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Quantum Mechanics from

Self-Interaction

David Hestenes

We explore the possibility that zitterbewegung is the key to a complete understanding of
the Dirac theory of electrons. We note that a literal interpretation of the zitterbewegung
implies that the electron is the seat of an oscillating bound electromagnetic field similar to
de Broglie’s pilot wave. This opens up new possibilities for explaining two major features
of quantum mechanics as consequences of an underlying physical mechanism. On this
basis, qualitative explanations are given for electron diffraction, the existence of quantized
radiationless states, the Pauli principle, and other features of quantum mechanics.

1. INTRODUCTION

The theory of electrons is the workshop where quantum mechanics was designed, built,
and tested. It culminates in the Dirac theory, which has survived every experimental test
and produced many of the most precise and surprising predictions of quantum mechanics.
Accordingly, any assessment of quantum mechanics, including its physical interpretation
and any proposed extensions or modifications, should begin with an assessment of the Dirac
theory. Why does the Dirac theory work so well? What are its limitations, and how might
it be extended and improved?

For purposes of our discussion, the Dirac theory is to be understood as a theory of the
electron with electromagnetic interactions. Mathematically, it consists of the Dirac wave
function and its properties, including the Dirac equation and relations to physical variables
such as energy-momentum, spin, and position probability current. Second quantization
will not be regarded here as part of the Dirac theory, though this need not limit us to a
one-particle interpretation of the theory.

As the basis for a satisfactory physical interpretation of quantum mechanics, we need a
complete and coherent interpretation of the Dirac theory. An interpretation is complete if it
provides a physical interpretation for every significant feature of the mathematical theory.
It is coherent if the interpretation for each feature of the theory fits naturally into a unified
interpretation of the whole. In spite of its indisputable mathematical successes, the Dirac
theory is still without a completely satisfactory physical interpretation. In particular, the
so-called zitterbewegung is a distinctive feature of the Dirac theory which continues to be
the subject of conflicting interpretations in the literature.

This article aims to show that a complete and coherent interpretation of the Dirac the-
ory can be achieved by interpreting the zitterbewegung literally as a point particle mo-
tion. The interpretation of the zitterbewegung suggested here is significantly different from
Schroedinger’s, and it has the advantage of providing a coherent interpretation for all the
parameters in the Dirac theory. Moreover, it has implications that have not been previously
discussed. In particular, it implies that the electron is the seat of a fluctuating electromag-
netic field which oscillates with the de Broglie frequency of the electron. Thus, it tells us
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that a kind of electromagnetic wave-particle duality is implicit in the Dirac theory. Of
course, this contradicts the conventional view that wave-particle duality is a property of
matter which is completely independent of the nature of interactions. To show that the
idea of electromagnetic wave-particle duality is not altogether unreasonable, we use it to
provide qualitative explanations for the most distinctive features of quantum mechanics,
from quantization and diffraction to spin and the Pauli principle.

Nothing is free. The price of a complete and coherent explanation of quantum me-
chanics based on the literal zitterbewegung idea is speculation about physical mechanisms
that lie outside of established theory. We see at the beginning of our analysis that if the
szitterbewegung is truly an objective phenomenon, then it almost certainly originates from
electron self-interaction, since it persists in the absence of external fields. Consequently, a
quantitative evaluation of the zitterbewegung idea cannot be achieved without solving the
self-interaction problem.

Lacking that momentous theoretical breakthrough, we must be content with a qualitative
account of the zitterbewegung which has a significant speculative component. This falls
short of a theory which we can believe with much confidence. But it does outline a fairly
definite research program for developing a complete theory, including specific hints about
what is needed to solve the self-interaction problem. The reader will decide whether research
in this direction is worthwhile.

2. THE ZITTERBEWEGUNG

The concept of zitterbewegung (zbw) was introduced by Schroedinger(1) to interpret high-
frequency oscillations in free-particle wave packets of the Dirac theory. These oscillations
with angular frequency 2mc2/h̄ arise from interference between positive and negative energy
components of a wave packet. Schroedinger interpreted the oscillations as fluctuations in
positions of the electron about an average motion. Thus, his work raised the question:
“What objective physical significance can be attributed to the zbw?” Three different answers
can be found in the literature:

A. The zbw is a mathematical artifact of the one-particle Dirac theory which does not
appear in a correctly formulated quantum field theory.

B. The zbw is an erratic motion of the electron due to random electron-positron pair
creation and annihilation.

C. The zbw is a localized helical motion of the electron with an orbital angular momen-
tum which can be identified with the electron spin.

Of course, answer A amounts to a denial that the zbw has any physical significance. It
might be regarded as the majority view among the many practitioners of quantum field
theory who do not mention the zbw. Although this answer is not without problems, it will
not be of interest to discuss the matter here.

Answer B is sometimes offered as an explanation for the interference between positive
and negative energy states.(2) However, no attempt has been made to explain why random
pair creation should produce regular oscillations. Nor does the idea play any role in actual
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applications of the theory.

Arguments in support of answer C have been developed by Huang(3) and, more recently,
by Barut and Bracken.(4) Unfortunately, they do not explain why a helical motion or spin
should depend on interference between positive and negative energy states or why the zbw
should depend on the way a wave packet is constructed.(5) How can the zbw be the origin of
electron spin when it vanishes for plane wave states? For the plane wave functions certainly
describe a particle with spin.

In spite of the inconclusive supporting arguments, answer C is worth serious consider-
ation, because it proposes a physical explanation for electron spin. Surely, if answer C is
correct, then the zbw must be a fundamental property of electron motion. The inconclusive
arguments show that a satisfactory characterization of the zbw cannot be derived from the
Dirac theory as it stands. So if we take the zbw seriously, we must reverse the arguments.
We must assume that the zbw is an objective property of electron motion which underlies
the Dirac theory. To do this we must go beyond the Dirac theory in assigning properties
to characterize the zbw, but we must do it in a way which is consistent with the success of
the Dirac theory.

