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Quantum Mechanical Time-Delay Matrix in Chaotic Scattering
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We calculate the probability distnbution of the matnx Q = —ihS 13S/3E for a chaotic System
with scattenng matnx S at energy E The eigenvalues τ, of Q are the so-called proper delay
times, mtroduced by Wigner and Smith to descnbe the time dependence of a scattenng process The
distnbution of the inverse delay times turns out to be given by the Laguerre ensemble from random
matnx theory [S0031 -9007(97)03411 -X]
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Eisenbud [1] and Wigner [2] mtroduced the notion of
time delay m a quantum mechanical scattermg problem
Wigner's one-dimensional analysis was generahzed to an
N X N scattermg matnx S by Smith [3], who studied
the Hermitian energy derivative Q = —iftS~ldS/dE and
mterpreted its diagonal elements äs the delay time for a
wave packet incident m one of the W scattermg channels
The matnx Q is called the Wigner-Smith time-delay
matnx and its eigenvalues τι,τζ, , τ Ν are called proper
delay times

Recently, interest in the time-delay problem was revived
m the context of chaotic scattermg [4] There is consider-
able theoretical [4-7] and expenmental [8-10] evidence
that an ensemble of chaotic bilhards contammg a small
openmg (through which N modes can propagate at energy
E) has a uniform distnbution of S in the group of N X N
umtary matrices—restncted only by fundamental symme-
tnes This universal distnbution is the circular ensemble
of random-matnx theory [11], mtroduced by Dyson for its
mathematical simphcity [12] The eigenvalues e"^ of S
m the circular ensemble are distributed accordmg to

Ρ(φι,φι Π \e'* ~ e<* \ß, (1)

with the Dyson mdex β = l, 2, 4 dependmg on the
presence or absence of time-reversal and spm-rotation
symmetry

No formula of such generahty is known for the time-
delay matnx, although many authors have worked on this
problem [6,13-23] An early result, {tr Q) = TH, is due to
Lyuboshits [13], who equated the ensemble average of the
sum of the delay times tr Q = X^=] r„ to the Heisenberg
time ΤΗ = 2ττ·/ζ/Δ (with Δ the mean level spacmg of
the closed System) The second moment of trß was
computed by Lehmann et al [18] and by Fyodorov and
Sommers [19] The distnbution of Q itself is not known,
except for N = l [19,21] The trace of Q deterrmnes
the density of states [24], and is therefore sufficient for
most thermodynamic applications [21] For apphcations
to quantum transport, however, the distnbution of all
mdividual eigenvalues T„ of Q is needed, äs well äs the
distnbution of the eigenvectors [25]

The solution of this 40 year old problem is presented
here We have found that the eigenvalues of Q are inde-
pendent of S [26] The distnbution of the inverse delay
times y„ = l/r„ turns out to be the Laguerre ensemble
of random-matnx theory,

Ρ(Ύι, ,Ύκ) «
'<} k

(2)

but with an unusual ,/V-dependent exponent (The function
P is zero if any one of the T„'S is negative ) The corre-
lation functions of the T„'S consist of senes over (gen-
erahzed) Laguene polynomials [27], hence the name
"Laguerre ensemble " The eigenvectors of Q are not
independent of S, unless β = 2 (which is the case of
broken time-reversal symmetry) However, for any β the
conelations can be transformed away if we replace Q by
the symmetrized matnx

(3)

which has the same eigenvalues äs Q The matnx
of eigenvectors U which diagonahzes QE = U X
diag(ri, ,rN)U^ is independent of S and the T„'S,
and umformly distributed m the orthogonal, umtary, or
symplectic group (for β = l, 2, or 4, respectively) The
distnbution (2) confirms the conjecture by Fyodorov and
Sommers [19] that the distnbution of tr Q has an algebraic

