaluate Eq. (4. 40). All 

expansions are made in terms of the coordinate h to 

facilitate later manipulations. 

For atom plus homonuclear diatom collisions, the 

coefficients f~v'>.~ 0 obtained by matching on the 7TAI< plan 
A A A ;u' z 

can be related to the h.rv~Ao:~. of the rr.,A plane matching 

by noting in Eg_. (4. 39) (with A substituted for v and K 

for A) tha~,c ~~~~"In= 0
44 

for j~' - j~ =odd and therefore 
that (- 1)iA = (- hi~ for the non vanishing terms. For 
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collisions with a homonuclear diatom, mv = m. so {3N< 

= f3v~ [from Eq. (2. 4)], and the mathematical expres

sions analogous to Eqs. (4. 12)-(4. 16) for 7TAJ< are iden

tical to those equations. Therefore, from Eqs. (4. 34) 

and (4. 39) (transformed to 7TN<), we have 

(4. 41) 

By similar arguments for the derivative equations, Eqs. 

(4. 35) and (4. 4), using Eqs. (4. 29) and (4. 36), we find 

(4. 42) 

C. The matching equations 

We now wish to find the appropriate linear combina

tions of the x's and ax_janv/s of Eqs. (4. 24) and (4. 27) 

in channels :\and v which give smoothly matched solu

tions x and ax/anvJt. satisfying Eq. (4. 20) and its normal 

derivative counterpart, both evaluated on 1Tv~· Accord

ingly, we write 

(4. 43) 

where the coefficients C.n in Eq. (4. 43) are to be de

termined by evaluating Eq. (4. 20) and its normal deriv

ative on 1Tv~' and analogous equations on 1T•v and 7TN<· 

The indices (i)t= (i)vjO denote different linearly inde

pendent matched solutions, with t assuming N values 

and i = 1, 2, or 3 for a total of 3N solutions. This is 

equal to the number of linearly independent scattering 

solutions possible, as was discussed in Paper I (Sec. 

IV B). The normal derivative of Eq. (4. 43) is 

The normal derivative of Eq. (4. 20) is in general a 

complicated quantity, but for the particular choice of 

matching surface specified by Eq. (2. 5a), we have the 

important relation
19 

( ~) -o 
anv~ on •vA- ' 

(4.45) 

which implies 

a <ot a <i>t 
x~.mA = ""d' (A ) X v•nv (4. 46) 
an L..J nvnA vA an • 

v~ nv VA 

Let us now substitute Eq. (4. 43) and its counterpart for 

channel v into Eq. (4. 20), as well as (4. 44) and its v 

counterpart into (4. 46), utilizing Eqs. (4. 24) and (4. 27) 

(and their v counterparts) along with Eq. (4. 12). We 

obtain 

(4. 47) 

with a similar equation involving .P' resulting from the 

matching of the normal derivatives. If we now substi

tute Eqs. (4. 32) and (4. 37) into Eq. (4. 47), multiply the 

resulting expression by the B~~AoA [defined by Eq. 

(4. 30)], and integrate it using the orthonormality prop

erties of these Bv\ we obtain 

(4. 48) 

An analogous equation results for the derivatives with 

h' and f' substituted for h and f. The (stA)~~~~~: are the 

elements of an "arrangement channel transformation" 

matrix s:A and are defined by 

(4.49) 

where 

sAV =£~ ~x (&) ~v (&)a& 
~vv o/~ ~vv 

0 

(4. 50) 

As shown in Appendix C, s~x is a real orthogonal ma

trix as long as the A",~o (yA) of Eq. (4. 30) form a com-
A X 

plete set of orthonormal functions which span the yA 

space, and the ¢~xW and cp~vW form two sets of ortho

normal functions which span the & space and are re

lated by a real orthogonal transformation. Let us now 

write Eq. (4.48) as a matrix equation by regarding the 

h, /, and C appearing there as the elements of matrices, 

obtaining 

(4. 51) 

According to the arguments of the previous section, the 

matrices hY and f:7' have dimensions N /2 xN, while the 

s~x are N /2 xN /2 and the C 's are N xN matrices. The 

corresponding derivative equation is obtained from Eq. 

(4. 51) by substituting h' and f' for h and f. We can com

bine function and derivative equations into a single ma

trix equation involving only NXN matrices by defining 

the augmented NxN matrices 11~·, i~, and s~x as 

(4. 52) 

(4. 53) 

s~J' 
(4. 54) 

where 0 is anN /2 x N /2 null matrix. The resulting 

smooth matching equation on 1T VA is 

(4. 55) 

Following the same arguments as were used in Paper I 

(Sec. IV. B), we now combine Eq. (4. 55) and its counter

parts on 1T•v and 7TA< into a single 3Nx 3N equation which 

can then be solved for the coefficients C~ which deter

mine the matched solutions. The final result is 

(4. 56) 
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where 

(4. 57) 

0 

and 

C" 
c<2u 

c"') Jl.. J>.. J>.. 

cj = c~ 1
.]'" c<2>'- c<3>• 

Jv Jv • 

c<1> .. c<2> .. c<3H 
J• J• J• 

(4. 58) 

0 here represents an NxN matrix of zeros. 

Equation (4. 56) can now be used in conjunction with 

the asymptotic analysis of the next section to determine 

the 3Nx 3N coefficient matrices C} which will provide 

wavefunctions which are bpth smooth and continuous 

everywhere and which also satisfy the proper scattering 

boundary conditions. Note that our procedure for match

ing simultaneously combines the primitive solutions in 

channels A., v, and K to yield solutions which are smooth

ly continuous throughout all of configuration space. 

This contrasts with the analogous procedures of Wyatt 

and co-workers16 and of Light and co-workers, 15 which 

seem not to include the coupling between channels v and 

K (here represented by the 1T•v matching equation) ex

plicitly when dealing with collisions originating in chan

nel .\. They may have included such coupling implicitly 

by utilizing the symmetry of the H3 system. However, 

if A,. and A. are different atoms, we believe that the 

v-K coupling must be included explicitly. 

V. ASYMPTOTIC ANALYSIS 

A. The reactance and scattering matrices 

In this section we define the reactance and scattering 

solutions and relate these to the matched solutions of 

the previous section so as to complete the determina

tion of the coefficient matrices C} and also the reac

tance and scattering matrices R.r and S.r. In Paper I 

we proved that the R and S matrices (which are physi

cally dimensionless) can be equivalently defined in the 

scaled variables rx, ~ or in the "physical" ones i\, Rx. 

