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ABSTRACT 

An "exact" quantum mechanical transition.state theory is 

defined, i.e., a model which invokes the basic transition state 

idea to calculate the rate of a chemical reaction but which is 

free of any auxiliary approximations. Most importantly, for 

example, it is not necessary to assume that the Hamiltonian is 

separable about the saddle point. It is argued that this model 

should provide an accurate description of the threshold region ' 

of the reaction where quantum effects are most significant. 

Finally, an even more general model, a new kind of semiclassical 

approximation, is presented which is essentially a synthesis 

of this quantum mechanical transition state model and the 

completely classical trajectory procedure for determining the 

rate constant; at sufficiently high temperature~ quantum effects 

become neglible, so that the correct rate constant is obtained, 

while at low temperature the correct result is obtained because 

the transition state model becomes valid. 
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I. INTRODUCTION 

1 
For many purposes classical trajectory calculations provide 

as complete a solution to molecular collision dynamics as is 

ever called for under practical experimental conditions. True, 

there are quantum effects, such as interference and tunneling, 
.. 2 

which can only be described by quantum mechanical or semi-

classical3 collision theories, but if the process of interest 

is 11classically allowed 11--ioe., hasa cross section (or rate 
I 

constant) which is not too small~~these are usually quenched 

by averaging over scattering angle, collision energy, and/or 

quantum states which pertains to anything other than the perfect 

experiment (a completely state-selected differential cross 

section measurement). 

Classical trajectory methods are in general not 

4 
useful, however, for treating "classically forbidden" processes, 

i.e., those which do not take place via ordinary classical 

mechanics. One of the most important examples of such a 

process is tunneling in the threshold region of a chemical 

reaction which has an activation barrier. Since it is this 

threshold region of the cross section which is most important 

for determining the rate constant at temperatures comparable 

to and below the barrier height, this short-coming of standard 

trajectory methods leaves an important gap in one's ability to 

treat kinetic phenomena theoretically. 

Low collision energy and a high activation barrier, however, 

are the ideal conditions for the applicability of transition 
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state theory.
5 

The cases in which transition state theory 

6 
has been compared with accurate quantum scattering calcu-

lations, though, show quite poor agreement in the low 

temperature region where quantum effects are important, even 

when tunneling corrections are applied in any of several 

different ways. The reason for this failure of transition 

state theory is, in my opinion, the failure of the assumption 

of separability of the Hamiltonian about the saddle point, 

a feature which is an inherent part of standard transition 

state theory; arguments supporting this point of view are 

presented below. 

The goal of this paper, therefore, is to obtain an 

"exact" quantum mechanical transition state theory, i.e., an 

approximation to the reaction rate constant which invokes the 

transition state approximation but no subsidiary ones (such 

as separability); surprisingly, no such formulation has previ-

7 8 
ously been given. ' It is suggested that this should provide 

an accurate description of the threshold region of a chemical 

reaction. In the process there will also emerge a semiclassical 

approximation for the rate constant which goes beyond this 

quantum transition state approximation, incorporating the full 

classical dynamics of the reaction within a quantum framework. 

One of the motivating factors in our pursuit of a correct 

quantum mechanical transition state theory has been the obser-

vation of how well classical transition state theory agrees 

with classical dynamics, i~e., trajectory calculations. For 
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the collinear H + H
2 

reaction, for example,, classical transition 
. ' 

state theory agrees exactlywith completely classical (.!!£!.quasi-

classical) trajectory calculations in the energy region just 

9 
above the classical threshold; this conclusion also follows 

10 
from the·work of Pechukas and McLafferty. Quantum effects 

in this energy region are enormous, however, so that classical 

mechanics is a poor approximation to reality. The implication, 

nevertheless~ is that the transition state idea is a good one 

provided it can be implemented quantum mechanically. 

Another indication that the transition state.idea may be_ 

valid--but that the separability approximation is poor--comes 

from the quantum scattering calculations of Kuppermann, Adams, 

and Truhlar11 and the "classical S-matrix calculation of . 

12 
George and ~filler, both for the collinear H + H

2 
system. 

The streamlines of quantum flux
11 

show smooth flow at low 

energies from the reactant to product regions of configuratiol'-

space, implying that the dynamics is "straight through" the 

transition region. (At high energies the streamlines become 

contorted.) This same inference comes from the classical 

12 
S-matrix calculations, where the complex-valued trajectory 

which tunnels from reactants to products move monotonically 

through the transition region. Classical transition state 

theory is exact, ·however, if all trajectories move through the 

10 
transition region without re-crossing the dividing surface, 

so the fact that the quantum and semiclassic.!il calculations 

show this "straight through" dynamics suggests the transition 



-4-

state model is a valid one at these energies. 
' 11 

The quantum 

and semiclassica1
12 

calculations also show, however, that 

the tunneling does !!2.! tak~ place through the saddle point 

13 .· 
itself but severely ''cuts the corner", implying that 

separability of the Hamiltonian is a poor approximation at 

these energies. 

The organization of the paper is as follows: Section II 

begins with the quantum mechanical.expression for the rate 

constant as obtained from quantum scattering theory and through 

a sequence of manipulations casts it into a form as close as 

possible to transition state theory, i.e., in the form of a 

Boltzmann average of a flux operator. Section III discusses 

the classical expression for the rate constant and observes 

a strikingly simple relation between the classical and 

quantum rate expressions. Section IV introduces the transi-

tion state approximation, first classically and then quantum 

.mechanically, obtaining the desired quantum mechanical transi-

tion state rate expression; it is seen that the traditional 

expression
5 

involving quantum partition functions and tunneling 

correction factor is obtained if the separability approximation 

is made. Section V then presents a new kind of semiclassical 

model which has several quite attractive features: it is es-

sentially a synthesis of this quantum transition state model 

and numerically exact classical dynamics, and thus provi~es 

'3 
another way--other than classical S-matrix theory --of using 

numerically computed classical trajectories as input to a 

quantum mechanical theory. 
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II. RATE EXPRESSION FROM QUA}TTUM SCATTERING THEORY 

