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A rigorous definition is given of "rigidity" in the framework of quantum mechanics. It 

is argued that corresponding to the measurement of the shape of the body-at least within 

Gedanken experiments-there must exist a set of operators associated with this shape. The 

"rigidity" of the body is defined such that the shape is in principle measurable without any 

quantum mechanical uncertainties. 

For a quadratically deformed rigid body, the commutation relations among the shape 

operators and angular momentum form a Lie algebra, which is shown to be the semi-direct 

product of the 0 (3) to a five-dimensional Abelian group; 0 (3) X T 5• The irreducible repre­

sentations of this dynamical group are explicitly constructed by employing an elementary 

algebraic method. It is found that the representation can be specified naturally in terms of 

Bohr and Mottelson's deformation parameters fJ and r as (f12, f13 cos 3r) and that every member 

of all the possible rotation bands of the rigid rotator is contained in our single irreducible 

representation once and only once. 

Several remarks are added concerning the relation of our dynamical group to the more 

general rotation-vibration group SL(3R). 

§ 1. Introduction 

The quantum mechanical treatment of the symmetric and asymmetric tops1
) 

has been well known since the late thirties with wide applications in molecular 

and nuclear physics. The quantum mechanics of rigid body with an arbitrary 

deformation, however, has not been forthcoming, although such a theory seems 

to be desired in a phenomenological description of nuclear states. 

In a series of papers, we shall develop a full quantum mechanical descrip­

tion of rotational motion of rigid body with an arbitrary deformation. The 

present paper, which is the first of the series, is devoted to the reformulation 

of quantum mechanics of the symmetric and asymmetric tops from the standpoint 

of dynamical group recently developed in high energy physics.2
) 

Since the concept of "rigidity" is not necessarily clear in quantum mecha­

nics, it is first necessary to discuss this point in some detail. The concept of 

a body with a non-spherical shape presupposes that this shape is in some sense 

measurable. This, in turn, requires-by the uncertainty relations for angular 

momentum-that infinitely many angular momenta are necessary in order to 
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154 H. Ui 

specify the shape.3
) If the shape of the body is rigid, these large angular 

momenta must not dynamically affect the shape being measured, so that the shape 

can be considered as fixed over the entire range of energy. In order that the 

shape is measurable in quantum mechanical framework, there must exist a set 

of quantum mechanical operators associated with the shape of the body. The 

eigenvalues of these operators will correspond to the result of measurement of 

the shape. 

From the above consideration, it is clear that these shape operators do not 

commute with the angular momentum operators nor even with the Hamiltonian 

of the system. Therefore, the shape operators· cannot be the generators of any 

symmetry groups of the system, but rather constitute those of the dynamical 

group. 

If any of the shape operators do not commute with each other, it is of course 

impossible to diagonalize these operators simultaneously. This implies that the 

shape cannot accurately be determined without uncertainty in this case. Thus, 

it is natural to define the concept of the "rigid" shape as being the condition 

that the quantum mechanical operators associated with the shape of the body can 

be simultaneously diagonalized. In other words, we will call the shape "quantum 

mechanically rigid", if and only if the non-spherical shape is in principle measur­

able without any quantum mechanical uncertainties. 

As the quantum mechanical shape operators, we shall take (mass) multipole 

operators which may be obtained from the density distribution of the body in 

the usual way. Then, for a quadratically deformed shape such as the symmetric 

and asymi:netric tops, the five components of the (mass) quadrupole moment are 

sufficient to define the shape. In order that the shape is rigid,*) every component 

of the operator must commute with each other. Since the quadrupole moment 

will transform as an irreducible tensor of rank 2 under rotation of ordinary space, 

the commutation relations among the shape operators and angular momentum can 

be written down explicitly. It is to be noted that the dynamical variables which 

enter into our problem are only the shape operators and the angular momentum.**) 

Thus, the commutation relations among them define the Lie algebra of the dynamical 

group of the system. 

In the next section, the dynamical group of a quadratically deformed rigid 

body is shown to be the 0 (3) X T 5, where X denotes the semi-direct product. 

It should be noted that the dynamical group of the rigid rotator is usually be­

lieved to be the 0(3, 1) or the SL(3R) .4
) The relation between the SL(3R) 

and our dynamical group 0 (3) X T 5 is discussed in some detail. The irreducible 

unitary representations of the dynamical group are obtained in § 4 in such a way 

*> More correctly, the mass distribution including the whole shape of the body. 
**> In this connection, we note that, in contrast to the case of linear momentum, the angular 

momentum operator has no well-defined canonical conjugate operator in the usual Hilbert space. 

The same statement i::? also true for the multipole operators. 
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Quantum Mechanical Rigid Rotator with an Arbitrary Deformation. I 155 

that every shape operator is diagonal. By expanding it into angular momentum 

basis, it is shown that every member of, all the possible rotational bands of the 

rigid rotator is actually contained in our single irreducible representation once 

and only once. 

