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Quantum mechanical transition state theory and tunneling corrections

Ward H. Thompson
Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215

~Received 7 October 1998; accepted 1 December 1998!

An efficient implementation of the quantum mechanical transition state theory recently proposed by

Hansen and Andersen @J. Chem. Phys. 101, 6032 ~1994!; J. Phys. Chem. 100, 1137 ~1996!# is

presented. Their method approximates the flux–flux autocorrelation function by using short-time

information to fit an assumed functional form ~with physically correct properties!. The approach

described here exploits the low rank of the half-Boltzmannized flux operator, thereby facilitating

application to reactions involving many degrees of freedom. In addition, we show how the quantum

transition state theory can be used to obtain tunneling corrections within the framework of more

traditional transition state theory approaches, i.e., those making an assumption of separability.

Directions for possible improvements of the theory are discussed. © 1999 American Institute of

Physics. @S0021-9606~99!02009-7#

I. INTRODUCTION

Classical transition state theory1 ~TST! today remains as

one of the most powerful techniques for computing thermal

rate constants for chemical reactions, particularly for larger

systems. Its usefulness is due to a combination of factors: It

is easy to implement. There is a clear physical picture of the

approximation invoked, i.e., the assumption that no trajecto-

ries recross the transition state.2 It provides a rigorous upper

bound to the exact classical rate. And, finally, it yields accu-

rate rate constants for systems obeying classical mechanics

and exhibiting direct dynamics.

However, often one is interested in chemical reactions

where classical mechanics is not a valid description, e.g.,

light atom (H) transfer reactions which can proceed by tun-

neling. Thus, a quantum mechanical transition state theory

with properties analogous to those listed above would be of

immense value. Despite the efforts of many workers,3–9 no

theory satisfying all of these requirements has been devel-

oped. One problem is that no meaningful upper bound to the

exact quantum mechanical rate has been found. A larger dif-

ficulty is that of translating the fundamental assumption of

classical transition state theory, ‘‘no recrossing trajectories,’’

into a quantum mechanical framework. Because of this am-

biguity many different quantum mechanical transition state

theories have been proposed. While the ultimate goal of a

unique quantum mechanical analogue of classical transition

state theory has not been achieved, there are several quantum

mechanical transition state theories which provide accurate

methods for calculating thermal rate constants based on an

assumption of ‘‘direct dynamics’’ ~yielding a significant re-

duction in the computational effort!.

Recently, Hansen and Andersen proposed a quantum

mechanical transition state theory8,9 based on the flux–flux

autocorrelation function which is capable of accurately rep-

resenting tunneling ~including nonseparability!. The flux–

flux autocorrelation function provides a direct route ~i.e.,

with no reference to state-selected or energy-dependent

quantities! to the exact thermal rate constant for a chemical

reaction,10,11

k~T !5

1

Qr~T !
E

0

`

C f f~ t !dt , ~1.1!

where Qr(T) is the reactant partition function per unit vol-

ume and

C f f~ t !5tr@e2bĤ/2F̂e2bĤ/2e iĤt/\F̂e2iĤt/\# ~1.2!

is the flux–flux autocorrelation function. Here Ĥ is the

Hamiltonian, F̂ is the flux operator defined for a dividing

surface separating reactants and products, and b51/kbT

with kb as Boltzmann’s constant. The transition state theory

of Hansen and Andersen8,9 uses short time information about

C f f(t) to obtain an approximation to the rate constant.

Namely, the values of the correlation function and its second

derivative at zero time are used to determine parameters in

an assumed functional form ~possessing the desired proper-

ties!. In this paper we show how this TST can be efficiently

implemented to make it applicable to large chemical sys-

tems. We also outline how it can be used to obtain a tunnel-

ing correction for more traditional ~i.e., separable! TSTs. In

addition, it can be utilized to improve the separability ap-

proximation in such cases by explicitly including several

strongly coupled degrees of freedom.

