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The quantum mechanics on the hypersurface VN - 1 embedded in Euclidean space RN is examined. 
The quantization is done in accordance with Dirac method, and as a result some additional term 
proportional to 1'12 appears in the potential energy. This term has the information of exterior to the 
hypersurface; thus, the quantum mechanics in Riemann space without any kind of exterior world is 
different from quantum mechanics on hypersurface embedded in Euclidean space. 

§ 1. Introduction 

The quantum mechanics in curved space has been examined about the ordering 
problem for a long time. Many authors have considered this problem in the frame­
work of the canonical quantizationl

) and the path-integral method.Z
) In the present 

paper, we introduce the curved space as a hypersurface (H.S.) in higher dimensional 
Euclidean space and consider a particle motion ~n H.S., which means that we consider 
the motion with constraint. 

In classical mechanics there is no difference between the equation of motion on 
H.S. and that in curved space,· while in quantum mechanics we show that the 
Hamiltonian H=Pap a/2+ V(X) with some constraints is different from K + V(x(q)) 
(K is covariant kinetic operator on H.S.) and there appears an additional term which 
is not expressed only in terms of quantities on H.S. Due to Pap a/2 term in H and the 
structure of the commutator [Pa, Pb ], we have substantially no ordering problem. 
These considerations teach us that the two approaches of treating curved space are 
essentially different quantum-mechanically. After giving the general formulation, 
the meaning of the additional term is discussed. 

§ 2. Classical mechanics on hypersurface 

Consider N dimensional Euclidean space; RN , a point which is specified by a set 
of Cartesian coordinates; {Xl, Xz, "', Xa, "', XN}. Further consider in RN the N -.1-
dimensional H.S., VN- I subject to the equation I(XI, Xz, "', XN)=O. Let us examine 
the motion ofa.particle on this H.S. with potential Vex). Then we write Lagrangian 
for this particle as 

(2·1) 

here, the metric is' Gab; A is a variable which is independent of x a (a; 1, 2, "', N); the dot 
denotes the time derivative. The canonical momenta conjugate to x a and A are 
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. Pa=dL/dj;a= j;a , 

P;.=dL/dA;:::;o. 

(2·2a) 

(2·2b) 

The second equation means the primary 
constraint. Now, we will treat this con­
straint system in accordance with Dirac 
method. This is done in Appendix A, 
and as the result we have 

Hamiltonian: H=Pap a/2+ V(x) , 
(2·3) 

N dimensional 
Euclidean space 

895 

Brackets: {x a, Pb}D=Oab- nanb, hypersurface VN- 1 

(2·4a) 

{x a, Xb}v=O, (2·4b) 

{Pa, Pb}D=pC(nbdcna-nadcnb) , 

Constraints: f(x)=O, 

padal(X) =0 . 

Fig. L 

Here, na=na is the unit vector normal to H.S., which is defined as 

df(x)/dXa 

Then we obtain equation of motion from the Hamilto~ equation 

:ra+(nadCnb)j; bj;C=(nand_ Oad). dV(X)/dXd 

(2·4c) 

(2·5a) 

(2·5b) 

(2·6) 

(2·7) 

with constraints (2·5). This equation is identical with Euler-Lagrange equation 
derived from (2 ·1), which is given in Appendix A. 

Next we consider the general coordinate transformation in N-dimensional 
Euclidean space. 

x a --4 qp. 

a:1~N ,lL:0~N-1 
(2·8) 

Taking such a special coordinate frame that the qi's are the coordinates on H.S. and 
qO is the coordinate normal to H.S., we have the relations 

f(x)=O ~ qO=constant, 

j; a.dal(X) =0 ~ j;adaqo= qO=O. 

Here we take the constant qO to be equal to zero without any loss of generality. Now, 
instead of (2·5) we have the constraints to the particle motion on H.S. as 

(2·9) 

dqi is now a tangential vector on H.S., and dqo is the normal vector. The metric for 
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896 N. Ogawa, K. Fujii and A. Kobushukin 

.!' 
qO coordinate normal 'to H.S. 

7 
qO = const = 0 

hypersurface VN-1 

Fig. 2, 

[gp.))] = [ .... [t~.1·,······~······l 
o i gij 

Here, 

and 

dqP. is generally given by 

ds2='2]dxadxa=dxadxa=gp.))dqP.dq)) , 
a 

(2'10) 

where the metric is 

(2'11) 

giO=gOi=O means that dqo is normal to 
H.S. 