Although some parts of the present work are group theoretical, we treat 

our problem elementarily by employing an algebraic method. A mathematically 

rigorous formulation will certainly be possible by using Mackey's induced repre­

sentation,5> since the group under consideration is a semi-direct product of the 

0(3) and an Abelian group. 

As an illustrative example of our algebraic method, the 0 (3) X T 3 is treated 

in § 3 to derive the helicity representation. An intuitive geometrical interpreta­

tion of our results are given in § 5. 

§ 2. Formulation of the problem 

We shall begin with a slightly general case of the body with a non-spherical 

shape which can be defined by a single (mass) multipole moment of order l. 

Writing the f!-th (spherical) component of the multi pole operator a,s Q" <Ll, the 

commutation relations of Q"' <L> with the angular momentum can be written down 

explicitly, 

and 

which simply states that the Q<L> transforms as a rank l irreducible tensor under 

rotation of ordinary space. As is discussed in § 1, every component of the multi­

pole operator must commute with each other, when the shape of the body is 

rigid. Then, we have the following set of commutation relations: 

and 

[Lz, L±] = ±L± and [L+, L_] =2Lz, 

[Lz, 0/L>] = /!Qp (L)' 

[L±, Q" CLlJ = J (l ~ JJ.) (l ± jJ. + 1) Q~l~l 

(2 ·la) 

(2 ·1b) 

(2 ·lc) 

which define a Lie algebra of the semi-direct product of 0 (3) to the (2l + 1)­

dimensional Abelian group. 

Since the dynamical variables of our system can be taken to be L and Q<L>, 

the a hove commutation relations can be interpreted as those of the dynamical 

group, which contains almost all informations on the dynamics of the system. 

In the subsequent sections, we shall calculate the representations of (2 ·1) 
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156 H. Ui 

for l = 1 and 2, in which every component of Q<L> is diagonal. It will be shown 

that every member of rotation bands is actually contained in a single irreducible 

(infinite dimensional) representation once and only once. 

Before calculating the representations, let us discuss in some detail the Lie 

algebra of the dynamical group of symmetric and asymmetric tops, which Is 

defined by (2 ·1) for l = 2: 

[Lz, L±J = ±L± and [L+, L_J = 2Lz, (2 · 2a) . 

[L Q (2)] - p.Q (2) z, f' - . f' and [L±, Q/2>] = -./(2~/1.) (3±p.)Q~ 2 lt, (2·2b) 

[Q (2) Q(2)]- 0 
f' ' tJ.' - • (2 · 2c) 

This Lie algebra defines an eight-parameter (non-compact) Lie group with 

semi-direct product structure. On the other hand, the well-known Lie algebra 

of the SU(3) group is expressed in Racah's spherical basis as7
) 

[Lz, L±] = ±L± and [L+, L_] =2Lz, (2·3a) 

[Lz, Q~-'< 0 >] =jJ.Qf'<O) and [L±, Q~-'<O)J = V(2~p.) (3±p.)Q~c~ 1 , (2·3b) 

[Qf'<i7), 0~~] =3v10(22p.p.'jlp.+p.')Lp±p'. (2·3c)*) 

Therefore, (2 · 2) can be obtained from (2 · 3) by the procedure8
> of "contraction": 

first, put Q/0
) = (1/c.) Tf' and, next, take the limit c.~O keeping T~-' finite. 

There is another Lie algebra from which (2 · 2) can also be obtained by the 

same contraction.**) This algebra is known as that of the (non-compact) SL(3R) 

group,***) whose group elements are all three-dimensional unimodular real matrix. 

Explicitly, 

[Lz, L±] = ±L± and [L+, L_] =2Lz, (2·4a) 

[Lz, Qf' <N>J = p.Qf' (N) and [L±, Qf' (N)J = .J-(2 ~fl.) (3 ±fl.) 0~1, (2 · 4b) 

(2·4c) 

Since the only difference of these Lie algebras of the SU(3) and SL(3R) 

groups appears in the opposite sign of (2 · 3c) and (2 · 4c), it is clear that the 

Lie algebra of the 0 (3) X T 5 can also be obtained from (2 · 3) and (2 · 4) by 
putting Q<2

) = Q<O) + Q<N). 

In order to see more clearly the a hove situation, we shall adopt the simplest 
realizations of the form 

*) Lo=Lz and L±t = (=F)(l/ v2)L::. 

**) We note that another complex extension of the SU (3) Lie algebra, i.e. the SU (2, 1) ,9) cannot 
be contracted to our Lie algebra. 

