```
NASA CONTRACTOR
    REPORT
\infty
\Xi LOAN COMY: RETURN TO
    AFW!L (VLIL-2)
    KIRTLANO AFB, N MEX
```


QUANTUM MECHANICAL STUDY OF MOLECULES:

Prepared by
NEW YORK UNIVERSITY
University Heights, New York, N. Y.
for

QUANTUM MECHANICAL STUDY OF MOLECULES:

PREDICTION OF THE GROUND, IONIZED AND EXCITED STATES OF THE UNKNOWN NF MOLECULE

By Roop C. Sahni

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Grant No. NsG-76 by NEW YORK UNIVERSITY
University Heights, New York, N.Y.

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - Price $\$ 1.00$

QUANTUM MECHANICAL SIUDY OF MOIECUIES:
PREDICTION OF ITHE GROUND, IONIZED AND EXCITED STATES
OF THE UNKNOWN NE MOLECULE*
by
Roop C. Sahni
Chemistry Department
New York University, University Heights, New York

* The stability of the ground, ionized and excited states of NF molecule was reported in NASA Progress Report N65-85771, April 1965, and at the Symposium on Molecular Structure and Spectroscopy Conference at the Ohio State University, Columbus, Ohio, U. S. A. on June 1965. The configuration and stability of the ground and excited states of this molecule have been confirmed experimentally and reported at the Symposium on Molecular Structure and Spectroscopy Conference at the Ohio State University, Columbus, Ohio, U. S. A. on September 1966 by
A. E. Douglas and W. E. Jones.

QUANIUM MECHANICAL STUDY OF MOLECULES

Prediction of the Ground, Ionized and Excited States of the Unknown NF Molecule
by Roop C. Sahni
SUMMARY
The ground, ionized and excited states of the unknown NF molecule have been computed at a number of internuclear distances (R) to determine their stability, equilibrium distances (R_{e}), ionization and excitation energies. In these calculations all the atomic and molecular integrals have been computed correctly to six decimal places. The configurations of the different states of NF have been derived from the configurations of the corresponding states of the isoelectronic O_{2} molecule. The percentage accuracy of the computations of the states of NF has been estimated by carrying out similar types of calculations on the different states of the known N_{2}, Co and O_{2} molecules.

INTRODUCTION

A large number of end products in the reactions of the gases of the upper atmosphere are obtained in the form of radicals, ions and excited states of diatomic molecules. The conditions of the low pressure and high vacuum of the upper atmosphere are difficult to produce in the laboratory. Moreover the experiments, which involve costly apparatuses, are very difficult and tedious to perform on each and every radical, ionized or excited state of a molecule.

For the last ten years at New York University, attempts have been made to develop a theoretical system for the study of these unknown molecules for the calculation of the transport properties of the gases of the upper atmosphere.

To standardize these techniques, the electronic states of a number of known molecules have been computed (refs. 1 to 4) and their data compared with the experimental results. As the system of these calculations became complete, an attempt was made in 1964 to find an unknown molecule for performing the theoretical calculations and to inform the experimentalists so as to confirm the predicted results. $N F$ has been specially considered for this study. A number of laboratories, all over the world prior to these calculations, have been trying to detect this molecule. Since it is one of the missing diatomic molecules in the first group of the periodic table, it was considered to be of immense interest to the experimentalists to follow the theoretical results. For this reason a complete calculation of the ground, ionized and excited states of NF was carried out and reported in the NASA Progress Report N65-85771 (ref. 5) April 1965. Later, these results were presented at the Symposium on Molecular Structure and Spectroscopy at the Ohio State University, Columbus, Ohio, U.S.A. (ref. 6) on June 1965.

The experimental results carried out after the above prediction have confirmed (ref. 7) the predicted configuration (arrangement of electrons in the molecule) and also the internuclear distances of the ground and excited states of NF within the estimated accuracy of the calculations. The spectroscopists are still carrying out work on the ionized states of NF. It should be noted that it is for the first time that a Theoretical Chemist has predicted the stability and configuration of a molecule which spectroscopists could not detect for a long time. These calculations on an unknown molecule have opened many new fields of researches and have made it possible to study many fundamental problems which were not soluble without such a theoretical study.

Calculations of the Different States of NF and Related Molecules Calculations were carried out on four molecules. Two of them are homopolar molecules and the other two are heteropolar molecules. A set of homopolar and
heteropolar molecules such as \mathbb{N}_{2} and $C O$ consist of 14 electrons and the second set such as O_{2} and NF consist of 16 electrons. A eross relation between the results was established as follows:

Relations between the results of the isoelectronic N_{2} and Co molecules were considered to be of the same order as those of the isoelectronic O_{2} and $N F$ molecules. The second set of relations between the homopolar \mathbb{N}_{2} and O_{2} molecules were considered of the same order as those between the heteropolar CO and NF molecules. A brief sketch of these relations is given in table I.

Equations for Self-consistent Field (SCF)* Molecular Orbitals
The molecular orbitals, $\phi \boldsymbol{r}_{\mathrm{s}}$, arc expressed as linear combination of atomic orbitals, $X^{s} s$,

$$
\begin{equation*}
\phi_{i}=\sum_{p} a_{i p} x_{p} \tag{I}
\end{equation*}
$$

where $a_{i p}$ are undetermined coefficients. Equation (1) in matrix notation is expressed as

$$
\begin{equation*}
\phi_{i}=a_{i} x \tag{2}
\end{equation*}
$$

The equations for the undetermined a_{i}, are then given as

$$
\begin{align*}
& \left(\underline{H}+\underline{J}-\underline{K}^{\alpha}\right) a_{i}^{\alpha}=\epsilon_{i}^{\alpha} \underline{S} a_{i}^{\alpha} \tag{3a}\\
& \left(\underline{H}+\underline{J}-\underline{K}^{\beta}\right) a_{i}^{\beta}=\epsilon_{i}^{\beta} \underline{S} a_{i}^{\beta} \tag{3~b}
\end{align*}
$$

where $\underline{S}, \underline{H}, \underline{J}$ and \underline{K}^{α} or \underline{K}^{β} are overlap, bare-nuclear field Hamiltonian, coulomb and exchange matrices respectively; α and β refer to α and β spins respectively.