The inverse of gp.)) can be written as 

(2'12) 

(2 ·13) 

Under a general coordinate transformation, n a is transformed into nP. as, 

In our coordinate frame, we obtain from (2'6) 

n - ",0 (n )l!2 p.-u p. ,,00 . 

(2·14a) 

(2·14b) 

(2'15a) 

(2·15b) 

When the present transformation is performed to Eqs. (2· 3) ~ (2· 7), we obtain the 
equations written in terms of the qp.,s as follows: 

Constraints: 

Here we have 'used th.e definition V(x)= V(x(q»=v(q). 

(2'16a) 

(2·16b) 

(2·16c) 

The above equations mean that there is no motion in the normal direction to 
H.S. and the ~quation of motion is quite the same as Euler-Lagrange equation obtained 
from Lagrangian L=1/2· gijq i q j-v(q). This implies that classically we have the 
same equation of motion in a curved space as well as on a H.S. In terms of the 
q-variables, the set of relations in Hamilton formalism becomes as follows: 
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{qi, pj}v=Oij , 

{qi, qj}D=O , 

{Pi, pj}v=O, 

here we have used the transformation for PI' from Pa as 

and the property of Dirac bracket, 

897 

(2-17) 

(2-18a) 

(2-18b) 

(2-18c) 

(2-19) 

As we have shown in (2-19), in classical mechanics we could completely eliminate 
the degree of freedom in the direction normal to H.S. While, in quantum theory, it 
is not a trivial problem because of existence of the uncertainty principle. Naively 
speaking, if we take Llqo tend to 0, Llpo goes to infinity, which means Hamiltonian 
involves a divergent term; furthermore, the surface qO=O is not a plane generally, 
which makes the consideration more complicated. We will discuss this problem in 
the next section. 

§ 3_ Quantum mechanical treatment 

Our classical system under consideration is defined by the set of equations; (2-3) 
~(2-5). Now we proceed to consider the quantization problem through the replace­
ment as usual, that is, 

But now, instead of Poisson bracket we have the Dirac bracket, which satisfies the 
Jacobi Identity and the same algebraic relations as Poisson bracket. So, we take the 
quantization rule, according to Dirac's prescription, as 

(3-1) 

Then we have the ordering problem on the right-hand side of (2-4c), and the left-hand 
side of (2-5b). By requiring hermiticity, we symmetrize them as 

. Pana=O---?{Pa, na}=O, 

pC(nbJcna- naJcnb) ---?{PC, (nbJcna- naJcnb)} , 

where . 

{A, B}=1/2-(AB+ BA) . 

(3-2a) 

(3 -2b) 

. These are the most important hypotheses when we consider the ordering problem. It 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/83/5/894/1875237 by guest on 20 August 2022
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should be stressed, however, that the symmetrized form (3-2b) is almost unique since 
this is rewritten in another symmetrized form, e.g., 

{nb, {PC, Jcna}}-{na, {PC, JCnb}} 

in so far as [pC, JcnaJ is a function of the xa,s. Then instead of (2'3)~(2'5) we obtain 
the following set of quantum-mechanical relations in Hamilton formalism: 

Hamiltonian: H=1/2·papa+ V(x) , (3·3) 

Commutators: [x a, Pb]=in(8ab- nanb) , (3'4) 

[x a, xb]=O, (3'5) 

[Pa, Pb] = in {PC, (nbJcna-naJcnb)} , (3'6) 

Constraints: f(x)=O, (3'7) 

{Pa, na}=o. (3·8) 

Equation (3'8) is the quantum mechanical expression representing the momentum in 
the normal direction vanishes. Let us consider this problem on the uncertainty 
principle. By multiplying nb on the both sides of (3'4), we obtain [x a, {Pb, nb}]=O, 
which means the momentum in the normal direction commutes with all xa,s; therefore 
there works no uncertainty principle in this direction. This is owing to the structure 
of the Dirac bracket (3'4). 