If the zbw is indeed a fundamental property of electron motion, then it should provide
an interpretation for any electron wave function, plane waves as well as wave packets. We
can arrange this by identifying the oscillatory motion of the zbw with oscillations in the
phase of the Dirac wave function. Although this differs somewhat from Schroedinger’s
original idea, it is not unrelated, for oscillations of the interference terms in a wave packet
are produced by phase oscillations of the component plane waves. This idea will guide our
characterization of the zbw in the next section.

3. PARTICLE PROPERTIES OF THE ELECTRON

Our task now is to construct the simplest conceivable model of the zbw consistent with
the Dirac theory. We need a model which accounts for the electron’s mass, spin, and
periodicity. We begin with the idea that the electron spin is an orbital angular momentum
in some instantaneous inertial system, call it the rest system of the electron. The simplest
realization of this idea is a massless point particle executing circular motion in the rest
system. The radius of the circular orbit will be called the zbw amplitude, while the circular
frequency of the motion is called the zbw frequency. The center of orbit will be called the
zbw center, and the angular position of the electron on the circular orbit will be called the
zbw phase angle.

Agreement with the physical parameters in the Dirac theory can be achieved if we assume
that our model electron has the following properties:

(1) The electron is a massless point particle.

(2) The electron undergoes zbw with an intrinsic orbital angular momentum or spin of
fixed magnitude s = h̄/2.
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(3) The zbw frequency can be identified with the electron de Broglie frequency

ω0 = mc2/h̄ = 7.8 × 1020s−1

(4) The electron has an electric charge e.

(5) The total free electron self-energy is given by

mc2 = E0 + U0

where E0 is the zbw kinetic energy and U0 is the potential energy of self-interaction.

From these properties, a number of other properties can be derived. Since the electron is
massless, it moves with the speed of light c, so property (3) implies that the zbw amplitude
r is equal to the electron Compton wavelength,

r = c/ω0 = h̄/mc = 3.8 × 10−13m

Property (2) implies that s = r(E0/c) = h̄/2; hence, the intrinsic zbw kinetic energy is

E0 = sω0 = mc2/2

Combined with property (4), this implies

U0 = E0 = mc2/2

Therefore, the total self-energy consists of equal parts of kinetic and potential energy.
It is reasonable to consider alterations of the model to see if the entire self-energy mc2

can be identified with the zbw kinetic energy, but this runs afoul of another property of
the electron. Since the electron is charged, the zbw motion generates a magnetic moment
of magnitude

µ = (ec/2πr)(πr2/c) = er/2

This agrees with the result from the Dirac equation,

µ =
e

mc
s =

eh̄

2mc

only if r = h̄/mc, as above. We cannot alter E0 without altering this result. It should
be noted, also, that the sign of the charge determines the relative directions of spin and
magnetic moment, thus providing a physical distinction between the zbw of electrons and
positrons.

We have designed our electron model to give a simple, consistent, and coherent account
of the physical parameters in the Dirac theory, namely, the mass, spin, magnetic moment,
and de Broglie frequency of an electron. We shall employ the model to interpret the Dirac
wave function and quantum mechanics more generally, but first we should consider its
characteristics in more detail.

The model tells us that the world line of an electron in space-time is a helical curve
winding around a timelike line traced out by the zbw center. This zbw centerline is a kind of
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average world line of the electron. The electron’s instantaneous kinetic energy-momentum
vector P is a lightlike vector tangent to the electron world line. If the curvature of the
centerline is not too great, an energy-momentum vector p tangent to the zbw centerline
can be defined by

p = 2〈P 〉ave

where the average is taken over a zbw period. This vector defines an instantaneous rest
frame for the electron. In accordance with our assumptions above, we identify p as the
total self-energy-momentum vector of the electron, and we have p2 = m2c2.

In the absence of external fields, p is constant and the zbw centerline is a straight time-
like line. The zbw persists, however; so if we wish to explain why the electron behaves
so strangely, there appears to be no more likely option than to attribute the zbw to elec-
tromagnetic self-interaction. Thus, we surmise that the electron mass and spin can be
identified with the energy and angular momentum of electromagnetic self-interaction.

This puts the electron self-interaction problem in a new light. It tells us that the self-
energy problem cannot be solved without solving a related self-angular momentum problem.
It suggests that the self-interaction is such that there exist certain stable, nonradiating but
accelerated states of motion; in particular, for a free particle, motion in a circle with
radius of a Compton wavelength—the zbw. The idea that the electron mass is due to
electromagnetic self-interaction has been a favorite of theoreticians since the first theory
of electrons by Lorentz. But it has usually been assumed that the self-energy is entirely
potential energy. On the contrary, the zbw implies that some of the mass, at least, is kinetic
self-energy associated with a spin, and it reconciles the mass with a zero mass of the bare
electron. Indeed, the fact that the electron and muon have the same spin but different
masses suggests that spin rather than mass is the most characteristic feature of zbw and
self-interaction. If this view is on the right track, then the self-interaction problem cannot
be solved with conventional quantum electrodynamics (QED). Rather, QED presupposes
a solution of the self-interaction problem. The self-interaction problem must be solved to
derive the Dirac theory on which QED is based.

The idea that the electron spin arises from a helical world line in spacetime has been
considered before by many people (see Ref. 6 for an extensive account and further refer-
ences). But it has not previously been related to the electron mass and phase to produce
a complete interpretation of the Dirac theory. The idea of deriving electron spin from the
radiative reaction (i.e., self-interaction) has been considered by Browne(7) and Barut.(8)

Unfortunately, the classical arguments they employ cannot produce the properties of spin
and zbw needed to explain the Dirac theory without some profound modifications.

To solve the self-interaction problem and explain the zbw, it will presumably be neces-
sary to begin with a suitable electron equation of motion coupled to electromagnetic field
equations. No attempt to divine such equations will be made here. We only suggest that
any formulation of the zbw should be regarded as a clue to a deeper dynamical theory of
electrons.

