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ABSTRACT Decomposition of digital signals and images into other basis or dictionaries than time or space

domains is a very common approach in signal and image processing and analysis. Such a decomposition is

commonly obtained using fixed transforms (e.g., Fourier or wavelet) or dictionaries learned from example

databases or from the signal or image itself. In this work, we investigate in detail a new approach of con-

structing such a signal or image-dependent bases inspired by quantum mechanics tools, i.e., by considering

the signal or image as a potential in the discretized Schroedinger equation. To illustrate the potential of the

proposed decomposition, denoising results are reported in the case of Gaussian, Poisson, and speckle noise

and compared to the state of the art algorithms based on wavelet shrinkage, total variation regularization

or patch-wise sparse coding in learned dictionaries, non-local means image denoising, and graph signal

processing.

INDEX TERMS Adaptive signal and image representation, adaptive transformation, denoising, quantum

mechanics.

I. INTRODUCTION

In number of applications, processing or analyzing signals and

images require the use of other representations than time or

space. While the most famous transformation still remains

the Fourier transform, other representations have been pro-

posed to overcome the non-localization in time or space

of the Fourier basis vectors. The most used time-frequency

representations are the short time Fourier and the wavelet

transforms [1], [2]. Most often (see, e.g., image compression,

restoration, reconstruction, denoising or compressed sensing),

such transforms are associated with the concept of sparsity,

i.e., their ability to concentrate most of the signal or im-

age energy in a few coefficients. To reinforce the sparsity,

overcomplete dictionaries have also been explored over the

last decades, such as the wavelet frames or more recently

patch-based or convolutional dictionaries learned from a set

of training signals or images [3]. The latter has been shown to

be of particular interest in image denoising [4].

In this paper, we investigate a novel signal and image repre-

sentation, through a dedicated basis extracted from the signal

or image itself, using concepts from quantum mechanics. First

preliminary results were published in [5]. Compared to fixed

basis such as Fourier, discrete cosinus, wavelets, curvelets,

etc, or dictionary learning that generally needs a training

database, the proposed approach has the advantage of com-

puting a transform adapted to the signal or image of interest.

Several attempts of translating quantum principles in image

or signal processing applications have been proposed in the

literature. One may note the seminal work in [6], or, more

recently, the interest of quantum mechanics in image segmen-

tation [7], [8] or in pulse-shaped signal analysis [9], [10].

Note that a separate domain also exists on designing image

processing algorithms adapted to quantum computers, but is

of a different purpose [11], [12].

More related to our work, we note that there was a re-

cent attempt to use quantum mechanics in the same context

in [13], [14]. Although there are similarities between the two

approaches, there are also some important differences. The

authors in [13], [14] start from a continuous mathematical

representation of the signal, and the discretization only occurs

at the end of the process. The processing of a large image in

these papers is done by decomposing it into lines and columns
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to get 1D signals, while the proposed work is applied block-

wisely, which offers a more efficient solution for image de-

noising given that the correlation between neighbouring pixels

is preserved. Additionally, unlike [13], [14], our method fully

takes into account the quantum localization phenomenon, a

subtle effect due to quantum interference which makes the

distribution of the eigenfunctions of the Schroedinger operator

strongly dependent on noise, and has important effects on the

denoising process. We also use the physics of the problem to

identify the optimal domain of applicability of such methods.

The proposed framework reposes on the discrete version

of the Schroedinger equation for a quantum particle in a po-

tential. In our case, the potential is represented by the signal

samples or the pixel values. The bases used to decompose the

signal or the image are directly computed from the signal and

image itself and correspond to the wave function representing

the stationary solutions of the Schroedinger equation. These

wave functions have interesting properties of temporal or spa-

tial localization and of frequency dependence on the value of

the potential. In particular, they present higher frequencies for

low potential values, thus allowing an original signal or image

decomposition.

The proposed method has a certain formal similarity with

graph signal processing methods [15]–[19], which use a graph

Laplacian constructed from the signal to build an adaptive

basis. However, graph signal processing constructs the graph

Laplacian to emphasize the similarities between neighbouring

pixel values, while in the proposed method the adaptive basis

is solely related to the individual pixel values, resulting into

very different adaptive bases with different properties.

Within the proposed framework, the frequency and local-

ization properties of the basis can be controlled through sev-

eral parameters, thus ensuring flexibility in applications such

as denoising. A detailed description of the behavior of the

proposed transform and denoising method with respect to

the choice of these parameters is provided, allowing to gain

insight about the practical consequences in signal and image

processing of the quantum mechanical principles involved.

Furthermore, the proposed transform embedded in a denoising

algorithm shows promising results in different noise scenarios

(additive Gaussian, Poisson or speckle noise). Finally using

different signals and images, comparisons with several state-

of-the-art methods are performed.

The remainder of the paper is organized as follows. Sec-

tion II and III respectively give the details of the adaptive

transform design and its application to denoising. Results

and comparisons are provided in Section IV and concluding

remarks are finally reported in Section V.

II. ADAPTATIVE BASIS FROM QUANTUM MECHANICS

A. GENERAL FRAMEWORK

The main idea of the proposed method is to describe a signal

or an image onto a specific basis which is constructed through

the resolution of a related problem of quantum mechanics: the

probability of presence of a quantum particle in a potential

related to the signal or image. While the motivation of using

quantum mechanics in this particular context is not straight-

forward, its main purpose is to produce a basis of oscillating

functions with the following properties: 1) the oscillation fre-

quency increases with a parameter of the basis corresponding

to the energy, 2) for a given basis function, the oscillation

frequency is higher for low values of the signal. The adopted

strategy will then be to threshold a noisy signal in energy once

expanded in this basis: this will automatically keep higher fre-

quencies for low pixel values, and lower frequencies for high

pixel values. Intuitively, one could expect that this method

is especially efficient for signal-dependent noise, stronger for

high signal values, such as, for instance, Poisson noise.