Now we will transform {xa} into the general coordinates {qp} as we have done in 
(2'8). Here we use the following hypothesis and definition: 

and the momentum in the general coordinate 

pp={eap, Pal , 

(3'9) 

(3·10) 

where eap=Jxa/Jqp is the vielbein. By using Pa=i;a, the constraints f(x)=O and 
{pa, na}=O lead to (2·9) again, i.e., 

(3·n) 

here we have used the definition of naG.e., (2'6», (3'4) and (3·9). Hamiltonian and 
commutation relations for PI', qV are obtained from (3'3)~(3'6) by using (3·9) and 
(3'10). This is done in Appendix B, the results of which are 

(3'12) 

(3·13) 

(3·14) 

where g is the determinant of gij which is the metric on· H.S. The first term of 
Hamiltonian is the kinetic operator which is form invariant under general coon:linate 
transformation on the curved manifold and corresponds to Laplace Beltrami opera­
tor. The last term of Hamiltonian is including the index "0", which means that this 
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term appears only when VN-l is treated as a hypersurface embedded in R N • This 
term is rewritten in the form as 

(3·15) 

Here we must note that we cannot take Ll V =0 by using constraint (3 ·14). Because, 
constraint (3 '14) should be only used when we construct the equation of motion from 
the Hamiltonian, but not in constructing the Hamiltonian itself. Then the meaning 
of Eq. (3'15) is to take qO=O after the derivative of qO. The interpretation of LlV will 
be discussed in the next section. 

§ 4. Interpretation of the additional term 

The additional term in Hamiltonian is expressed in terms of the quantities such 
as gOO and oogij which do not exist when we consider the curved· space from the 
beginning. Through the following consideration, we can recognize this term cannot 
be written in terms of quantities on VN-l. The only equation which requires the 
relations between {gOO, oogij} and {gij, Okgij, OkO[g;;} is the vanishing of the total curva­
ture tensor, i.e., 

(4 '1) 

which implies the physical system lies totally in Euclidean space. By using the 
symmetrical property, Eq. (4 ·1) is decomposed into the three-type equations: 

These are written by using the new type tensor bij in the following forms: 

[7kbij-[7jb ik =O, 

oobij+ (goo)1!2gkmbikbjm =[7j[Oi(goO)1/2] , 

where the definition of bij is 

bij= _1/Z·(gOO)1!2. oogij; 

[7j is the covariant derivative on the H.S. stich as 

(4'Za) 

(4·Zb) 

(4' Zc) 

(4·3) 

(4'4) 

(4'5) 

(4'6) 

Rmijk is the curvature tensor on the H.S. which is of course expressed by using only 
{gjk, Oigjk, OiOmgjk}. bjk is a tensor only on the H.S. and is not expressed by using only 
the quantities on the H.s. such as {gjk, Oigjk, OiOmgjk} since our tools are only (4·3) and 
(4 '4).3),4) 

It may be worthwhile to note that our LlV is rewritten as 

(4'7) 
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By utilizing (4-3), LlV is reexpressed as 

LlV =n}/S-[gmjgikbubmk]-n} /S- R 

with 

R = gmj gik bubmk - (bugU )2 . 

(4-S) 

The existence of LI V which is written in terms of bu shows the difference between 
the ordinary curved space and the H.S. embedded in Euclidean space. Because bu 
includes informations about space structures exterior to our curved space (HS), the 
above statement means bu app~ars only when we consider the embedded curved 
space. Let us consider the meaning of LlV. From Eq. (3-12) we obtain 

LlV=n2/S-[(gOO)1/2n~F=1/S-I[Pa, na]12. 

The last equality is seen to hold by noting 

[Pa, na]=[Pa, xd]-8dna=-in(8ad-nand)-8dna 

= - inePa -8(eavnV )/8qP= - in(gOO)1/2n~. 

Further by using 

[Pa, na]=[{eia, Pi}, na]=eia[Pi, na] , 

LI V is rewritten as 

LlV=l/S-leia-[Pi, na]12 

=n2/S-{e ia-8na/8qiJ2 . 

(4-9) 

(4-10) 

(4-11) 

(4 -12) 

The last equality can be also obtained from (4-7) by utilizing Weingarten equation.4
) 

Pi is the momentum which· is tangential to H.S., and n a is the normal unit vector 
satisfying na_eia=O. When the H.S. is curved, 8na exists for 8qi =1= 0, and 8na-e ia 
=(8nY does not vanish; in other words, particle fluctuation on H.S. causes a fluctua­
tion of the normal unit vector na, leading to LlV. 