For simplicity of presentation I treat a collinear A + BC ~ 

AB + C reaction explicitly, but it should be clear that with fairly 

obvious generalizations of notation the results apply to bimolecular 

reactive systems in general. If "a" denotes the initial arrangement, 

A + BC, and "b" the final arrangement, AB + C, then the standard 

expression for the equilibrium rate constant (i.e., .the rate 

summed over final vibrational states of AB, and Boltzmann averaged 

over initial vH·rational states of BC and over initial translational 

energy) is 

2 
x Is (E1>1 

~'na 
(2 .1) 

where B = (kT)-
1

, JJ is the reduced mass for translation in arrange-

menta, na (~) is the vibrational quantum number of BC (AB), F
1 

is the initJal translational energy, Sn. n (E
1

) 'is the S-matrix 
o' a 

for the reactive process (obtained from a quantum scattering cal-

culation), and QBC the vibrational partition function of BC: 

(2. 2) 

£ 
n 

a 
denoting the vibrational energy levels of BC. An equivalent, 

but more suggestive expression for the rate is 
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= kT 0 -1 L: oo ( ) 

~+a(T) h 'a na'~ fo d SFl e 

-S(F1 + t:~ ) 

a 

X Is (El) I 
~·na 

2 
(2.3) 

where Qa is the total partition function per unit volume (actually 

per unit length for this collinear system) for the unperturbed 

A+ BC system; i.e., 

~BH 

0 - tr (e 
0

) (2.4a) 
·a 

-1 co 2 
= QBC (2TI~) £

00
dP exp(-BP /2~) (2.4b) 

"tr" denoting a quantum mechanical trace. [For the A + BC + 

AB + C rP.action in three dimensions the rate expression· is 

the natural extension of Eq. (2.3) and (2.4): 

~ . 
3d I . kT . -1 

= -.-0 
+a h ·a 

00 

(2J + 1) f d(SE
1

) e 
0 

(2.5a) 

where 

(2.5b) 

QBC = ~ ,j 
a a 

(2j + 1) 
a 

(2.5c) 

where the indices denote the usua1
14 

quantities.] 

The first step in re-writing Eq. (2.~ in a more convenient 

f 
. 15 

orm is to introduce the idea of flux through a surface. Consider 
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first the surface s
1 

(a ''surface" in two-dim~nsiona~ coordinate 

space is actually a line) shown in Figure 1 and defined by the 

equation 

R - R = 0 
0 

R being some asymptotically large value of the translational 
0 

coordinate R; r is the vibrational coordinate of BC. For a 

wavefunction ~(r,R) the flux through surface s
1 

is 

00 

- Re J dr * .-H d 'l'(r,R) ill aR ~(r,R) IR = R
0 

where Re denotes "real part of", and where positive flux is 

associated with decreasing R; i.e., the positive direction of 

flux is chosen in the "direction of reaction". The scattering 

(2.6) 

(2. 7) 

wavefunction ~ (r,R), the solution of the Schrodinger equation--
Plna 

with 

2 
E = P

1 
/2].1 + £ 

na 

(2.8) 

--which corresponds to an incident wave in arrangement a with initial 

vibrational state n , has the asymptotic form 
a 

+ E, 
n 

a 

-ik R 
n 

ik R 
n' 

a 
e 

(2TI~)l/2 ¢n' (r) 
a 

a 
<P (r) 

n 
a 

v 1/2 

(v::) 
a 

s I (El) n ,u 
a a 

(2. 9) 



-8-

where 

v = -J'fk Ill 
n n 

v is the asymptotic velocity for channel n. (This normaH.zation 
n 

for the translational functions corresponds to delta function 

normalization on the momentum scale.) Since Eq. (2.9) is valid 

for large R, it can be used to compute the flwi: through surface 

s
1

; by making use of the fact that the vibrational .functions 

{¢n (r)} are orthonormal, it is then a ·.silllple matter to show that 

Eqs. (2.7) and (2.9) give 

(2Tifl.)-l [1- L:, Is, (E
1

) 121 
n n ,n 

a a a 

In the asymptotic region of arrangement b, the product 

region, the wavefunction '±'p --since it_corresponds to an 
lna 

incident wave in arrangement a--has only outgoing waves: 

(2.10) 

(2.11) 

where~ and rb are.the translational and vibrational coordinates, 

respectively, of arrc;1ngement b, AB + C. (The subscript "a" was 

omitted from the coordinates of that arrangement to keep. the notation 

uncluttered.) It is easy to show that the flux from this wavefunction 
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through surface s
2 

(see Figure 1) defined by 

is given by 

Unitarity, however--i.e., the fact that 

1 = L: 
n' 

a 

(2.12) 

(2.13) 

(2.14) 

·--shows that the flux through surfaces s
1 

and s
2

, Eqs. (2.10) and 

(2.13), are the same. In fact, the flux through any surface which 

divides reactant and product configuration space is the same; this 

follows because the flux from a time-independent wavefunction 

through a closed surface is zero (the quantum mechanical continuity 

equation) 15 

J-+ *~-+ 
Ref dS · · If -ill- 9 If = 0 (2.15) 

Since surfaces s
1 

and s
2 

can be made into one closed surface by 

joining them with segments at infinity, and since there is no flux 

through these segments at infinity, the flux into the closed "volume" 

through s
1 

must equal to the flux out of the closed "volume" through 

s
2

• Thus the flux in the reactive direction through any surface 

which divides reactant and product configuration space in this 

manner must be the same. 

It is convenient to Y.rrite the flux integral as a volume, rather 

than a surface integral. If the surface is defined more generally 

by the equati.on 
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f(r,R) = 0 

with f(r,R) < 0 (>0) being the reactant (product) region of 

configuration space, then the flux through this surface can 

be written as the volume integral 

Re !dq o[f'(q)] \f*(q) af(~) • v If (q) 
a~ 

(2.16) 

(2.17) 

where q::: (r,R), and the components of the velocity operator are 

-i'i a 
v = -- -- , k = 1, 2; the operator F is thus defined by 

k i~a\ 

F = o[f(q)l 
af(g) 

a~ 
''V 

Eqs. (2.10) and (2.13) can now be written as 

and substitution of this into Eq. (2 .1) or (2. 3) gives 

-S(E + E ) 
00 1 n 

~+a 
-1 

L f dEl 
a 

v-1 <\fp IFI'¥p > ·, = Qa e 
n na .Ina ·· lna a 0 

where the real part of the RHS is to be taken, and where it is 

important to emphasize that the flux operator F [Eq. (2.18)] is 

independent of the particular surface which is used to .divide 

reactant and product configuration space. Ey virtue of the 

Schrodinger equation, Eq. (2.8), one has 

and since 

\ 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

.,; 
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Eq. (2.20) becomes 

r 
n 

a 

n 
a 

. where P
1 

= -(2~E 1 ) 1 f 2 • 

-11-

Eq. (2.22) is almost in the desired form, namely a quantum 

(2.22) 

mechanical trace: the sum over {na} is a complete set in the 

space of the vibrational coordinate, but translational scattering 

wavefunctions ~re complete only if the integral over P
1 

covers 

!!! momenta, positive and negative. If the projection operator 

P is defined by 

P'i'p n. = '¥ pl < 0 
La Plna 

= 0 pl > 0 

then Eq. (2.22) can be written as 

00 

16 
the sum over states is now complete, so that this becomes 

~ Q-al tr .. [F e-BH P] 
-1>-+-a = 

(2.23) 