Here, for simplicity, we use the scaled coordinates in 

all definitions except that of the scattering amplitudes 

of Sec. V .B. 

lfweuseEqs. (2.13), (2.18), (2.30), and(3.1)toex

press the matched wavefunction [of Eqs. (4.17), (4.18), 

and (4.43)] in the asymptotic region of each arrange

ment channel, we find 

(5.1) 

where 

(5. 2) 

Here we have dropped the superscript (a) which denotes 

the asymptotic region as it will be implicit throughout 

Sec. V. The sum over arrangement channels serves as 

a convenient notation for expressing the asymptotic 

wavefunction in all three arrangement channels simul

taneously and is made possible by the fact that asymp

totically there is no overlap between the separated atom 

plus diatom wavefunctions in different arrangement 

channels. An equation analogous to Eq. (5.1) for the 

derivative (1/Rx) (a/aRJRx w~~~ can be obtained by re-
. xt~._ xt~'"/d . E (5 2) placmg g Jtx by dg .rtx Rx m q. . . 

The reactance and scattering body-fixed solutions are defined to have the asymptotic form 

(5. 3) 

where, in the far asymptotic region [in which both potential coupling and the centrifugal coupling of Eq. (3. 4) have 

become negligible], we have, for the R solution, 

(5.4) 

and, for the S solution, 32 

l
exp{- i[k~h Rx- (J +ix) t1rl} o~::x 

>..' 1i. [ ]- ( j >.. ! )-1 I 2 xp{ ,r >.. ( • ) .!. ]} ...Avxhrlx ( ) 
bx.rtx S - V vxh - e tLkvxh. Rx- J +)x 2 1T "n• vV). -rli, open channels 

exp(jk~:>.hiR~..) o~;:~- exp(-i~vxhiR~..)s~;;.~~-n;. (closed channels). 

(5. 5) 
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V~xh is the velocity (in scaled variables) and is related 

to the wave number of Eq. (3. 5) by 

(5. 6) 

The primed variables v~~n~ in Eqs. (5.4) and (5. 5) de

fine the reagent state in the A.' arrangement channel. 

(Note our use of the abbreviation A.' t~ =A.' t~ •. ) RJ and SJ 

are the partial wave reactance and scattering matrices 

and, for exact solutions of the Schrodinger equation, 

they are symmetric. 45 Note that - n~ rather than n~ ap

pears in the definition of RJ and SJ. This choice allows 

the open channel part of the scattering matrix to become 

the identity matrix in the limit of zero interaction poten

tial (as will be evident from the partial wave expression 

for the scattering amplitude in Sec. V. B). The phase 

factors i•cJ•.jx> appearing inEqs. (5.4) and (5.5) are 

arbitrary but will prove convenient later on. The open

channel subblocks of RJ and SJ are labeled R~ and S~, 

andfromEqs. (5.4) and (5.5), one caneasilyshow46 

where, for both R and S matrix solutions, 

For the R solution, 

that 

S~ =(I + iR~) (I - iR~ )"1 
, (5. 7) 

where I is the identity matrix, and that the closed chan

nel parts of RJ and SJ are identical. In addition to being 

symmetric, R~ is real and S~ is unitary. From the 

unitarity of S~ one can prove flux conservation, and mi

croscopic reversibility results from its symmetry. 45 

In an actual calculation, we wish to use the Rand S 

solutions of the Schrodinger equation at a finite R 11 for 

which the potential coupling has become negligible but 

the centrifugal coupling in Eq. (3. 4) has not. These 

solutions can be obtained by taking the appropriate lin

ear combinations of space-fixed Bessel functions as was 

done in Eq. (3. 7) so that the far asymptotic behavior in 

Eqs. (5. 3) and (5. 4) is obtained in that limit. In other 

words, as soon as potential coupling has become neg

ligible (but not the centrifugal one), the b in Eq. (5. 3) 

can be written according to Eq. (3. 7) as 

(5.8) 

(5. 9) 

(5. 10) 

g [R]= 1 k IR l y,/k~:~.J:~.R:~.) sin[(J +ix -lx)h] +j,x (k~~. 1 xRx)cos[(J +ix -lxH1Tl 
Jv:~_ixlx v:~_i:~. i\ 

2i 1 x(lk~~.hiR~.) (closed channels), 

(open channels) 
(5. lla) 

(open channels) 
(5. llb) 

while, for the S solution, 

gJvAJAIA S] = kvAJA R:~. A [ I 
A I )exp[i(J+j:~_-l:~_H-1T]h~~>(k~AixRx) (openchannels) 

2i 1 ~.( I kv~.h/R~.) (closed channels), 
(5. 12a) 

where 

h (±) ±-. 
':~. =- y,). llJ). ' 

and Yz:~.• j 1 ~., i 1x, and k 1x are the spherical Bessel func

tions of Sec. III. B. 1. To show that Eqs. (5. 8) and 

(5. 9) do indeed reduce, respectively, to Eqs. (5. 4) and 

(5. 5) in the far asymptotic limit, one simply uses the 

asymptotic form of these Bessel functions at large val

ues of the argument lk~~j~ IRx. 38
•

40 We may use Eq. 

(open channels) 
(5. 12b) 

(5. 13) 

(A14) to relate the usual space-fixed S matrix SJ to 

the body-fixed SJ. We obtain the Rx-independent uni

tary transformation 

SJ=ii"tSJ<T' 

where 

(5. 14) 
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(5.15) 

In order to obtain R J• we generate an R solution of 

the Schrodinger equation satisfying the asymptotic con

ditions of Eqs. (5. 3) or (5. 8) by taking linear combina

tions of the matched solutions 'I!Y~t of Eq. (5. 1): 

'I!~·~~ [R] ="" 'I! <i>tQJ.~'ti_ 
. JM L JM !z)t • 

(i)t 

(5. 16) 

As in Paper I, we are free to choose Q~;~} = o~;:~ and 

require the C; matrices to provide for us those linear 

combinations of the primitive solutions satisfying both 

the matching condition [Eq. (4. 56)] and the asymptotic 

conditions. If we substitute Eqs. (5.1)-(5. 3) and (5. 8) 

into Eq. (5.16) and express everything in matrix nota

tion (involving matrices of dimr:msion 3Nx 3N), we get 

where RJ is related to R J of Eq. (5. 8) by 

(5.18) 

and 

( ) ~·~~=I v~ . I c?'ti_ 
V ~~~ v~n >.t>. (5.19) 

Note that the (9 J)~;~x• in Eq. (5. 17) is identical to liu, 

times the g >:ft~· of £q. (5. 2). An equation analogous to 

Eq. (5.17) for the derivative R~ 1 (o/BR>.)R>. ~;p. is easily 

shown to be 

(5. 20) 

where prime denotes differentiation with respect to R>.. 