In the presence of an external field, the zbw centerline will be curved rather than straight,
but the electron spirals around it just the same. Of course, we would need an equation
of motion to deduce the curvature of the centerline. But, for the purpose of interpreting
the Dirac theory, it is sufficient to take the zbw for granted, as we shall see in the next
section. Then the Dirac equation can be used as the equation of motion. We are not yet
in a position to derive the Dirac equation from a deeper dynamical theory.
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4. INTERPRETATION OF THE DIRAC WAVE FUNCTION

The reader is assumed to be familiar with the standard mathematical formulation of the
Dirac theory.(9) We aim to supply the theory with a physical interpretation by providing a
complete and coherent interpretation of the Dirac wave function in terms of the zbw.

A physical interpretation of the electron wave function Ψ in the Dirac theory is specified
by the following three postulates:

I. The electron is a point particle undergoing zbw, and Ψ̃γ0Ψ = Ψ†Ψ is the probability
density for the position of the zbw center in a given inertial system. Accordingly,
the Dirac current

Jµ = Ψ̃γµΨ

specifies the most probable direction of the zbw centerline at each space-time point.

II. The spin density

sµ =
ih̄

2
Ψ̃γ5γ

µΨ

specifies the most probable direction of the zbw spin at each space-time point.

III. The phase of Ψ at each space-time point specifies the most probable zbw phase of
the electron moving with zbw center at that point.

Postulate I is a slight variant of the Born statistical interpretation of the wave function.
The Dirac equation implies the conservation law ∂µJµ = 0, so Jµ determines a family
of streamlines in space-time and a probability that the electron’s zbw centerline can be
identified with any given streamline. Postulates II and III assign a spin direction and phase
to the zbw at each point on a given streamline, and the Dirac equation implies that spin
and phase vary smoothly along the streamline. Therefore, we may imagine the electron’s
world line as a lightlike spiral of radius h̄/mc about a streamline determined by the Dirac
equation.

The amplitude h̄/mc of zbw fluctuations in position is not specified by the wave function,
but it is determined by the Dirac equation in accordance with our interpretation. Later we
ascribe uncertainty relations and the Lamb shift to these fluctuations.

As a simple example of great importance, consider the interpretation of a polarized plane
wave

Ψ = ue−ip·x/h̄

The Dirac equation implies that p2 = m2c2, and

Jµ = ũγµu = pµ/mc

is a constant vector. Therefore, p can be identified with the electron self-energy-momentum
vector introduced previously. The direction of p is the direction of the zbw centerline in
space-time. The uniform magnitude of Ψ and Jµ means that all timelike lines with the
direction of p are equally probable space-time trajectories for the zbw center. The electron
spin

sµ =
ih̄

2
ũγ5γ

µu
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is a constant vector with magnitude | sµ | = h̄/2 and direction orthogonal to P . Therefore,
the electron has a fixed spin s, whatever its centerline trajectory. The phase of the wave
function at a space-time point x has the value

φ =
p · x

h̄
=

mc2

h̄
τ = ω0τ

where τ is the proper time along a zbw center line, or Dirac streamline if you will. This
agrees exactly with the zbw phase angle introduced earlier. Thus, the zbw provides a
complete interpretation for a polarized plane wave function.

For an arbitrary wave function, the physical interpretation specified by our three postu-
lates is not quite complete. Eight real parameters are required to specify the wave function
Ψ. Four of the parameters determine the Dirac current Jµ, which, in turn, determines their
interpretation. One of these four parameters determines the probability density, while three
parameters determine the direction of the Dirac current. Since sµJµ = 0, only two more
parameters are needed to determine the spin direction. Of course, the phase of the wave
function is itself a single real parameter. Thus, the three postulates specify a physical
interpretation for seven of the eight parameters in Ψ. For plane wave states, the remaining
parameter distinguishes electron and positron states, but its physical significance in general
is difficult to ascertain. This parameter is explicitly identified in the Appendix, where the
wave function is represented in a form which clarifies its physical interpretation.

To complete the physical interpretation of the Dirac theory, we must specify how the
energy-momentum of the electron is related to the wave function in general. We can do this
by adopting the standard prescription identifying ih̄∂µ, as an energy-momentum operator.
To see how this relates to the zbw, consider the equation

ih̄∂tΨ = EΨ

which states that the electron has a definite total energy E in a given inertial system. Note
the operator extracts the energy. This tells us that the zbw has a frequency ω = E/h̄
in the given inertial system. It also tells us that the zbw frequency is determined by the
total energy and not the self-energy alone as in our initial description of the zbw. The
self-interaction determines a minimum electron mass, but the mass is increased by external
interactions. We have seen that the zbw amplitude is inversely proportional to the mass,
and the Dirac theory tells us that the magnitude of the spin is unaffected by external
interactions. Therefore, external interactions will reduce the zbw amplitude, or if you will,
the “size” of the electron. The reduction is relatively small for typical atomic interactions,
but it should contribute to the anomolous magnetic moment of the electron. All this
suggests that the great importance of the operator ih̄∂µ in quantum mechanics derives
from the fact that it relates energy-momentum to the zbw phase and amplitude.
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5. WAVE PROPERTIES OF THE ELECTRON

Our description of the electron has so far ignored the fact that the electron is the seat,
or source if you will, of an electromagnetic field. The field of a point charge executing zbw
differs from the field usually attributed to an electron. The zbw is a circular motion in the
electron’s rest system. This motion produces an oscillating electromagnetic field with the
same frequency as the zbw, about 1021 Hz. The field oscillates about a static average field
obtained by averaging over a period of the zbw. Since the zbw amplitude is so small, to a
good approximation, the time average electric field of an electron is equal to the coulomb
field of a point charge located at the zbw center. We have already determined that the
zbw produces a magnetic moment in agreement with the Dirac theory. Therefore, we can
conclude that the time average magnetic field of the electron is equal to the field of a
magnetic dipole of strength µ = eh̄/2mc located at the zbw center.