As has been shown previously, the Boltzmannized flux

operator,

F̂~b !5e2bĤ/2F̂e2bĤ/2, ~1.3!

is of low rank ~i.e., it has only a small number of nonzero

eigenvalues!.12 This is true because the flux operator in a

single dimension has only two nonzero eigenvalues ~in a

finite basis representation!, equal in magnitude and opposite

in sign ~corresponding to forward and backward flux!.13–15 In

a multidimensional case the low rank is preserved by the

Boltzmann factor which limits the contribution from the de-

grees of freedom parallel to the dividing surface to states of

lower energy. ~Naturally the number of these states increases
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with temperature.! Thus, if the dividing surface is placed at

the transition state, the number of nonzero eigenvalues of

F̂(b) is approximately twice the number of thermally acces-

sible states of the activated complex at temperature T . This

fact has previously been exploited by Miller and

co-workers12,16–18 and Manthe and co-workers19,20 in the cal-

culation of exact thermal rate constants for gas-phase chemi-

cal reactions ~including recombination processes18,21!. Sig-

nificant progress in this area has also been made by Light

and co-workers.13,14,22,23

Section II describes the implementation of the quantum

TST of Hansen and Andersen, including how the low rank of

the half-Boltzmannized flux operator can be used to advan-

tage. An illustrative application to the D1H2 reaction is dis-

cussed in Sec. III. The separable transition state theory ap-

proach is outlined in Sec. IV and the tunneling correction is

derived in terms of C f f(t). Section V describes the applica-

tion of the theory to a one-dimensional double well potential

bilinearly coupled to a harmonic bath. The calculated rate

constants are presented in Sec. V B and comparison is made

to exact results.24 Finally, Sec. VI presents concluding re-

marks and some directions for future improvements.

II. TRANSITION STATE THEORY APPROXIMATION

The transition state theory of Hansen and Andersen uses

the values of C f f(0) and C̈ f f(0) ~where each dot implies a

time derivative! to determine the parameters in an assumed

functional form for C f f(t). Specifically, they suggest two

possibilities.8,9 The first is the flux-flux autocorrelation func-

tion for the parabolic barrier11

C f f
pb~ t !5

kT

h
~\bvb/2!

3

vb sin~b\vb/2!cosh~vbt !

@sin2~b\vb/2!1sinh2~vbt !#3/2
e2bEb, ~2.1!

where the two adjustable parameters are vb , the barrier fre-

quency, and Eb , the barrier height. The second is a form

based on the Padé approximant to the function

d ln@Cf f(z
1/2)#/dz giving the functional form for the correla-

tion function as9,25

C f f
PA~ t !5

aebt2

@ t2
1b2\2/4#3/2

, ~2.2!

with

a5~b\/2!3C f f~0 ! ~2.3a!

and

b5

6

~b\ !2
1

C̈ f f~0 !

2C f f~0 !
~2.3b!

as the adjustable parameters. Note that Eq. ~2.2! has the cor-

rect properties as a function of complex time9 ~i.e., it is ana-

lytic in the same regions as the true C f f(t) and has singu-

larities in the proper places!. Both correlation function forms

have the correct short time behavior.26

In Secs. III and V we implement the transition state

theory of Hansen and Andersen using the form for the cor-

relation function given in Eq. ~2.2!. We choose this form

rather than the parabolic barrier correlation function of Eq.

~2.1! because it is more robust, i.e., it is not always possible

to obtain the parameters vb and Eb .9 Values for a and b in

Eq. ~2.2! can always be found but may not always be mean-

ingful ~see Sec. V!, however this is reasonably rare.

The expressions in Eqs. ~2.1! and ~2.2! for the correla-

tion function are positive for all times and therefore can be

considered to represent direct dynamics in the spirit of tran-

sition state theory. @Note that, Eq. ~1.1!, negative values for

the correlation function diminish the rate constant.# At the

same time, this naturally limits the accuracy of the resulting

rate as no negative lobe in the correlation function ~due to

‘‘recrossing’’ of the flux dividing surface! can be repro-

duced. This implies the usefulness of these methods will be

limited to reactions where there is not significant recrossing

of the transition state ~as would be expected!. Using only the

zeroth and second derivatives of C f f(t) at t50, one has no

choice but to choose a monotonically decaying function.

That is, these quantities give information about the initial

value of the correlation function and its initial rate of decay.