The quantity C~( Cj t 1 is given by Eq. ( 4. 56). Equations 

(5. 17) and (5. 20) therefore provide two simultaneous 

linear matrix equations in the two unknown matrices 

( Cj )"1 and R J. Eliminating the former from these two 

equations and using Eq. (4. 56), we get 

-tAR] 9 ~-)} {(o~[R] g~- oAR] g~·) 

x (N~ t 1Nj- (o~[R]gj- oAR]g~-)}- 1 wv- 112 • (5. 21) 

Here 

W= O'[R]I[R] -I~[R] OAR] (5. 22) 

is a Wronskian matrix which, as can be seen by inspec

tion of Eqs. (5.10) and (5.11), is diagonal and constant, 

i.e., independent of R>.. The right-hand side of Eq. 

(5. 21) involves real matrices which are obtained direct

ly from the integration and matching steps of the cal

culation. Therefore, RJ and RJ are real, as expected. 

With RJ and hence RJ determined, we use Eq. (5. 7) 

to calculate S~, which in turn can be related to the scat

tering amplitude by the formulas of the next section. 

In addition, the scattering matrix is related to the prob

ability of transition from initial arrangement channel X. 

and quantum state vJ>.n>. to final channel x' and state 
v~j~!J~ by47 

(5. 23) 

[In the rest of this paper, lower (upper) indices, which 

refer to the initial (final) state, will be unprimed 

(primed). ] The scattering matrix may also be related 

to the opacity function as discussed in the next section. 

B. Scattering amplitudes and cross sections 

We now define the scattered plane wave solution and 

relate it to the scattering solution of the previous sec

tion so as to express the scattering amplitude in terms 

of the open parts of the partial wave scattering ma

trices. Our analysis will be done using the helicity 

representation48 in which the axis of quantization of the 

incoming and outgoing rotational states is chosen to 

coincide with the direction of the incident and final wave 

vectors respectively. The helicity formalism is very 

closely related to the use of body-fixed coordinate sys

tems of the type described in Sec. II. B and leads to a 

particularly simple relation between the helicity scat

tering amplitudes and body-fixed S matrices. 

We define the helicity representation scattered plane 

wave solution by 

{5. 24) 

where the sum over final states includes both open and 

closed channels. For closed-channel solutions (which 

we shall ignore below), k~>.J is pure imaginary, so 

exp(ik~>.hR>.) decreas~ expo~entially. Note that the 

physical coordinates R>., i\ and wave numbers k~>.h 

= a>.k~>.h have been used in Eq. {5. 24). In addition, we 

have introduced the global index t to denote the quantum 

numbers vjm1• (yo/e will relate m1 to nand hence t tot 

below. ) For simplicity, the space-fixed z axis has 

been chosen to be in the direction of the incident wave 

vector. It then follows {by inspection of Fig. 2) that the 

space-fixed and body-fixed z axes will point in opposite 

directions initially (i.e., for (R>.)•-- co). The outgoing 

body-fixed zi axis points in the same direction as the 

outgoing wave vector, thus allowing us to use Y 1 ~,.h (y:., 

l{li) instead of YJ~mh (Or~, ¢r;) in the summation appearing 
in Eq. {5. 24). 

The differential scattering cross section is defined 

as the ratio of the outgoing radial flux per unit solid 

angle to the incoming plane wave flux and, from Eq. 

(5. 24), is related to the scattering amplitude Jby 

->.• 
A't' Vu' J' ,-).'f~ 12 

(J. ).=~ f A 

A•). v>. >.h 
U).i). 

{5. 25) 

for X.v>.j>.mJ and X.'vUim~>. representing open final and 
). -

initial channels, respectively. Here V~h is the physi-

cal velocity 

{5. 26) 
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In order to relate 1 to the scattering matrices, it is 

desirable to first define a scattering solution analogous 

to Eq. (5. 24) in terms of the scaled coordinates of Eq. 

(2. 1). This is easily done by removing the "bars" on 

all symbols containing them in Eq. (5. 24). By compar

ing the plane wave parts, we see that the resulting 

>¥A1x[P] is proportional to ;pix[P] with a proportionality 

constant ai12
• Comparison of the outgoing wave parts 

of >¥ and ~ then yields 

In analogy to Eq. (2. 11), the scattered plane wave solu

tion >~JAVAhmh[P] may be expanded in terms of the scatter

ing solutions lJ!AvAlA 0 A[S] as 

>~JAVAhmJA[P] = L C~'J;hmhnA >¥1~hllA[S]. 
JMnA 

(5. 29) 

Using Eq. (5. 28) to express >I![P] in terms of body-fixed 

quantities, Eqs. (5. 3) and (5. 5) for the asymptotic form 

of >11~; [S], and equating coefficients of the incoming 

spherical wave parts, one finds 

CAVXJAmJ llx = 0 0 (!)1/2 2J + 1 . J+J +1 
JM A M,-IJA Mmh /l -2- z A (5. 30) 