The time average electric and magnetic fields produced by the zbw are the fields usually
attributed to an electron. But the zbw implies in addition that the electron is the seat of
a bound electromagnetic field oscillating with the de Broglie frequency and wavelength of
the electron. This oscillating field is a kind of electromagnetic de Broglie wave, so let us
adopt a term of de Broglie’s and call it the pilot wave of the electron. We may think of
the complete electron as a point particle with a pilot wave attached to it. Thus, the zbw
implies a kind of electromagnetic wave particle duality where the electron is both wave and
particle.

Although the pilot wave does not appear in the conventional Dirac theory, we shall
see that it is not only consistent with the Dirac theory but provides us with a physical
mechanism for explaining some of the most mysterious features of quantum mechanics.
The explanatory power of the pilot wave concept is largely due to the fact that the pilot
wave and the Dirac wave function have a critical property in common. At every spacetime
point the phase of an electron’s pilot wave has the same value as the phase of the Dirac wave
function for the electron, subject to suitable initial conditions. This supplies a physical basis
for the smooth phase function that the wave function associates with an electron. It tells
us that some wave properties of the physical pilot wave are represented by wave properties
of the statistical wave function.

A stationary oscillating field like the pilot wave does not appear in classical electrodynam-
ics, because the classical theory implies that an isolated accelerating charge must radiate.
This is not a consequence of Maxwell’s equations, however, but of the classical equations
of motion and the coupling of source to field. These features of the classical theory cannot
be completely correct, because they lead to unsatisfactory results in the self-interaction
problem.(10) Why is the kinetic energy and angular momentum in the zbw not rapidly
radiated away? That is part of the self-interaction problem. If the zbw exists, then the
pilot wave must exist, and the fact that it is a nonradiating oscillatory field bound to the
electron should be regarded as a clue to the solution of the self-interaction problem. This
suggests that the self-interaction is such that there exist certain stable, nonradiating but
accelerated states of motion; in particular, for a free particle, motion in a circle with radius
of a Compton wavelength—the zbw. We shall see that the zbw provides a mechanism for
producing other quantized nonradiating states of motion in external fields.

The foregoing suggests that the difference between classical and quantum electrodynamics
lies not in the properties they attribute to the electromagnetic field but ultimately in the
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treatment of self-interaction. Accordingly, we suppose that the electromagnetic field in
QED is completely described by Maxwell’s equations, just as in the classical theory. We
maintain that quantization of the electromagnetic field is a superfluous feature of QED. As
justification for this position, we shall explain how physical effects commonly attributed to
quantization of the electromagnetic field can be alternatively understood as consequences
of the zbw.

6. INTERPRETATION OF QUANTUM MECHANICS

We have completed our formulation of the zbw and the interpretation of the Dirac theory.
Now we use these ideas to provide qualitative explanations for the most distinctive features
of quantum mechanics. These features are largely mathematical consequences of the Dirac
theory, but explanations based on the zbw call for a dynamical theory operating at a deeper
level.

6.1. Spin-Uncertainty Relations

If we wish to localize a free electron, the zbw implies that the best we can do is confine
it to a circular orbit of radius r = h̄/mc with a fixed center. Therefore, the x-coordinate of
the electron in the orbital plane will fluctuate with a range ∆x = h̄/mc. At the same time,
since the electron travels at the same time, and since the electron travels at the speed of
light with a zeropoint kinetic energy mc2/2, the x-component of its momentum fluctuates
with a range ∆px = mc/2. Thus, we obtain the minimum uncertainty relation

∆x∆px = h̄/2

We now see the uncertainty relations as consequences of a zero-point motion with a fixed
zero-point angular momentum, the spin of the electron. This explains why the limiting
constant h̄/2 in the uncertainty relations is exactly equal to the magnitude of the electron
spin.

6.2. Diffraction

Any coherent interpretation of quantum theory must give a satisfactory account of elec-
tron diffraction. Two major alternative have been proposed in the past: the conven-
tional dualistic interpretation and the particle interpretation espoused by the late Alfred
Landé.(11)

The conventional account is based on the premise that diffraction can only be understood
as the result of wave interference. Accordingly, it is supposed that the electron must be
regarded as a wave when undergoing diffraction. On the other hand, electrons are detected
only as particles in a diffraction pattern. It is claimed that this forces one into the dualistic
view that the electron is neither wave not particle, but manifests itself as one or the other
depending on circumstances. As de Broglie(12) has emphasized, a serious difficulty with
the dualistic account of diffraction is that it uses the wave concept in two different senses.
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The wave undergoing diffraction belongs to a single electron, but the wave manifested in
the observed diffraction pattern is clearly a property of the ensemble of electrons in the
pattern.

Landé contends that difraction can be explained as quantized momentum exchange with-
out regarding the electron as a wave. His view is consistent with the fact that, in modern
many-body theory, diffraction patterns can be calculated from symmetry properties of a
crystal without using the idea of interference. The discrete spectrum of vibrational states
in a crystal is determined by symmetry properties of the crystal wave function, and the
Bragg diffraction formula is determined by the allowed transitions between those states.
Thus, the crystal acting as a unit can exchange only quantized amounts of momentum with
an electron or any other particle or wave it might scatter. A difficulty with Landé’s account
is that it does not explain how a localized electron can induce an extended crystal to act
as a unit.

The zbw provides us with a new way to explain electron diffraction which accounts for
both wave and particle aspects of the phenomena. An electron incident on a crystal is
surrounded by its pilot wave which begins to drive charges in the crystal even before the
electron arrives. The driven charges in the crystal act back on the electron, and momentum
transfer will be greatest at resonances corresponding to transitions to allowed excitations
of the crystal. Thus, the pilot wave provides the mechanism for momentum transfer by
a particle which is missing from Landé’s explanation. To establish this explanation as
completely viable, it will be necessary to derive the Bragg laws and diffraction intensity
patterns by direct application of the pilot wave mechanism rather than indirectly from the
wave equation.