***) Although the finite dimensional (non-unitary) representations of the SL(3R) are well known,10> 

a few unitary representations are available in a tractable form. 11) 
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Quantum Mechanical Rigid Rotator with an Arbitrary Deformation. I 157 

and 

By introducing three kinds of boson operators a.'lJ +(ax), ay + (ay) and az +(a,) 

through 

we have 

and 

Lx = (1/i) (ay + az- az + ay), 

Lz = (1/i) (ax+ ay- ay +a:»), 

+ (1/2) (2az + az + + 2azaz- a:»+ a:»+- a:»ax- ay + ay+- ayay), 

Q (2) _ Q(O) + Q(N) 
±1- ±1 ±1 

= =FV(3/2) {(az+a:»+aa:+az) ±i(ay+az+az+ay)} 

=F V (3/2) {(az +a:»++ aza:») ± i(ay + az + + ayaz)}, 

Q(2) _ Q(O) + QI.N) 
±2- ±2 ±2 

= V (3/2) {(ax+a:»-ay+ay) ±i(a:»+a11 +ay+ax)} 

+ V (3/2) { (a31 +a:»++ a 31a:»- ay + ay +- ayay) /2 ± i (a:»+ ay + + a:»ay)}. 

It is now clear that all the three groups, the SU(3), SL(3R) and 0 (3) X T 5, 

are contained as subgroups in the full dynamical group12
> Sp (6R) of the three­

dimensional harmonic oscillator. Of them, the SU(3) is the well-known symmetry 

group of the harmonic oscillator, while the SL(3R) contains as a subgroup the 

symmetry group of the many surface phonon state13>-the twice covering group 

of the SU(1, 1). 

§ 3. Illustrational example: The 0(3) X Ts 

In the preceding section, we found that the dynamical group of the non­

spherical rigid body whose shape is specified by the l-th multipole moment is 

given by the semi-direct of 0 (3) to the (2l + 1) -dimensional Abelian group, 

0 (3) X Tn+l· In this section, we shall deal with the simplest case l = 1, i.e. 

0 (3) X T 3 , as an illustrative example of our algebraic procedure to treat general 

cases. 
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158 H. Ui 

From Eq. (2 ·1), the Lie algebra of the 0 (3) X T 3 group*>•**> IS written as 

[Lz, L±] = ±L±, [L+, L_] =2Lz, 

[ Lz, Pp] = 11Pp , 

[Pp, Pp,] = 0, 

and its invariants are given by 

and 

(3· 2a) 

(3· 2b) 

Let us determine the representation in which all PP (fl.= 0, ± 1) are diago­
nal:***) 

and 

PoJp, A)= Polp, A), 

P+lJp, J.) = P+1Jp, J.), 

P-1lp, J.) = P-1lp, J.) 

P 2lp, J.)= P2 lp· J.), 

{(P·L)/JPJ} ·Jp, J.)=J.Jp, J.). 

Inserting (3 · 3) into (3 · 4a), we have 

p
2 
= Po

2
- 2p-1-1P-1 

which suggests the following parametrizations: 

Po=P cos 8 and P+l = =t= P_ sin 8 · e±i<P. - v2 
Next, the state Jp, J.) is expanded into angular momentum bases: 

lp, J.) =I:; (lm; pJ.Jp, J.) · Jlm; pJ.), 
lm 

where Lzllm; pJ.)= mllm; pJ.), 

L±/lm; pA.)= J (l~m) (l± m + 1) Jlm± 1; pA.) 

(3 · 3a) 

(3. 3b) 

(3 · 3c) 

(3 ·4a) 

(3. 4b) 

(3·5) 

(3·6) 

(3· 7) 

and (lm; pA.Jp, J.) is the transformation bracket to be determined through (3 · 4b). 

*> The 0(3) X T 3 group is isomorphic to E 3, the rotation and translation group in three-dimen­
sional Euclidean space. Its induced representation is well known in scattering theory as the helicity 
representation of Jacob and Wick.6> This group appears also as the strong coupling group14> in 
isoscalar p-wave meson theory. 

**> Throughout this section, Q/1> will be denoted as PP. 
***> For the representation in which Lz is diagonal, see Pauli.15) 
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Quantum Mechanical Rigid Rotator with an Arbitrary Deformation. I 159 

Introducing (3 · 6) into (3 · 4b), we have 

{(L·P)/IPI}Ip,A)=Aip, A) 

= {cos 8 · Lz + t sin ee-i"' L+ + t sin ee-i"' L_} lp, A) 

=L:{m cos e<Zm;PAip, A) 
Zm 

+t sin ee-i<~>J (l+ m) (l-m+ I)<l, m -I; PAip, A) 

+ t sin 8ei<PJ (l- m) (l + m + 1) <Z, m + 1; PAip, A)} llm; PA). (3 · 8) 

Identifing each coefficient of llm; PA) on both sides of the above equation, we 

have 

J,<Zm; PAip, A)= m cos 8 · <Zm; PAip, A) 

+tsin8{e-i<f>J(l+m) (l-m+I)<l, m-I;PAip, A) 

+ei<PJ (l-m) (l+m+ I)<l, m+I;pAip, A)}, 

the m-dependence of which can be easily removed by putting 

<Zm;PAip, A)=e-im<f>d(lmA;p) 

with the result 

(3·9) 

(A-m cos B)d(lmA;p) =tsinB{V(l+m) (l-m+I)d(lm-IA;p) 

+ J (l-m) (l + m+ I)d(lm + lA; p) }. (3·10) 

First, we note that the recurrence formula (3 ·10) can be solved elementarily 

for fixed l starting from the maximum value of m ( = l). Moreover, if we adopt 

the following normalizations for lp, A) and llm; PA), viz. 