(2.24) 
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or since P and H commute, 

The rate constant is thus the quantum mechanical Boltzmann 

average of the reactive flux operator FP. Up until this 

point the fact has been used that the basis functions {'}lp } 
. · ·· lna 

are the eigenfunction of the Schrodinger equation, i.e., the 

exact scattering states; quantum mechanical traces are .inde-

pendent of the represen~ation in which they are carried out, 

however, so that in Eq. (2.25) there is no. longer any explicit 

reference to the scattering wavefunctions. 

It is illustrative to write the projection operator P.in 

a more physically meaningful form. P, defined by Eq. (2.23), 

can be written explicitly as 

p = L: 
n 

a 

0 

f dP 1 1'¥ p n > <'!' p n I 
-oo 1 a 1 a 

00 

(2.25) 

= L: 
n 

a 
. (2.26) 

where h(x) is the step function: 

h(x) = 1, x > 0 

::: 0, X < 0 

By invoking the "formal theory of scattering" (see Appendix·!) 

it is possible to write 'i'p n in terms of the unperturhed funct.ion 
. 1 a 

iP1R/¥! 
e 

¢n (r) (2-mi)l/2 
a 

(2. 27) 

"' 
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This relation is 

II' = ~irn 
p 1 na t-+-oo 

(2.28) 

so that Eq. (2.26) becomes 

p = eiHtlti e-iH0 tffi p iHotfti -iHt/11 
0 

e e (2.29) 

where t -+ -00 
t and where 

00 

p = E f dPl h(-P
1

) r~ > <~ . I 0 n Plna. Plna a -oo 

or 

P0 = h(-P) (2.30) 

P being the translation momentum operator for arrangement a. 

Since H0 commutes with P0 , Eq. (2.29) becomes 

P e iHt/11, h(-P) e-iHtff! = 9.im (2.31) 

,• 

i.e., the projector P is the Heisenberg transform of the projector 

h(-P). In Heisenberg notation, therefore, the projector P is 

P =' h[-P(-00)] (2.32) 

where 

P(-oo) = ~im P(t) 
t-+...,.oo 

P(t) being the Heisenberg transform of the translational momentum . 

) 

operator. P, therefore, projects onto that part of Hilbert space 

which in the infinHe past had negative translational momentum in 

arrangement a. 
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The final, formally exact expression for the rate constant 

thus becomes 

kc .. ~= Q-l tde-:-SH F h{-P(-oo)]} 
-lJ+-a a 

with F defined by Fq. (2.18). As emphasized abov~, this result 

is independent of the choice of surface which divides reactant 

and product configuration space. For the discussion in later 

sections, however, the surface s
3 

in Figure 1 is of special 

interest; in terms of the coordinates (s,u) of Figure 1 this 

surface is defined by 

f(s,u) - s 

= 0 

so that for this choice of the surface Fq. (2.33) becomes 

(2.33) 

(2.34) 

1 -BH Ps 
~ - 0- tr{e o(s)-- h[-P(-oo)]} -lJ+-a ·a m · 

.(2.35) 

s 

where m is the reduced mass for the s degree of freedom and · 
s 

ps is its momentum operator. 
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III. THE CLASSICAL RATE CONSTANT 

It is interesting to compare the quantum mechanical rate 

expression obtained in the previous section with the analogous 

expression of classical mechanics. The correspondence is strikingly 

direct. 

The transcription from quantum to classical mechanics is 

accomplished by the rules that a quantum mechanical trace becomes 

a classical phase space integral, and quantum mechanical operators 

become the corresponding classical function of coordinates and 

momenta. The. quantum mechanical expression of Eq. (2.33) thus 

becomes 

k_ CL 
-o+-a 

= Q-l h-2 /dp/dq e-SH(~,~)F(p,q)h[-P(p,q;-oo)] 
a - - . - - - - . 

' (3.1) 

where H(p,q) is the classical Hamiltonian, F(p,q) is the function 

F(p,q) = o[f(q)J - -
af(g) 

aq • (p/m) (3.2) 

Q is classical.partition function for the non-interacting reactants 
a 

(3. 3) 

and P(£,~;t) is the translational momentumofarrangment a at time 

.t which results from a trajectory beginning ~·:Tith initial conditions 

(p~q) at t = 0; P(~,~;-oo) is the t-+ -oo limit of P(p,q;t). The 

step-function in the integrand of Ea. (3.1) is 1, therefore, if 

the trajectory has come in the infinite past from arrangement a, 

and zero otherwise; it is equivalent to the characteristic function 

10 
X(p,q) of Pechukas and McLafferty. 
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If the dividing surfa~e is taken to be s
1 

'(see Fig. 1)--i.e., 

f(r,R) = R0 - R 

--then it is easy to show that Eq. (3.1) becomes the traditional 

classical rate expression: 

k. CL 
-o+-c 

. -1 -1/2 oo -BEl -1 oo ro 

= QBC (2TIVkT) f dEl e (2~) fdr /dp 
0 -<X) -<X) 

-Bh(p,r) 
e X(p,r,E

1
) 

where h(p,r) is the vibrational Hamiltonian of BC, QBC is the 

classical vibrational partition function, 

-1 
QBC = (2nh) /dr /dp 

-co -00 

ro oo 
-Bh(p,r) 

e 

and X(p,r,E
1

) is 1 if the trajectory beginning with initial 

conditions 

Rl = Ro 

pl = (2~£1)1/2 

(3.4) 

(3.5) 

pl = p (3.6) 

is reactive, and is zero otherwise. (A non-reactive trajectory 

crosses surface s
1 

twice, once on the \-Jay in and once on the way 

out, and thus gives a net flux of zero.) The integrals over p,r, 

1 
and Ei in Eq. (3.4) are usually evaluated by Monte Carlo methods .. 