More derivatives are necessary to obtain meaningful infor-

mation about recrossing ~i.e., to describe a negative lobe in

the correlation function!. Hansen and Andersen applied their

quantum TST to the symmetric and asymmetric Eckart bar-

riers as well as a parabolic barrier linearly coupled to a har-

monic oscillator and found quite good agreement.8,9 How-

ever, the method did not always give a rate larger than the

exact value and so does not represent an upper bound.

The flux–flux correlation function, Eq. ~1.2!, can be ex-

pressed ~in a form convenient for the present purpose! as14,22

C f f~ t !5tr@ F̂~b/2!e iĤt/\F̂~b/2!e2iĤt/\# , ~2.4!

where F̂(b/2) is the half-Boltzmannized flux operator,

F̂~b/2!5e2bĤ/4F̂e2bĤ/4, ~2.5!

which, like F̂(b), is of low rank.16,20 The critical quantities

required for the transition state theory are C f f(0) and

C̈ f f(0). Note that all the odd derivatives are zero since

C f f(t) is an even function of time. @See the Appendix for a

comparison of using Eqs. ~1.2! and ~1.3! vs Eqs. ~2.4! and

~2.5! for the current problem.#

Here we show how the low rank of F̂(b/2) can be used

to efficiently obtain C f f(0) and C̈ f f(0). The first step is to

obtain the eigenstates of the half-Boltzmannized flux opera-

tor

F̂~b/2!um&5 f mum& ~2.6!

with nonzero eigenvalues. This can be accomplished using

an iterative Lanczos scheme.27,28 This basis of eigenstates

can then be used to evaluate the trace required to obtain

C f f(t).16,20 Then the flux–flux autocorrelation function at

zero time is
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C f f~0 !5tr$F̂~b/2!F̂~b/2!%,

5(
m

^muF̂~b/2!F̂~b/2!um& ,

5(
m

f m
2 . ~2.7!

The second derivative evaluated at t50 can be straightfor-

wardly calculated as

C̈ f f~0 !5S i

\ D 2

tr$F̂~b/2!@Ĥ ,@Ĥ ,F̂~b/2!##%,

52

2

\2 (
m

f mF f m^muĤ2um&

2(
m8

f m8
u^m8uĤum&u2G . ~2.8!

It is clear from these expressions that eigenstates with f m

.0 will not contribute as both C f f(0) and C̈ f f(0) consist

only of quantities proportional to f m
2 or f m f m8

. It is also

noteworthy that the only work required to obtain C f f(0) and

C̈ f f(0) once the eigenstates are known is a single multipli-

cation of the Hamiltonian onto each eigenvector (Ĥum&) and

some vector products.

At this point it is useful to consider the computational

savings realized in this approximate approach. In a fully rig-

orous calculation of C f f(t) to obtain the rate, each eigenstate

of F̂(b/2) must be propagated in real time up to t/2, where

t is the time in which C f f(t) decays to zero.20 Conversely,

Eqs. ~2.7! and ~2.8! require no time propagation, but only a

single Hamiltonian multiplication on each eigenvector. Exact

calculations have been carried out for several reactions in-

volving three and four atoms,12,16–20 indicating that the tran-

sition state theory should be applicable to quite large sys-

tems.

We note that a general expression for the derivatives of

the flux–flux autocorrelation function evaluated at t50 can

be found, giving the Kth derivative as

C f f
~K !~0 !5 (

m ,m8

f m f m8(
k50

K

Pk
K^mK2kum8&^m8umk&, ~2.9!

where umk&5Ĥkum& and

Pk
K

5~21 !k
K!

k!~K2k !!
. ~2.10!

~Note that no more than K/2 multiplications of the Hamil-

tonian onto each eigenvector is required since for even k

^m8umk&5^mk/28 umk/2&, ~2.11!

and an analogous, though less symmetrical, division can be

made for odd k .!

III. THE D1H2 REACTION

We now consider an application of the quantum transi-

tion state theory of Hansen and Andersen as described in

Sec. II in order to illustrate its utility for multidimensional

systems. Specifically, we calculate the thermal rate constant

for the D1H2 reaction for zero total angular momentum (J

50). This provides a useful test as the reaction is known to

be direct and the quantum transition state theory is therefore

expected to give accurate rates.