<p', Alp, A)= o (p-p') 

and 

<Zm;PAil'm';pA)=o(l, l') ·o(m, m'), (3 ·11)*) 

we can determine-up to phase-an explicit algebraic form of d (lmA; p) for 

arbitrary values of l and m. It is then found**) that this function can be taken 

to be identical to Wigner's d-function d!;;1 (8) by an appropriate choice of phases: 

d (lmA; p) = dS;i(e). (3 ·12) 

*> If we think of P as momentum, (3 ·11) needs no explanations. For later applications, we 

note that this is a special form of the Peter-W eyl theorem. 

**> To see this directly, compare Eq. (3·10) to the familiar recurrence formulas of d-function 

which determine uniquely d-function-for example, Eqs. (D·l3) and (D·l4) of Farro and Racah.16> 

Note that the definition of d-function of Farro and Racah is different from ours: 

dg'n(O) =<lmleiOJylln), (Farro and Racah) 

dg'n(O) =<lmle-iliJylln). (ours) 
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160 H. Ui 

In summary, we get 

(3·13) 

Finally, the matrix element of P between the angular momentum basis may be 

determined as follows: Since P transforms as a unit rank irreducible tensor, 

Wigner and Eckart theorem*) states that 

Pp I lm; pl) = ~ (l
11zi: ~: fJ.) CZ'IIPIIl) I l' m + fJ.; pl) 

where (l'IIP//l) is reduced matrix element. Inserting (3 ·14) into 

Pplp, l)=Pplp, J,.) 

(3 ·14) 

and using (3 · 5) and (3 ·12), we have a set of equations to determine the reduced 

matrix elements of P: 

PP<Zm; pllpl) = ..;'
2

: + 
1 

{ (l-11m- fJ.fJ.!lm) (li/PI/l-1) <Z-lm- fJ.; p).jp).) 

+ (l1m- fJ.fJ.!lm) (l/IPIIl) <Zm- fJ.; pllpl) 

+ (l +11m- fJ.fJ.!lm) (liiP//l-1) <Z +1m- fJ.; pllpl)}. 

By comparing this with Clebsch-Gordan formula (j1 = 1, m1 = fJ., n1 = 0), 

(3·15) 

one sees immediately 

(l'I/PI/l) = v'2l+1(l1lOil').) ·P. (3·16) 

Thus, we get the complete solution of (3 ·1) for p~O purely algebraically. 

§ 4. Symmetric and asymmetric tops 

We now proceed to the dynamical group approach of the rigid body whose 

shape is specified by the quadratic deformation. The shape operator in this case 

is taken to be the mass quadrupole moment Q<2>. The Lie algebra of our system 

IS given by (2 · 2); 

[Lz, L±] = ±L± and [L+, L_] = 2Lz, 

[ Lz, Q}2
)] = fJ.Q/2

) and [ L±, Q/2
)] = v' (2 =f fJ.) (3 ± fJ.) Q12

fl , 

[Q/2), Q~2)] = 0' 

*> Throughout this paper, we use the Wigner-Eckart theorem of the form 

(j'm'IT <k>Jjm)=!jk~l}'m') (j'iiT<k>Jij). 
p v2j'+I 

(2· 2a) 

(2· 2b) 

(2 · 2c) 
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Quantum Mechanical Rigid Rotator with an Arbitrary Deformation. I 161 

and its invariants are taken to be*) 

(4·1) 

and 

Cs= :E (22tttt!2l2tts) (22tts-Ps!OO)Q1 2
lQ1

2

1Q~~ 3 • 
/ltf!.2fl3 (4·2) 

Let us calculate the representation in which all the components of Q<2
) are 

diagonal: 

Qfo<2)lq, a)= qfojq, a). (4·3) 

The hermiticity property of Qfo <2
) 

Qfo (2)+ = (-) ~'Q~~ (4·4a) 

implies 

(4·4h) 

The representation jq, a) will be specified by the eigenvalues of the invariants 
c2 and c3, 

(4· 5a) 

and 

Cslq, a)=cslq, a) (4·5b) 

which may be expressed m terms of qfo as 

c2 = :E (22p- ttl 00) qfoq -fo (4· 6a) 
fJ. 

and 

Cs= :E (22tttP212tts) (22tts-ttslOO)qfotqfo
2q-fos · (4· 6b) 

f!.tfl2fJ.8 

As is seen from the previous example of the 0 (3) X T 3, the first important 
step is to parametrize the above formula in such a way that Eqs. (4·5a) and 
(4·5b) are automatically satisfied. For this purpose, we recall the orthogonality 
and contraction properties of D-function 

I:; (- )m D'!:?n-n (Q) D$'/;~~- (Q) = (- )niJ (n, n') 
m 

and 

:E (- )ma (22mlm2j2- ms)Dc;;~n 1 (Q)Dc;;;n
2 
(Q)Dc;;~n 3 (Q) = (- )ns (22nln2j2 ~ns), mlm2ms 