17 
It has been emphasized by Keck, however, that this choice of 

the dividing surface can be quite inefficient because many of the 
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trajectories beginning in the asymptotic region may be non-reactive. 

18 
Since Eq. (3.1) is invariant to where the surface is chosen, one 

does better to choose it so that most of the trajectories beginning 

on it are reactive, i.e., so that the function xCe,g> is 1 for 

most values of (f,g). For a symmetric system, such as depicted 

in Figure 1, the obvious choice for this "best" surface is s
3 

as defined by Eq. (2.34); with this choice for the dividing 

surface Eq. (3.1) becomes 

lL CL 
-o+a 

where X is 1 only if the trajectory with initial conditions 

is reactive in the direction of arrangement a to arrangement b. 

17 

(3. 7) 

(3.8) 

By following Keck's arguments it is possible to re-write Eq. (3.7) 

in an equivalent form which involves an integral over only positive 

values of p : 
s· 

00 00 00 

k_ CL = Q-l h-2 /d /d /dp 
-o+a a u Pu s 

p 
(....!.) 
m 

s 

e 

..()() ..,go 0 

-BH(p ,p ,u,O) 
u s 1 + (-l)N 

X 
2 (N + 1) 

(3.9) 
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where N is the number of additional times that the trajectory 

which begins with the initial conditions of Eq. (3.8) crosses 

the surface s = 0 as time is run forward and backward. 

For purposes of calculating a classical rate constant it 

is cleat th~ t Ked:' s choice of the dividing surf ace is superior, 

for (1) most of the trajectories beginning on it are reactive, 

and (2) it is not necessary to carry the numerical integration 

to long times in the past or future to see if the trajectory .is 

indeed going to be a reactive one. If information concerning 

the distribution of initial or final internal states is desired, 

it is of course necessary to follow the trajectory all the way 

into the initial or final asymptotic region; here the trajectory 

can be assigned to quantumriumber "boxes" in the usual manner. 

However a word of caution is necessary: if zero point energy 

effects are important this procedure of "boxing" the initial 

and final quantum nuinbers does not seem to work as well in 

. 1 
practice as the quasi-classical procedure of beginning the tra-

jectory in the initial asymptotic region with a quantum energy 

level and "boxing" only the final.quantum numbers. Appendix II 

discusses this point in more detail. 
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IV. THE TRANSITION STATE APPROXIMATION 

All discussion of the quanttim and classical rate expressions 

so far has been dynamically exact, the only assumption being that 

the internal states of the separated reactants and their relative 

translational energy are in Boltzmann equilibrium. (There are, 

of course, non-equilibrium effects--i.e., perburbations of the 

Boltzmann distribution--that result if t~e rate of reaction from 

some internal states is much faster than inelastic rates which 

maintain Boltzmann equilibrium of the reactants. These non-

19 
equilibrium effects have been studied in great detail and in 

most cases are quite small, certainly so in the region of the 

reaction threshold.) Now we wish to inject the transition state 

approximation. 

a. Classical Case 

Considering the classical case first and following Pechukas 

10 
and McLafferty, the transition state approximation to F.q. (3.7) 

corresponds to the replacement 

x<P ,p ,~,0) + h(p ) 
u s s 

(4 .1) 

h be,ing the step function; i.e~, transition state theory assumes 

that any trajectory beginning on the surface s = 0. with positive 

momentum p is reactive, that it does not turn around and become 
s 

a non-reactive one. In terms of Fq. (3.9), the transition state 

approximation is that N = 0, again that there are no trajectori.es 

that re-cross the dividing surface. The important simplifying 

feature of transition state theory is, of course, that this 
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approximation [Eq. (4.1)] eliminates all reference to dynamics. 

For the general classical rate expression, Eq. (3.1) .... (3.3), 

involving the general dividing surface f(q) == 0, .the transition 

state approximation is 

h[-P(p,q;-oo)] p] 

and the general transition state rate expression is 

k__ CL TST 
-o+-a Q-1 h-2 fd fd -SH(p,q) = a p g e -- -

o[f(q)] (jf(g) • (p/m) h[~. p] 
8q - 8q -

For the case of the surface s3' Eq. (2.34), this becomes 

00 00 00 
Ps. -SH(p ,p ,u,O) 

~+-a 
CL TST Q-1 -2 

fdp !du !dp 
u - s 

= h (-) e 
a -u 0 s m 

-oo -00 s 

and since 

H(p ,P ,u,O) 
u-s 

2 
pu 

+- + V(u, 0) 
2m 

u 

(4.2) 

(4.3) 

(4.l;) 

Eq. (4.4) becomes the usual classical transition state expression: 

k__ CL TST 
-1>+-a 

where 0 is the partition function for the symmetric stretch 
·u 

vihration 

00 00 

Qu = b~l !dpu !du exp{-S 
-00 -oo 

2 
pu 
[- + V(u,O)]} 

2m 
u 

(4.5) 

(4.6) 

Although the dynamically exact rate expressions of Sections 

II and III are invariant to the choice of dividing surface, it is 
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clear that the transition state rate expression depends on 

where the surface is taken. To make Eq. (4.2) as accurate 

as possible one wishes to choose the surface to be the one 

. 
for which most trajectories beginning on it are reactive. 

For a symmetric system such as H + H
2

, as depicted in Figure 

1, it is.clear that surface s
3 

is the best choice. At low 

collision energies one certainly expects most trajectories 

beginning on this surface to be reactive. 
10 

Pechukas and McLafferty 

have given a beautiful analysis of the situation, obtaining a 

simple geometrical criterion for deciding.under what conditions 

transition state theory will be exact, i.e., under what condi-

tions all trajectories beginning on the dividing surface s = 0 

will be reactive. 

In any event, the transition state rate expression is an 

tipper bound to the dynamically exact rate; this l.s most easily 

17 
seen from Keck's version of the rate expression, Eq. (3.9), 

where the transition approximation is N :: 0. Since 

1 + (.:..1)~ 
2 (N + 1) $ 1 ( 4. 7) 

for N = 0, 1, 2, •• , the bounding relation follows. 