In this section we compare rate constants for the D1H2

reaction obtained from the quantum transition state theory

approach to the exact rate constants obtained by a full calcu-

lation of the flux–flux autocorrelation function. In this way,

ambiguities arising from the use of different potential energy

surfaces and/or theoretical approaches are eliminated and the

approximation of C f f(t) is directly tested. The specifics of

the computational approach for calculating the exact rate

constant for the D1H2 reaction has been given in detail

elsewhere.29 The implementation is the same for the quan-

tum transition state theory except for the approximations de-

scribed in Sec. II. The approximate correlation function is

taken to be of the form given in Eq. ~2.2!.
Figure 1 shows the flux–flux autocorrelation function for

the D1H2 reaction ~for even parity! at T5300 K obtained

exactly and from the transition state theory approximation of

Sec. II. The two correlation functions are in good agreement.

Note that the approximate correlation function is not greater

than the exact correlation function at all times, but for this

temperature does yield a thermal rate constant larger than the

exact result. The exact correlation function does become

slightly negative around 15 fs, while the transition state

theory correlation function decreases monotonically and re-

mains positive at all times.

An Arrhenius plot for the D1H2 reaction for total angu-

lar momentum J50 is shown in Fig. 2 at T5300– 1500 K.

The rate constants obtained from an exact evaluation of the

flux–flux correlation function are compared with those from

the quantum transition state theory. For reference, the exact

rate constants agree to within 2.5% with the previous exact

calculations of Mielke et al.30 over this temperature

FIG. 1. Flux–flux autocorrelation function for the D1H2 reaction at T

5300 K for even parity. The quantum transition state theory result ~dashed

line! using Eq. ~2.2! is compared with the exact correlation function ~solid

line!. The units of the correlation function are ~atomic units of time!22.
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range. The agreement between the approximate and exact

rates is excellent; the rates are within 5% at all temperatures

shown. It is interesting to note that the transition state theory

rate constants are smaller than the exact results for T>900

K. It would be interesting to examine the variational nature

of the quantum transition state theory by ‘‘optimizing’’ the

flux dividing surface to minimize the rate constant.8,9

IV. SEPARABLE TRANSITION STATE THEORY

It is instructive to examine the relation of the quantum

mechanical transition state theory described in Sec. II to the

‘‘conventional’’ formulation. The conventional quantum

transition state theory is given as the quantized version of the

classical TST rate,

kQM
TST~T !5G~T !

kbT

h

Q‡~T !

Qr~T !
e2bEb, ~4.1!

where Qr(T) and Q‡(T) are the ~quantum mechanical! par-

tition functions for the reactants and the activated complex,

respectively, Eb is the barrier height, and G(T) is a factor

accounting for the effects of tunneling, the tunneling correc-

tion. Note that this formulation of quantum TST involves an

assumption of separability between the reaction coordinate

~i.e., the normal mode coordinate at the transition state with

an imaginary frequency! and the remaining degrees of free-

dom at the transition state; Q‡(T) is calculated in the degrees

of freedom orthogonal to the reaction coordinate at the tran-

sition state. Typically G(T) is a one-dimensional tunneling

correction factor, though it sometimes includes some effect

of the curvature of the reaction path.4

Now consider the thermal rate constant as obtained from

the flux–flux autocorrelation function. If we assume separa-

bility between the reaction coordinate, which we denote by s ,

and the bath at the transition state such that the Hamiltonian

can be written as

Ĥ5Ĥs1Ĥb~s5s0!, ~4.2!

where s5s0 defines the flux dividing surface then

k~T !5

1

Qr~T !
E

0

`

C f f~ t !dt ,

5

1

Qr~T !
trb@e2bHb~s0!#E

0

`

C f f
s ~ t !dt ,

5

Q‡~T !

Qr~T !
E

0

`

C f f
s ~ t !dt . ~4.3!

We have used the fact that Ĥb(s0) commutes with Ĥs and F̂ ,

and

Q‡~T !5trb@e2bHb~s0!# . ~4.4!

The flux–flux autocorrelation function C f f
s (t) is that for the

reaction coordinate alone, i.e., Eq. ~1.2! @or Eq. ~2.4!# with

the full Hamiltonian replaced by Ĥs . Equation ~4.3! can be

written in the form of Eq. ~4.1! with the tunneling correction

given by

G~T !5

h

kbT
ebEbE

0

`

C f f
s ~ t !dt . ~4.5!