This shows that the only value of nA contributing to the 

right-hand side of Eq. (5. 29) is nA =- m1, which relates 

tA;;; vAAmh and tA EVAjA~ for the reagent states. If we 

now equate coefficients of outgoing spherical wave parts 

and use Eq. (5. 30) to simplify the result, we get 

(5. 31) 

where 

TJ= 1-S~ (5. 32) 

is the transition matrix, 32 and m~ = n~ for the product 
A A ) 

states so that t~ and t~ are identical. Equation (5. 31 

shows that the helicity amplitude and body-fixed scat

tering matrix are related by a single sum reminiscent 

of the analogous result for potential scattering. This 

illustrates one of the primary advantages of the use of 

helicity amplitudes in conjunction with body-fixed coor

dinates such as those depicted in Fig. 2. Combining 

Eqs. (5. 31) and (5. 27), and using Eq. (5. 26) and its 

counterpart for the wave numbers k ~~ and k~h• we 

find that the physical scattering amplit>ude 1~1!). is given 

by an expression identical to Eq. (5. 31) with all veloci

ties and wave numbers "barred. " Substituting this into 

Eq. (5. 25), we find 

A't' 1 I 'f"- J A'ti 1
2 

O'AtxA(Bx,)=4p2 Li (2J+1)dmJ mj (Bxo)T JAtx ' 
vxJx J=O A A 

(5. 33) 

which demonstrates that the differential cross section 

f -x·i~ -1/A't~(a~)
112 

xix = ax• xh -;;: ' 
A 

(5. 27) 

which will be useful below, 

One now expands the plane wave part of >lixix[P) in 

terms of a series of products of Legendre polynomials 

P 1A (cos Ox) times spherical Bessel functions j lx (k~AhRA), 

takes the asymptotic limit (RA- oo ), and converts the 

result to the body-fixed variables rAh~x and RxiJx¢x fol

lowing the procedure outlined by Pack, 32 obtaining 

(5, 28) 

is independent of ¢x •. 49 Using the properties d~•m(O) 

= om'm and d~.m(rr) = (- 1)J•mom',- m [derivable directly 

from the definition of d~.m{tl)], we get from Eq. (5. 33) 

., A'f'l2 ka (2J + 1 )T JA1~ 

.:t'1' 
which show that for m~, * m 1 , a At A(O) vanishes, and for 

A't' A A A 
m~x *- mh, O'xi/(rr) vanishes. These are rigorous 

selection rules for forward and backward scattering 

related to the conservation of J
2

• 
24 

The integral cross section Q~i~~ is obtained by inte

grating Eq. (5. 33) over iJx• and ¢x•• and using the ortho

normality property of the dJ functions. 33 This yields 

the remarkably simple expression 

(5. 34) 

~'1' A'f' 
Both ax1/ and QAt/ may be averaged over initial mh and 

summed over final m~x to give the degeneracy-averaged 

quantities a~~j~i and Q~:~~~~. respectively. The latter 

of these two can be written as 32 

A'v~J~=- rr 'f"- (2J+ 1).P'>$Ji. 
QAvxh "{;2 ~o JvxJx ' 

vxJx J-

(5. 35) 

where the opacity function P, is 

pv)J~ = (2 · + 1 }-1 "' "' pA't}. (5. 36) 
JvxJx 1A LJ L;- .rAtx' 

mh mh 

and the ranges of the sums are I m hI .s min(jx, J) and 

I m ~A I .s min(j{, J). 

In an application to the H + H2 reaction, the number of 

different distinguishable atom scattering amplitudes 

and cross sections may be greatly reduced by consider

ing the symmetries involved. This was done in Paper I 

and the derivations are essentially unchanged in 3D. 

First, the scattering amplitudes are invariant to a cy

clic permutation of arrangement channel indices so that 

(suppressing the fx, {i)f~=f~=f~, !~=!~=!~, and/~ 
= f~ = f~. Second, f~ and f~ are related by19 
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f «v' J' mj = {- 1 )i+ i' f"v' J' mj 
Avim1 Avimi {5. 37) 

and the nonreactive/~ satisfy 

! Av'J'm'-o "f ·- .,_ dd 
Avim J i- 1 J J - 0 • {5. 38) 

These statements imply that/~ and/~ are the only dis

tinct scattering amplitudes and that many components of 

f~ are zero. These symmetry relations also apply to 

the scattering matrix SJ so that the entire distinguish

able-atom cross section calculation can be considerably 

streamlined. It should be mentioned that although the 

cyclic permutational symmetry is built into the calcula

tion if the integration is done in only one of the three 

equivalent arrangement channel regions, Eqs. (5. 37) 

and (5. 38) will only hold rigorously if s:A defined by Eq. 

(4. 49) is orthogonal, and this will only be the case if 

the matching surface basis functions given by Eq. {4. 30) 

form a sufficiently complete set. This provides a test 

of convergence of the method as long as the symmetries 

of Eqs. (5. 37) and (5. 38) are not built in to the calcula-

tion. 

To convert these distinguishable-atom scattering 

amplitudes into the corresponding indistinguishable 

ones when two or three of the atoms are identical, the 

standard technique of postantisymmetrization50 may be 

used. Application to H + H2 was given in Paper I and is 

unchanged in the three-dimensional treatment. In the 

notation of this paper we obtain the following expres

sions for the antisymmetrized differential cross sec

tions: 

(a) para-para (j,j' =even): 

Pi'- vv'l' It-A!· -J-"f'l2 
apt - v At At • 

vi 

(5. 39a) 

(b) para- or tho (j =even, j' = odd): 

o1• 3 Vv'J'IJ-v!'l2 
aPt = -v At ' 

vJ 
{5. 39b) 

(c) ortho- para (j =odd, j' =even): 

Pt' _ Vv'J' IJ-v!'l2 
a1-- u , 

0 
VvJ 

{5.39c) 

(d) ortho-ortho {j,j'=odd): 

ot•_ Vv'J'(IJ-At' 
1
-vl'l2 2IJ-v!'l2) 

a ot - - At + At + At • 
VvJ 

(5o 39d) 

where Eqs. {5. 27) and {5. 31) are to be used in evaluat

ing Eqs. (5. 39). The expressions for the antisymme

trized integral reaction cross sections are 

(a) para- para: 

(5. 40a) 

ot• 1T ~( 1)/ Ovt'/2 
Q t = 3 v L..J 2J + S JAt ' 

p vi J 

(5. 40b) 

(c) ortho- para: 

pt· rr ~ I ovi•l2 
Q ot = "f2 L..J (2J + 1) S JAt ' 

vJ J 

(d) ortho- ortho: 

ot' 1T ~ I t' OAt' Ovt•12 I Ovt'l2) Q· ==y.L..J(2J+1){ a1 -sJA1 -sJA1 +2 sJAt • 
ot k vJ J 

{5. 40d) 

As was pointed out in Sec. III. C, parity symmetry 

may be used in both the integration and matching pro

cedures for any chemical reaction to reduce the number 

of states coupled in these stages of the calculation. One 

may also define parity scattering matrices, but the 

plane wave solution of Eq. {5. 24) does not have parity 

symmetry so that these two decoupled parity S matrices 

must be recoupled before performing the calculation of 

the scattering amplitude in Eq. (5. 31). This procedure 

is outlined in Appendix B. 