Although the time-delay matnx was interpreted by
Smith äs a representation of the "time operator," this
Interpretation is ambiguous [19] The ambiguity anses
because a wave packet has no well-defmed energy There
is no ambiguity m the apphcation of Q to transport
Problems where the mcommg wave can be regarded
monochromatic, hke the low-frequency response of a
chaotic cavity [21,22,28] or the Fermi-energy dependence
of the conductance [25] In the first problem, time delay
is descnbed by complex reflection (or transmission)
coefficients Rmn(a>),

f- ιωτ,ηη + Θ(ω2)], (4a)

Tmn=lmhS-]

ndSmn/dE (4b)

Rmn(to) = R,.
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The delay time rmn determines the phase shift of the ac
signal and goes back to Eisenbud [1]. With respect to a
suitably chosen basis, we may require that both the matri-
ces Rmn(0) and rm„ are diagonal. Then we have

Äm n(<u) = 8mn[\ a>T (5)

where the τ,η (m = l , . . . , ΛΟ are the proper delay times
(eigenvalues of the Wigner-Smith time-delay matrix Q).
For electronic Systems, the 0(ω) term of Rmn(cu) is the
capacitance. Hence, in this context, the proper delay
times have the physical interpretation of "capacitance
eigenvalues" [29].

We now describe the derivation of our results. We
Start with some general considerations about the invari-
ance properties of the ensemble of energy-dependent scat-
tering matrices S(E), following Wigner [30], and Gopar,
Mello, and Büttiker [21]. The N X N matrix 5 is uni-
tary for β = 2 (broken time-reversal symmetry), unitary
Symmetrie for β = l (unbroken time-reversal and spin-
rotation symmetry), and unitary self-dual for β = 4 (un-
broken time-reversal and broken spin-rotation symmetry).
The distribution functional P[S(E)] of a chaotic System is
assumed to be invariant under a transformation

S (E) -* VS(E)V', (6)

where V and V' are arbitrary unitary matrices which do
not depend on E (V = VT for β = l, V' = VR for
β = 4, where T denotes the transpose and R the dual of
a matrix). This invariance property is manifest in the
random-matrix model for the E dependence of the scatter-
ing matrix given in Ref. [22]. A microscopic justification
starting from the Hamiltonian approach to chaotic scatter-
ing [31] is given in Ref. [32]. Equation (6) implies with
V = V = iS~1/2 that

P(S,QE) = P(-Ü,QE). (7)
Here P(S, QE) is the joint distribution of S and QE,
defined with respect to the Standard (flat) measure dQE

for the Hermitian matrix QE and the invariant measure dS
for the unitary matrix S. From Eq. (7) we conclude that
S and QE are statistically uncorrelated; their distribution
is completely determined by its form at the special point
S = -1.

The distribution of S and QE at 5 = — l is com-
puted using established methods of random-matrix theory
[11,31]. The N X N scattering matrix S is expressed in
terms of the eigenvalues Ea and the eigenfunctions ψηα of

« i

= i

the M X M Hamiltonian matrix 3~[ of the closed chaotic
cavity [6],

M , , *

S =
l - iK

l iK

ΔΜ

7Γ F —
^

(8)

The Hermitian matrix 3~C is taken from the Gaussian or-
thogonal (unitary, symplectic) ensemble [11], P(J-C) <*
exp(-yß7T2tr^f2/4A2M). This implies that the eigen-
vector elements ψ]α are Gaussian distributed real (com-
plex, quaternion) numbers for β = l (2, 4), with zero
mean and with variance M""1, and that the eigenvalues
Ea have distribution

P({Ea}) « Π
μ<ν

(9)

The limit M — » °° is taken at the end of the calculation.
The probability P(~^,QE) is found by inspection of

Eq. (8) near S = — 1. The case S = — l is special,
because S equals — l only if the energy E is an (at
least) N-fold degenerate eigenvalue of 3~C . For matrices
S in a small neighborhood of —l, we may restrict the
summation in Eq. (8) to those N energy levels Ea, a =
l,..., N, that are (almost) degenerate with E (i.e., \E —
Ea\ <5C Δ). The remaining M — N eigenvalues of 3~C
do not contribute to the scattering matrix. This enormous
reduction of the number of energy levels involved provides
the simplification that allows us to compute the complete
distribution of the matrix QE.