B. ADAPTIVE TRANSFORM FOR SIGNALS OR IMAGES

Our method uses quantum mechanics as a tool for building an

adaptative basis suitable for denoising applications. We will

only expose here the basics of quantum mechanics which are

useful for our purpose, refering the interested reader to more

extensive introductions to this vast field of physics [20]–[22].

Our formalism is based on the resolution of the Schroedinger

equation of non-relativistic quantum mechanics. This equa-

tion determines the wave function ψ (y) which belongs to the

Hilbert space of L2-integrable functions, y being e.g. a spa-

tial coordinate. The function |ψ (y)|2 gives the probability of

presence of the particle, which implies that
∫

|ψ (y)|2dy = 1.

The basic idea of the proposed method is to consider the

signal or image as a potential V (y) for a quantum system, as

illustrated in Fig. 1. The 3D surface plot of a 2D image is

shown in Fig. 1. This surface will act as the potential of the

system, where we consider pixel intensity as the height of the

potential (i.e., along the z-axis). It is clearly visible that there

are many hills and valleys in the potential which are associated

with the high and low pixel values respectively. If a quantum

particle with energy E probes this surface, then the probability

of presence of this quantum particle at some position on the

surface will be determined by the wave function ψ (y). Unlike

the classical picture where one can precisely determine the

position of a classical particle, the quantum theory only gives

a probability of finding a quantum particle at some point. The

stationary Schroedinger equation corresponds to the probabil-

ity of presence of a stationary quantum particle with energy

E in a potential V (y), the associated wave function ψ (y)

satisfying [23]:

−
�

2

2 m
∇2ψ = −V (y)ψ + Eψ, (1)

with m the mass of the quantum particle, � the Planck constant

that are both parameters of the problem, and ∇2 the Laplacian

operator.

To illustrate the nature of the solution of (1), let us con-

sider a simple case corresponding to a constant potential V

and to the wave function ψ (y) following a periodic boundary

condition, i.e., ψ (y + L) = ψ (y), where L is the periodicity.

Solving equation (1) under the above conditions is trivial, all
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FIGURE 1. Relationship between quantum mechanics and image representation: example on Lena image.

FIGURE 2. Relationship between the frequency of the adaptive basis functions and the height of the potential.

solutions having the form:

ψ (y) = A ei
√

2m(E−V )
�

y, (2)

where A is a given amplitude. Each solution ψ is associated

with a specific value of E , with E taking discrete values, all

higher than V . If space is discretized in N values, there will be

N solutions and E takes only N different values.

In the case of a more intricate 1D potential, where V is no

more a simple constant and depends on position, (1) implies

that the relation (2) will still hold locally, with an amplitude

and phase depending on position. This means that the station-

ary solutions of (1) are locally oscillatory functions with an

oscillation frequency dependent on the local value of V for a

given energy E , with a frequency proportional to
√

E − V .

This is illustrated in Fig. 2, where two different potentials

are taken into account in the Schroedinger equation (1): a

constant potential and a potential with non-uniform heights.

For the constant potential, the solutions are just plane waves

satisfying (2). All solutions are indexed by the values of

the associated energy, and higher energy translates in higher

frequency of oscillations. This frequency is the same for all
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positions for a given wavefunction. For a non constant po-

tential which depends on position (right panel of Fig. 2), the

oscillation frequency still increases with higher values of E ,

but at the same time a given stationary solution of (1), which

corresponds to the physical wavefunction, contains different

local oscillation frequencies according to the local value of V .

Thus, although at each local position the frequency increases

with E , it does so in a different way from place to place

according to the local value of V . In other words, for a given

energy E the wave function ψ (y) associated with a quantum

particle will use a higher frequency to probe a low potential

region in comparison with a high potential region. In the

regions where E − V is negative, (2) leads to exponentially

decreasing functions which quickly become constant (see e.g.

the solutions for E0 and E1 in the right side of Fig. 2).

In 2D, (2) is not exactly valid, but the solutions of (1) will

still have typically an oscillation frequency proportional to√
E − V . This is illustrated in Fig. 1 (bottom panels) where

the wave function frequency of oscillation is clearly seen to

increase in the regions of low potential.

To summarize, the global properties of the wavefunctions

which form the proposed adaptive basis are the following:

1) they are oscillating functions indexed by the energy E ,

2) the local frequency is typically proportional to
√

E − V ,

thus increasing with E while differing locally for the

same wavefunction depending on the local value of E −
V ,

3) the precise dependence on the frequency of oscillation

with respect to E − V is tuned by the parameter �2/2 m.

In the application addressed herein, the Schroedinger equa-

tion (1) is just a way to obtain an adaptive basis possessing

these properties, which can further be used independently of

its quantum mechanical nature as a tool for signal or image

processing.