VI. DISCUSSION 

The method we have outlined in Sees. II- V has a num

ber of limitations or restrictions which we shall now 

analyze. First, we have considered the reactive colli

sion of an atom with a diatomic molecule on a single 

electronically adiabatic potential energy surface. The 

extension to multisurface reactions is straightforward 

and would follow the general format previously devel

oped for collinear reactions. 51 All three reactive ar

rangement channels are assumed to be energetically 

accessible and the diatom in each arrangement channel 

is assumed to be in a 1:E electronic state. A straight

forward modification of the matching procedure which 

simplifies it appropriately is required for single reac

tion path systems (for which one of the three arrange

ment channels is closed). This was discussed in Paper 

I. For diatoms having electronic states other than 1:E 

(such as 1
A with A'i"O), the rotational states Yh'"h (erA' 

¢r) must be modified
33 

to D~JAA(erA' ¢rA• 0) and elec
tronic-vibration-rotation coupling must be considered, 

but the basic integration and matching procedures are 

unchanged. One basic restriction of the method is its 

inability to treat dissociative or break-up channels. 

This is not a serious limitation for many important 

chemical reactions at thermal energies. A procedure 

for treating both dissociative and reactive collisions is 

currently being developed in this laboratory. 

The integration procedure outlined in Sec. III may 

be applied to any reaction for which the criteria of the 

preceding paragraph apply, but the matching procedure 

(and hence the choice of coordinate system in the match

ing region) is strongly dependent on our choice of 

matching surfaces [Eq. (2. 3) of I}. Other choices will 

require significant modifications in the details of Sec. 

IV, although the basic concepts involved in matching 

will still be applicable. The matching surfaces con

sidered in Eqs. (2. 3) of I should be useful for many 

chemical reactions but may not always be ideal for ob

taining rapidly convergent coupled-channel expansions. 

In particular, if the reaction has a low barrier for YA 

= rr/2 configurations, the expansion of the wavefunction 

in terms of matching surface basis functions T"A (Sec. 

IV, B) may be slowly convergent. Conversely, too 

strong an anisotropy favoring collinear reactions over 

perpendicular ones leads to an ill-conditioned coupled

equation problem. These and related restrictions on 
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the matching surfaces were outlined in Paper I. 

The asymptotic analysis of Sec. V is quite general 

and should be applicable to those chemical reactions 

which fit the criteria of the first paragraph of this sec

tion. The antisymmetrized results presented in Sec. V 

are only applicable to a collision system of three identi

cal spin !- particles. Other combinations of identical 

particles and spins may be treated by postantisymme

trization procedures analogous to that in Appendix D of 

Paper I. 

The final criterion regarding the applicability of the 

method is computational efficiency. The large number 

of open rotational channels present in any 3D atom-di

atom system makes the application of any coupled-chan

nel method a large computational project. Much effort 

has, however, been spent in designing the method so 

that a minimum number of such channels are needed for 

convergence of the results. We therefore feel that this 

method should provide a computationally feasible pro

cedure for studying simple chemical reactionso The 

first application of this procedure (to 3D H + H
2

)
24 sup

ports this statement. 
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APPENDIX A: ANGULAR MOMENTUM OPERATORS 

AND THE SCHRODINGER EQUATION IN SPACE

FIXED AND BODY-FIXED COORDINATE SYSTEMS 

In this Appendix we will establish the relations be

tween the rotational and total angular momentum opera

tors in the space-fixed and body-fixed coordinate sys

tems defined in Sec. II. B and Fig. 2. 

We first consider the space-fixed coordinate system 

Oxyz. In terms of the variables cp,A, 8,A, cpA, and 8A 

(Sec. II. B), the various components of the rotational 

(h) and orbital (lA) angular momentum operators are 

given by the usual spherical polar coordinate expres

sions 

(Ala) 

(Alb) 

jAy= -in(- sint/>,A cot8,A ++ cost/>,A -f-) , 
a'f'T). a T). 

(Ale) 

and.similar expressions for the components of lA with 

¢A, 8A substituted for t/>,A, 8 'A" Expressions for the 

components of J are trivially obtained by the addition 

J = lA + h· The eigenfunctions of the operators j~ and l~ 
appearing in Eq. (2. 9) (and also of i>..o and Z>..o) are the 

spherical harmonics Y 1Ami (8rA' t/>,A) and Y1Am
1 

(8A, ¢A). 
For notational convenienc€ we shall define thAe modified 

associated Legendre function CP'ji by 

m lml( )((j-lm11)!2j+l)
112 

CP 1 J (cos8) = P 1 J cos8 (j + 
1
m 

1 1 
) ! - 2-

m 1 ~ 0 
(A2) 

where P~mJ 1 is the usual associated Legendre function. 

The spherical harmonic Y 1m is expressed in terms of 
rP7J by J 

im ~~ 

Y 1m /8, t/>) = /2;= CP'j J (cos8). (A3) 

In the space-fixed formalism of Arthurs and Dalgarno, 29 

the full wavefunction is expanded in terms of a set of 

functions cyf ~ (8 A• t/> A; 8 r , cp r ) which are simultaneous 
A A 2 A 2 A " JM 

eigenfunctions of J , Jz, ZA, and j).. These ').1 1A1A are 

related to the Y 1,m
1 

and Y1 m 1 via 
A A A A 

X YJAmh(8TA' t/>r)YzAmlA (8)., ¢A), (A4) 

where the notation of Rose37 is used for the Clebsch

Gordan coefficients C. The full space -fixed wavefunc

tion is then written as 

(A5) 

and the space-fixed coupled Schrodinger equation for 

GfA~A is29 

(A6) 

We now consider the transformation to the body-fixed 

coordinate systems OXAYAZA and Ox{y'z~ of Sec. liB. 

