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Quantum Mechanics Helps in Searching for a Needle in a Haystack
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(Received 4 December 1996)

Quantum mechanics can speed up a range of search applications over unsorted data. For e
imagine a phone directory containingN names arranged in completely random order. To find som
one’s phone number with a probability of 50%, any classical algorithm (whether deterministic or p
bilistic) will need to access the database a minimum of0.5N times. Quantum mechanical systems ca
be in a superposition of states and simultaneously examine multiple names. By properly adjusti
phases of various operations, successful computations reinforce each other while others interfe
domly. As a result, the desired phone number can be obtained in onlyOs

p
N d accesses to the databas
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In 1994 Shor discovered a quantum mechanical al
rithm for factorization that was exponentially faster th
any known classical algorithm [1]. This Letter presen
a quantum mechanical algorithm for search that is o
polynomially faster than any classical algorithm; howev
it does not depend for its impact on the unproven di
culty of the factorization problem. The search problem
this: there is an unsorted database containingN items out
of which just one item satisfies a given condition—th
one item has to be retrieved. Once an item is examin
it is possible to tell whether or not it satisfies the conditi
in one step. However, there does not exist any sorting
the database that would aid its selection. The most e
cient classical algorithm for this is to examine the items
the database one by one. If an item satisfies the requ
condition, stop; if it does not, keep track of this item
that it is not examined again. It is easily seen that t
algorithm will need to examine an average of0.5N items
before finding the desired item.

It is possible for quantum mechanical systems
make interaction-free measurementsby using the duality
properties of photons [2]. In these the presence
absence) of an object can be deduced by allowin
small probability of a photon interacting with the objec
Therefore, most probably the photon will not intera
however, just allowing a small probability of interactio
is enough to make the measurement. Thus in the se
problem also, it might be possible to find the obje
without examining all of the objects, but just by allowin
a certain probability of examining the desired object.

Indeed, this Letter shows that by using the same amo
of hardware as in the classical case, but by having
input and output insuperpositionsof states, we can find
an object inOs

p
N d quantum mechanical stepsinstead

of OsNd classical steps. Eachquantum mechanical ste
consists of an elementary unitary operation (discusse
the following paragraph).

1. Quantum mechanical algorithms.—In a quantum
computer, the logic circuitry and time steps are essenti
classical, only the memorybits that hold the variables ar
0031-9007y97y79(2)y325(4)$10.00
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in quantum superpositions (see [1] and [3] for a more d
tailed introduction to quantum computers). Quantum m
chanical operations that can be carried out in a control
way are unitary operations that act on a small number
bits in each step. The quantum search algorithm of t
Letter is a sequence of such unitary operations on a p
state, followed by a measurement operation. The three
mentary unitary operations needed are the following. Fi
is the creation of a superposition in which the amplitud
of the system being in any of theN basic states of the sys
tem is equal; second is the Walsh-Hadamard transform
tion operation, and third the selective rotation of the phas
of states.

A basic operation in quantum computing is the oper
tion M performed on a single bit that is represented by t
following matrix:

M 
1

p
2

∑
1 1
1 21

∏
,

i.e., a bit in the state 0 is transformed into a superpositi
in the two states:s1y

p
2, 1y

p
2 d. Similarly a bit in

the state 1 is transformed intos1y
p

2, 21y
p

2 d; i.e., the
magnitude of the amplitude in each state is1y

p
2, but

the phaseof the amplitude in the state 1 is inverted. Th
phase does not have an analog in classical probabili
algorithms. It comes about in quantum mechanics sin
the amplitudes are in general complex. In a system
which the states are described byn bits (it hasN  2n

possible states), we can perform the transformationM on
each bit independently in sequence thus changing the s
of the system. The state transition matrix representi
this operation will be of dimension2n 3 2n. In case
the initial configuration was the configuration with alln
bits in the first state, the resultant configuration will hav
an identical amplitude of22ny2 in each of the2n states.
This is a way of creating a superposition with the sam
amplitude in all2n states.

Next consider the case when the starting state is ano
one of the2n states, i.e., a state described by ann bit binary
string with some 0s and some 1s. The result of performi
© 1997 The American Physical Society 325
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that
the transformationM on each bit will be a superpositio
of states described by all possiblen bit binary strings with
amplitude of each state having a magnitude equal to22ny2

and sign either1 or 2. To deduce the sign, observe th
from the definition of the matrixM, i.e.,

M 
1

p
2

∑
1 1
1 21

∏
,

the phase of the resulting configuration is changed w
a bit that was previously a 1 remains a 1 after the tra
formation is performed. Hence ifx be the n-bit bi-
nary string describing the starting state andy the n-bit
binary string describing the resulting string, the sign of t
amplitude ofy is determined by the parity of the bitwis
dot product ofx andy, i.e., s21dx?y. This transformation
is referred to as the Walsh-Hadamard transformationswd
[4]. This operation (or a closely related operation cal
the Fourier Transformation) is one of the things that ma
quantum mechanical algorithms more powerful than cl
sical algorithms and forms the basis for most signific
quantum mechanical algorithms.