The basis of eigenvectors of (1) naturally describes with

different frequencies the different parts of the signal or im-

age, in contrast to e.g the Fourier or wavelet bases. As said

above, the precise relation between the local frequency of the

eigenvectors and the value of the signal or image pixel is

governed by the parameter �
2/2 m. In the physical problem

of quantum mechanics, this quantity is linked to Planck’s

constant and the particle mass, but in our framework it is a free

parameter. It should be chosen with care, as extreme values

are clearly inadequate. Indeed, as the problem is discretized

there is a maximal frequency in the problem, linked to the

inverse of the discretization step. If �2/2 m is very small, the

local frequencies
√

2m(E − V )/� become very high even for

low values of the energy, the maximal energy becomes very

low, and the basis does not explore properly high values of the

signal or pixels of the image. On the other side for very large

values of �
2/2 m, the local frequencies become smaller and

smaller at fixed energy, the maximal energy becomes larger

and larger, and eventually when �
2/2 m tends to infinity most

vectors of the adaptive basis are so high above the signal

or image pixel that they do not discriminate between low

and high values, becoming closer and closer to the standard

Fourier basis vectors. Therefore it is crucial to tune the free

parameter �2/2 m in the right way.

III. PROPOSED METHOD FOR DENOISING APPLICATIONS

A. EXPLICIT CONSTRUCTION OF THE ADAPTIVE BASIS

In operator notation, (1) corresponds to Hψ = Eψ with H =
− �

2

2 m
∇2 + V the Hamiltonian operator. The energy E of the

particle in (1) labels the solutions of the problem. Solutions

of this stationary Schroedinger equation in a bounded domain

correspond to a discrete set of energy levels, from a minimal

energy to infinity.

Solutions of (1) form a basis of the Hilbert space to which

the wavefunctions belong. This space is infinite-dimensional

for continuous values of the position y in (1). However, we are

interested in signal or image processing applications, where

the space is discretized in a finite number of points. Specif-

ically, we assume that the potentiel V is represented by the

value of signal sample or image pixel x. In the case of a

discretized problem, the operators become finite matrices and

the resolution of (1) is equivalent to diagonalizing the Hamil-

tonian matrix.

Specifically, one has, following (1), H = − �
2

2 m
∇2 + x,

with:
� the potential V represented by x (the signal or the image),
� if x is a signal of size N , then the size of H is N × N ,
� if x is an image of size N × N , it is transformed into a

vector (in lexicographical order) of size N2 and H is a

N2 × N2 matrix,
� in both cases (x is a signal or an image), x is considered

in a vector form.

For a 1D signal, we have:
� numerical derivatives of ψ : (∇ψ )i = ψ (i + 1) − ψ (i),
� numerical Laplacian of ψ : (∇2ψ )i = ψ (i + 1) −

2ψ (i) + ψ (i − 1).

Thus, (Hψ )i = − �
2

2 m
(ψ (i + 1) − 2ψ (i) + ψ (i − 1)) +

x(i)ψ (i) ⇒ (Hψ )i = (x(i) + 2 �
2

2 m
)ψ (i) − �

2

2 m
(ψ (i + 1) −

�
2

2 m
ψ (i − 1)).

Therefore, (Hψ )i =
∑i+1

j=i−1 H (i, j)ψ ( j), for i = 1, 2,

3, . . . , N .

where,

H (i, j) =

⎧

⎪

⎨

⎪

⎩

x(i) + 2 �
2

2 m
for j = i,

− �
2

2 m
for j = i ± 1,

0 otherwise.

(3)

where x(i) represents the i-th component of a signal and

H (i, j) is the (i, j)-th element of the Hamiltonian matrix.

The resolution of (1) is thus equivalent to finding eigen-

vectors and eigenvalues of the discretized Hamiltonian matrix
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TABLE 1. The Hamiltonian Matrix of Size 16 × 16 Corresponding to an Image of Size 4 × 4

H ∈ R
N×N written as:

H =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x(1) + 2 �
2

2 m
− �

2

2 m

− �
2

2 m

. . .
. . .

. . .

− �
2

2 m

− �
2

2 m
x(N ) + 2 �

2

2 m

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

For a 2D image x ∈ R
N×N the methodology is similar. In

(1), the Laplacian operator should be replaced by its discrete

version, following the standard numerical definitions of the

gradient operator:

∇hx(i, j) = x(i + 1, j) − x(i, j) if i < N

∇vx(i, j) = x(i, j + 1) − x(i, j) if j < N

where ∇h and ∇v are associated to the horizontal and vertical

gradients. The boundary conditions correspond simply to a

zero padding of the image.

The Hamiltonian matrix is thus:

H (i, j) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x(i) + 4 �
2

2 m
for i = j,

− �
2

2 m
for i = j ± 1,

− �
2

2 m
for i = j ± N,

0 otherwise,

(4)

where x(i) represents the i-th component of a vectorized im-

age x in the lexicographical order.

As the boundary conditions correspond to zero padding

of the image, a few individual coefficients of the matrix

H follow specific rules. Indeed, H (i, j) = x(i) + 2 �
2

2 m
for

i = j and i ∈ {1, N, N2 − N + 1, N2}, H (i, j) = x(i) + 3 �
2

2 m

for i = j and i ∈ {2, 3, . . ., N − 1, N2 − N + 2, N2 − N +

3, . . ., N2 − 1}, H (i, j) = x(i) + 3 �
2

2 m
for i = j and other than

the previous set with i mod N ∈ {0, 1} and H (i, i + 1) =
H (i + 1, i) = 0 for any i multiple of N apart from N2.

In the specific case of N = 4, i.e. for an image of size

4 × 4 the discretized Hamiltonian is of size 16 × 16. This

Hamiltonian matrix is explicitly shown in Table 1.