*> These invariants can be obtained from the Casimir operators17> of the SU(3) group 
C2= (L·L) + (1/3) (Q<2>.Q<2>), 

C3= [Q<2> X Q<2> X Q<2)]o<0) +3V3/7[Q<2> X LXL]o<0> 

by the Wigner contraction. 
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162 H. Ui 

which suggest the following parametrization for q"', 

(2) 

q = q(O) D(2) (Q) + L {D(2) (Q) + D(2) (Q) } 
p f.lO ,JZ f.l2 f.l-2 , 

(4·7) 

where q<0
> and q<2> are real constants.*> The eigenvalues of the second and third 

order Casimir operators can then be written as 

(4· 8a) 

and 

c<a> = ( J2; J 35) q<o> {- (q<o>)2 + 3 (q<2>)2}. (4·8b) 

Further, if we adopt Bohr and Mottelson18> type parametrizations**> for q<0
> and 

(4·9) 

where q(O) = {3 cos r and q<2
> = {3 sin r. Next, the state \q, a) will be expanded into 

the angular momentum basis: 

lq, a)= 'E (lm; a\q, a)·!lm; a), 
lm 

(4·10) 

where 

Lzllm;a)=m!lm;a) and L±!lm;a)=J(l~m) (l±m+1)\lm±1;a). 

Wigner and Eckart theorem states that 

Using the a hove results, ( 4 · 3) can now be written as 

Q"'<2>jq, a)=q,.. 'E (a, lm\q, a)·llm; a) 
lm 

= 'E (l2mfJ.Il' m + fJ.) (l'liQ<2>iil) · (lm; alq ·a) 
l,l',m J2l' + 1 

X ll'm + /1; a), 

*> Although the most general parametrization is 

q<l) q<2) 
q = q(O) D(2) +-{D(2)- DC2) } + -- {D(2) + DC2) } • 

p llO .y'2 Ill /.l-1 .y'2 ll2 /.l-2 ' 

( 4 ·11) 

(4·12) 

(4·7') 

this can be brought into the form (4·7) by an appropriate choice of Euler angle. Since the D­

function is unitary, the representation obtained by (4·7') is clearly unitary equivalent to that by (4·7). 

It is further noted that, even if we specify the reference axis to define the Euler angle, the 

relabelings of x, y and z axes does not change any essential contents of our representation. This 

arbitrariness of relabeling leads to the well-known symmetry under the point group D2• It is clear 

that this D 2 group plays a role of the (discrete) little group in the 0 (3) X T 5• 

**> As is well known, the Bohr-Mottelson parametrization is valid only for a small deformation. 

On the other hand, (4·9) hold for large deformation as well. 
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Quantum Mechanical Rigid Rotator with an Arbitrary Deformation. I 163 

from which we get the recurrence formula to determine the transformation bracket 

<Zm; ajq, a); 

(4·13) 

It is to be noted that, in contrast to the case of 0 (3) X T 3 treated in the 

previous section,*) the recurrence formula to determine the transformation bracket 

contains the reduced matrix elements of QC2
). We, therefore, need to determine 

the reduced matrix elements first. 

The set of equations to determine the reduced matrix elements of Q<2
) may 

be obtained as follows: First, consider 

= :E { (22!1/1' I kv) Q~ 2 )Q1
2
) - (- )k (22!1' 111 kv) Q~ 2

)Q~
2
)} 

/.Itt' 

which gives us non-trivial results only if k =odd. Since the every components 

of Q<2
) will commute with each other, the matrix element of [QC2) x Q<2

)J<k) be­

tween jl1m 1) and jl2m 2) states ~must vanish for odd k, viz. 

Therefore, we have 

(k=1 and 3) (4·15) 

where vV is the Racah coefficient. The matrix elements of the Casimir operators 

( 4 ·1) and ( 4 · 2) can be written also in terms of the reduced matrix elements as 

(4·16) 

and 

( Y'-l2 
- v2/35/33 cos r= :E - W(l22l'2; l"2) 

L'L" (2[2 + 1) 

X (l2jjQ<2)IIl") (l"IIQC2)IIl') (l'IIQC2)IIll) · o (lh l2) · o (m1, m2). (4 ·17) 

Equations ( 4 ·15) rv ( 4 ·17) are sufficient to determine the reduced matrix element 

uniquely up to phase. Instead of solving these equations explicitly, we shall 

first seek the consistent solution of Eqs. ( 4 ·13), ( 4 ·15), ( 4 ·16) and ( 4 ·17) for 
the simple case of the symmetric top. 

*> The difference between the 0(3) XT3 and 0(3) XT5 comes from the fact that the 0(3) XT5 

does not contain the (continuous) little group-the stability group in mathematician's terminology-in it. 
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164 H. Ui 

4A. The symmetric top --a special solution--

We shall treat in this subsection the simple case of qC2
) = 0. In terms of 

Bohr and Mottelson parametrization, we expect that this case will correspond to 

the prolate (axially symmetric) deformation. 