We arrange the eigenvector elements ψηα into an
N X N matrix Ψ;β = ψ]αΜ

ι/2. Its distribution Ρ(Ψ) α
exp(— β ϋ·ψψν2) is invariant under a transformation
Ψ — > Ψ Ο, where O is an orthogonal (unitary, symplec-
tic) matrix. We use this freedom to replace Ψ by the
product ΨΟ, and choose a uniform distribution for O.
We finally define the W X N Hermitian matrix Hl} =
Σα=ι Οια(Εα — E)O*ja. S ince the distribution of the en-
ergy levels Ea close to E is given by Υ\μ<ν \Εμ — Ev\&
[cf. Eq. (9)], it follows that the matrix H has a uniform
distribution near H = 0. We then find

(lOa)

(lOb)

- 1 is

S = -l +

QE = TH^-ly~l.

Hence the joint distribution of S and QE at S
given by

The remaining integral depends entirely on the positive-definite Hermitian matrix Γ
it is shown that

( ί/Ψ/(ΨΨ^ = Γ i/r(detr)(/3"2)/2/(r)0(r),

')· (H)

In Refs. [27] and [33]

(12)
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where Θ(Γ) = l if all eigenvalues of Γ are positive and
0 otherwise, and / is an arbitrary function of Γ = ψ ψ t
Integration of Eq (11) with the help of Eq (12) finally
yields the distnbution (2) for the mverse delay times and
the uniform distnbution of the eigenvectors, äs advertised

In addition to the energy derivative of the scattermg
matnx, one may also consider the derivative with respect
to an external parameter X, such äs the shape of the
System, or the magnetic field [19,20] In random-matnx
theory, the parameter dependence of energy levels and
wave functions is described through a parameter depen-
dent M X M Hermitian matnx ensemble,

(13)

where 3~{ and 3~C' are taken from the same Gaussian en-
semble We charactenze dS/dX through the symmetnzed
derivative

_^_ n-1/2 (14)

by analogy with the symmetnzed time-delay matrix Qg m
Eq (3) To calculate the distnbution of Qx, we assume
that the mvanance (6) also holds for the X-dependent
ensemble of scattermg matrices (A random-matrix model
with this mvanance property is given m Ref [34] ) Then
it is sufficient to consider the special point S = — l
From Eqs (l Ob) and (13) we find

Qx = Ρ(Η') « exp(-/3tr/// 2/16),

(15)

where//;, = -(TH/n)M~1/2^ ]Φ*μ^'}Φ]ν A calcu-
lation similar to that of the distnbution of the time-delay
matrix shows that the distnbution of Qx is a Gaussian,
with a width set by QE,

j_

(16)

X ex —

X

The fact that delay times set the scale for the sensitivity
to an external perturbation in an open System is well
understood m terms of classical trajectones [35], in
the sermclassical limit W —> °° Equation (16) makes
this precise in the fully quantum-mechanical regime of
a fimte number of channels N Correlations between
parameter dependence and delay tmie were also obtamed
in Ref s [19,20], for the phase shift derivatives 3<f)j/dX

In summary, we have calculated the distnbution of
the Wigner-Smith time-delay matrix for the chaotic
scattermg This is relevant for expenments on frequency
and parameter-dependent transmission through chaotic
microwave cavities [9,10] or semiconductor quantum dots
with balhstic pomt contacts [36] The distnbution (1)

has been known since Dyson's 1962 paper äs the circular
ensemble [12] It is remarkable that the Laguerre
ensemble (2) for the (mverse) delay times was not
discovered earher
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