The set of eigenvectors gives a basis of the Hilbert space,

with each eigenvector associated to an energy E , which is the

corresponding eigenvalue of the Hamiltonian operator. The

N2 eigenvectors, denoted by ψi ∈ R
N2×1, each with com-

ponents ψ
j
i with j = 1, . . . , N2, are the main tool for the

proposed adaptive transform in this work. Indeed, our method

consists in projecting the signal or image on this particular

basis and use the energy associated to each eigenfunction as

a parameter on which we perform the thresholding of these

coefficients.

B. A TECHNICAL PROBLEM FOR NOISY SIGNALS OR

IMAGES: THE PROBLEM OF QUANTUM LOCALIZATION

In order to use the adaptive basis for various problems of sig-

nal or image processing, including denoising, the procedure

should be adapted for noisy signals and images. A technical

problem then arises, linked to the phenomenon of quantum

localization. Quantum localization is a property of wave func-

tions in a disordered potential which makes the adaptive basis

localized in position space, which in turn makes it less useful

for our purpose. In this subsection, we propose a way to

mitigate this technical problem which will be implemented

throughout the paper.

Indeed, it is known in quantum mechanics that a disor-

dered potential localizes the wavefunctions in one and two di-

mensions. Due to destructive interference, the different wave

194 VOLUME 2, 2021



FIGURE 3. Synthetic signal used to illustrate the localization property of
the wave functions.

functions are exponentially localized at different positions of

the potential, an effect known as Anderson localization, which

earned the Nobel prize in 1977 to its discoverer [24]. If the

signal or image are not smooth, which certainly arises in the

case of a noisy signal or image, we expect the vectors of the

basis to be localized, with a localization length which will be

smaller and smaller for increasing noise intensity.

Let us start from a wave function defined as eigenfunction

of (4), ψi ∈ R
N2×1 with components ψ

j
i . The level of local-

ization is measured by computing the inverse participation

ratio (IPR) of the wave functions, mathematically defined for

a given wave function as:

IPR(ψi ) =
∑N2

j=1 |ψ j
i |

2

∑N2

j=1 |ψ j
i |4

, (5)

where N2 is the dimension of the Hilbert space. For a vec-

tor uniformly spread over P indices and zero elsewhere, this

quantity is exactly P. For an exponentially localized vector

such as the wavefunctions in a disordered potential, it is

proportional to the localization length for each vector in the

adaptive basis. In this case, these vectors will still be oscillat-

ing functions, but will no longer have different frequencies at

different locations since they are localized in a specific part of

the potential.

In Fig. 4 the averaged IPR of all functions of the adaptive

basis is shown for a synthetic signal (Fig. 3) degraded by an

additive Gaussian noise with different signal to noise ratios

(SNR). The localization property is clearly seen: the IPR

decreases with decreasing SNR, indicating that noisy signals

tend to localize the basis.

To modify this characteristic of the basis, we use a

smoothed adaptation of the noisy signal or image to construct

the Hamiltonian matrix, computed by a simple convolution

with a Gaussian kernel whose standard deviation is denoted by

σ . This is not part of the denoising process, it is just a technical

trick to delocalize the adaptive basis while keeping the main

features of the signal/image. In our framework, this standard

deviation σ is an additional free parameter. If σ is chosen too

large, then the noisy signal or image becomes so smooth that

FIGURE 4. Quantum localization effect: IPR corresponding to the wave
functions calculated from the signal in Fig. 3 degraded by an additive
Gaussian noise for several SNR. The size of the signal was 512. The IPR is
computed through (5) and averaged over all 512 wave functions of the
adaptive basis.

many characteristics needed for the adaptive basis will be lost.

On the opposite, if σ is too small the basis vector will remain

strongly localized. To balance both sides one needs to tune the

parameter σ to get the best achievable outcome.

Fig. 5(b) and Fig. 6(b)–(c) show examples of wave func-

tions calculated from a noisy signal and image. From these

examples, one observes again that the wave functions are

completely localized in a specific location and present a fast

decrease due to the destructive interference. On the contrary,

in the case where the same wave functions are calculated from

low-pass filtered versions of the noisy signal and image (i.e. a

smoothed version of the potential), they are shown to delocal-

ize and spread over the whole available space as illustrated in

Fig 5(d) and Fig. 6(e)–(f).

C. APPLICATION TO THE DENOISING PROBLEM

This section explain in details the application of the proposed

adaptive basis from quantum mechanics to the denoising prob-

lem. The significant difficulties for signal or image denoising

are to sharpen the edges without blurring and preserve the

image textures without generating artifacts. The most com-

mon denoising strategies are based on three primary steps.

To distinguish the useful information and the noise, the noisy

signal or image is projected onto a dictionary. This is then

accompanied by a hard or soft thresholding process in the

transformed space. Finally, the revised coefficients are back

projected to the time or space domain, so that the denoised

signal or image could be retrieved. We will apply the same

procedure using the adaptive basis defined by the eigenvectors

ψi obtained by solving the Schroedinger equation (1).

The basic assumptions is that the noise is more present

in high frequency components of the signal or image, corre-

sponding to eigenvectors associated with large energy eigen-

values. The thresholding will therefore be performed in en-

ergy, leaving out the components of the signal or image on

high energy eigenvectors. The fact that our basis has frequen-

cies which vary depending on the position should be an asset,

VOLUME 2, 2021 195



DUTTA ET AL.: QUANTUM MECHANICS-BASED SIGNAL AND IMAGE REPRESENTATION: APPLICATION TO DENOISING

FIGURE 5. Role of the hyperparameter σ and localization: (a) Signal in Fig. 3 contaminated by additive Gaussian noise corresponding to a SNR of 15 dB,
(b) localized wave function number 68 calculated from the noisy signal with energy level illustrated by the dashed line in (a), (c) blurred version of the
noisy signal in (a) obtained by Gaussian low-pass filter corresponding to σ2

= 10, (d) delocalized wave function number 68 calculated from the low-pass
filtered signal with the same energy level illustrated by the dashed line in (c).