It is of interest to note that de Broglie has argued at length that a satisfactory interpre-
tation of quantum theory cannot be achieved without postulating the existence of physical
“pilot waves” which are distinct from quantum mechanical wave functions.(12) Our pilot
wave differs from his in being specifically electromagnetic and related to the electron spin.
Also de Broglie explained electron diffraction as due to interference of the pilot wave which,
in turn, “guides” the electron to the diffraction pattern. In our explanation the electron
plays a more active role, and it might be better to say that, instead of being guided, the
electron carries the pilot wave with it, although the pilot wave arrives first to announce the
coming electron.

6.3. Universality of Wave-Particle Duality

Diffraction of material particles is a universal phenomenon. The conventional explanation
for this fact is that each material particle possesses a wave property which is completely
independent of its interactions. In contrast, our pilot wave explanation for electron diffrac-
tion is manifestly electromagnetic. A similar explanation for the diffraction of neutrons,
atoms, and molecules obtains only if every material system is the seat of an electromagnetic
pilot wave with de Broglie frequency and wavelength determined by its mass. We shall see
that this is to be expected for atomic systems composed of electrons. We take it as a clue
to the structure of elementary particles like the neutron to be discussed later.
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n = 1 n = 3

n = 2

Fig. 1. Zbw oscillations of a bound electron.

6.4. Stationary Quantized States

The conventional interpretation of the quantum theory does not explain the existence
of stationary quantized atomic states beyond the fact that they correspond to stationary
solutions of the Dirac equation. The zbw interpretation enables us to do better, as it should
if it is correct. It will suffice for us to discuss stationary states of the hydrogen atom with
the nucleus regarded as a point charge.

The stationary states of the hydrogen atom correspond to eigenstates of the energy
operator. Hence, the zbw of a bound electron has a definite frequence ω = E/h̄: the
stationary wave functions are single-valued in space, so the phase of the wave function is
single-valued as well. Since the phase of the wave function corresponds to the phase of the
electron zbw, it follows that in a stationary atomic state the orbital period is an integral
multiple of the electron zbw period, that is, there is a coherence between the zbw and
the orbital motion. This is represented schematically in Fig. 1, showing zbw oscillations
of the “true” electron orbits (dotted lines) about circular orbits of the zbw center for the
first three allowed states. The figure looks just like a representation of de Broglie standing
waves in Bohr orbits for the good reason that it conforms to de Broglie’s original idea that
the stationary orbits are determined by an intrinsic periodicity in the electron motion. Of
course, the representation of the periodicity is different here. The waves in Fig. 1 are to be
interpreted literally as orbits, and the zbw amplitude of oscillation has a definite value on
the order of an electron Compton wavelength.

The association of the single-valuedness of stationary state wave functions with the co-
herence of orbital and zbw motions allows us to explain the former in terms of the latter.
At the same time we wish to explain why stationary atomic states do not radiate. The
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conventional quantum mechanical treatment of the hydrogen atom arbitrarily takes the
electron as a test charge, ignoring its field altogether, so it cannot radiate. This was always
regarded by Schroedinger as a major failing of quantum mechanics.(13) It is true that QED
includes the electron field in perturbative corrections, but that does not account for the
stability of the unperturbed state.

From the beginning of his research on quantum wave equations, Schroedinger sought
to explain the existence of quantized radiationless states as the result of some kind of
resonance. The zbw gives us a mechanism for doing that. The electromagnetic field of
an electron orbiting a nucleus can be separated into two periodic components, the pilot
wave due to its zbw, and the average field due to its orbital motion. We can guess that
the resultant field will be radiationless when these fields are resonant, and we know that
this corresponds to the condition for stationary states, but a proof that such a field will be
radiationless cannot be supplied until the self-interaction problem has been solved. At least
we have a qualitative explanation for the existence of radiationless states. This explanation
also implies that the oscillation of a bound electron produces an oscillating electromagnetic
field which surrounds the atom and has a frequency determined by the energy of the bound
state. This field is the pilot wave of the atom. The long-range tail of this fluctuating field
has been identified with the Van der Waals force.(14)

6.5. The Pauli Principle

In calculating the energy of a many-electron atom the electrostatic and magnetic interac-
tions between electrons are taken into account. But according to our theory these are not
the only interactions, for the zbw of each electron produces an oscillating field as well. The
effect of such fields would certainly be to introduce correlations in the positions and spins of
the electrons, and the allowed combinations of electron orbits would be restricted to those
which produce stable radiationless states. This, in turn, would be reflected in symmetry
properties of the many-electron wave function such as those required by the Pauli principle.
Thus, we have a physical mechanism for explaining the Pauli principle: The Pauli principle
describes symmetry properties of a many-electron configuration which result from stable
resonances of their pilot waves. The symmetries are spin dependent, because the pilot
waves are spin dependent. The Pauli principle works only for like particles, because only
like particles have the identical frequencies needed to produce a resonance. The so-called
exchange force that results from the Pauli principle can thus be understood as physically
real force due to oscillations of the pilot waves. Its origin is therefore basically the same as
that of the Van der Waals force.

6.6. The Lamb Shift and Spontaneous Emission

Many physicists follow Welton(15) in attributing the Lamb shift to fluctuations of the
electromagnetic vacuum field. Welton argues that the effect of the fluctuations is to smear
out the point electron over a region about the size of a Compton wavelength. This produces
a shift in potential energy depending on the average of the potential over the region.