[^0]Table I
SKETCH OF RELATIONS BEIWEEN N_{2}, O_{2}, CO AND NF MOLEGULES
table I(a) - SPECIES, NUMBER OF ELECTRONS AND KNOWN STATUS OF THE ABOVE MOIECULES

Molecule	No. of Electrons	Nature of Molecule	Detection	
N_{2}	24	Homopolar	$(\mathbb{N}-\mathbb{N})$	Known
O_{2}	16	Homopolar	$(0-0)$	Known
CO	14	Heteropolar	$(\mathrm{C}-0)$	Known
NF	16	Heteropolar	$(\mathrm{N}-\mathrm{F})$	Unknown

Table I(b).- CROSS Relations of the Above molecules

$\mathrm{N}_{2} \longrightarrow$	O_{2}	Homopolar
$\mathrm{CO} \longrightarrow$	NF	Heteropolar
$\mathrm{N}_{2} \longrightarrow \mathrm{CO}$	Isoelectronic	
$\mathrm{O}_{2} \longrightarrow \mathrm{NF}$	Isoelectronic	

Table I(c).—MAP OF CROSS RELATIONS OF THE ABOVE MOLECULES

	Isoelectronic Isoelectronic (14 Electrons) (16 Electrons)
Homopolar Heteropolar	

Table I(d).-CONFIGURATION OF THE DIFFERENT STATES OF NF

Nomenclature*	Electronic Configuration									State
NF X ${ }^{3} \Sigma$:	$1 \sigma^{2}$	20^{2}	$3 \sigma^{2}$	$4 \sigma^{2}$		$\mathrm{n}_{\mathrm{x}}^{2}$	Π_{y}^{2}	$\mathrm{H}_{\mathrm{X}}^{*}$	II_{y}^{*}	(ground state)
$\mathrm{NF}^{1}{ }^{\text {a }}$:	$1 \sigma^{2}$	$2 \sigma^{2}$	$3 \sigma^{2}$	$4 \sigma^{2}$		$\mathrm{H}_{\mathrm{x}}^{2}$	π^{2}	$\Pi_{x}^{*}{ }^{2}$		(excited state)
$\mathrm{NF}^{+}{ }^{2} \mathrm{H}$:	$1 \sigma^{2}$	$2 \sigma^{2}$	$3 \sigma^{2}$			Π_{x}^{2}	π_{y}^{2}	Π_{x}^{*}		(ionized state)
$\mathrm{NF}^{+4} \mathrm{H}:$	$1 \sigma^{2}$	$2 \sigma^{2}$	$3 \sigma^{2}$		$5 \sigma^{2}$	Π_{x}^{2}	H_{x}	Π_{x}^{*}	Π_{y}^{*}	(ionized state)

* The nomenclature and configurations of the different states of NF were derived from the corresponding states of the isoelectronic O_{2} molecule.

The secular equations corresponding to the self-consistent field equations (3a) and (3b) can be written as

$$
\begin{equation*}
\left|\underline{F}^{\alpha}-\epsilon^{\alpha} \underline{S}\right|=0 \text { and }\left|\underline{F}^{\beta}-\epsilon^{\beta} \underline{S}\right|=0 \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{F}^{\alpha(\beta)}=\underline{H}+\underline{J}-\underline{K}^{\alpha}(\beta) \tag{5}
\end{equation*}
$$

Equations (4) and (5) are solved iteratively until self-consistency is achieved for both the α and β spin sets.

For closed shell states, the symmetry adapted Hartree-Fock solutions of equations (3a) and (3b) become identical and only one of them need be solved iteratively. If the number of electrons n_{α}, with α spin, is not equal to the number of electrons n_{β}, with β spin, or in the general open-shell state with unpaired electrons one needs to solve both the equations (3a) and (3b) for the undetermined coefficients a_{i}^{α} and a_{i}^{β}. Though these equations represent separate pseudo-eigenvalue problems, they are related through the dependence of J upon both a_{i}^{α} and a_{i}^{β} and are best solved simultaneously in an iterative manner.

For computing the wave function of the open shell state of a molecule a number of treatments (refs. 8 and 9) have been suggested. However it has been shown by Sahni and De Lorenzo (refs. 10 and 11) that for molecules like \mathbb{N}_{2}, Co and O_{2}, the spin polarized and restricted treatments give energy values which are not appreciably different. Therefore, the simpler restricted treatment has been adopted for these calculations to avoid tedious computations. In this treatment the a_{i}^{α} and a_{i}^{β} for the paired occupied orbitals are restricted to be identical at each step of the SCF molecular orbital calculation and the resulting state is a pure spin state as it is a function of both \underline{S}^{2} and $\underset{Z}{ }$ operators.

Computational Details

A. Units

All the integrals and orbital energies have been calculated in atomic units
(a.u.). The ionization and excitation energies of the states of NF are expressed in electron volts. The latest adopted conversion factors (ref. 12) given below are used whenever needed for comparison:

$$
\begin{aligned}
I \text { a.u. (distance) } & =0.52917 \mathrm{~A}, \\
I \text { a.u. (energy) } & =27.211 \mathrm{eV}, \\
I \mathrm{eV} & =8065.13 \mathrm{~cm}^{-} .
\end{aligned}
$$