FIGURE 6. Role of the hyperparameter σ and localization: (a) Lena image used in Fig. 1, contaminated by additive Gaussian noise corresponding to a SNR
of 15 dB, (b,c) localized wave function number 195 calculated from the noisy lena image (a), (d) blurred version of the noisy lena image in (a) obtained by
Gaussian low-pass filter corresponding to σ2

= 6, (e,f) the same wave function but delocalized due to the low pass Gaussian filter applied to the noisy
image.

especially for signal or image dependent noise (e.g. Poisson

noise). In the following, we will show that it is indeed the case

in some examples of signals and images with various types of

noise.

The denoising process unfolds as follows; for a noisy signal

or image denoted by x, the denoised signal or image is rebuilt

through:

x̂ =
N2
∑

i=1

αiψiτi, (6)

with

τi =

⎧

⎨

⎩

1 for i ≤ s,

1 − i−s
ρ

for i > s and for 1 − i−s
ρ

> 0,

0 otherwise.

(7)

where αi = 〈x,ψi〉 are the coefficients representing the signal

or image x in the proposed adaptive basis. s and ρ are two

hyperparameters, used to define the thresholding function for

the proposed denoising algorithm.

In order to use this procedure, we will need to specify which

values of the parameter �2/2 m should be selected. As we will

see, there is a relatively large range of values where the algo-

rithm is efficient, meaning that it can be set to a specific value

independent of the signal or image on which the algorithm is

used.

D. ALGORITHM DESCRIPTION

Denoising a signal or an image using the proposed method

requires the computation of eigenvalues and eigenvectors of

the discretized Hamiltonian matrix (4) for appropriate values

of the parameters �2/2 m and σ , project the signal or image on
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FIGURE 7. Flowchart of the proposed denoising algorithm.

this basis, threshold the coefficients by an appropriate thresh-

old in energy, and reconstruct from this a denoised signal

or image. These steps are summarized in Algorithm 1 and

Fig. 7.1

For very large signals and images, where the size of the

matrix (4) becomes too large for practical simulations, we

implement a modified version of the algorithm where the

matrix (4) is diagonalized for subparts of the signal or image

independently, and then a complete signal or image is recon-

structed:
� The noisy signal or image is divided into sub-blocks of

equal size, using in particular square sub-blocks in the

case of images.
� Use algorithm 1 for each sub-block.

1The Matlab code of the proposed denoising algorithm is [Online]. Avail-
able: https://github.com/SayantanDutta95/QAB-denoising

Algorithm 1: Denoising Algorithm Using the Proposed

Adaptive Transform.

Input: x, �
2

2 m
, s, ρ, σ

1: Compute a smooth version of x by Gaussian filtering

2: Construct the Hamiltonian matrix H based on the

smoothed version of x using (4)

3: Calculate the eigenvectors ψi of H

4: Compute the coefficients αi by projecting x onto the

basis formed by ψi

5: Threshold the coefficients αi and recover the

denoised signal or image following (7) and (6)

Output: x̂

� Reconstruct the denoised signal or image by integrating

each denoised sub-block.

IV. RESULTS

This section regroups results showing the interest of the pro-

posed approach in signal and image denoising and analyze the

optimal choice of parameters. Subsection IV-A elaborates the

dependence of the proposed denoising method on the choice

of the hyperparameters �
2/2 m, σ , s and ρ. Subsection IV-B

compares the denoising results obtained with the proposed

approach to several state of the art methods. Finally, the sec-

tion ends with an example of real medical application in Sub-

section IV-C, showing the ability of the proposed method to

denoise real world (dental) cone beam computed tomography

(CBCT) images.

A. INFLUENCE OF HYPERPARAMETERS �
2/2 m, σ, s AND ρ

ON THE EFFICIENCY OF THE ALGORITHM

In this subsection, we provide a detailed discussion about the

influence of the hyperparameters on the proposed adapative

bases.

As mentioned above, the parameter �2/2 m specifies how

the local frequencies of the vectors of the basis vary with

the amplitude of the signal or image pixel value. To illustrate

this relationship, the effect of �2/2 m on local frequencies is

shown in Fig. 8 for three distinct values of this parameter.

For each case, three wave functions (number 25, 70 and 100)

computed from the synthetic signal in Fig. 3 are displayed. For

low values of �2/2 m (i.e., 0.08 for the results in Fig. 8(a)),

one may remark that the wave functions are oscillating at

very high frequencies, even for higher values of the potential

(i.e., of the signal). The presence of a maximal oscillation

period due to the discretization of the signal implies that in

this limit the high values of the signal are not taken properly

into account. For very high values of �2/2 m (15 for the results

in Fig. 8(c)), most of the wave functions are at an energy well

above the potential values, and they discriminate less and less

between the regions with different potential height. In this

limit, wave functions behave very similarly to cosine func-

tions with increasing frequencies, thus reducing the interest

of the proposed bases that becomes very similar to the Fourier
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FIGURE 8. Role of the hyperparameter �2/2 m: adaptive basis functions (wave functions) number 25, 70 and 100 calculated from the signal Fig. 3 are
shown from top to bottom with different values of the hyperparameter �2/2 m.