In order to obtain a special solution of Eqs. ( 4 ·15)'"'"" ( 4 ·17), we first note 

the well-known identity involving the Racah and Clebsch-Gordan coefficients: 

:Ev' (2e+ 1) (2f+ 1) (abaSjes) (edsa!cr) W(abcd; ef) 
e 

= (afa«Picr) (bd{3a!J«t?). (4·18) 

Putting a=lb c=l2, b=d=2, e=l' and f=k, we get 

(4·19) 

Since (2200ik0) = 0 for k =odd, the right-hand side of the above equation should 

vanish for odd k, if we put A=,\'= If'= 0: 

:EJ (2!' + 1) (2k + 1) (lt'2KO!l' K) (l'2KO!l2K) W (!12!22; l' k) = 0 
£' 

if k is odd. 

By comparing this equation to ( 4 ·15), we get a special solution of ( 4 ·15) 

(4· 20) 

Inserting this into (4·16), one sees immediately that Eq. (4·16) is reduced to 

the well-known orthogonality relation of Clebsch-Gordan coefficient: 

:ECJ1j2m1m2ljm) (j1j2m1'm2'ljm) =a(mb m/) ·a(m .. , m2'). 
j 

To examine Eq. (4 ·17), we note the following identity*) 

:E J (2e+ 1) (2b+ 1) (2c+ 1) (- )a+ll-s (baf3a!ee) (ecs-rld -a) 

ell J2d+1 

x (df-a«t?lb/3) W(abcd; ef) = (- )d+
8(afatt?icr) 

which leads to 

.'E .J (21' + 1) (21" + 1) (- Y'-£2 (l'2K' t\ll" K") (l"2K"- t\"ll2K2) 
£'Z" V2f2+1 

X (l22K2t\'ll' K') W (!22!'2; !"2) = ( J~-,.
11 

(22,\t\'12,\"). 

It is then clear that ( 4 · 20) 

*> This identity can be derived from ( 4 ·18) together with ( 4 · 21). 

(4. 21) 

(4· 22) 
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satisfies ( 4 ·17) if we put cos 3r = 1. Since the simultaneous solution of ( 4 ·15)""' 

(4 ·17) should be unique, it is concluded that the above reduced matrix element 

is the unique solution for the special case of cos 3r = 1: i.e. c2 = (1/ v5) {32 and 

Cs = - ( V2/35) {33
• 

Finally, the transformation bracket <Zm; alq, a) will be determined through 

Eq. ( 4 ·13) . For this purpose, we note the following identity: 

which can be derived from the Clebsch-Gordan formula (3 ·15) as a special case. 

By comparing ( 4 · 23) to ( 4 ·13), the transformation bracket is now determined 

as 

(4·24) 

It is noted that K appears naturally as an additional quantum number to 

label the states within our representation specified by ({32
, cos 3r= 1). In the 

next section, it will be shown that this K is the z-component of angular momen­

tum in the rotating (body fixed) axis. 

4B. The general solution--asymmetric top 

In the preceding subsection, we obtain the additional quantum number K 

labeling the states within the given representation. Further, K is found to be 

diagonal for this special representation. In order to obtain the general solution 

of ( 4 ·13), ( 4 ·15), ( 4 ·16) and ( 4 ·17), it is necessary to write explicitly the 

quantum number K in these equations and, if needed, perform summation over 

K in intermediate states. That is, ( 4 ·10) may be written as 

lq, a)= :E <lmK; alq, a)·llmK; a), 
lKm 

(4·10) 

where the quantum number a denotes a set of the eigenvalues of the Casimir 

operators c2 and Cs: a= (c2, Cs) or equivalently a= ({32
, {33 cos 3r). 

The set of equations-Eqs. ( 4 ·15),....., ( 4 ·17) -to determine the reduced matrix 

element of Q<2
> can now be written as 

and 

k= 1 and 3, 

{32 =I:; (- Y'-~
2 

(l2K2!IQ<2>1ll' K') (l' K'IJQ<2>J!ltKt) · 0 (lh l2) · 0 (mh m2) 

l'K' (2f2 + 1) 

(4 ·15') 

(4 ·16') 
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166 H. Ui 

- j 2 (33 cos 3r = :E C- Y' -~
2 w Cl22Z12; l"2) 

35 l'~·K'K• (2[2 + 1) 

x (l2K211Q<2llll" K") (l" K"IIQ<2llll' K') 

X (l' K'IIQ<2llll1Kl) · o (l1, l2) · o (mi, m2). (4 ·17)' 

In analogy to the case of the symmetric top, we found the non-vanishing 

reduced matrix elements of Q<2
l for a given values of c2 = (1/ .J5) {32 and 

c3 = - ( v'2/35) {33 cos 3r as 

. (l' KIIQ<2llllK) = (3 cos r./2! + 1 (l2KOIZ' K), 

(l' K + 2IIQ<2llllK) = (3 ~~ r J2z + 1 (l2K2Il' K + 2), 

(l' K- 2IIQ<2llllK) = (3 sin r J2Z + 1 (l2K- 2ll' K- 2). 
.J2 

(4: 25a) 