B. Atomic Orbitals ($\mathrm{AO}^{s} \mathrm{~s}$)

The choice of AO's from which MO's are constructed is an important factor in these calculations. It has been shown by Sahni and his co-worker (refs. 3 to 5) that optimized 10 's should be used wherever such calculations are possible. The optimized AO:s have been used by Sahni et al (refs. 3 to 5) for a number of states of CO and N_{2} molecules. However, a preliminary examination shows that the restricted optimized set; that is, $1 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{p}_{\mathrm{z}}, 2 \mathrm{p}_{\mathrm{x}}$ and $2 \mathrm{p}_{\mathrm{y}}$ A0's which gave good computed values for R_{e} and other molecular constants for the states of CO and N_{2}, was not adequate (ref. 13) for the computation of the states of O_{2} and NF . This is due to the fact that for a 16 electron system the variation of the eigenvectors becomes restricted as more MO's are occupied. Therefore, it becames essential to extend the basis set of functions to include 3 s and 3 p AO's. As it is difficult to optimize such a large set on the IBM 7094 computer owing to the restriction of the computer memory, the only possibility was to compute the wave functions of all the four molecules with the following set of Slater (ref. 14) $A O^{\prime} \mathrm{s}$,

$$
\begin{aligned}
& \text { Is }=\left(\alpha^{3} / \Pi\right)^{1 / 2} \exp (-\alpha r), \\
& 2 \mathrm{~s}=\left(\beta^{5} / 3 \Pi\right)^{1 / 2} \exp (-\beta r), \\
& 2 p_{z}=\left(\gamma^{5} / \Pi\right)^{1 / 2} \exp \left(-\gamma^{r}\right),
\end{aligned}
$$

$$
\left.2 p_{x}^{2 p_{y}}\right\}=\left(\gamma^{5} / \pi\right)^{1 / 2} \exp \left(-\gamma^{r}\right) \quad x\left\{\begin{array}{l}
\sin \theta \cos \phi \\
\sin \theta \sin \phi
\end{array}\right.
$$

where α, β, γ are the usual Slater screening constants. For states of NF molecule the orbital exponent values for the ls functions of Flourine and Nitrogen were taken as 8.6501 and 6.6652 respectively. The Z-axes centered on each atom lie along the internuclear axis, with positive Z-directions toward each other.

C. Symmetry Orbitals and Molecular Orbitals

The ICAO MO's of the homopolar N_{2} and O_{2} molecules belong in sets to the irreducible representations of the point group $D_{\infty} h$. To obtain proper symmetry for these MO's, symmetry orbitals (ref. 15) are introduced. The MO's of a given symmetry are then constructed from the basic symmetry orbitals of the same symmetry. The $10 \mathrm{MO}^{\text {r }}$ s which can be constructed from the chosen basis fall into the six symmetry classes or species labelled as $\sigma_{g}, \sigma_{u}, \Pi_{u}, \Pi_{g}$, $\bar{\Pi}_{u}$ and $\bar{\Pi}_{g}$. Three MO's each belong to σ_{g} and σ_{u} and one each to the others.

The LCAO MO of the heteropolar CO and NF molecules belong in sets to the irreducible representation of the point group $C_{\infty} v^{*}$. The MO's are constructed from the $A O^{\prime}$ s of the same symmetry. The $10 \mathrm{MO}^{\prime} \mathrm{s}$ that can be constructed from the 10 AO :s fall into two symmetry groups labelled as σ and Π. Six MO's belong to the σ symmetry and two MO's each are of the Π_{x} or Π_{y} symmetry.

D. Electron Configurations

The electron configurations of the different states of N_{2} and O_{2} molecules considered in this paper, are given in Table II, and those of $C O$ and the unknown NF molecules are given in Table III. The symbols + and - denote electrons with α spin and β spin, respectively. In these calculations a single antisymmetrical product (AP) function or electronic configuration is used for each state.
F. Eigenvalues (ϵ_{i}) and Eigenvectors (a_{i})

All the integrals required in the evaluation of the matrix elements were calculated with the programs written for the IBM 7094 computer and were checked with the values calculated from the tables of integrals (refs. 16 to 19) computed by Sahni and Cooley. On inserting the necessary integrals the matrices \underline{S} and \underline{H} were determined. The elements of the matrices J and K involved undetermined coefficients a_{i} in addition to the integrals. The SCF procedure for calculating the a_{i} was performed in the usual manner (refs. 20 to 23). After the self-consistency was obtained, the ϵ_{i}^{α} and ϵ_{i}^{β} gave the energy values for the orbitals with α spin and β spin respectively and a_{i} gave the LCAO coefficients. F. Total Energies

The total energies for the various statos of the above four molecules werc calculated by the expressions (refs. 3 and 4) given in Appendix A. The computed total energies of the states of $\mathrm{N}_{2}, \mathrm{CO}$ and O_{2} at various R are given in Tables IV to VI respectively. The total energies of the four states of the unknown molecule NF, considered in this paper, are given in Table VII for various R values. The calculated equilibrium distances for the states of three known molecules are given in Tables VIII to X along with the observed data and percentage error. The predicted equilibrium distances of the states of NF along with excitation and ionization energies are given in table XI.

Table II
ELECTRON CONFIGURATION OF DIFFERENT STATES OF THE HOMOPOLAR N_{2} AND O_{2} MOLECULES
$\begin{array}{lllllllllll}\operatorname{STA} \operatorname{TE} & I \sigma_{\mathrm{g}} & I \sigma_{\mathrm{u}} & 2 \sigma_{\mathrm{g}} & 2 \sigma_{\mathrm{u}} & 3 \sigma_{\mathrm{g}} & 1 \Pi_{\mathrm{u}} & 1 \bar{\Pi}_{\mathrm{u}} & 1 \Pi_{\mathrm{g}} & 1 \bar{\Pi}_{\mathrm{g}} & 3 \sigma_{\mathrm{u}}\end{array}$ $N_{2}\left(x \Gamma_{\Sigma_{5}^{+}}\right)+-+-+-+-+-+-+$ $N_{2}\left(A^{3} \Sigma_{U}^{+}\right) \quad+-\quad+-\quad+-+-+-+-+$
$\mathrm{N}_{2}\left(\mathrm{~B}{ }^{3} \mathrm{H}_{\mathrm{g}}\right)+-+-+-+-+\quad+\quad+-+$ $N_{2}\left(\mathrm{C}^{3} \Pi_{u}\right)+-+-+-\quad+\quad+-+-+-+$ $N_{2}^{+}\left(X^{2} \Sigma_{g}^{+}\right)+-+-+-+-+\quad+-$ $N_{2}^{+}\left(B^{2} \Sigma_{u}^{+}\right)+-+-+-+\quad+\quad+-+-$
$0_{2}\left(x^{3} \Sigma_{g}^{-}\right)+-+-+-+-+-+-+\quad+$ $0_{2}\left(a^{1} \Delta_{g}\right)+-+-+-+-+-+-+$
$0_{2}^{+}\left(x^{2} \Pi_{g}\right)+-\quad+-\quad+-\quad+-\quad+-+-+-\quad+$ $0_{2}^{+}\left(\mathrm{a}^{4} \Pi_{u}\right)+-+-\quad+-\quad+-\quad+-+-+\quad+$