Keck
1

fhus emphasizes that the dividing surface should be chosen 

to minimize the transition state rate constant. If the function 

f(CJ), which defines the dividing surface, is chosen in the form 

f(~) = y - Y(x) = 0 

where x and y are the scaled coordinates in Figure 1, then the 

function Y(x) which minimizes the rate can be determined
2
gy the 

condition 

(4.8) 
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0 k_ CL TST = O 
-b+-a 

Substituting Eq. (4.8) into Eq. (4.3) and carrying out this 

variation leads to the following Euler equation.· 

av(x,Y(x}) 
ay 

_ Y'(x) av(x,Y(x)) 
ax 

Y'' (x) 
+ ~T 1 + Y'{x)2 = 0 

for the "best" function Y(x), i.e., the "best" dividing 

surface. One interesting observation which follows from 

Eq. (4.10) is that for high temperature, T ~ oo, the best 

dividing surface (or line for this collinear system) is 

straight, i.e., Y''(x) = 0. 

b. Quantum Mechanical Case 

The quantum mechanical transition state approximation 

is now defined as an approximation to the dynamically exact 

quantum rate expression, Eq. (2.35), which is analogous to 

the classical approximation in Eq. (4.1). In terms of the 

dividing surface s
3

, defined by Eq. (2.34), therefore, the 

transition state approximation results from the replacement 

h(-P(-oo)] + h(p ) 
s 

in Eq. (2.35), where p is 'the momentum op·erator corresponding 
s 

to coordinates (see Figure 1). The projection operator h(p ) 
s 

projects dnto that part of Hilbert space which has positive 

momentum in the s-direction, and the assumption of transition 

state theory .is that positive momentum at the dividing surface 

implies negative translational momentum in the i'nfinite past. 

(4.9) 

(4.10) 

(4.11) 
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The physical meanii'.g of the approximation is the same as in 

the classical case, and one thus expects that if the quaP..tum 

dynamics is "direct"--corresponding to the classical situation 

of no re-crossing trajectories--then the' transition state 

approximation will be a good one. 

The quantum transition state expression for the rate is 

thus given from Eqs. (2.35) and (4.11) as 

k_ QM TST 
-o+-a 

= Q-1 tr[e -BH o(s) Ps h(p ) ] 
a m s 

(4.12) 
s 

There is one complication which arises, however:.·. The approximate 

projection. operator h(p ), unlike the dynamically exact one, does 
s 

not commute with the total Hamiltonian H; with the dynamically 

exact projector P one thus has 

-SH -BH 
tr[e o(s)ps P] = tr[e p o(s)p_SJ 

but for the approximate projector h(p ) 
s 

• 

/ tr[e-BH h(p ) o(s)p ] 
"' s s 

The ordering of the operators that one should choose in Eq. 

(4.12), therefore, is not obvious. 

The most general prescription available for constructing 

the physically meaningful ordering of a product of several 

,· 21 
hermitian operators is given by the Weyl correspondence rule 

(see Appendix III). If the trace in Eq. (4.12) is evaluated 

(4.13) 

(4.14) 

in a coordinate representation, then one has (taking the coordinates 

to be (s,u) in Figure 1) 
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00 00 00 00 

= Q -l fds fdu !ds' fdu' 
a 

-00 -00 -oo -oo 

<s'u' IRJsu> 

<sule-BH!s'u'> 

where R is the Weyl operator corresponding to cS(s) (p /m ) 
s s 

h(ps); from Appendix III one finds the coordinate matrix R 

to be 

<s'u' IRisu> 

x exp [~ ps (s'-s)] 

-1 

(s'-s) 2 

Substitution of Eq. (4.10) into (4.15) and an integration by 

parts gives 

00 00 

~~-a QH TST fdu fds (- ..!.) d 
S dS I 

-SHI <su e -s,u> 

I -BHI Since the matrix element <su e -s,u> is an even function of 

(4.15) 

(4.16) 

.(4.i7) 

s, its derivative is odd, so the factor (-1/s) causes no difficulty 

in the integrand of Eq~ (4.17). 

Eq. (4.17) is the desire~ quantum mechanical transition 

22 . 
state rate expression, and one can easily verify that it repro-

"' duces traditional transition state theory~in the separable limit. 

Suppose, therefore, that the Hamiltonian H is separable in s and 

u variables: 
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H = h + h 
u s 

where hu and hs are one-dimensional Hamiltonians describing the 

u-motion (symmetric stretch vibration) and s-motion (translation 

along the reaction coordinate). It ·is easy to see that Eq. (4.17) 

becomes 

where 

and 

k QM TST 
-o+a 

00 

I 
-Bh 

Qu = !du <u e ulu> 
-co 

= tr (e-Bhu) 

r 

,. ( 4 .18) 

(4.19) 

Q is the quantum mechanical partition function for the symmetric 
u 

stretch vibration, and r is the tunneling correction for motion 

along the reaction coordinate. 

, Hamiltonian, 

then 

2 
h

8 
= p /2m 

s s 

-Bh 
<sle si-s> 

If h is the free particle 
s 

and pne finds that Eq. (4.19) gives 

r = 1 

(4.20) 

(4. 21) 

the expected result. If h is chosen to have a parabolic potential 
s 

barrier about the saddle point, 
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. _ Sh [ m s w ] 1 I 2 . [ 
<sle Sj-s> = 2~ sin(~wS) exp -

and in this case Eq. (4.19) gives 

1 1· 
r = 2 -iiwS I sinCz- -lfwS) 

m w 
s 
h 

(4.22), 

(4.24) 

the Wigner tunneling correctiod which is known to be correct for 

the parabolic barrier. 

This separable approximation, however, is the precisely what 

we do .!!£!_ wish to introduce, for--as discussed in the Introduction--

the system is quite non-separable over the regions of configuration 

space which are important in the low energy region near threshold 

where tunneling is significant. To evaluate Eq. (4.17) in general 

it may be most convenient to introduce a discrete set of square 

integrable basis functions. With regard to the u-dependence of 

the kernel 

I -SHI <su e -s,u> (4.25) 

it is clear that a basis set description is adequate, for the 

u-motion is bound state-like. As a function of .s it is also 

localized because it is off-diagonal with regard to the s coordinate; 

the above separable approximations, Eqs. (4.21) and (4.23), show it 

to be gaussian about s = O, and one expects this to be qualitatively 

the same for the no.n-separable case. If H> i (s, u)}, i = 1, .... , N 

25 
is a discrete basis set and {w.(s,u)} the particular linear 

l. 
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combinations of the {<Pi} which diagonalize the finite matrix 

H
1
.,j:: <<P.IHI<P.>, then the basis set evaluation of ·Eq. (4.17) 

1. J . 

gives 

-BE 
~ QM'TST = Q-1 t e i R. 
-o+a a 1 1 

where {E.l are the eigenvalues of the matrix H ..• and 
1 1,J 

or 

where the {1/Ji} have (without restriction) been chosen to be 

real. 