The third transformation that we will need is th
selective rotation of the phase of the amplitude in cert
states. The transformation describing this for a 2-st
system is of the form"

ejf1 0
0 ejf2

#
,

where j 
p

21 and f1, f2 are arbitrary real numbers
Note that, unlike the Walsh-Hadamard transformation a
other state transition matrices, the probability in each s
stays the same since the square of the absolute value o
amplitude in each state stays the same.

2. The abstracted problem.—Let a system haveN 
2n states which are labeledS1, S2, . . . SN . These2n states
are represented asn bit strings. Let there be a uniqu
state, saySy, that satisfies the conditionCsSyd  1,
whereas for all other statesS, CsSd  0 [assume that for
any stateS, the conditionCsSd can be evaluated in uni
time]. The problem is to identify the stateSy.

This could represent a database search problem w
the function CsSd is based on the contents of memo
location corresponding to stateS (as discussed in the
abstract). Alternatively it could represent a proble
where the functionCsSd was being evaluated by th
computer. Various important computer science proble
can be represented in this form [3,5,6].

3. Algorithm.—Steps (i) and (ii) are a sequence
elementary unitary operations of the type discussed
Sec. 1. Step (iii) is the finalmeasurementby an external
system.

(i) Initialize the system to the superpositio
s1y

p
N , 1y

p
N , 1y

p
N , . . . 1y

p
N d; i.e., there is the

same amplitude to be in each of theN states. This super
position can be obtained inOslogNd steps, as discusse
in Sec. 1.
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(ii) Repeat the following unitary operationsOs
p

N d
times (the precise number of repetitions is important
discussed in [5]).

(ii)-(a) Let the system be in any stateS:

In caseCsSd  1, rotate the phase byp radians;

In caseCsSd  0, leave the system unaltered.

(ii)-(b) Apply the diffusion transformD which is
defined by the matrixD as follows:

Dij 
2
N

if i fi j and Dii  21 1
2
N

.

(D can be implemented as a product of 3 elementa
matrices as discussed in Sec. 5).

(iii) Measure the resulting state. This will be th
stateSy [i.e., the desired state that satisfies the conditi
CsSyd  1] with a probability of at least 0.5.

Note that step (ii)-(a) is a phase rotation of th
type discussed in the last paragraph of Sec. 1. In
implementation it would involve a portion of the quantum
system sensing the state and then deciding whether or
to rotate the phase. It would do it in a way so that n
trace of the state of the system be left after this operat
so as to ensure that paths leading to the same final s
were indistinguishable and could interfere. Reference
gives a way of doing this with a single quantum quer
Note that this doesnot involve a classical measurement.

4. Convergence.—The loop in step (ii) above is the
heart of the algorithm. Each iteration of this loo
increases the amplitude in the desired state byOs1y

p
N d,

as a result inOs
p

N d repetitions of the loop, the amplitude
and hence the probability in the desired state rea
Os1d. In order to see that the amplitude increases
Os1y

p
N d in each repetition, we first show that th

diffusion transform,D, can be interpreted as aninversion
about averageoperation. Just a simple inversion is
phase rotation operation, and by the discussion in
last paragraph of Sec. 1 is unitary. In the followin
discussion we show that theinversion about average
operation (defined more precisely below) is also a unita
operation and is equivalent to the diffusion transformD
as used in step (ii)-(a) of the algorithm.

Let a denote the average amplitude over all state
i.e., if ai be the amplitude in theith state, then the
average is1

N

PN
i1 ai. As a result of the operationD,

the amplitude in each state increases (decreases) so
after this operation it is as much below (above)a, as it
was above (below)a before the operation (see Fig. 1).

The diffusion transform,D, is defined as follows:

Dij 
2
N

, if i fi j andDii  21 1
2
N

.