Table III

ELECTRON CONFTGURATION OF DIFFERENT STATES OF THE HEIEROPOLAR CO AND OF THE UNKINOWN NF MOLECULE

STATE	1σ		σ		σ	4	σ	5σ		п	1]	211	$2 \bar{\Pi}$
Co ($\mathrm{x}^{\mathrm{I}} \mathrm{\Sigma}$)	+ -	+		+		+		+ -	+	-	+ -		
Co (a^{3} II)	+ -	+		$+$		+	-	+	$+$	-	+ -	+	
$\cos \left(\mathrm{d}^{3} \Delta\right.$)	+ -	+		+		+	-	+ -	$+$	-	+	+	
$\mathrm{CO}^{+}\left(\mathrm{Xl}^{2} \Sigma^{+}\right)$	+ -	+		+		+	-	+	+	-	+ -		
$\mathrm{CO}^{+}\left(\mathrm{A}^{2} \mathrm{n}^{+}\right)$	+ -	+		+		+	-	+ -	$+$	-	+		
$C 0^{+}\left(B^{2} \Sigma^{+}\right)$	+ -	+		+		+		+	+	-	+ -		
$\mathrm{CO}^{+}\left(\mathrm{C}^{2} \Sigma^{+}\right.$)	+ -	+	-	+		+		+	+	-	+ -		
NF ($\mathrm{x}^{3} \Sigma$)	+ -	+		+		+		+ -	+	-	+ -	+	+
NF ($\mathrm{a}^{1}{ }^{\text {d }}$)	+ -	+		+		+		+ -	+	-	+ -	+ -	
$\mathrm{NF}^{+}\left(\mathrm{X}^{2} \Pi\right.$)	+ -	+		+		+		+ -	+	-	+ -	+	
$\mathrm{NF}^{+}\left(a^{4} \mathrm{H}_{u}\right)$	+ -	+		+		+		+ -	+		+	+	+

mabie IV

TOTAL ENERGIES OF DIFFERENT STAIES OF N_{2} MOLECULE AT VARIOUS INTERNUCLEAR DISTANCES ${ }^{*}$ WITH EXPONENT VALUES, $\alpha=6.6675 \quad \beta=\gamma \Rightarrow 1.95$ FOR N ATOM

R	$N_{2}\left(X^{1} \Sigma_{g}^{+}\right)$	$N_{2}\left(A^{3} \Sigma_{u}^{+}\right)$	$\mathbb{N}_{2}\left(B^{3} \mathbb{M}_{g}\right)$	$N_{2}\left(C^{3} \mathbb{M}_{u}\right)$	$\mathbb{N}_{2}^{+}\left(\mathrm{X}^{2} \Sigma_{g}^{+}\right)$	$\mathrm{N}_{2}^{+}\left(\mathrm{B}^{2} \Sigma^{+}{ }^{+}\right.$
1.90	-1.08.50664330	-108.14582634	-108.17588425	-108.01993752	-107.93795967	-107.78673363
1.95	-108.53651524	-108.20601940	-108.22309208	-108.05690098	-107.97514248	-107.81339931
2.00	-108.55782509	-108.25635147	-108.26107407	-108.08470917	-108.00359535	-107.83136559
2.05	-108.57176781	-108.29803848	-108.29107285	-108.10457802	-108.024551.39	-107.84182167
2.10	-108.57941532	-108.33224010	-108.3140.0422	-108.11762142	-108.03909779	-107.84589291
2.15	-108.58167553	-108.35986996	-108.33141232	-108.12478161	-108.04816914	-107.84448910
2.20	-108.57934761	-108.38181686	-108.34355545	-108.12689400	-108.05259895	-107.83843040
2.25	-108.57315159	-108.39881802	-108.35136890	-108.12469196	-108.05310917	-107.82843494
2.30	-108.56365585	-108.41148567	-108.35544968	-108.11878967	-108.05029297	-107.81511116
2.35	-108.55139446	-108.42039585	-108.35637760	-108.10974216	-108.04468250	-107.79898167
2.40	-108.53680134	-108.42603970	-108.35460949	-108.09802151	-108.03675747	-107.78052998
2.45	-108.52032661	-108.42888641	-108.35062021	-108.08408356	-108.02693748	-107.76018524
2.50	-108.50224304	-108.42924881	-108.34469891	-108.06823254	-108.01551723	-107.73824596
2.55	-108.48290920	-108.42751884	-108.33721066	-108.05084324	-108.00286388	-107.71506596
2.60	-108.46249199	-108.42391586	-108.32836246	-108.03211498	-107.98914433	-107.69085979
2.0675	-108.57510948	-108.31080437	-108.29988861	-108.10986519	-108.03031731	-107.84392548
2.4435	-108.52298260	-108.42868519	-108.35072613	-108.08627224	-108.02801609	-107.76351261
2.1699	-108.58127213	-108.36924934	-108.33681107	-108.12618828	-108.05045509	-107.84259796
2.2910	-108.56557846	-108.40950012	-108.35496712	-108.12010384	-108.05101776	-107.81772614
2.1094	-1.08.58020973	-108.33788681	-108.31785011	-108.11937714	-108.04117966	-107.84600639
2.0315	-108.56740284	-108.28355122	-108.28082180	-108.09807873	-108.01760006	-107.83875751

* The last six columns of this table give the computed total energies of the above states of \mathbb{N}_{2} at their
observed equilibrium internuclear distances given in Table IX.