It is worth noting that for the free particle ~with Eb50), for

which the correlation function is

C f f
f p~ t !5

kbT

h

~\b/2!2

@ t2
1~\b/2!2#3/2

, ~4.6!

one obtains G(T)51. For the case of a parabolic barrier,

with C f f(t) given by Eq. ~2.1!,

G~T !5

\bvb/2

sin~\bvb/2!
, ~4.7!

which is the exact result previously obtained by Miller.3 ~The

standard Wigner tunneling correction31 is the expansion of

this expression to lowest order in \ .! Naturally, the quantum

TST of Hansen and Andersen obtains the correct result for

the case of the parabolic barrier using Eq. ~2.1!.
The separable quantum transition state theory given by

Eq. ~4.3! may be calculated with the exact C f f
s (t) or with

C f f
s (t) replaced by its approximate form within the TST of

Hansen and Andersen. It is important to note that Eq. ~4.5!
cannot always be applied using the exact correlation function

since the rate in the reaction coordinate alone is not always

well-defined. For example, the flux–flux autocorrelation

function for the one-dimensional double well potential con-

sidered in Sec. V oscillates indefinitely and thus there is not

a well defined rate for the reaction coordinate alone. ~How-

ever, in such cases the quantum TST of Hansen and Ander-

sen can still provide a useful evaluation of the rate, as will be

seen shortly.! When the double well is coupled to a harmonic

bath, which is the system one wishes to describe, there can

be a well defined rate as the bath can withdraw energy from

the reaction coordinate. The system can thereby relax into

the product well, eliminating repeated recrossing of the tran-

sition state.

The assumption of separability at the transition state

made in Eq. ~4.2! could equally well be carried out while

including several coordinates in Ĥs . The separability ap-

FIG. 2. Arrhenius plot for the D1H2 reaction for zero total angular momen-

tum (J50). The rate constants obtained from an exact evaluation of the

flux–flux autocorrelation function ~solid line! and the quantum transition

state theory result ~filled circles! are shown.
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proximation can thereby be improved since all the coordi-

nates in Ĥs are treated fully coupled in the quantum transi-

tion state theory of Hansen and Andersen.

V. DOUBLE WELL COUPLED TO A HARMONIC BATH

A. Description of the problem

To illustrate the quantum mechanical transition state

theory we apply it to the problem of a symmetric double well

potential bilinearly coupled to a harmonic bath. This problem

has been studied in great detail by a large number of

workers32,33 and, importantly for the present purpose, exact

calculations for the rate constant have been carried out by

Topaler and Makri24 using the quasiadiabatic propagator

path integral approach with an influence functional. The

Hamiltonian can be written as

Ĥ5

p̂x
2

2m
2

1

2
mvb

2x̂2
1

m2vb
4

16Eb

x̂4

1(
j51

N F p̂ j
2

2m j

1

1

2
m jv j

2q̂ j
2G

2(
j51

N

c jq̂ jx̂1(
j51

N
c j

2

2m jv j
2

x̂2, ~5.1!

where vb is the barrier frequency and the v j are the frequen-

cies of the bath. The last term is a renormalization factor

which ensures that the barrier height, Eb , remains the same

as the system–bath interaction, defined by the coupling con-

stants $c j%, changes. We consider the parameter values in the

‘‘DW1’’ potential of Topaler and Makri24 with vb5500

cm21, Eb52085 cm21, and m51837.15 a.u. ~the mass of a

hydrogen atom!.
The characteristics of the bath are encompassed in the

spectral density, J(v), via the relation34

J~v !5

p

2 (
j

c j
2

m jv j

d~v2v j!. ~5.2!

Here we assume an Ohmic spectral density with an exponen-

tial cutoff,

J~v !5hve2v/vc, ~5.3!

where h is a measure of the system–bath interaction and is

related to the friction of the harmonic bath and vc is the

cutoff frequency ~taken to be 500 cm21). We represent the

bath as a set of ~300! oscillators with equally spaced discrete

frequencies with a maximum frequency of 5vc . Then, the

coupling constant for a given oscillator is given by the rela-

tion

c j
2

m jv j

5

2

p
hv je

2v/vcDv , ~5.4!

where Dv is the frequency spacing.