(4. 25b) 

(4 · 25c) 

The above result can be checked directly by using the identities ( 4 ·19), ( 4 · 21) 

and ( 4 · 22). It is noted that a factor o (Kb K 2) appears on the right-hand side 

of both Eqs. ( 4 ·16) . and ( 4 ·17). In other words, the Casimir operators C2 and 

Cs are fot.md_ to be djagonal in K: 

<Z'm'K'; aiC2IlmK; a)=c2o(l, l') ·o(m, m') ·o(K, K') 

and 

<Z'm'K'; aiCsllmK; a)=cso(l, l') ·o(m, m') ·o(K, K'), 

which ensure our previous statement that the quantum number K can be used 

to label the states within a given representation. 

The recurrence formula tp determine the transformation bracket reads as 

q"'<ZmK; alq, a)= :E (l'
2
m- fJ.fJ.Ilm) (ZKIIQ<2llll' K') <Z'm- fl.K'; alq, a), 

l'K' J2z + 1 

(4·13') 

where q"' is given by ( 4 · 7); 

The transformation bracket can now be determined as 

<ZmK· alq a)=j 2l+ 1 {DU};(Q) ± (- YD~?:_x(SJ)}, 
' ' 16n2 {1 + o(K, 0)} m 

(4· 26) 

by comparing ( 4 ·13') with the following identity: 
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= ~ 2l' + l (l'2KO[lK) [q<o) (l'2KOllK) {D~~;x± (- )' 1 D~~:.-x} 
~, 2l + 1 

(2) 

+ ~ 2 {(l'2K-22[lK) (D~~:.x-z± (- Y'D~~;,-(K-z)) 

+ (l'2K+2-2[lK) (D~~:.K+2± C-Y'D~~:.-(K+2))}]. (4·27) 

Thus, we get a general solution of the Lie algebra (2 · 2abc) purely alge­

braically. In the next section, we shall prove the irreducibility of our represen­

tation by looking at that of the (discrete) little group. 

§ 5. Several discussions 

This section is divided into three parts ; in the first part, the quantum 

number K is shown to be the z-component of angular momentum in the rotating 

(body-fixed) reference axis. The irreducibility of our representation is proved 

in § 5B and an intuitive geometrical interpretation of our formalism is given in 

§ 5C. 

SA. The quantum number K 

In order to examine the physical meaning of K, let us introduce operator I, 

whose spherical components are defined by 

I,=~ D~}*(Q) ·L,., (?-, p.=O, ±1) (5·1) 
/! 

where L,. are the spherical components of angular momentum operator. It can 

easily be proved that 

[I,, L,.] =0 for all A and fJ. 

and 

[I,, I,, J = .J2 (11?-?-' Ill-+?-') I,H, ' (5·2) 

which, written in vector notation, reads 

Ixi= -ii. 

From the above results, I, can be interpreted naturally as the (spherical) com­

ponent of angular momentum in (rotating) body fixed axis.19
),s) 

The action of I, on the state [lmK; a) may be dete~mined by operating I, 

on both-sides of Eq. (4·10): 

I,[q, a)=~ I,·(lmK; a[q, a)·llmK; a) 
~mK 

= ~ D11}*(!J) ·(lmK; a[q, a)·L,.IlmK; a) 
LmKp 

= ~ D11l* (Q) (lmK; a[q, a)· .jz (l + 1) (llmp.[lm + p.) [lm + p.K; a) 

= ~.jz (l + 1) (lm- 11K; alq; a)D11l* (Q) (l1m- p.p.[lm) [lmK; a), 

(5·3) 
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168 H. Ui 

where the Wigner-Eckart theorem has been employed in the third equation to­
gether with 

(l'IILIIl) = J (2l + 1) l(l + 1) · iJ (l, l'). 

Introducing the explicit form of (lmK; alq, a), Eq. (4·26), into the last line 
of (5·3) and using the Clebsch-Gordan formula of the following form, 

I: (llm -P!Lil'm)D~~~~K(Q)D~ 1 l* (!2) =I: (llKJ.Il' K + J.)D~~k+A (!2), 
/1 v 

we get 

IollmK; a)=KilmK; a) (5 ·4) 

for the 0-th component of I. From (5 · 4), it follows that K is the eigenvalue 

of the· 0-th component of angular momentum in the rotating (body fixed) axis. 

We may define the raising and lowering operators, I+ and I_, through 

I±= =t= -l2I±l. 

The action of I± on the state llmK; a) can be determined also by using (5 · 3). 
It is found that the resulting state is very complicated except for the case of 
(lmK; alq; a)coD~k(!J) in Eq. (4·24): 

I±llmK; a)= J (l±K) (l=t=K+ 1) llmK=t=I; a) 

{only if (lmK; alq; a)C/.)D~"!:(!J)}. 