A convenient representation of angular momentum oper

ators in these coordinate systems involves choosing the 

operators J and h as independent and expressing the 12A 

of Eq. (2. 9) by the expansion 

1~ = I J- h 1 2 = J2 + j~- (J. h + h . J) . (A 7) 

To convert the operators h and J, and thus the Hamil

tonian of Eq. (2. 9) , to the body-fixed systems requires 

first a change from the variables 8A¢A8rx 1>rx to 8A¢x"Yx</Jx 
as defined in Sec. II.B, followed by successive rotations 

of the components of the operators. These rotational 

transformations may be accomplished by using the gen

eral expression52 

where Jk refers to the kth component of any angular 

momentum operator J in an initial system and 

(AS) 

(A9) 

Jk' refers to the k' th component of J in a transformed 

coordinate system which is obtained through rotations 

by Euler angles a{3y from the initial system. One im

portant point to note in the application of Eq. (AS) to 

the body-fixed coordinate systems OXxYxZx or Ox~y'z~ 

is that the components Jk and (jA)k of the operators J 
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and h will in general operate upon one or more of the 

Euler angles ¢x, ex, and 1/Jx of the transformations, and 

thus great care must be taken with the order of the op

erators. In Table I we express the resulting compo

nents of the operators J and h as well as various com

binations thereof in terms of the variables ex ¢x Yxi/Jx in 

the three coordinate systems Oxyz, OXxYxZx, and 

o<y'z~. Some of the relations in that table have been 

given previously by Vezzetti and Rubinow, 53 Morse and 

Feshbach, 54 and Curtiss, Hirschfelder, and Adler. 31 

- -· --· ---···- --~ 

One very useful point to notice about ixxx• ixrx• and ixzx 

is that their expressions in terms of rx, 1/Jx in Table I 

have the same functional form as the corresponding 

j~u;, ix~· and ixz in Eqs. (A1). This implies that the ro

tational angular momentum eigenfunctions in the XxYxZx 

coordinate system will simply be the spherical har

monics Yhnx ( rx, 1/Jx) where, as is explained in Sec. II. B, 

nx is the quantum number associated with ixzx. 

In terms of the coordinate system OXxYxZx, the 

Hamiltonian of Eq. (2. 9) may be written as 

H n
2

( 1 a
2 

R 1 a
2 

) H 1 [J2 ·2 2 . J (·-J• ··J-)] v>-( R ) =- -2 -R aR2 x + - -;;-:Ta rx + -2 2 + 2 ., h>2 + h - iJxzx zx - Jx + Jx + rx, >-• Yx , 
fJ. x x rx rx fJ.Yx ru•x 

(A10) 

where the raising and lowering operators are defined in terms of the Xx and Yx components of J and h in the usual 

way. 37 In order to express the Schrtldinger equation in OXxYxZx coordinates, we rotate the wavefunction according 

to Eq. (2. 13). Substituting this expression, along with Eq. (A10) into Eq. (2. 9), and using the normal raising and 

lowering properties of the rotation matrix, 33 i.e., 

(All) 

(where the± components refer to the body-fixed system), we obtain the following coupled equations for the ~ox: 

(A12) 

Since the rotational eigenfunctions in the OXxYxZx coordinate system are the Yhnx (rx, 1/Jx), the rotationally coupled 

body-fixed solutions analogous to Eq. (A5) are given by 

(A13) 

which is a combination of Eqs. (2.18) and (2.13). The body-fixed and space-fixed representations may be related 
by using the equality 

D~ox(¢x, ex, 0) YJ>.nx (rx, 1/Jx) = ( 2 ~: 1
) 
112

~(-1)1>.-nx C(Jjxlx; nx- nxO)'Yfx~x (ex¢x ;erx¢r)· 

Equation (A14) is of great utility in the asymptotic analysis of Sec. V. A. 

(A14) 

APPENDIX B: PARITY DECOUPLING 

In this Appendix we consider the decoupling that oc

curs when eigenfunctions of the parity (or inversion) 

operator i are used in the coupled-channel expansion. 

This operator inverts all atoms through the system's 

center of mass. For the three-particle system we are 

considering, 

(B1) 

where >11 is any wavefunction describing the system, g 
commutes with ~~ and V~. In addition, the internal 

configuration of the system before and after inversion 

is the same and consequently the potential energy is not 

changed by the parity operation. We conclude that§ 

commutes with the Hamiltonian in Eq. (2. 7) for any tri

atomic system. 

If we express R~ and r). in body-fixed variables, we 

find that 

(B2) 

The body-fixed wavefunction we are considering is given, 

from Eqs. (2.13), (2.18), (2. 30), and (3.1), by 

(B3) 

Since § leaves y). and the scalars Rx and rx unchanged, 

all derivations of this Appendix are independent of which 

of the four regions of each arrangement channel region 

we are concerned with, so we shall omit any explicit 

reference to them, using the general form for >11 1 M in 

Region I or ll and dropping the superscript {a) or (w) in 

the ¢>-vibrational basis functions. Let us now apply j 
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to Eq. (B3), using the relations 33 D~ 0 ~ (rp~ +rr, rr- ex, O) 

= (- 1 )'X D~. -<lx (rp~, e~, 0) and Yhnx (Yx, 7T -1/JJ = Y;., -nx 
x (Yx, 1/Jx). By changing the sign of Ox in Eq. (B3) and 

remembering that its summation limits in that equation 

are invariant with respect to a sign change, we find 

g>!J JM(rx, RJ = (-1)J L D~nx (tf!x, ex, 0) yj 0 (Yx, 1/!xl 
"xixOx . x x 

(B4) 

The - nx index of gx in the right-hand side of this equa

tion indicates that >!J~M is not an eigenfunction of the 

parity operator j unless J = 0 (since n must equal zero 

as well in that case). Since§ commutes with the Hamil

tonian, we should be able to linearly combine the >!J1 M's 

so as to produce simultaneous eigenfunctions of§ and 

H. Let us consider the linear combinations 

'f~M(rx, Rx) = }z { >!J JM(rx, RJ ± (- 1)1 
>!J n 1(- rx,- RJ}. 

(B5) 

By substituting Eqs. (B3) and (B4) in Eq. (B5) andre

arranging the result, we find that 

-. "" J ( cjJ~xh (rJ 
>!J JM(rx, Rxl = LJ DMn, (rp,, e,, 0) Yhnx Yx, 1/JJ R 

vXjlo.Oio. y~ ~ 

~
A (g~vxhOx +gJvxix·-nx) 

X (B6) 

A (g Jvxhnx- gJ"xh•-nx) ' 

where the upper term in the large parentheses refers 

to the plus solution and the lower to the minus solution. 