The reaction coordinate is obtained by solving for the

normal mode coordinates of the potential in Eq. ~5.1! and is

given by the mode with an imaginary frequency. The bath

modes are then the remaining normal mode coordinates. We

approximate the reaction coordinate potential as a symmetric

double well such that

Ĥs5

p̂s
2

2
2

1

2
v‡

2ŝ2
1

v‡
4

16Eb

ŝ4, ~5.5!

where v‡ is the absolute value of the imaginary normal

mode frequency of the ~mass-weighted! reaction coordinate

s . The bath Hamiltonian is given by

Ĥb5(
j51

N F P̂ j
2

2
1

1

2
V j

2Q̂ j
2G , ~5.6!

where the V j are the bath mode frequencies corresponding to

the ~mass-weighted! coordinates Q j , obtained from the nor-

mal mode analysis at the transition state. In defining the re-

action coordinate to be the imaginary frequency normal

mode coordinate we are, in effect, making a choice of the

flux dividing surface designed to improve the accuracy of the

transition state theory. We have not carried out an explicit

optimization of the dividing surface, as suggested by Hansen

and Andersen,8,9 which may improve the accuracy of the rate

constants.

The classical Hamiltonian corresponding to Eq. ~5.1!,
with a system coordinate bilinearly coupled to a harmonic

bath, is equivalent to the system coordinate obeying a gen-

eralized Langevin equation.35 Grote and Hynes have ob-

tained a simple and elegant expression for the rate constant

for this problem, using a parabolic approximation to the

barrier.36 Pollak has shown that their approach is equivalent

to classical transition state theory applied in the normal mode

coordinates of the transition state.37 Quantum mechanical ef-

fects can be included in the Grote–Hynes theory rate con-

stants by a correction factor derived by Wolynes.38

Finally, we note some computational details. In calculat-

ing C f f(0) and C̈ f f(0) by Eqs. ~2.7! and ~2.8!, respectively,

a sinc-function discrete variable representation basis39 is

used for the one-dimensional double well potential. The flux

operator is used in the commutator form,

F̂5

i

\
@Ĥs ,h~s !# . ~5.7!

Four Lanczos iterations are performed to obtain the nonzero

eigenvalues of F̂(b/2) in Eq. ~2.5! and their corresponding

eigenvalues. The ratio of partition functions, Q‡(T)/Qr(T),

in Eq. ~4.3! is obtained using a normal mode analysis for

both the reactants and the activated complex.

B. Results and discussion

Here we present the results for the double well bilinearly

coupled to a harmonic bath using the method described in

Secs. II and IV.

Following Topaler and Makri,24 we report the rates for

the double well potential bilinearly coupled to a harmonic

bath as the transmission coefficient

k~T !5

k~T !

kTST~T !
. ~5.8!
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The primitive transition state theory rate, kTST(T), is given

by

kTST~T !5

v0

2p
e2bEb, ~5.9!

where v0 is the frequency in the reactant well (v05707

cm21 for the parameters used here!.
Transmission coefficients are presented for the approach

described in Sec. IV, specifically the rate given by Eq. ~4.3!.
The correlation function for the reaction coordinate alone,

C f f
s (t) is obtained using the Padé approximant form of

Hansen and Andersen,9 Eq. ~2.2!, for the correlation func-

tion. The values of C f f(0) and C̈ f f(0) are obtained from

Eqs. ~2.7! and ~2.8!, respectively and used to determine the

parameters a and b via Eqs. ~2.3!. For comparison we have

carried out calculations using the parabolic tunneling correc-

tion from Eq. ~4.1! using Eq. ~4.7! for G(T).

Figure 3 shows the transmission coefficient at T5300 K

vs the parameter h/(mvb) governing the coupling strength

@see Eqs. ~5.3! and ~5.4!#. The exact calculations of Topaler

and Makri24 and the results obtained using the traditional

parabolic barrier tunneling correction are plotted for com-

parison. It is immediately obvious that the transition state

theory ~with either tunneling correction! does not reproduce

the correct behavior of the transmission coefficient for small

coupling. This regime is dominated by recrossing effects as

the small coupling inhibits the relaxation of the system in the

product well resulting in repeated recrossing of the transition

state. Since the transition state theory makes no accounting

for recrossing dynamics, it severely overestimates the rate

for small coupling. However, for intermediate to large cou-

pling @h/(mvb) greater than ;1], the transition state theory

correctly ~and quantitatively! predicts the decrease of the rate

with increased coupling. This is because the dynamics for

this range of coupling strength is direct, i.e., it is character-

ized by little recrossing of the transition state. The transmis-

sion coefficient obtained from Eq. ~4.3! is slightly larger than

that obtained from the parabolic barrier tunneling correction,

by less that 5%.