TOTAL ENERGIES OF DIFFERENT STAIES OF CO MOLECUIE AT VARIOUS INIERNUCIEAR DISTPANCES WITH EXPONENT VALUES, $\alpha=7.6528, \beta=\gamma=2.275$ FOR 0 AIOM AND $\alpha=5.6726, \beta=\gamma=1.625$ FOR C ATOM

R	Co ($\mathrm{X}^{1} \Sigma^{+}$)	CO ($\mathrm{a}^{3} \mathrm{I}$)	CO ($\mathrm{d}^{3}{ }^{\text {a }}$)	$\mathrm{CO}^{+}\left(\mathrm{X}^{2} \Sigma^{+}\right)$	$\mathrm{CO}^{+}\left(\mathrm{A}^{2} \Pi^{+}\right)$	$\mathrm{CO}^{+}\left(\mathrm{B}^{2} \Sigma^{+}\right)$	$\mathrm{CO}^{+}\left(\mathrm{C}^{2} \Sigma^{+}\right)$
1.90		-111.97424603		-111.78087902		-111.42243862	
1.95	-112.29486847	-112.01778221	-111.89608574	-111.81227303		-111.45487213	
2.00	-112.31681442	-112.05291748	-111.94694138	-171.83583450		-111.47964859	-110.78995514
2.05	-112.33207321	-112.08070755	- 1111.99008560	-111.85273170		-111.49787331	-110.83036613
2.10	-112.34168434	-112.10238266	-112.02656937	-111.86396408	-111.78398895	-111.51057243	-110.864683i5
2.15	-112.34640408	-112.11864948	-112.05714130	-111.87039852	-171.80711269	-111.51859188	- 110.89357662
2.20	-112.34704590	-112.13039207	- 212.08272362	-111.87287712	-111.82560539	-111.52266884	-110.91785812
2.25	-112.34418869	-112.13831717	-112.10388184	-111.87201118	-111.84011650	-171.52353287	-110.93803787
2.30	-112.33818436	-112.14287376	-112.12103271	-111.86835098	-111.85105324	-111.52169418	-110.95444298
2.35	-112.32978153	-112.14478207	-112.13495731	-111.86255360	-111.85912228	-111.51773167	-110.96789074
2.40	-112.31918526	-112.14426422	-112.14583397	-171.85496330	-111.86448479	-111.51213264	-110.97831154
2.45	-112.30690193	-112.14194870	-112.15419960	-111.84608841	-171.86773300	-111. 50533485	-110.98631859
2.50	-112.29314895	-112.13806438	-112.16026592	-111.83613110	-111.86907482	-111.49762440	-110.99185658
2.55	-112.27814102	-112.13303375	-112.16435432	-111.82550240	-111.86875916	-111.48933601	-110.99520874
2.60	-112.26219940	-112.12682152	-112.16669083	-111.81435966	-111.86703491	-111.48070717	-110.99636650
2.65	-112.24554920	-112.11972904	-112.16752929	-171.80296421	-111.86421871	-111.47183132	-110.99544621
2.70	-112.22819042	-112.11221027	-112.16697788	-111.79129505	-111.86032772	-111.46261311	-110.99233150
2.75	-112.21033096		-112.16510201	-111.77958488	-111.85550777	-111.45306969	-110.98709869
2.80	-112.19238758		-112.16249371	-111.76816273	-111.85039997	-111.44330311	-110.98032475
2.85	-112.17424583		-112.15889549	-111.75688362	-111.84469986	-111.43299675	-110.97213364

TABLE VI

TOTAL ENERGJES OF DIFFERENT STATES OF O_{2} MOIECUIE AT VARIOUS R R^{*} WITH EXPONENT VALUES, $\alpha=7.6528, \quad \beta=y \doteq 2.275$ FOR O ATOM

R	$\mathrm{O}_{2}\left(\mathrm{X}^{3} \Sigma_{g}^{-}\right)$	$\mathrm{O}_{2}\left(\mathrm{a}^{\left.\mathrm{I}_{\triangle_{g}}\right)}\right.$	$O_{2}\left(\begin{array}{ll} & \Pi_{g}\end{array}\right)$	$\mathrm{O}_{2}\left(\mathrm{a}^{4} \Pi_{u}\right)$
2.00	-149.02007866	-148.93554115	-148.66397476	-148.48109627
2.05	-149.04732704	-148.96336937	-148.68243599	-148.53122520
2.10	-149.06742668	-148.98403314	-148.69430542	-148.57303238
2.15	$-.149 .08137894$	-148.99849701	-148.70056343	-148.60758781
2.20	-149.09014702	-149.00779533	-148.70213509	-148.63587379
2.25	-149.09440804	-149.01255989	-148.69966125	-148.65863800
2.30	-149.09491158	-149.01353455	-148.69385719	-148.67663765
2.35	-149.09214592	-149.01122856	-148.68519783	-148.69046211
2.40	-149.08661842	-149.00615120	-148.67414665	-148.70061684
2.45	-149.07877731	-148.99873161	-148.66114235	-148.70763397
2.50	-149.06890488	-148.98927879	-148.64645576	-148.71180344
2.55	-149.05746460	-148.97822571	-148.63051987	-148.71364784
2.60	-149.04456902	-148.96571732	-148.61343002	-148.71332932
2.65	-149.03048897	-148.95200157	-148.59544945	-148.71114159
2.70	-149.01558113	-148.93743706	-148.57689476	-1.48.70748901
2.28170	-149.09510422	-149.01355362	-1.48.6963.1004	$-.148 .67054176$
2.29705	-149.09498596	-149.01357651	-148.69429779	-148.67571831
2.12163	-149.07416344	-148.99098587	-148.69765663	-148.58880615
2.61025	-149.04183960	-148.96305084	-148.60987091	-148.71307755

* The last four columns give the total energies of the states of O_{2} at their equilibrium internuclear distance given in table X.