(4.26) 

(4.27) 
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V. A NEW KIND OF SEMICLASSICAL MODEL 

Althou,gh the transition state approximation is·expected 

to be good at low energy for cases where there is a well-defined 

activation barrier, it is clear that it will become poor at 

sufficiently high energy; the energy at which it begins to 

fail is presumably lower the lower the activation barrier. 

In the language of classical mechanics this failUre is due to 

trajectories which cross the dividing surface more than once, 

and quantum mechanically it is manifest in streamlines of flux
11 

which have whirlpool effects, etc., at high energy. It would 

clearly be desirable to have one model which incorporates the 

simplifying features of quantum mechanical transition state 

theory at low energies where quantum effects are expected to 

be important, and which also takes account of these·. dynamical 

effects at the higher energies where transition state theory 

fails. This section shows how such an expression .can be 

constructed. 

If the trace in the dynamically exact quantum mechanical 

rare expression, Eq. (2.35), .is carried out in the (s,u) coordi-

nate representation, then it reads 

co co co co 

~+a= Q~ 1 
!ds !du !ds' !du' <sule-SHis'u'> 
-co -oo -oo --oo 

<s'u' j 0 (s)C:) h [-P(~)] I su> (5.1) 

The present semiclassical model is obtained by using the Weyl 

rul2\see .·Appendix III) to approximate the matrix elements of 
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the operator cS(s) p h [-P(-oo)]; from Appendix III one sees that this 
8 

gives . f!_ s) 
<s'u' jo(s\ms h[-P(-oo)] lsu> 

00 co 

(::) !dp !dp 
u ' s 

-oo -co 

· u'+u s'+s 
h[-P(pu,ps,-2-, -2-;-oo)], (5.2) 

where P(p ,p ,u,s;-co) is the t ~ -co limit of the translational 
u s 

momentum of arrangement a that results from a traject,ory beginn

ing at t = 0 with the indicated initial conditions. With this 

approximation Eq. (5.1) can be written as 

~ SC = Q -1 j~p J~u !~p (Ps) W(p ,p ,u,O) 
-~+a a u s m u s 

-co -co -oo s 

x h[-P(p ,p ,u,O;-co)] 
u 8 

where W(p ,p ,u,s) is the Wigner distribution function
26 

u s 

00 co 

W(p ,p ,u,8) = (2~)- 2 
!du' !ds' exp[~ (p s' + p u')] 

u s ~~ s u 
-co -00 

s' u' le-SHI s s' u' 
< s - 2, u - 2 + T, u + z-> 

here with s = 0. 

(5. 3) 

J (5. 4) 

In the limit that transition state theory is a good approximation, 

i.e., at low temperatures, one has 

h[-P(p ,p ,u,O;-oo)] ~ h(p ) 
u s s '' (5.5) 

and it is not hard to show that Eq. (5. 3) then becomes iden.tical to 

quantum transition state theory, Eq. (4.17). In the high 
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temperature limit quantum effects become neglible.so that the 

Wigner distribution function of ~ (5.4) takes on its classical 

limit 

-2 
W(p ,p ,u,O) ~ (2~) 

u s 
e 

-(3H(p ,p ,u, 0) 
' u s 

(5.6) 

and one sees that Eq. (5.3) becomes identical to the dynamically 

exact classical rate, Eq. (3.7), in this case. Eq. (5.3) thus 

has the desired property of combining the quantum transition 

state rate expression and the dynamically exact classical rate 

expression into one unified model. 

21 
If the Weyl correspondence rule always produced the exactly 

correct quantum mechanical operator, then Eq. (5.3) would be 

the dynamical exact quantum mechanical rate constant. This is 

not true (see Appendix III), but the arguments in the above 

paragraph suggest that it may indeed provide an excellent ap-

proximation. Another insight into why this should be so is 

the following: The dynamically exact rate expressions of both 

' classical and quantum mechanics involve an infinite. time limit. 

In the classical case, however, it is clear that a trajectory 

need not be run to particularly long times in order to see if 

it will be reactive or not. Analogously, one expects that a 

short time approximation to the projection operator h[-P(t)] is 

sufficient to determine the reactive flux if the dividing surface 

is chosen, as it'is, in the optimum location. As is shown in 

Appendix III, the Weyl rule does indeed describe the quantum 

propagator correctly for short times, thus implying that Eq. (5.2) 
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is a good approximation for purposes of determining the net 

rate constant. 

With regard to the evaluation of Eqs. (5.3) and (5.4), 

a basis set evaluation is also possible here. If 

~.(s,u) =I u
1 

¢n(u) y (s) 
1 n,m ,_mn "m 

is the set of linear combinations of basis functions {¢n~} 

which diagonalize the Hamiltonian matrix, then the rate 

constant is given by Eq. (4.26) but where Ri is now .given by 

Ri = I I I u u 
m,n,m ,n i,mn i,m 1 n 1 

00 00 00 ·(p ) 
!dp !du !dp .....2.. 

u s m , 
-co -oo -oo S 

(5. 7) 

X h[-P(p ,p ,u,O;-oo)] 
u s K I (p 0) 

m,m s, ' ( 5. 8) 

·where. 
00 

3n n 1 (pu u) 
' ' 

(2TI'fi)-l !du 1 

-oo 

00 

( 
-1 

Km ml ps s) = (2~) 
' , 

!ds 1 

-00 

It is also interesting -to note now -different this semi-

3 
classical model is from "classical S-matrix" theory where classtcal 

trajectories are used to construct amplitudes for transitions 

between specific initial and final quantum states. The semiclassical 

model described above also uses exact classical mechanics within 

a quantum mechanical framework, but the rate constant itself is 

constructed without going through the intermediate use of amplitudes. 

It is clear' that the pres.ent semiclassical model will be much 

easier to implement than classical S-matrix theory, primarily 

because much more limited information is being s(lught, namely 
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the net reaction rate constant rather than complete information 

about initial and final state distributions. 