The transmission coefficient is plotted vs the coupling

strength parameter h/(mvb) at a lower temperature, T

5200 K, in Fig. 4. Again the transition state theory is sig-

nificantly in error for small coupling but reproduces the

transmission coefficient for larger coupling @h/(mvb)

greater than ;0.5] quite well. The present method and the

parabolic tunneling correction are in very good agreement

over the entire range of coupling strength.

Finally, Fig. 5 plots the logarithm of the transmission

coefficient as a function of h/(mvb) at T5100 K. Note that

at this temperature the exact transmission coefficient exhibits

a turnover ~such as those observed in Figs. 3 and 4! at expo-

nentially small coupling24 and so it does not appear in this

data. At this low temperature the parabolic tunneling correc-

tion does not give a useful rate for small coupling @where T

is below the crossover temperature, i.e., defined as that for

which Eq. ~4.7! diverges, given by Tc5\v‡ /(2pkb)]. How-

FIG. 3. Transmission coefficient for the double well potential bilinearly

coupled to a harmonic bath at T5300 K vs the coupling strength parameter

h/(mvb). Results are shown for the present method as given in Eq. ~4.3!,
~solid line!, the parabolic barrier tunneling correction, ~dashed line!, and the

exact results of Topaler and Makri ~Ref. 24!, ~solid circles!.

FIG. 4. Same as Fig. 3 but for T5200 K.

FIG. 5. Same as Fig. 3 but for T5100 K and here the logarithm of the

transmission coefficient is plotted.
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ever, because the present approach for obtaining the tunnel-

ing correction is based on a physically realistic one-

dimensional potential it does give meaningful rates in this

regime. The present transition state theory approach gives

transmission coefficients in reasonable agreement with the

exact calculation over the entire range of coupling. The re-

sults from the parabolic barrier tunneling correction are

shown for larger values of the coupling and are in good

agreement with the present method.

It is instructive to consider how the present method com-

pares to other quantum transition state theory approaches.

Topaler and Makri24 compared their exact results with those

from Grote–Hynes theory36 with a quantum correction38 and

centroid density theory.6 At T5300 and 200 K, these ap-

proaches significantly overestimate the rate constants for

small coupling, as does the present method, but are in excel-

lent agreement with the exact results for larger coupling.24

The centroid density theory gives rates in good agreement

with the exact results at T5100 K, while Grote–Hynes

theory is in poor agreement for small coupling and reason-

able agreement above h/(mvb);1.5. Thus, the present

method is capable of obtaining rate constants of accuracy

comparable to either of these approaches.

VI. CONCLUDING REMARKS

We have shown how the quantum transition state theory

recently proposed by Hansen and Andersen8,9 can be effi-

ciently implemented by taking advantage of the low rank of

the half-Boltzmannized flux operator. This approach can be

easily applied to systems with several degrees of freedom.

We have also described how the method of Hansen and

Andersen can be used to obtain accurate tunneling correc-

tions within the context of the more traditional ~i.e., sepa-

rable! quantized transition state theory approach. An impor-

tant addendum is that the present approach can be used to

improve the separability approximation in such TSTs by ex-

plicitly treating multiple ~fully coupled! degrees of freedom

in the calculation of the tunneling correction.

We have demonstrated the present implementation the

quantum transition state theory of Hansen and Andersen by

using it to calculate thermal rate constants for the D1H2

reaction. This reaction is known to be direct and the quantum

transition state theory gives rate constants in excellent agree-

ment with exact results.