FIGURE 9. Role of the hyperparameter σ: (a) Cropped version of clean Lena, (b) cropped version of noisy Lena contaminated by Poisson noise
corresponding to a SNR of 15 dB, (c) denoised result with hyperparameter σ2

= 0, giving a PSNR = 25.37 dB, of the image (b), (d) denoised result with
hyperparameter σ2

= 4, giving a PSNR = 28.81 dB. The hyperparameters are �
2/2 m = 0.6, ρ = 1, and s = 600 for each set of experiment.

transform. At intermediate values of �2/2 m (1 for the results

in Fig. 8(b)), wave functions explore the different regions but

with clearly different oscillation frequencies, i.e. wave vectors

have significantly larger frequencies or short wavelengths for

the low potential valued regions as opposed to high potential

regions.

The second hyperparameter studied in this section that has a

strong impact on the proposed denoising algorithm is the para-

mater σ which makes the adaptive basis delocalized on the

system (signal or image). As explained above in Subsection

III-B, this parameter corresponds to the cut-off frequency of

the Gaussian low pass filter used to smooth the noisy signal or

images before computing the wave functions through (1). This

cut off frequency is fixed through the choice of the standard

deviation σ of the Gaussian filter. Again, we highlight that this

parameter is not related to the denoising process itself, but to

the definition of the adaptive basis to be used for denoising.

The localization of the wave functions in the presence of

noise has an important impact on the proposed signal or im-

age representation and furthermore on the efficiency of the

denoising process. To illustrate this claim, Fig 9 shows a

denoising result with and without the use of the low pass

Gaussian filter prior to the computation of the wave functions.

In this example, the cropped version of Lena in Fig. 9(a) was

degraded by a Poisson noise resulting into a SNR of 15 dB.

The denoised images in Fig. 9(c), (d) were obtained using the

algorithm detailed in Algo. 1. However, while the result in

Fig. 9(c) exploits the image decomposition through localized

wave functions computed directly from the noisy image, the

result in Fig. 9(d) was obtained by filtering the noisy image by

a low pass Gaussian filter before using (1), in order to delo-

calize the wave functions. The interest of such delocalization

can be visually appreciated in this example and allows a peak

SNR (PSNR) gain of more than 3 dB. In the following, we

will always use a pre-smoothed signal or image in (1), and the

parameter σ of the smoothing is thus an important parameter

of the algorithm.

At last, in order to denoise the signal or image one has

to threshold the coefficients of the signal or image on the

adaptive basis; this process uses two thresholding hyperpa-

rameters s and ρ defined in (7), which define respectively the

threshold value and the abruptness of the cut off. In particular,

the parameter s corresponds to the threshold in energy of the

wave functions taken into account in the expansion (6) to

reconstruct the signal or image.

Fig. 10(a) illustrates the PSNR as a function of the thresh-

olding hyperparameter s while reconstructing the denoised re-

sult corresponding to the signal in Fig. 3 contaminated by ad-

ditive Gaussian noise of 15 dB. It is clear from that figure that

initially PSNR decreases due to the low pass filtering, whereas

the thresholding operation on the adaptive basis shows im-

provement in PSNR value. Fig. 10(b) illustrates the variation

of the SNR for changing values of the hyperparameter s. For

σ 2 = 0, the reconstructed signal has a SNR worse or similar
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FIGURE 10. Role of hyperparameters s and σ. Simulations with the 1D signal Fig. 3 corrupted by additive Gaussian noise corresponding to a SNR of 15 dB.

to the original noisy one, indicating once more the importance

of the smoothing process before computing the adaptive basis

through (1). For nonzero values of σ 2, there is a relatively

small range of optimal s values, where the SNR is much better

than in the original noisy signal. Of course this threshold value

should eventually depend on the level of noise. The adaptive

transform makes the filtering of high frequencies stronger at

high values of the potential, but the overall level of filtering

should still depend on the noise properties.

Numerical experiments on the synthetic signal of Fig. 3

and on the Lena image in Fig. 1 were carried out to analyze

the impact of �
2/2 m and σ on the denoising quality and

subsequently to adjust these parameters to their best values for

assessment of the efficiency of the algorithm. Three different

types of noise were considered: Poisson, additive Gaussian

and multiplicative speckle noise. In all cases, the level of noise

was adjusted to correspond to a SNR of 15 dB.

Fig. 11 show the quality of the denoising results for the

synthetic signal Fig. 3, in terms of SNR, versus the value

of the hyperparameters �
2/2 m and σ 2 for different types

of noise: Poisson noise, Gaussian noise and speckle noise.

Several observations can be made from these results. As ex-

pected, an optimal value arises in each case. In particular, the

hyperparameter σ should clearly be chosen to be nonzero,

indicating the importance of taking into account the localiza-

tion effects. However, even if an optimal value exists for the

different hyperparameters, a small variation in the choice of

these hyperparameters around the optimal values only slightly

influences the quality of the denoising. Moreover, the optimal

values are only slightly dependent on the nature of the noise.

This means that for this type of signal the hyperparameters

could be fixed beforehand at a fixed value which can be chosen

independently of the type of noise present.

Next, the dependence of �
2/2 m and σ hyperparameters

on the shape of the signals is analyzed. For this purpose,

two additional synthetic signals were generated as shown in

Fig. 12(d), (g) together with Fig. 12(a), which corresponds

to the same synthetic signal used previously, further normal-

ized to 1 and corrupted by Poisson noise. From the results

in Fig. 12(b)–(c), (e)–(f), (h)–(i), it can be clearly observed

that the quality of the denoising does depend on the shape

of the signals, which can be expected given the nature of

the adaptive basis used by the proposed approach. However,

the denoising process is efficient for a fairly large interval

around the optimal values. As there is a big overlap in the

acceptable range of values of the hyperparameters for various

signal shape, again this means that the hyperparameters could

be fixed beforehand at a fixed value which can be chosen

independently of the signal.