TABIE VII

TOTAL ENERGIES OF DIFFERENT STATES OF NF AT VARIOUS R WITH EXPONEINT VALUES' $\alpha=8.6501, \beta=\gamma=2.6$ FOR F ATOM AND $\alpha=6.6652, \beta=\gamma=1.95$ FOR N ATOM

$\begin{aligned} & \text { INTERNUCIEAR } \\ & \text { DISTANCE (R) } \\ & \text { (ATOMIC UNITS) } \end{aligned}$	TOTAL ENERGIES (ATOMIC UNITS)			
	NF $\mathrm{X}^{3} \Sigma$	$N_{N F}{ }^{1} \Delta$	$\mathrm{NF}^{+}{ }^{2} \mathrm{I}$	$\mathrm{NF}^{+}+4$
2.00	-153.0760	-152.9849	-152.7468	-152.4587
2.20	-153.1754	-153.0842	-152.8141	-152.6454
2.25	-153.1877	-153.0965	-152.8194	-152.6773
2.30	-153.1963	-153.1051	-152.8214	-152.7048
2.35	-153.2011	-153.1101	-152.8197	-152.7282
2.40	-153.2044	-153.1135	-152.8175	-152.7484
2.45	-153.2046	-153.1138	-152.8121	-152.7653
2.50	-153.2026	-153.1120	-152.8049	-152.7793
2.55	-153.1991	-153.1087	-152.7965	-152.7911
2.60	-153.1939	-153.1039	-152.7866	-152.8007
2.80	-153.1619	-153.0740		-152.8224
2.85	-153.1508	-153.0638		-152.8235
2.90	-153.1398	-153.0538		-152.8248
2.95		-153.0432		-152.8242
3.00		-153.0329		-152.8235

TABIE VIII
EQUITTBRIUM DISTANCES (Re) OF THE VARIOUS ELECIRONIC STATES OF N_{2} MOIECUTE IN ATOMTC UNITS (a.u.)

STATE	EQUTI IBRIUM DISTANCE		
	CAICULATED	OBSERVED	PERCENTAGE ERROR
$\mathrm{N}_{2} \mathrm{X}{ }^{\Sigma_{\mathrm{g}}^{+}}$	2.15	2.0675	$3.99^{\circ} / 0$
$\mathrm{A}^{3} \Sigma_{u}^{+}$	2.48	2.4435	1. $49^{\circ} / 0$
$\mathrm{C}^{3} \Pi_{u}$	2.20	2.1699	1.39%
$B^{3} \Pi_{g}$	2.34	2.2910	2.14%
$\mathrm{N}_{2}^{+} \mathrm{X}{ }^{2} \Sigma_{\mathrm{g}}^{+}$	2.23	2.1094	$5.72^{\circ} / 0$
$B{ }_{\Sigma}^{2}+$	2.11	2.0315	3.86%

TABIE IX
EQUILIBRIUM DISTANCES OF THE VARIOUS EIECTRONIC STATES OF CO MOIECULE IN AIOMIC UNITS (a.u.)

STATE	EQUILIBRIUM DISTANCE		
	CALCULAIED	OBSERVED	PERCENTAGE ERROR
Cox ${ }^{1} \Sigma^{+}$	2.18	2.132	2.25\%
$\mathrm{a}^{3}{ }_{\text {II }}$	2.365	2.2853	3.49%
$\mathrm{d}^{3} \triangle$	2.65	2.5888	2.36%
$\cos ^{+} \mathrm{X}^{2} \Sigma^{+}$	2.21	2.1072	4.87%
$A^{2} \Pi_{i}^{+}$	2.51	2.3502	6.79%
B ${ }^{2} \Sigma^{+}$	2.24	2.2085	1.42%
$C^{2} \Sigma^{+}$	2.60	-	-

TABL X
EQUILIBRIUM DISTANGES OF THE VARIOUS STATES OF O_{2} MOLECULE IN ATOMIC UNITS (a.u.)

STATE	EQUIITBRIUM DİSTANCE		
	CAICULAIED	OBSERVED	PERCENTAGF ERROR
$\mathrm{O}_{2} \mathrm{X}^{3} \mathrm{\Sigma}_{\mathrm{g}}^{-}$	2.28	2.28170	-
$a^{I_{\Delta}}$	2.29	2.29705	-
$0_{2}^{+} \mathrm{x}^{2} \Pi_{g}$	2.19	2.1216	3.22%
$a^{4} \Pi_{u}$	2.57	2.6103	1.54%

TABLE XI
PREDICIED EQUILIBRIUM DISTANCES OF IHE VARIOUS STATES OF NF MOIFCULE ALONG WITH PREDICTED IONIZATION AND EXCITATION ENERGIES

STAIT*	CALCUIATED EQUILIBRIUM DISTANCES (a.u.)	VERTICAL IONIZATION AND EXCITAIION ENERGIES (eV)
$\mathrm{NF}^{3_{\Sigma}}$	2.44	-
1_{Δ}	2.43	2.47
$\mathrm{NF}^{+{ }^{2} \Pi}$	2.30	10.65
4_{Π}	2.89	12.04

* The electronic configuration, equilibrium distances of $N F\left(x^{3} \Sigma\right)$ (ground state of $N F$) $N F\left({ }^{1} \Delta\right.$) (excited states of $N F$) have been confirmed later on by experimental results within the predicted. accuracy of above theoretical calculations.

DISCUSSION

The results of this study of the different states of the NF molecule show beyond doubt the value of the SCF ICAO MO method in dealing with both the closed and open shells states of molecules. It has been shown by Sahni and his workers (refs. 2 to 4) that wherever possible optimized AO's should be used in these calculations. IIowever, as the number of calculations were extended to HP and NF molecules it was found (ref. 13) that the restricted set of orbitals; that is, $1 s, 2 s$ and $2 p$ functions, was not sufficient to deal with these molecules. This is due to the fact that the Flourine atom of NF having nine electrons nearly completes the second shell and, therefore, restricts the variation of the a_{i} coefficients. For any exact treatment of molecules such as NF one needs to introduce the $3 s$ and $3 p$ orbitals. Such an effort is being made on N_{2}, $F H$ and NF molecules but the computation is very tedious and slow on the IBM 7094 computer due to the limited memory and speed of the machine. At present the IBM 7094 programs are being converted to the IBM 360-70 system of the Institute for Space Studies, 2880 Broadway, New York, New York and it is hoped that it will be possible to compute the states of the above molecules with the enlarged optimized set of orbitals including $3 s$ and $3 p$ AO's. It was the computer limitalion due to which the author has thought it best to use Slater AO's for the states of $N_{2}, C O$, O_{2} and NF molecules to compare the computed results with the available experimental data. These calculations have shown that SCF LCAO MO method can accurately predict the stability of a state of a molecule and R_{e} value within $96-98^{\circ} \%$ accuracy and the ionization and excitation energies within 90% accuracy if the values are higher than 10 eV . Usually the error in ionization and excitation energies is one eV if the experimental value of ionization or excitation energy is less than 5 eV .