We have also used the present method to calculate tun-

neling corrections for a one-dimensional double well poten-

tial bilinearly coupled to a harmonic bath. This transition

state theory approach severely overestimates the transmis-

sion coefficient, Eq. ~5.8!, when there is significant recross-

ing of the transition state ~as would be expected!. However,

when the transition state theory ansatz of direct dynamics is

met the present results are in good agreement ~at T

5100, 200, and 300 K! with the exact results obtained by

Topaler and Makri.24 The use of a physically realistic poten-

tial for obtaining the tunneling correction allows for an ac-

curate rate to be obtained even at temperatures below the

crossover temperature ~where, for example, the parabolic

barrier tunneling correction is not valid!.

Finally, we offer some suggestions for possible improve-

ments to the theory. While the Padé approximant form for

the correlation function, Eq. ~2.2!, proposed by Hansen and

Andersen possesses many desirable characteristics it is pos-

sible to obtain a positive value for the parameter b given by

Eq. ~2.3b!, resulting in a meaningless value for the rate. ~We

observe this for the double well problem in Sec. V for T

.50 K.! Thus, a form for the correlation function which

always yields a useful rate ~while still possessing the other

desired properties! is wanting.

Another possibility for improvement involves moving

beyond the separability approximation of Sec. IV. It should

be possible to include some effects of the coupling in the

calculation of C f f(0) and C̈ f f(0) by a perturbative or other-

wise approximate approach.

As shown in Sec. II and the Appendix it is possible to

calculate many derivatives of the flux–flux autocorrelation

function ~evaluated at t50), via Eq. ~2.9!, and it should be

possible to use this additional information to obtain more

accurate representations of the correlation function, includ-

ing the description of recrossing dynamics. A natural exten-

sion is to approximate the correlation function using a func-

tional form with more parameters, and thus requiring the

values of higher derivatives at t50. Naturally, such an ap-

proach involves moving beyond the traditional assumption of

a ‘‘transition state theory,’’ namely, that of direct dynamics.

More systematic approaches have previously been applied in

different contexts.40,41
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APPENDIX: TIME DERIVATIVES OF THE FLUX–FLUX
AUTOCORRELATION FUNCTION

In this Appendix we derive a general expression for the

Kth derivative of the flux–flux autocorrelation function

evaluated at zero time. In particular, we exploit the low rank

of the Boltzmannized flux operator,

F̂~b !5e2bĤ/2F̂e2bĤ/2, ~A1!

which appears in Eq. ~1.2! for the correlation function. Thus,

if the nonzero eigenvalues and eigenvectors of F̂(b) are ob-

tained by a Lanczos scheme

F̂~b !un&5 f nun&, ~A2!

then the correlation function becomes

C f f~ t !5(
n

f n^nue iĤt/\F̂e2iĤt/\un&. ~A3!

It is easy to show that the time derivatives of C f f(t) evalu-

ated at zero time are given by expressions containing com-
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mutators between the Hamiltonian and the flux operator. For

the first two nonzero derivatives, one obtains

C f f~0 !5(
n

f n^nuF̂un&, ~A4!

and

C̈ f f~0 !5C f f
~2 !~0 !5S i

\
D 2

(
n

f n^nu@Ĥ ,@Ĥ ,F̂##un&. ~A5!

Then the derivative C f f
(K)(0) is composed of K nested com-

mutators of the Hamiltonian with the flux operator. How-

ever, the Kth nested commutator can be expressed as

PK
KĤKF̂1PK21

K ĤK21F̂Ĥ1PK22
K ĤK22F̂Ĥ2

1•••

1P1
KĤF̂ĤK21

1P0
KF̂ĤK, ~A6!

where the coefficients PK2k
K are those given in Eq. ~2.10!. It

is not hard to see that if we apply powers of the Hamiltonian

to the eigenvectors of the Boltzmannized flux operator to

generate the vectors unk&5Ĥkun& that the Kth derivative is

given by

C f f
~K !~0 !5S i

\
D K

(
n

f n (
k50

K

Pk
K^nK2kuF̂unk&, ~A7!

which is the equivalent of Eq. ~2.9!.
The method of calculating the derivatives utilizing the

half-Boltzmannized flux operator presented in Sec. II pre-

sents some advantages over that given here. A shorter propa-

gation in imaginary time (tc52ib\/4 rather than

2ib\/2) is required and fewer multiplications of the Hamil-

tonian onto the eigenvectors are needed.
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