Finally, Fig. 13 regroups the results for the cropped Lena

image for the three types of noise. The same conclusions can

be drawn as from the results on 1D signals in Fig. 11: as ex-

pected and similar to any other denoising method, the choice

of the hyperparameters does have an impact on the results, and

the optimal range of parameters depend on the noise. How-

ever, even though the acceptable range of parameters seems

smaller than for the 1D signal, there is still a relatively large

parameter region where the denoising is very effective. This

again makes realistic the possibility to set these parameters

beforehand in the algorithm independently from the signal

or image. Additionnally, there is a large overlap between the

optimal parameter ranges for Poisson and speckle noise, with

a marked difference for Gaussian noise. This seems to indi-

cate that the choice of the parameters may differ according

to the broad class to which the noise of interest belongs, an

information that is usually known beforehand in many cases.

B. EFFICIENCY OF THE DENOISING PROCESS

This section presents denoising results on a synthetic signal,

a synthetic image and four standard testing images of size

512 × 512 and 320 × 320 pixels, shown in Fig. 14.

Denoising is an extensively explored research field that

prevents an exhaustive comparison of the proposed approach

to all the existing methods. Moreover, we remind that the
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FIGURE 11. Influence of the hyperparameters �
2/2 m and σ on proposed decomposition performed on the 1D system Fig. 3 in presence of (a,b) Poisson

noise, (c,d) Gaussian noise and (e,f) speckle noise corresponding to a SNR of 15 dB respectively. The hyperparameters are ρ = 1 and s = 110 for each set
of experiment.

most important contribution herein is to investigate a novel

way of decomposing signals or images, which is not meant

to outperform all the denoising algorithms in any scenario.

Five algorithms from the literature were used for comparison

purpose: i) wavelet denoising based on hard and soft thresh-

olding of detail coefficients [1], [2], ii) the variance stabi-

lization transform (VST) relevant for data dependent noise

models [25], iii) an optimization-based approach using the

total variation (TV) semi-norm to regularize the solution [26],

[27], iv) a graph signal processing (GSP) method by con-

structing an optimal graph and corresponding graph Laplacian

regularizer [18], v) a non-local means (NLM) image denoising

method that uses principal component analysis approach [28],

and vi) a dictionary learning (DL) method exploiting sparse

and redundant representations over learned patch-based dic-

tionaries [29]. Note that for all the methods and for all the

simulation scenarios, their hyperparameters were manually

tuned to obtain optimal denoising results in the sense of the

quantitative measurements employed. We used the Matlab im-

plementations available in the Numerical tours website [30].

Three quantitative measurements were used to evaluate

the denoised images: the signal to noise ratio (SNR), the
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FIGURE 12. (a) Sample A, (b,c) influence of the hyperparameters �
2/2 m and σ on proposed method performed on the sample A corrupted with Poisson

noise corresponding to a SNR of 15 dB, (d) sample B, (e,f) influence of the hyperparameters �
2/2 m and σ on proposed method performed on the sample

B corrupted with Poisson noise corresponding to a SNR of 15 dB, (g) sample C, (h,i) influence of the hyperparameters �
2/2 m and σ on proposed method

performed on the sample C corrupted with Poisson noise corresponding to a SNR of 15 dB. The hyperparameters are ρ = 1 and s = 110 for each set of
experiment.

peak signal to noise ratios (PSNR) and the structure simi-

larity (SSIM) [31]. All the quantitative results are regrouped

in Table 2 where the best and the second best values have

been highlighted by red and blue colors respectively for each

dataset. Note that VST is only used for data-dependent noise,

whereas GSP and NLM is used only for Gaussian noise.

Moreover, VST, GSP, NLM, and DL were only tested for im-

ages, as initially suggested by the seminal papers. Illustrative

results for Fruits image (Fig. 14(e)) corrupted by Gaussian

noise, Moon image (Fig. 14(f)) with Poisson noise and Lena

image (Fig. 14(d)) with speckle noise are shown respectively

in Fig. 15, 16 and 17. All these results allow us to draw

some conclusions. First, one may remark that in almost all

the cases, regardless of the noise nature and the image, the

proposed method is one of the two best ones. This proves

its adaptability to different scenarios and general applicability

which can be considered a strong point in number of practical

applications. Second, we may remark that for the synthetic

signal and image, our method outperforms all the others. The

main reason is that the synthetic signal and image were gen-

erated to provide a best case for the proposed decomposition,

that keeps preferentially higher frequencies for low gray levels

and lower frequencies for high gray levels. For such images or

signals, the proposed method is very efficient. On the contrary,

TV and DL, for example, fail in these cases because of the

non piece-wise constant nature of the synthetic data. Finally,

we remark that the proposed denoising algorithm provides

competitive results compared to DL that learns the redundant

dictionary from a database of clean images. Of course the

proposed method does not need such a database. In summary,

the results show that while our method is clearly the best for

some specific types of signals or images for which it is well-

adapted, it is also competitive for general types of images,

being in almost all cases one of the two best methods. This
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FIGURE 13. Influence of the hyperparameters �
2/2 m and σ on proposed decomposition carried out on the 2D Lena image in Fig. 1 in presence of (a,b)

Poisson noise, (c,d) Gaussian noise and (e,f) speckle noise corresponding to a SNR of 15 dB respectively. The hyperparameters are ρ = 1 and s = 600 for
each set of experiment.