Observe thatD can be represented in the formD ;
2I 1 2P, where I is the identity matrix andP is
a projection matrix withPij  1yN for all i, j. The
following two properties ofP are easily verified: first,



VOLUME 79, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 14 JULY 1997

,
r

o

a
t

r

a
s
th

nd
ed

y
e

n
r

d

te

in
n
r
n

ix

ix
e

ly
l

t

er
se
FIG. 1. Inversion about averageoperation.

that P2  P, and second, thatP acting on any vectory
gives a vector each of whose components is equal to
average of all components.

In order to see thatD is the inversion about average
consider what happens whenD acts on an arbitrary vecto
y. ExpressingD as2I 1 2P, it follows that:

Dy  s2I 1 2Pd y  2y 1 2Py .

By the discussion above, each component of the vectorPy

is A whereA is the average of all components of the vect
y. Therefore, theith component of the vectorDy is given
by s2yi 1 2Ad which can be written asfA 1 sA 2 yidg,
which is precisely theinversion about average.

Next consider the situation in Fig. 2, when this oper
tion is applied to a vector with each of the componen
except one, having an amplitude equal toCy

p
N whereC

lies between1
2 and 1; the one component that is diffe

ent has an amplitude of2
p

1 2 C2. The averageA of
all components is approximately equal toCy

p
N . Since

each of thesN 2 1d components is approximately equ
to the average, they do not change significantly as a re
of the inversion about average. The one component
was negative now becomes positive and its magnitude
creases by2Cy

p
N .

FIG. 2. Inversion about averageoperation is applied to a
superposition where all but one of the components are initia
identical and of magnitudeOs1y

p
N d; one component is

initially negative.
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In the loop of step (ii) of Sec. 3, first the amplitude in
a selected state is inverted (this is a phase rotation a
hence a valid quantum mechanical operation as discuss
in the last paragraph of Sec. 1. Then theinversion
about averageoperation is carried out. This increases
the amplitude in the selected state in each iteration b
2Cy

p
N . Therefore, as long as the magnitude of th

amplitude in the single state, i.e.,
p

1 2 C2, is less
than 1y

p
2, the increase in its magnitude is greater tha

1y
p

2N. It immediately follows that there exists a numbe
M less than

p
N , such that inM repetitions of the loop in

step (ii), the magnitude of the amplitude in the desire
state will exceed1y

p
2. Therefore, if the state of the

system is now measured, it will be in the desired sta
with a probability greater than 0.5.

5. Implementation.—As mentioned in Sec. 1, quantum
mechanical operations which can be implemented
terms of elementary unitary operations are local transitio
matrices, i.e., matrices in which only a constant numbe
of elements in each column are nonzero. The diffusio
transformD is defined in step (ii)-(b) of the algorithm as

Dij 
2
N

, if i fi j andDii  21 1
2
N

.

D, as presented above, is not a local transition matr
since there are transitions from each state to allN
states. Using the Walsh-Hadamard transformation matr
(Sec. 1),D can be implemented as a product of thre
local unitary transformations asD  WRW , whereR is
the phase rotation matrix andW the Walsh-Hadamard
transform matrix are defined as follows:

Rij  0 if i fi j; Rii  1 if i  0 ;

Rii  21 if i fi 0 .

Wij  22ny2s21di?j, i is the binary representation ofi,
andi ? j denotes the bitwise dot product of the twon bit
stringsi andj.

Each of W and R is a local transition matrix.R as
defined above is a phase rotation matrix and is clear
local. W , when implemented as in Sec. 1, is a loca
transition matrix on each bit.

We evaluateWRW and show that it is indeed equal
to D. R can be written asR  R1 1 R2, whereR1 
2I, I is the identity matrix, andR2,00  2, R2,ij  0
if i fi 0, j fi 0. By observing thatMM  I where M
is the matrix defined in Sec. 1, it is easily proved tha
WW  I and henceD1  WR1W  2I. We next evalu-
ate D2  WR2W . By standard matrix multiplication:
D2,ad 

P
bc WabR2,bcWcd. Using the definition ofR2

and the factN  2n, it follows thatD2,ad  2Wa0W0d 
2
2n s21da?010?d 

2
N . Thus all elements of the matrixD2

equal 2
N , the sum of the two matricesD1 andD2 givesD.

The quantum search algorithm of this Letter is likely
to be simpler to implement as compared to many oth
known quantum mechanical algorithms. This is becau
327
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the only operations required are the Walsh-Hadama
transform and the conditional phase shift operation, bo
of which are relatively easy as compared to operatio
required for other quantum mechanical algorithms [7
Also, quantum mechanical algorithms based on the Wal
Hadamard transform (e.g., the search algorithm of this p
per [4,8,9]) are likely to be much simpler to implement tha
those based on the “large scale Fourier transform” [1,7]
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