The zbw gives us a different interpretation of the Lamb shift. The potential energy
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assigned to the electron by the Dirac theory is the value at the zbw center. This differs
from the correct potential at the position of the electron by an amount which oscillates
over a Compton wavelength, as indicated in Fig. 1. Thus we attribute the “smearing out”
of the electron over a Compton wavelength to the systematic zbw oscillations rather than
random fluctuations of the vacuum field. Of course, we are speaking here of the main
contribution to the Lamb shift. In addition, a small contribution should come from a shift
in the zbw amplitude, which we have already mentioned as a source of the anomalous
magnetic moment. Of course, we may also expect contributions from many particle effects
such as vacuum polarization.

A number of physicists (in particular, Jaynes,(16) and Barut and Kraus(17)) have argued
that the Lamb shift is due to radiative reaction. That viewpoint is closely related to ours,
since the radiative reaction is a consequence of electromagnetic self-interaction, and we
have suggested that self-interaction is the origin of the zbw. This brings us back again to
the problem of determining a form of the self-interaction consistent with quantum theory.

Besides the Lamb shift, spontaneous emission is commonly attributed to the electromag-
netic vacuum field. The idea is that the fluctuating vacuum field stimulated emission from
excited atomic states. On the other hand, in classical theory the damping of an oscillat-
ing dipole is due to radiative reaction, and the same mechanism can be used to account
for spontaneous emission in quantum theory.(16) Milonni and Smith(18) have shown that in
quantum field theory spontaneous emission can be attributed either to radiative reaction or
to vacuum fluctuations, depending on the ordering of field operators. Barut(19) attributes
spontaneous emission to the zbw.

All this suggests that the electromagnetic vacuum field is an artifice of quantum field
theory which simulates certain effects whose real physical origin is quite different, namely,
the zbw, or the radiative reaction, if you will. This brings the quantization of the electro-
magnetic field into question, since that is what introduces the vacuum field into QED, and
the vacuum field is chiefly responsible for the physical consequences of quantization. The
position taken here is that quantization is something to be explained rather than assumed.
We have seen how pilot waves regarded as classical fields might provide a plausible expla-
nation for quantized atomic states. The existence of quantized states implies quantized
emission and absorption of electromagnetic energy, so no additional quantization of fields
seems necessary. This quantization issue is discussed at greater length in Ref. 14.

7. THE STRUCTURE OF ELEMENTARY PARTICLES

If the zbw is the key to the Dirac theory, then surely it is a key to the structure of
elementary particles. So let us consider, briefly, some of the possibilities opened up by the
zbw concept, though this may look like wild speculation from a conventional perspective.

Let us begin by noting that Asim Barut has mustered a collection of ingenious argu-
ments contending that weak and strong interactions are actually short-range magnetic
interactions.(20) Since electrodynamics also plays a preferred role in our version of the zbw,
it is interesting to speculate on possible connections with Barut’s theory.

We explain the properties of the Dirac electron as consequences of the zbw, which is
presumably due to electromagnetic self-interaction. To go beyond electron theory we must
ask how the same zbw mechanism might explain the existence of other elementary particles.
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There are two natural possibilities.
Considering only geometrical features of the zbw, we note that the world line of the zbw

center is timelike for an electron, and there is one other possibility where the world line
of the zbw center is lightlike. This alternative could only be identified with the neutrino.
Accordingly, we suppose that the world line of a free neutrino is a lightlike helical curve
winding around a lightlike straight line. The wave function for a neutrino can be constructed
in the same way as the wave function for an electron. Thus, the geometry of the zbw
yields exactly two kinds of elementary particles, the electron and the neutrino, and their
antiparticles, which differ only in the “helicity” or “sense” of their helical world lines.

To have a coherent theory, we should certainly require that the neutrino’s zbw arise from
electromagnetic self-interaction just like the electron’s. In fact, the simplest theory would
take the electromagnetic interactions of the neutrino and the electron to be identical, the
two particles differing only by being in different self-interaction states. This would not
necessarily conflict with the fact that the neutrino is a neutral particle. For we have seen
that the Coulomb field of the electron is an average field in the rest frame of the zbw. But
there is no such rest frame for the neutrino. The neutrino does not “stay put” long enough
to produce an average electric field. Perhaps this implies that the neutrino will not “appear”
to be charged. We do not have enough experience with “lightlike charged particles” to say
for sure. At any rate it is clear that the neutrino will have a pilot wave and an average field
something like that of a magnetic moment. This may be what is needed for Barut’s theory.
For Barut explains the weak interactions of the neutrino electromagnetically, by assuming
that the neutrino has a small magnetic moment.

There is another way the zbw might be related to different elementary particle states.
The expression for the zbw radius r = h̄/mc is consistent with the possibility that the elec-
tromagnd proton. He argues that the binding is due to short-range magnetic interactions.
Our zbw model brings the possibility of a new kind of bound state where the helical world
line of one lepton is intertwined with the helical world line of another. For example, if we
follow Barut and consider the π− as a (e−ν) pair bound in this way, then we picture the ν
helix as winding around the e− helix. In other words, the zbw center of the ν follows the
helical e− world line. This kind of bound state must be qualitatively different from atomic
bound states where the zbw orbit of an electron is not penetrated by another particle. Per-
haps this is a key to the qualitative difference between observed strong and electromagnetic
interaction.

The zbw provides a rationale for the electron and neutrino as elementary particles but not
for the proton. On the other hand, there is abundant evidence that the proton is a composite
particle, even though it is stable. With the lepton building blocks we have available, the
combination most likely to produce a proton consists of two positrons and an electron.
At least this combination is consistent with the data from deep inelastic electron-nucleon
scattering experiments as reported by Barut.(20) But why doesn’t the electron annihilate
one of the positrons? Perhaps because the three leptons are bound by an intertwined linking
of their zbw orbits, and this binding is such as to prevent annihilation except under extreme
conditions. This seems no more farfetched that explanations for quark confinement. And
it has the very great advantage of explaining the apparent imbalance between matter and
antimatter in the universe. For it tells us that there is an extra positron buried in every
proton. Therefore, if the Universe is electrically neutral as it appears to be, then it contains
exactly as many positrons as electrons.
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8. CONCLUSIONS

The aim of this article has not been to modify the mathematical structure of the Dirac
theory, but to supply it with a complete and coherent physical interpretation based on the
zbw concept. That aim has been met with reasonable success. But the question remains
whether the zbw is an objectively real phenomenon or just a picturesque metaphor. We
have seen that the zbw is a mechanism with the potential for explaining all the distinctive
characteristics of quantum mechanics. But the qualitative explanations adduced here must
be supported by quantitative calculations before one can be confident of their validity.