COMMENTS

For the above calculations we have used a limited set of non-optimized basis functions. For more exact computation one needs to use an extended set of optimized basis functions. Moreover we have only used a single determinant wave function. It has been shown by Coulson and Fischer (ref. 24) that for large separation of the nuclei the MO wave function does not describe the separate atoms in their ground, ionized or excited state. Therefore, one needs to use more than one determinant (configuration interaction) for calculating molecular wave functions of NF beyond 3R. The author is at present extending the above calculation to include 3 s and 3 p functions, in addition to 1 s , 2 s and 2 p functions, and configuration interaction treatment. All the $A O^{r}$ s are also being optimized at each R value to obtain the potential energy curves of the different states.

ACKINOWIEDGEMENTS

The author is indebted to Dr. J. C. Browne of the University of Texas and to Dr. C. D. Ia Budde and Dr. B. C. Sawhney for providing him with molecular integrals, eigenvalue and molecular wave function programs respectively and to Mr. O. P. Anand for the help in the above computation, and to Mrs. Ida Kelly and Miss A. P. Shantha for checking the numerical work and for help in preparing the manuscript. He is also grateful to the Institute for Space Studies, 2880 Broadway, New York, New York and Goddard Space Flight Center, Greenbelt, Maryland for the use of the IBM 7094 computers.

APPENDIX (A)

The total energy of an electronic state of a diatomic molecule is given as

$$
\begin{equation*}
E_{e I}=\sum_{i}^{\alpha+\beta} H_{i}+\frac{1}{2} \sum_{i}^{\alpha+\beta} \sum_{j}^{\alpha+\beta} J_{-i j}-\frac{1}{2}\left(\sum_{i, j}^{\alpha}+\sum_{i, j}^{\beta}\right) K_{-i j} \tag{7}
\end{equation*}
$$

where α and β denote the number of electrons with α and β spins.
The eigenvalues ϵ_{i} are given by the expression

$$
\begin{equation*}
\epsilon_{i}^{\alpha(\beta)}=\underline{H}_{-i} \alpha(\beta)+\sum_{j}^{\alpha+\beta}{\underset{-i j}{ }}^{\alpha} \sum_{j}^{\alpha(\beta)} \underline{K}_{i j} \tag{8}
\end{equation*}
$$

Using equation (8) we can reduce equation (7) to equation (9)

$$
\begin{equation*}
E_{e 1}=\frac{1}{2} \sum_{i}^{\alpha}\left(\epsilon_{i}^{\alpha}+H_{-i}^{\alpha}\right)+\frac{1}{2} \sum_{i}^{\beta}\left(\epsilon_{i}^{\beta}+H_{i}^{\beta}\right) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{H}_{i}^{\alpha}=a_{i}^{\alpha^{*}} \underline{H a}_{i}^{\alpha} ; \quad{\underset{H}{i}}_{\beta}^{\beta}=a_{i}^{\beta^{*}} \underline{H a}_{i}^{\beta} . \tag{10}
\end{equation*}
$$

For a closed shell equation (7) reduces to

$$
\begin{equation*}
E_{e l}=\sum_{i}^{\alpha}\left(\epsilon_{i}^{\alpha}+{\underset{-i}{i}}_{\alpha}^{\alpha}=\sum_{i}^{\beta}\left(\epsilon_{i}^{\beta}+H_{-i}^{\beta}\right)\right. \tag{11}
\end{equation*}
$$

The total potential energy of the electronic state of the molecule is obtained by adding the nuclear repulsion term $\frac{Z_{a} Z_{b}}{r_{a b}}$ to the expressions (7) or (11). Here Z_{a} and Z_{b} represent the charges of the nuclei a and b respectively and $r_{a b}$ is the internuclear distance

	APPENDIX (B)
	SYMBOIS
R	internuclear distance
R_{e}	equilibrium internuclear distance
SCF	self-consistent field
ϕ_{i}	molecular orbitals
χ_{i}	atomic orbitals
a_{i}	undetermined coefficients
S, H, J and K	overlap, bare-nuclear Hamiltonian, Coulomb and Exchange matrices
ϵ_{i}	energy of $i^{\text {th }}$ electron
$\mathrm{x}^{3} \mathrm{\Sigma}$	ground state of NF
I_{\triangle}	excited state of NF
${ }^{2} 10,4 \pi$	ionized states of NF
$\left.\begin{array}{lll} 1_{\sigma}, & 2 \sigma, & 3 \sigma, \\ 4 \sigma, & 5 \sigma \end{array}\right\}$	molecular orbitals of 0 symmetry
$\Pi_{x}, \Pi_{y}, \Pi_{x}^{*}, \Pi_{y}^{*}$	molecular orbitals of II symmetry
${ }_{F} \alpha(\beta)$	matrices defined by equation (4)
${ }^{n} \alpha$	n electrons with α spin
${ }^{n}$	n electrons with β spin
a_{i}^{α}	undetermined coefficients for orbitals with α spin
a_{i}^{β}	undetermined coefficients for orbitals with β spin
s^{2}	square of spin operator
S_{z}	component of spin operator along the Z direction

a.u.	atomic units
eV	electron volt
A	armstrong unit
AO	abbreviation for atomic orbitals
Is, 2s, 2p, 3s, 3p	atomic orbitals
α, β, γ	Slater screening constants
ICAO-MO	linear combination of atomic orbitals-molecular orbitals
$\mathrm{D}_{\infty} \mathrm{h}$	point group
$\left.\begin{array}{ll} \sigma_{g}, & \sigma_{u}, \\ \Pi_{u} \\ \Pi_{g}, & \bar{\Pi}_{u}, \\ \bar{\Pi}_{g} \end{array}\right\}$	symmetry orbitals
$\mathrm{C}_{\infty} \mathrm{V}$	point group
σ and $\Pi 1$	molecular orbitals of σ and Π symmetries
$\mathrm{x}^{1_{\mathrm{E}}}$	ground state of N_{2}
$a^{3} \Sigma_{u}^{+}, B^{3} \Pi_{g}^{+}, C{ }^{3} \Pi_{u}^{+}$	excited state of N_{2}
X ${ }^{1} \Sigma^{+}$	ground state of CO
$\mathrm{X}^{1} \Sigma^{+}$, a ${ }^{3} \mathrm{H}, \mathrm{a}^{3} \triangle$	excited states of CO
$\left.\begin{array}{l} \mathrm{X}^{2} \Sigma^{+}, \mathrm{A}^{2}{I^{+}}^{+} \mathrm{B}^{2} \Sigma^{+}, \\ \mathrm{C}^{2} \Sigma^{+} \end{array}\right\}$	ionized states of CO
$x^{3} \Sigma_{g}^{-}$	ground state of O_{2}
$\mathrm{a}^{I_{\Delta_{g}}}$	excited state of O_{2}
$x^{2} \Pi_{g}, a^{4} \Pi_{u}$	ionized states of O_{2}
a_{i}^{*}	Hermitian conjugate of the vector a_{i}