FIGURE 14. Signal and images used to compare the proposed denoising method to existing algorithms. The size in number of pixels is indicated for each
considered image.
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FIGURE 15. Result of the denoising algorithm compared with other methods: (a) Clean Fruits image, (b) Image corrupted with Gaussian noise
corresponding to a SNR of 15 dB. Denoising results obtained using, (c) wavelet hard thresholding, (d) wavelet soft thresholding, (e) total variation
regularization, (f) graph signal processing, (g) non-local means, (h) dictionary learning and (i) proposed method. The proposed adaptive transform was
computed with the hyperparameters �

2/2 m = 0.23, σ2
= 7.5, ρ = 2 and s = 560.

FIGURE 16. Result of the denoising algorithm compared with other methods: (a) Clean moon image, (b) Image corrupted with Poisson noise
corresponding to a SNR of 15 dB. Denoising results obtained using, (c) wavelet hard thresholding, (d) wavelet soft thresholding, (e) variance stabilization
transform, (f) total variation regularization, (g) dictionary learning and (h) proposed method. The proposed adaptive transform was computed with the
hyperparameters �

2/2 m = 0.32, σ2
= 2.5, ρ = 1 and s = 520.

FIGURE 17. Result of the denoising algorithm compared with other methods: (a) Clean Lena image, (b) Image corrupted with speckle noise
corresponding to a SNR of 15 dB. Denoising results obtained using, (c) wavelet hard thresholding, (d) wavelet soft thresholding, (e) variance stabilization
transform, (f) total variation regularization, (g) dictionary learning and (h) proposed method. The proposed adaptive transform was computed with the
hyperparameters �

2/2 m = 0.36, σ2
= 1.35, ρ = 2 and s = 600.
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TABLE 2. Quantitative Denoising Results

indicates that the algorithm we propose can be used reliably

for denoising applications in a variety of contexts.

C. APPLICATION TO CBCT DENTAL IMAGE DENOISING

This section illustrates the ability of the proposed method

to denoise real medical images. In particular, the applica-

tion considered in this work for illustration purpose is CBCT

dental imaging. CBCT is a medical imaging modality that

allows tooth visualization with low radiation doses, and is

thus suitable for dental applications. However, the low radi-

ation prevents the current scanners to provide images with

high SNR. In [32], the quality of CBCT dental image within

phantom and in vivo data were evaluated. Fig. 18 shows a

noisy image resulting from that study, as well as the denoised

images with the proposed approach. The region of interest

TABLE 3. Quantitative Results for CBCT Image

in this image is the dark region in the middle of the tooth,

that represents the canal root. The results displayed show

that the method has some practical applications in this field.

For a quantitative analysis the contrast-to-noise ratio (CNR)

computed between the dark region representing the canal root

and the bright region representing the dentine, and the SSIM

values comparing the noisy and the denoised image to the

clean one, are presented in Table 3. They clearly show the

ability of the proposed method to enhance the noisy CBCT

image.
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FIGURE 18. Result of the denoising algorithm for a biomedical image: (a) Clean CBCT dental image, (b) Noisy CBCT dental image, (c) CBCT dental image
after denoising considering the hyperparameters �

2/2 m = 0.5, σ2
= 20, ρ = 1 and s = 3000.

V. CONCLUSION

We investigated in this paper an original approach of con-

structing an adaptive transform in the context of signal and

image processing based on the resolution of a quantum me-

chanical problem. More precisely, the signal or image is used

as the potential in a quantum problem, the resolution of which

gives as eigenvectors the proposed adaptive basis. The basis

vectors automatically use a different range of frequencies to

explore low potential valued regions compare to the regions

corresponding to the high potential values. Therefore, thresh-

olding the coefficients of the signal or image expanded in this

basis will process differently high and low values of the signal

or image. This framework has been illustrated through denois-

ing applications on different signals and images in presence

of Gaussian, Poisson and speckle noise. We have performed

a detailed investigation of the impact of the hyperparameters.

We have also presented a quantitative comparison of the de-

noising efficiency of the proposed adaptive method compared

to state-of-the-art methods on synthetic signals and standard

images. The results of our investigation show that our method

has interesting potential to denoise signals and images, es-

pecially for Poisson and speckle noise to which it is well

adapted; indeed, as a vector in the adaptive basis naturally uses

higher frequencies for low values of the signal compared to

low values, the thresholding process keeps more frequencies

for low values than for high values. Our results show that our

denoising procedure outperforms standard methods in specific

cases, and ranks among the best methods in most cases. In

general, the method should be optimal for signals or images

with large contrasts in presence of Poisson-like noise. Our

study of the hyperparameters shows that they cannot be cho-

sen at random, but that the range of optimality is large enough

to allow to set them beforehand independently of the signal or

image, although the choice may be modified according to the

type of noise present in the application.

The computational time of the eigenvectors of the Hamilto-

nian operator is the major drawback of this method, which

can be tackled by more refined algorithms or by adapting

the patch-based processing to the proposed framework, using

for example the theory of multiple-particle quantum mechan-

ics. It should be also noted that in many applications the

computational efficiency of the algorithm, while important,

is less crucial than the efficiency to denoise the signal or

image considered. Using more complex quantum mechanical

tools, such as the time-dependent Schrodinger equation, i.e.,

the wave functions and the potential change with time, gives

a very fascinating direction for further research. As another

future perspective of this study, it would be very interesting

to extend this framework to three dimensional data or color

images. It could be also extended to other reconstruction ap-

plications available in the literature, such as deconvolution,

super-resolution or compressed sensing.
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