Quantitative explorations of the zbw can be carried out at two levels. At the most
superficial level, the zbw and pilot wave concepts would be taken for granted and used
directly in calculations. The most interesting results that might be achieved at this level
would be calculations of diffraction patterns and exchange forces using pilot waves. And if
the zbw idea is correct, one should be able to derive the Dirac equation by supplementing
it with some statistical and dynamical assumptions.

At a deeper level one would seek to formulate a dynamical theory with self-interactions
which produce the zbw. One can hope to achieve this by a suitable generalization of
classical electrodynamics. Our qualitative discussion of pilot waves suggests that quantum
theory differs from classical theory in the kinds of stable electromagnetic waves they admit.
The classical theory admits only free electromagnetic waves representing electromagnetic
radiation, whereas the quantum theory admits also bound (or standing) electromagnetic
waves, the pilot waves attached to every particle. To realize this idea in a viable theory, it
will be necessary to adduce an exact equation of motion for a single electron, including self-
interaction. This will require a solution of the self-interaction problem, which will probably
not be convincing unless it produces a calculation of some fundamental constant like the
fine structure constant or electron mass.

APPENDIX: THE REAL ELECTRON WAVE FUNCTION

In this appendix we discuss a representation of the Dirac wave function which is easier
to interpret physically than the conventional matrix representation. We call it the real
representation to emphasize the fact that it avoids the imaginary numbers employed in
the matrix representation. The matrix formulation was used in our initial discussion of
the interpretation of the wave function, because readers are most likely to be familiar with
it. But the real formulation provides new insights into the structure of the wave function.
Indeed, those insights provided the principal motivation for the developments in this article.
Chief among these insights is the fact that the Dirac theory implicitly relates the unit
imaginary number to the electron spin and so assigns it a physical interpretation. The real
formulation given below makes this fact explicit. In view of the crucial role that complex
numbers play in quantum mechanics, one might expect this fact to have some profound
physical import. The zbw interpretation in this article was developed in an attempt to
divine that import. But the fact remains, and the real representation is important even if
the interpretation is totally wrong.

The real representation of the Dirac wave function was discovered in Ref. 21, and its
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relation to conventional theory has been established in various ways in Refs. 22–24. The
rationale for the representation will only be sketched here. The reader is referred to the
above articles for full mathematical details.

Instead of the conventional Dirac algebra, we employ a real Clifford algebra called space-
time algebra (STA), because it can be interpreted as a mathematical grammar for describing
space-time geometry.(25) A Clifford algebra is simply an associative algebra generated by
the elements of a vector space subject to the rule that the product of any vector with itself
is scalar-valued. STA is the Clifford algebra generated by the vectors of four-dimensional
Minkowski space-time.

With STA, an orthonormal frame of vectors γµ in space-time can be defined by the
equations

γ2
0 = −γ2

1 = −γ2
2 = −γ2

3 = 1 (1)

and
γµγν = −γνγµ (2)

for µ 6= ν and µ, ν = 0, 1, 2, 3. These equations are similar to the well-known equations
defining the Dirac matrices, except that the unit scalar 1 on the right side of (1) must be
replaced by the identity matrix in the Dirac algebra. It follows that STA is isomorphic to
the algebra generated by the Dirac matrices over the real numbers. The reason for replacing
the Dirac algebra by STA in quantum theory is that the matrix representations and the
imaginary scalars in the Dirac theory are totally irrelevant to space-time geometry as well
as to the physical interpretation of electron theory. This is the crucial fact leading to a
graphic interpretation of the electron wave function.

To explain how an electron wave function can be represented with STA, we need a little
nomenclature and notation. A generic element of STA is called a multivector. Since STA is
generated by vectors, every multivector can be expressed as a polynomial in the γµ with real
coefficients. A multivector is said to be even if each nonvanishing term in the polynomial
expansion is a product of an even number of vectors. From a multivector M a “conjugate”
multivector M̃ is obtained by reversing the order of vectors in its polynomial expansion.

If ψ is an even multivector, then we can always write

ψψ̃ = ρeγ5β (3)

where γ5 = γ0γ1γ2γ3 and ρ and β are scalars. If ρ 6= 0, then we can write ψ in the canonical
form

ψ = (ρeγ5β)
1

2 R (4)

where R is a unimodular even multivector in the sense that

RR̃ = 1 (5)

We call R a unimodular spinor if it is associated with a Lorentz transformation by the
equations

eµ = RγµR̃ (6)

These equations describe a Lorentz transformation of the orthonormal vectors γµ into an
orthonormal frame of vectors eµ. In fact, every (proper) Lorentz transformation can be
described in this way.(25) From (4) and (6) it follows that

ψγµψ̃ = ρeµ (7)
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Any even multivector ψ determining a frame of vectors ρeµ in this way may be called a
spinor. This definition is completely equivalent to the usual matrix definition of a Dirac

spinor (except for a proviso when width0ptψψ̃ = 0 which need not concern us here). As
in the matrix representation, the value of ψ is determined by eight real parameters, but
the canonical form (4) specifies a parametrization with geometrical meaning. Two of the
parameters are exhibited explicitly as ρ and β. The remaining six parameters determine
R, or equivalently, the Lorentz transformation (6).