REFERERCES

1. Sahni, R. C.: Quantum Mechanical Study of Molecules: Electronic States of Diatomic Molecules. NASA TN D-2363, July 1964.
2. Sahni, R. C., La Budde, C. D. and Sawhney, B. C.: Quantum Mechanical Treatment of Molecules. Part I. Calculation of the Potential Energy Curve and Molecular Constants of the Ground State of CO. Trans. Faraday Soc., vol. 62, Aug. 1966 pp. 1993-2003.
3. Sahni, R. C., Sawhney, B. C.: Quantum Mechanical Treatment of Molecules. Part 2. Calculation of the Potential Energy Curves and Molecular Constants of the $X^{2} \Sigma^{+}, A^{2} \Pi$ and $B^{2} \Sigma$ Ionized States of CO. Trans. Faraday Soc. (in press)
4. Sahni, R. C., Sawhney, B. C.: Quantum Mechanical Treatment of Molecules. 1. Calculation of the Potential Energy Curve and Molecular Constants of the Ground and Ionized States of N_{2}. International Journal of Quantum Chemistry (in press)
5. Sahni, R. C.: Theoretical Study of Atomic and Molecular Gases and their Reactions in the Uoper Atmosphere. NASA Progress Report N65-85771, April 1965.
6. Sahni, R. C.: Theoretical Study of the Electronic Structure of Diatomic Molecules. Symposium on Molecular Structure and Spectroscopy, Columbus, Ohio, U.S.A, June 1965.
7. Douglas, A. E., and Jones, W. E.: The b ${ }_{\Sigma^{+}}{ }^{+} X^{3} \Sigma^{-}$Band System of the NF Molecule. Symposium on Molecular Structure and Spectroscopy, Columbus, Ohio, U.S.A., September 1966, pp. 43.
8. Bertheir, G.: Molecular Orbitals in Chemistry, Physics and Biology, Academic Press, New York, 1950, pp. 57-82.
9. Löwdin, P. O.: Molecular Orbitals in Chemistry, Physics and Biology, Academic Press, New York, 1950, pp. 37-55.
10. Sahni, R. C., and De Lorenzo, E. J.: Electronic States of Molecules. I. Self-Consistent Field Calculations of the Ground, Ionized and Excited States of \mathbb{N}_{2} and O_{2}. Jour. Chem. Phys., vol. 42, May 1965, pp. 3612-3620.
11. Sahni, R. C. and De Lorenzo, E. J.: Quantum Mechanical study of the Ground, Ionized and Excited States of CO, NO and CN Using Both Restricted and Polarized Treatments with Unoptimized Slater Orbitals (unpublished).
12. Dumond, J. W. M., and Cohen, E. R.: Physies Today, 17, No. 2, 1964, pp. 48.
13. Sahni, R. C.: Quantum Mechanical Treatment of $\mathbb{N}_{2}, \mathrm{O}_{2}$, HF and NF Molecules Using Restricted Set of Orbitals as well as EnIargè Set of Orbitals Containing $3 s$ and $3 p$ Functions (unpublished).
14. Slater, J. C.: Atomic Shielding Constants. Phys. Rev., vol. 36, July 1930, pp. 57-64.
15. Sahni, R. C.: Electronic States of Molecules.I. Automatic Computation of Electronic Wave Functions. Scientific Report 19, Contract No. AF 19(122)-470. Geophys. Res. Div. of Cambridge Res. Center U. S. Air Force and Univ. of Western Ontario, Iondon, Canada, Feb. 1955.
16. Sahni, R. C., and Cooley, J. W.: Derivation and Tabulation of Molecular Integrals. NASA TN D-146, Dec. 1959.
17. Sahni, R. C., and Cooley, J. W.: Derivation and Tabulation of Molecular Integrals. Supplement I - Tables for Two-Center OneElectron Nuclear-Attraction, Overlap, and Potential-and KineticEnergy Integral. NASA TTN D-146-1, Dec. 1959, and
18. Sahni, R. C., and Cooley, J. W.: Derivation and Tabulation of Molecular Integrals. Supplement II - Tables for Two-Center-Two Electron Coulomb Integrals. NASA IN D-146-II, Dec. 1960.
19. Sahni, R. C., and Cooley, J. W.: Derivation and Tabulation of Molecular Integrals, Supplement III(a) III(b) and III(c) Tables for Two-Center Two-Electron Hybrid Integrals. NASA ITN D-146-III, Oct. 1963.
20. Mulligan, J. F.: ICAO Self-Consistent Field Calculation of the Ground State of Carbon Diozide. Jour. Chem. Phys., vol. 19, no. 3, March 1951, pp. 347-362.
21. Sahni, R. C.: The Structure of Carbon Monoxide. Trans. Faraday Soc., vol. 49, Nov. 1953, pp. 1246-1252.
22. Scherr, C. W.: An ICAO MO Study of \mathbb{N}_{2}. Jour. Chem. Phys., vol. 23, 1955, pp. 569-578.
23. Sahni, R. C.: Electronic States of Molecules. I. Electronic Structure of BH. Jour. Chem. Phys., vol. 25, no. 2, August 1956, pp. 332-336.
24. Coulson, C. A., and Fischer, I.: Note on the Molecular Orbital Treatment of the Hydrogen Molecule. Phil. Mag., vol. 40, 1949, pp. 386-393.

[^0]: * Symbols are explained in Appendix B