From Eq. (B4), it should be apparent that 

(B7) 

Since the basis functions D~ 0 ,Y 1 0 rp~ 
1
· in Eq. (B6) 

• X X X lo. 

are the same as those in Eq. (B3), the equations of 

Sees. II-IV may be converted to the corresponding ones 

involving parity solutions by simply linearly combining 

the g's according to the expression in braces in Eq. 

(B6). To facilitate this, we define a new function 1f via 55 

1f~v~o.Jxn,(RJ= g~vxhnx fornx=O 

), (-g'J . n +g'J . n ) for n, <0' 
Y 2 vlo.Jio."lo. VxJx• -.. , • 

or in the matrix notation of Sec. III. A, 

g~(R,) =::1, g~(R,), 

where the orthogonal matrix ~x is given by 

(BB) 

(B9) 

(B10) 

If we include initial conditions of the proper symmetry 

to form the matrix g~, we find that 

U~(R,) =A\g~(R,lix . (Bll) 

To convert the equations of Sec. III to the correspond

ing expressions involving parity solutions, we need only 

to use Eq. (B11) to transform them into expressions for 

jj~ rather than g~. For example, the fully coupled 

Schrodinger equation [Eq. (3.14)] becomes 

d2-
9

H _ 

__ J_ =u' -g•• 
dR~ 1 1 (B12) 

where 

(B13) 

U ~ is identical to U~ in all terms of Eq. (3.15) except 

those off-diagonal inn, (i.e., in U~'). From Eqs. 

(3.11) and (B10), we find that 

(iJ~'):x = oY,:cNR~ {o0 n• [J(J +1)- zn~ +j,(j, +1)] 
lo. lo.· lo. X X . 

-an, o,l)o.+l,Q' ~.(J, nJ ~.(j~, nx) 
l. 

- bo, On,-l,n~ ~-(J, nx) ~-(j,, n,)}, (B14) 

where 

a.,, ~j:. 
for n, ? 1 and n, <- 1 

forn,=O 

for n, = -1 

(B15) 

and 

b,, ~j ~2 
for n, > 1 and nx ~ - 1 

for n, = 1 

for n, =0. (B16) 

An examination of the structure of u~x indicates that it 

contains no elements which couple states whose n, is 

positive or zero to those whose nx is negative. Since 

only iJ~ provides off-diagonal n, coupling in Eq. (B12), 

we see that our coupled Schrodinger equations have been 

separated into two uncoupled sets-those with nx 2: 0 

[of parity (-1)1
] and those with Ox <0 [parity- (-1)J]. 

This uncoupling is preserved throughout the integration 

in a given arrangement channel region since the only 

Ox-dependent coupling appearing anywhere in this pro

cess occurs in centrifugal terms analogous to those of 

Eq. (B14). Thus by constructing parity eigenfunctions, 

we can separate our integration problem into two 

smaller ones [each of which can be further separated 

into two parts for homonuclear targets (Sec. III. C)]. 

Parity is also preserved in the matching procedure 

because, as can be seen by inspection of Fig. 1, the 

parity operation is invariant to which arrangement 

channel coordinate system one is considering. This 

means that solutions of the same parity symmetry but 

expressed in different arrangement channel coordinates 

should be related to each other by a transformation 

which does not mix in solutions of the opposite parity. 

To prove this, we must first transform the coefficient 

matrices h~, h'}, f~, and f'; of Sec. IV. B to the repre

sentation involving parity eigenfunctions. This requires 

a transformation similar to Eq. (Bll), 
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(B17) 

where :1 ~~ is anN /2 xN /2 matrix (N =total number of 

solutions of both parities) whose precise mathematical 

form is identical to :d~ in Eq. (B10), but whose actual 

structure is different because the set of indices v~j~ in

volving the matching surface basis functions of Eq. 

(4. 30) will assume only half the number of values that 

the asymptotic solutions do (as discussed in Sec. IV. C). 

Note that we still right multiply h~ by 9l ~ in Eq. (B17) 

because right multiplication corresponds to linearly 

combining different initial conditions, and the number 

of these is always N. By writing equations analogous to 

Eq. (B1 7) for h ~, f;, and f';, substituting these into 

Eq. (4. 55) [using Eqs. (4. 52)-(4. 54) and simplifying, 

we obtain 

where the circumflex symbol implies definitions analo

goustoEqs. (4.52)-(4.54)forbarred (i.e., parity) 

quantities, and 

From Eq. (4. 49) we can rewrite st~ as 

( -.r)v.,J.,n.,_s~ jA"~ ( ) 
SV~ v~J~O~- V~Vv j~O~ ")'~ 

where 

1/Fl for n~ = 0 or n, = 0 

fo~n, = 
1/2 for n~ =n,= 0 

1 for n~xn,>O 

0 for n~xn,<O, 

(B19) 

(B20) 

(B21) 

and the upper term in the braces is used for n~, n,;, 0 

and the lower term for n~, n, < o. It should be evident 

from Eq. (B21) that s~A does not couple terms of dif

ferent parity nor does any part of Eq. (B18); this implies 

that the matching procedure can be done separately for 

solutions of each parity. It should also be noted that for 

a ·complete set of matching surface functions, the two 

subblocks of st>. corresponding to solutions of different 

parity are separately orthogonal. 

A convenient procedure for extracting the asymptotic 

information from the matched solutions involves first a 

calculation of reactance and scattering matrices which 

are defined in terms of parity eigenfunctions. This is 

followed by a coupling transformation in which the posi

tive and negative parity s,. matrices are combined to 

yield the body-fixed s,. matrix of Eq. (5. 5). From that 

point onward the formulas of Sec. V. B must be used, 

since the plane wave scattering solution is not an eigen

function of g [as seen by inspection of Eq. (5. 24)]. The 

parity scattering and reactance matrix solutions are de

fined by equations identical in form to Eqs. (5. 4) and 

(5. 5), or to Eqs. (5. 8) and (5. 9), but the incoming and 

outgoing solutions 1,. and 0,. of Eq. (5. 10) must be parity 

eigenfunctions and hence satisfy Eq. (B12) asymptotical.:.. 

ly. One can find these solutions by actually diagonaliz

ing the asymptotic Hamiltonian obtained from Eq. (B12), 

or by performing transformations analogous to Eq. 

(Bll) on 1,. and o,.. Both procedures lead to expres

sions for 1,. and o,. identical to Eq. (5. 10) except for the 

following two changes: 

(a) the sum over l>. in that equation includes only those 

l>. of the same parity as is specified by the signs of 0>. 

and n~ appearing in that equation. (The only nonzero 

terms will always involve n>. and n~ of the same signs.) 