Finally, it is worthwhile to note that the semiclassical 

rate expression, Eq. (5.3), and its transition state approximation, 

Eq. (4.17), can both be obtained directly from the corresponding 

classical rate expressions, Eqs. (3.1) and (4.4) respectively, 

simply by replacing the classical distribution function by the 

W. 26 d" "b . f . 1gner 1str1 ut1on unct1on: 

h
-:-N -BH(p,q) W( ) 

e - - ~ E•S 

where W(£,g) is defined by Eq. (5.4). Use of the Weyl flux 

operator in quantum mechanical rate expressions is thus equivalent 

to use of the Wigner distribution function in classical expressions, 

and any shortcomings of one approach are present in the other. 

/ 

... 
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VI. SUMMARY AND CONCLUDING REMARKS 

In obtaining a quantum mechanical transition state theory 

which is free of any additional approximations it was first use-, 

ful to write the dynamically exact quantum mechanical rate in 

the form of a Boltzmann average of a flux operator. This is 

given by Eq. (2.33) and is quite an interesting expression 

itself, being a verbatim transcription of the dynamically 

exact classical rate expression, Eq. (3.1). 

The quantum rate expression, Eq. (2.33), involves the 

total Hamiltonian H in two ways, one in the Boltzmann operator 

exp(-SH), and the other through the projection operator 

h [ -P ( - 00 ) ] = .Hm 
t-+-oo 

eiHt/-l'i h(-P) -iHt/.fi 
e (6.1) 

P being the translation momentum operator of arrangement a. It 

is the infinite time limit of this projection operator that can 

only .be handled completely correctly by a quantum scattering · 

calculation. 

The transition state approximation, in either the quantum 

or classical framework, circumvents the need to know the full 

scattering dynamics by invoking the approximation h[-P(-oo)] ~ h(p ) 
s 

quantum mechanically, or h[-P(p,q;-oo)] ~ h(p ) classically; the 
- - s 

full Hamiltonian is retained with no approximation in the Boltzmann 

opera~or. Physically, this approximation assumes that if the 

momentum in the s-direction at.the dividing surfaces= 0 is 

positive, then the system must have come from arrangement a in 

the infinite past. This will be exact classically at sufficiently 
;.-

low energy. 
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The quantum mechanical transition state rate expression, 

Eq. (4.17), is seen to reduce to the standard transition state 

ex~ression if separability of the Hamiltonian is assumed; the 

indications are, however, that this is not a good assumption in 

the threshold region where tunneling is important. For a collinear 

A + BC ~ AB + C reaction the evaluation of the quantum transition 

state expression via Eq. (4.26)- (4.27), for example, should be 

relatively easy, and may even be quite tractible'for such a system, 

and larger ones, in full three dimensional space. 

To overcome the failure of the transition state approximation 

at higher energies Section V shows how classical trajectory infor-

mation can be combined with the quantum transition state model by 

use of the Weyl correspondence ~ule to approximate the projector 

in Eq. (6.1). Although the projector is defined as a limit t~- 00 , 
. . 

one expects that it is actually necessary to describe the time 

evolution only for reasonably short times; this is by analogy 

with the classical case where one knows that a trajectory need be 

followed over only a short time internal to determine from which 

arrangement it originates. Since the Weyl approximation is correct 

for short times, the implication is that it should provide a good 

approximation to the projector. ... 

In any event, for temperatures high enough that quantum effects 

are neglible the semiclassical model of Section V becomes the 

dynamically exact classical rate expression and therefore correct. 

The model is thus completely correct of temperatures sufficiently 

high that quantum effects areneglible and at temperatures sufficiP.ntly 



-35-

low for transition state theory (our quantum mechanical version 

of it) to be valid; if these two temperature regions overlap or 

if the Weyl approximation to the projector operator is good, then 

this semiclassica~ model will provide a complete description of 

the reaction rate constant for all temperatures. 

To answer these questions as to absolute accuracy, ease of 

application, etc., it is clear that numerical applications are 

required. Some of these are now in progress. 
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APPENDIX I. STEPS LEADING TO EQ. (2.28) 

Here we show how Eq. (2.28) follows from the formal theory 

f 
. 27,28 

o scatter1ng. .. Since the manipulations are standard, they 

are given without comment. 

' -1 
= iE(E - H + iE) . ~p n 

1 a 

where V = H- H0 • The green's function (E - H + iE)-l can be 

expressed as the "half Fourier transform" of the prbpagator, 

so that this becomes 

'" 
(iE) (~)-l f dt 

0 

00 

= ( E /.fl) f dt e 
-Etf.t'i 

0 

00 

f dx 
-x -iHx/E 

e e 
0 

00 

-Et.tfl 
e 

e 
-iHt/-li 

e 
iH0 x/E 

eiH0 t/fi ~ . 
P

1
n . 
.a 

ci> 
Plna 

f dx 
-x [~im e-iHt/~ eiHot/~] 

~ - e 
Plna 0 t-+= 

=~im 

t+-oo 

... 

.. 
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APPENDIX IL AVERAGED CLASSICAL TRANSITION PROBABILITY 

Consider for simplicity the collinear A + BC collision 

. 29 
system; the following·discussion can easily be extended to 

the three-dimensional case. The n
1 

-+ n
2 

transition probability, 

either reactive or non-reactive, is given classically by
30 

[ 

an2(ql,nl) J -1 
P = 2n I I 
n2,nl aql 

' . (II.l) 

where n
2

(q
1

,n
1

) is the final vibrational quantum number that 

results from the trajectory with initial conditions (n
1

,q
1
), 

n and q being the action and angle variables for the vibrational 

degree of freedom; q
1 

in Eq. (II.l) is determined by the condition
30 

(II. 2) 

- where n
1 

and n
2 

are integers. 

Although Eq. (II.l) is the formally exact classical transition 

probability--and thus, for example, satisfies microscopic reversibility, 

P = P --it is awkward to apply directly because of the 
n2,nl nl,n2 

necessity of solving Eq. (II.2), a non-linear boundary v:alue 

problem. 
1 

The now standard "quasi-classical" procedure corresponds 
. . 

to averaging Eq. (II.l) over a quantum number width about the final 

quantum number: 

1 
n2 + 2 

p - f dn2 
p .(II. 3) 

n2,nl 1 n2,nl 
n --

2 2 

1 
-1 n2 + 2 an2 

(2n)-l = J dn2 laq-1 
1 1 

n2 2 
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or 

(II. 4) 

(II.S) 

and is zero otherwise. The integral over q
1 

in Eq. (11.4) is 

most efficiently carried out by Monte Carlo, or other sampling 

methods, particularly so for systems with more internal degrees 

of freedom. 