5B: Irreducibility of our representation 

(5·5) 

We have obtained the representation I q, a) of the 0 (3) X T 5 Lie algebra, in 
which every Q~-' ca) is diagonal. Expanding it into angular momentum basis, our 
final result is represented as 

lq a)=~ j 2l + 1 {D<Z)* (!J) ± (- )£DCZ?:_ (Q)} llml\.. a). (5. 6) 
' l~ 16rr2 {1 +iJ(K, 0)} mK m K ' 

The non-vanishing reduced matrix elements of QC2
) are determined in ( 4 · 25a) "-' 

(4· 25c). 

Here, we shall prove the irreducibility of our representation. As already 

noted, the group 0 (3) X T 5 has no continuous little group in it. Instead, the 
point group D 2 is contained as the discrete little group. The irreducibility of our 
representation will be assured by examining that of the little group-due to 
Mackey's general theorem-in just the same way as in the case of well-known 
Wigner's construction of the irreducible representation of the quantum mechanical 
Poincare group. The irreducible representations of our little group Da are 
usually classified· into four representations, A, Bb B 2 and B3, which, in terms of 
l and K, may. be summarized as 

A-type= even parity and even K; 
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B 1-type =odd parity and even K; 

B2-type = even parity and odd K; 

B3-type = odd parity and odd ](. 

Since QC2
) connects only the states with JK = 0 and ± 2, our representation 

splits clearly into even and odd K parts. Further, (5 · 6) has a definite parity; 

plus sign in the curly bracket has even parity, minus one odd parity. Thus, 

one sees that our representation splits into the four irreducible representations 

of the point group D 2 • Since the D 2 constitutes the (discrete) little group of 

the whole group, it follows that (5 · 6) is the irreducible representation of the 

0 (3) X T 5 group. 

It is amusing to note that in the conventional treatment of the asymmetric 

top the D 2 group appears as an unusual symmetrl0
> of its Hamiltonian, while in 

our formalism the D 2 arises naturally as a little group of the dynamical group. 

5C. A geometrical interpretation 

Once the physical meaning of K becomes clear, a geometrical interpretation 

of our procedure can be made straightforwardly. 

For example, in analogy to (5 ·1), we may define the (mass) quadrupole 

moment operator in the rotating body-fixed axis by the following formula: 

Q:>o <2> (body) = ~ D~]* (Q) · Q,. <2>. (5·7) 
f! 

It can quickly be checked that every component of Q<2
> (body) commutes with 

each other when [Q,. <2), 012
)] = 0. 

Now, consider the state-in the body-fixed axis-where all components of 

Q<2
> (body) are diagonal. From the hermiticity of Q<2

\ it is always possible to 

choose the body-fixed axis in such a way that the eigenvalues of Q~l (body) and 

Q~i(body) vanish. By comparing ( 4 · 7) to (5 · 7), one sees that in our param­

etrization ( 4. 7) q(O) = /3 cos r and q<2
) I v'2 = (/3 I v'2) sin r are just the eigenvalues 

of Q 0<
2
> (body) and Q~Hbody), respectively, in this body-fixed axis. 

That is, the state in this body-fixed system may be written as 

where 

qo (body) = /3 cos r, q ±1 (body) = o and q ±2 (body) = C/3 1 v'2) sin r . 

Expanding it into angular momentum basis in the body-fixed system and rotating 

back to the space-fixed one, we would obtain our final result (5 · 7). The D­
function in (5 · 7) may be interpreted as arising from this rotation. 

The above procedure is found actually to work well to get precisely the 

same result in the case of the symmetric top. For the general case of asym­

metric top, however, we would have a different, although equivalent, formula, as 
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170 I--I. Ui 

can be expected from ( 4 · 26) and (5 · 6). Nevertheless, the intuitive geometrical 

interpretation will be helpful to compare our approach to the conventional treat­

ment of the symmetric and asymmetric tops. 

§ 6. Concluding remarks 

Starting from the discussion on the concept of "rigidity" in quantum mecha­

nics, we have developed a dynamical group approach to the quadratically deformed 

rigid rotator. By examining the possible range of all the quantum numbers, one 

sees that the irreducible representation of our dynamical group does actually 

contain every member of all the possible rotational bands of the rigid rotator 

once and only once. Since we have not yet introduce the Hamiltonian of the 

system, all the states are degenerated. In a next publication, we shall discuss 

how to introduce the Hamiltonian into the framework of our formalism. 

The microscopic description of nuclear rotational states has been one of the 

most interesting problem in nuclear structure. If we prefer an algebraic approach 

to this problem, we must first seek for the set of operators which, operated 

repeatedly on the ground state, generate all members of the ground state rotational 

band. From the results of the previous sections, it is now clear that the rotation 

model of Bohr and Mottelson can be obtained directly if we could construct the 

set of operators which satisfies the commutation relations (2 · 2). The relation 

between the SU (3) model of Elliote> and Bohr and Mottelson's modeP8
> is also 

clear from (2 · 2) and (2 · 3). 
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