The electron wave function is a spinor-valued function ψ = ψ(x) defined at each space-
time point x. The values of the wave function are determined by the Dirac equation, but we
will be concerned here only with the physical interpretation assigned by the Dirac theory.
The vector field

J = ψγ0ψ̃ = ρe0 (8)

can be identified with the Dirac current. The Dirac current is interpreted as a probability
current. Hence the scalar-valued function ρ = ρ(x) is an invariant probability density, and
the vector field e0 = e0(x) describes the direction of probability flow in space-time. The
vector field

s = 1
2 h̄ψγ3ψ̃ = 1

2 h̄ρe3 (9)

where h̄ is Planck’s constant, can be interpreted as a spin density, so e3 specifies the electron
spin axis. It should be understood that in this context {γµ} is an arbitrarily chosen fixed
frame which need not be associated with an inertial coordinate system. So given {γµ},
the spinor ψ determines four orthogonal vector fields by (7). Only two of these vector
fields, specified by (8) and (9), are identified and given a physical interpretation in the
conventional matrix formulation of the theory.

Equations (8) and (9) for the Dirac current and spin density in terms of the real wave
function ψ are exactly equivalent to the conventional expressions in terms of the matrix
wave function Ψ. The equivalence is expressed explicitly by

Jµ = γµ · J = (γ0ψ̃γµψ)S = Ψ̃γµΨ

and

sµ =
h̄

2
(γ3ψ̃γµψ)S =

ih̄

2
Ψ̃γ5γµΨ

where the subscript S means scalar part, and the γµ in expressions on the right are under-
stood to be matrix representations of the vectors γµ.

Note that the parameter β does not contribute to these physical quantities. Difficulties
in assigning a physical interpretation to β are discussed in Refs. 22 and 23. Reference
23 suggests that β might be explained as the result of constructing a wave function for a
statistical ensemble of electron motions.

It will be noted how perfectly the physical interpretation of the wave function conforms
to the geometrical interpretation. Five of the six parameters determining the Lorentz
transformation (6) are required to determine the velocity and spin vectors e0 and e3. The
remaining parameter is the phase of the wave function. Here we have a new insight, for the
matrix formulation gives us no hint that the phase of the electron wave function is related
to a Lorentz transformation. Moreover, this has bearing on the physical interpretation of
electromagnetic gauge transformations.
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An electromagnetic gauge transformation induces a change in the wave function (4)
described by

ψ → ψ′ = ψeγ2γ1φ = ee2e1φψ (10)

where φ = φ(x) is a scalar-valued “gauge function.” The gauge transformation leaves the
velocity and spin vectors e0 and e3 invariant, but it rotates e1 and e2 through an angle
“about” the spin axis. Thus, a gauge transformation can be interpreted as a rotation in
a spacelike plane at each point. According to (10), either γ2γ1 or e2e1 can be regarded
as the generator of gauge transformations. They share the property of an imaginary unit:
(γ2γ1)

2 = (e1e2)
2 = −1. Indeed, γ1γ2 takes over the role played by the scalar imaginary

unit in the matrix formulation of the Dirac theory. Thus we see that imaginary numbers
in the Dirac theory have a hidden geometrical significance.

Identification of the generator of electromagnetic gauge transformation with the gen-
erator of rotations in a spacelike plane has implications for the Weinberg-Salam model
of electroweak interactions which have been discussed elsewhere.(27) Here we consider a
different possibility.

Since the Dirac current is a conserved vector field, it determines a family of timelike
streamlines to which it is everywhere tangent. Following the evolution of the frame eµ =

RγµR̃ along a streamline, we see that e1 and e2 rotate about the spin axis like the axes of
a rigid body. This perfect analogy with relativistic rigid body motion is developed fully in
Ref. 24. It applies to any solution of the Dirac equation. But it is easy to describe explicitly
only for plane-wave solutions.

The Dirac equation yields exactly two distinct positive energy plane wave solutions for a
particle with a definite proper momentum p and spin polarization e3. They are the electron
plane wave (β = 0)

ψ− = ρ
1

2 R0e
−γ2γ1p·x/h̄ (11)

and the positron plane wave (β = π)

ψ+ = ρ
1

2 iR0e
+γ2γ1p·x/h̄ (12)

For both these solutions ρ and R0 are constant, p2 = m2c2, and

ψ±γ0ψ± = ρR0γ0R̃0 = ρP/mc (13)

ψ±γ3ψ± = ρR0γ3R̃0 = ρe3 (14)

However,

ψ±ψ̃± = ±ρ (15)

and, for k = 1, 2,

ψ±γkψ̃± = ρek = ρek(0)e±e2e12p·x/h̄ (16)

where ek(0) = R0γkR̃0

Equation (13) tells us that the streamlines are straight lines tangent to p. If τ is the
proper time along a streamline, with a suitable choice of origin we can write p · x = mτ
where

ω0 = mc2/h̄ = 7.8 × 1020s−1 (17)
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is the de Broglie frequency along a streamline. Therefore,

dψ±/dτ = ±1
2Ωψ± (18)

and

deµ/dτ = ±Ω · eµ (19)

where

Ω = 2ω0e2e1 = 2ω0R0γ2γ1R̃0 (20)

Equation (19) can be interpreted as the equation of motion for a frame eµ moving along
a streamline and rotating with an angular velocity ±Ω. The rotation is in a fixed plane
characterized by the generator Ω̂ = e2e1, with opposite senses for the electron and positron
cases. The angular frequency of the rotation |Ω | = 2ω0 is twice that of the wave function
itself.

The notion that there is a periodicity of frequency ω0 = mc2/h̄ associated with the
motion of an electron was, of course, one of the original ideas of de Broglie(27) leading to
quantum mechanics. The Dirac equation incorporates this periodicity into the phase of the
wave function. Now, by associating the frequency with a rotation about the spin axis, the
real spinor representation of the wave function reveals a connection between the angular
frequency (or mass) and the spin angular momentum. This fact provided the impetus for
the interpretation of the Dirac theory developed in this article.
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