Although the quasi-classical transition probability, Eq. 

(!!.4), is simpler to evaluate, it has the undesirable feature 

of not being microscopically reversible, i.e., 

A micr.oscopically reversible result can be regained by the more 

democratic procedure of averaging over the initial, as well as 

final, quantum number: 

n2- 2 

1 
nl + 2 

= !dn1 

1 
2 

(1!.6) 

where x<n
1

,q
1

) is the same as above. (The average over n
1 

is done 

holding the total energy constant.) This "double-averaged" transi-

17 
tion probability is the quantity which is obtained in a Keck-type 
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Monte Carlo calculation, i.e., by beginning the trajectory in 

the interaction region, integrating forward and backward in 

time, and assigning initial and final quantum numbers to "quantum 

number boxes". 

Although this double.· averaging procedure seems more internally 

consistent (and is no more difficult to apply) than the singly-

averaged, quasi-classical approach, it is interesting that it 

does !!£!_ necessarily give better agreement with quantum mechanical 

calculations. for the collinear H + H
2 

reaction, for example, 

Figure 2 shows the singly-averaged [Eq. (II.4)] and doubly-

averaged [Eq. (II.6)] results, compared to the numerically 

31 
exact quantum mechanical result; the singly averaged result 

is seen to mimic the quantum mechanical behavior more closely. 

This is probably due to the fact that at these low energies 

this system is highly vibrationally adiabatic. The vibrational 

zero point energy with which the quasi-classical trajectory 

begins is thus not all available to motion along the reaction 

coordinate, and this corresponds well to the quantum mechanical 

situation. 
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APPENDIX III. THE WEYL CORRESPONDENCE RULE 

21 
The Weyl correspondence rule gives a prescription for 

constructing the hermitian operator F that corresponds to 
op . 

the classical function of coordinates and momenta Yct<r·~). 

For the general case of N degrees of freedom the rule is 

F 
op 

exp[-i(p'•q + p•q')/ii] exp{i(p'•q + q'•p )/fi] , (III.l) _ _ _ _ _ _op _ _op 

wher~ (q,p) are cartesian coordinates and momenta and ~op and 

p are the coordinate and momentum operators. Using- the fact 
op 

that 

exp{i(p'•q + q'•p )/~] = exp(i p'•q /h) ·exp(i q'•p /~) _ _ op - _ op _ _ op _ _ op 

. 1 
x exp(- i p'•q'fn) 

2 - -
(III. 2) 

one can readily show that the coordinate matrix representation 

of F is 
op 

. < IF I > 
~2 op ~1 

(III. 3) 

One can verify that Eq. (III.l),or (III.3),gives the correct 

quantum mechanical result if FCL is a function only of coordinates 

or only of momenta (or a sum of such functions); for example, if 

FCL is a function only of coordinates, FCL(~), then Eq. (III.l) 

gives the obvious result 

.. 
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F = FCL (q ) 
op -op 

For the case that FCL is a non-additive function of coordinates 

and momenta the operator FC 1 C~op• ~op) is not well-defined due 

to lack of connnutivHy of the operators ~op and ~op; Eq. (III.l) 

thus defines a unique ordering of these non-connnuting operators. 

If 

for example, then Eq. (III.l) gives the synnnetrized product 

F 
op 

1 . ' =- (p •q + q ~p ) 
2 -op -op -op -op 

the intuitively reasonable choice. More generally, if FCL is 

a product of a function of coordinates and a function of 

momenta, 

Eq. (III. 3) gives 

q + q 

<q21F !ql> = f(q2 - ql) g(-2 -1) 
N op - - - 2 

where f is the Fourier transform of f. 

(1!1.4) 

(III. 5) 

Although the Weyl rule is the most general prescription 

available for constructing the appropriate quantum mechanical 

operator from an arbitrary classical function of coordinates 

and momenta--or~ equivalently, for uniquely defining the 

appropriate ordering of coordinate and momentum operators in 

FC
1

(p , q )--it unfortunately does not always produce the 
- op - op 

correct quantum mechanical result. For the propagator, 
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-iHt/fi 

for example, the corresponding classical function is clearly 

.. 2 

= exp (-i 1iJ t/~)exp[-iV(2)tffi] 

so that Eq. (III. 5) gives 

-N/2 r.!l!__ 
= (2Tii~t/~) expl2fit 

- i V(g2 : gl) t/~J 

which is recognized 3 ~s a short time approximation to the 

coordinate representation of the propagator. The implied 

warning is that one should invoke the Weyl correspondence 

rule with caution~ In Section IV it was used to define a 

unique ordering of the non-commuting operators o(s)p and 
s 

h(ps); since no other basis for choosing the ordering is 

apparent, it seems to be the most justifiable procedure. 
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FIGURE CAPTIONS 

1. Sketch of a collinear potential energy surface for. a symmetric 

A + BC -+ AB + C reaction (i.e., A ::: C). x and y are mass 

weighted, or "skewed" coordinates that diagonalize the kinetic 

energy: x = R(JJ/M)
1

/
2

, y = r(m/M)
112

, where Rand rare the 

translational and vibrational coordinates, respectively; and 

JJ and m the corresponding reduced masses fm = BC/(B+C), JJ = 

A(B+C)/(A+B+C)]. M is any arbitrary mass, and the classical 

1 ·2 ·2 
kinetic energy is 2 M(x + y ). sand u are the linear com-

binations of x and y which diagonalize the potential energy 

at the saddle point. sl' s2, and s3 indicate the "surfaces" 

which are referred to in the text. 

2. Reaction probability for the collinear H + H
2 

-+ H
2 

+ H reaction 

on the Porter-Karplus potential surface fR .. N. Porter and N. 

Karplus, ~·Chern. Phys. ~~· 1105 (1~)] as a function of 

relative collision energy. The dotted and dashed lines are 

the singly and doubly averaged classical trajectory results, 

Eqs. (II.4) and (II.6), respectively, and the solid line the 

quantum mechanical values of ref. 31. 

., 
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