In other words, when n>., n~ 2: O, l>- =J + jA, J + j >-- 2, 

... , IJ-j>-1 andwhen0>-,0~<0, l>-=J+j~-1, ... , IJ 

- j~l + 1. 

(b) Equation (5. 10) is to be multiplied by fn>- 0 ~, where 

.f2 for 0>. = 0 Or 0, = 0 

- 1 for 0>-=n,=O 
(B22) fn~o,= 

2 for nAxn, > 0 

0 for n~xn,<o. 

This form of J nAnv leads to block diagonal 1,. and 0,. 

matrices, thus decoupling the reactance and scattering 

matrix analysis for solutions of different parities. 

When these expressions for 1,. and o,. are substituted 

into Eq. (5, 21) along with the parity expressions for 

g~, g j'", and C ~. the correct parity reactance matrix 

Rj [analogous to Rj of Eq. (5. 18)] is obtained (where 

we consider Rj to contain the even and odd parity re

actance matrices as separate subblocks). This may be 

subsequently converted to Sj via an equation analogous 

to Eq. (5. 7) and the remark which follows it. The rows 

and columns of the parity scattering matrix may then be 

rearranged to form the body-fixed scattering matrix S,. 
via 

(B23) 

where the 3NX3N matrix 9l is obtained from the NXN 

matrices 9l~, 9l.,, :11« [whose definitions are analogous to 

Eq. (B10)], by 

0 

(B24) 

0 

in which 0 is an NXN matrix of zeros. Finally, the 

body-fixed scattering matrix s,. used to calculate the 

scattering amplitudes according to Eqs. (5. 31) and 

(5. 32) is obtained from S,. by 

(B25) 

It should be noted that the decoupling of the integra

tion and matching procedures described above to gen

erate parity eigenfunctions is completely general, not 

depending on an identicity between any of the three 

atoms A, B, C comprising the system." This results in 

an appreciable saving of computer time when imple

menting this calculational procedure. 
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APPENDIX C: ORTHOGONAL NATURE OF THE 

ARRANGEMENT CHANNEL TRANSFORMATION 

MATRIX S{A. 

In this Appendix we show that the arrangement chan

nel transformation matrix stx defined by Eq. (4. 49) is 

real orthogonal under certain conditions which are 

easily satisfied. 

The definition of d~vnx appearing in Eq. (4. 49) is 

(Cl) 

where I .Inv) and I Jnx) are simultaneous orthonormal 

eigenfunctions of J 2 and J.-x in coordinate system Ox~y'z~, 

having eigenvalues J, nv and J, nx, respectively; they 

are functions of lfx, c/Jx, and 1/Jx and the integration im

plied by the angular brackets is performed over these 

three angles with weighing function sinlf;~.. Replacing 

Eqs. (Cl), (4. 30), and (4. 50) into Eq. (4. 49) furnishes 

where 

I Jj"n") =A ~~o)Yx) I Jnv), 

(JAnx I =A~~o/Yx)(Jnx I, 
I Vv)=<t>~ m, 

v 

<11x I =<t>~:u:). 

(C2) 

(C3) 

(C4) 

The integration implied in (Vx I Vv) is over ?;, and the 

other integration in Eq. (C2) is over the independent 

variables Yx, lfx, <1>x, 1/Jx with weighing function 

sinYx sin If;~.. As long as they form a complete ortho

normal set of functions in Yx space, the I Jj"n") form a 

complete orthonormal set in rx, lfx, c/Jx, 1/Jx space, and 

Eq. (C2) can be written as 

J w (i J) Svx = S ® exp fi ~ vx , (C5) 

(C6) 

and 

(C7) 

the S~"" being given by Eq. (4. 50) and the® in Eq. (C5) 

representing a direct product of the two matrices ap

pearing in its right-hand side. The elements of 

exp[ (i/ li) ~txl are equal to the integral over Yx in the 

right-hand side of Eq. (4. 49) and are therefore real if 

the functions A}~o/Yx) are real. It is convenient to use 

the notation ljvnv)=A~~ 0 .,(Yx) and Oxnx I =A}~6;~.(Y;~.), in 

terms of which we can write 

and 

Since on the matching surface 1r.,H ~vx is a function of h 

only [see Eq. (4.11)] and JY, operates on variables lfx, 

<f>x, ?f!x only, Eq. (C6) can be written as 

<~tx)~~~~ = (j xnx I ~vx(Yx) ljvnv) (Jn~.l Jy' I Jnv). (CS) 

Each of the two matrices represented by the factors in 

the right-hand side of this equation is Hermitian and 

therefore 

[ 
J JxOx] * J J.,Ov 

(~ vx)JvOv = (~vx) JxOx • 

from which we conclude that ~x is Hermitian and that 

exp[(i/ff)~~x] is unitary. If the <1>~x(?;) and <1>~"(1;) are 

separately complete sets of orthonormal functions which 

span the ?; space, their overlap matrix S"x is also uni

tary. stx then is the direct product of two unitary ma

trices and therefore is unitary. Furthermore, if S"x is 

in addition real [as will be the case if, for example, the 

<1>~x (!;) and <1>~)!;) are real], and the A}~ ox are also real, 

so is s~x. as can be seen by inspection of the right-hand 

side of Eq. (4. 49). We conclude that if <1>~~.(&) and 

<1>~(1;) are two complete sets of orthonormal functions 

which span the !; space and are related by a real orthog

onal transformation, and if A ~~ox ( f'x) is a complete set 

of real orthonormal functions which span the Yx space, 

then the arrangement channel transformation matrix 

s;~. is real and orthogonal. These conditions are satis

fied by the A~~ox(Yx) of Eq. (4. 31), the <t>:;,.(s) vibration

al basis functions appearing in Eqs. (4. 25) and (4. 28), 

and the analogous functions <1>~"(1;) for arrangement 

channel v. 

If Eq. (C5) is used to evaluate s;x, the second factor 

in the right-hand side of Eq. (CS) can be calculated 

using the explicit expression 33 

(Jnx I JY, I Jnv) =ty{[(J -nx) (J+nx + l)J1 12 6ox,nv-t 

-[(J+nx)(J-nx+l)Jl 12 60 o .t}. 
x• v 

(C9) 
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