§ 5_ Conclusion 

We have investigated the quantum mechanical treatment of a particle motion in 
a curved space VN - 1 embedded in a Euclidean space R N , and have pointed out that in 
the Hamiltonian there appears LI V in addition to the covariant kinetic term on H.S. 
VN-1. This LlV is caused by the geometrical structure of the embedding, and may 
affect the particle motion on H.S. VN-l. The same LlV is also obtained without 
employing explicitly the coordinate qO, which is explained in another paper.5

) It is 
worthwhile to remark that we can also derive the commutation relations among the xa,s 
and the Pa'S (3-4)~(3-6), and the same Hamiltonian along the quantization procedure 
of nonlinear theory given in Ref. 1), which is explained shortly as follows: Employing 
j;a={8xa/8qj, {Ji} and Ansatz: [qj, qk]=inJik(q), we have 

L=1/2- j;aj;a- V(x)=1/2- q igi/ q) qj+function of (q), 

gjk=L:.eajeak, ea/q)=8xa/8qj with eja=gjk- eak. 
a 
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Thus the momentum conjugate to qj is given by pj={gij, qk}. Then require the 
canonical commutation relations: 

The momentum Pa= Xa is given by Pa={eaj, {Pk, gkj}}={eja, pJ. Using the canonical 
commutation relations among the qj's and the P/s, and introducing the coordinate 
qO as qO= f(x)=O, with qO={3qo /3xa, Pa}=O, we obtain the desired relations and 
also the same Hamiltonian. 

The total kinetic energy x a X a/ 2 can be divided into three parts such as the kinetic 
energy on H.S., the kinetic energy on a normal direction and the quantum mechanical 
fluctuation parts. Through the embedding procedure we can eliminate the second 
one as well as the quantum fluctuation along the normal direction, but not the 
quantum fluctuation of the normal unit vector itself. Thus, Ll V is interpreted as the 
quantum fluctuation energy of the normal unit vector, as noted in the last paragraph 
in § 4. Though we can give a physical interpretation of LlV as mentioned above, the 
existence of LlV makes us somewhat confused. This is because, due to LlV, the 
motion of a particle on a hypersurface depends on the geometrical structure of the 
space exterior to that hypersurface. Thus, it might possibly be said that our embed­
ding procedure is not perfect. If it is so, we must improve the constraint dynamics in 
a quantum mechanical version to make such a term vanish. On the other hand, it 
may be possible to take a viewpoint that our procedure of quantization gives a way 
of choosing a quantum system among possible ones which correspond to the same 
classical dynamical system. Then, we have to check the physical effect of LlV in 
some real physical model. It is a future task to clarify these problems mentioned 
above. 
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Appendix A 

We consider the problem with 

Hamiltonian: 

Primary constraint: PA ~ ° . 
To obtain all the constraints, our new hamiltonian is 

here, u is a multiplier. Consistency conditions are 

(A'l) 

(A·2) 

(A·3) 
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902 N. Ogawa, K. Fujii and A. Kobushukin 

FA={PA, HT}p= f(x);::::;O, 

FA={f(X), HT}p=pa·of(x)/oxa;::::;O, 

P}3)={pa·of/oxa, HT}P 

~papbOaObf(x)-(Ob V(x)- .-1obf(x))· obf(x);::::;O . 

P}4) determines U, and the procedure is over. All the constraints are as follows: 

fP2~ f(x);::::;O, 

fP3 = Df(x);::::; 0 , 

fP4=D2f(x)-ObfP·Obf(x);::::;0; 

here, D=paoa, fP= V(x)-A/(x). 

(A·4a) 

(A·4b) 

(A ·4c) 

(A·4d) 

These constraints are all belonging to the second class and we can construct a Dirac 
bracket as 

here, Llkl is defined as 

Llkl ={ fPk, fPlh . 

Then we obtain the matrices Llkl and Ll;l as 

(

0 0 0 -a) 
(Llkl )= 0 0 a -/3 , 

o -a 0 -y 

a /3 y 0 

-y/a2 

o 
l/a 
o 

/3/a2 

-l/a 
o 
o 

here, a= oaf· oaf; /3= - paOaa; y is the complicated function of f and fP, which does not 
appear in the final result, so we do not write here its explicit form. In the Dirac 
bracket, constraint is automatically satisfied; therefore we do not have to calculate all 
the Dirac brackets. Nontrivial brackets are calculated by using the above matrices, 
the results of which are 

{x a, Xb}D=O , 

{Pa, Pb}D=nbDna- naDnb=pC(nboCna- naoCnb);· 

{x a, .-1}o=2(f7f)-2(nanb-o/)Dobf, 

{Pa, .-1}o=some function of {f, f7f, fP}. 

(A·5a) 

(A·5b) 

(A ·5c) 

(A·6a) 

(A·6b) 

Other brackets vanish. Now our equation of motion is defined with Hamiltonian 
(A·3), the constraints (A·4) and the brackets (A·5) and (A·6). Then, the constraints 
(A ·4) are treated as strong equations, and our Hamiltonian becomes 
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which does not include variable;\ .. The necessary constraints are only two: 

/(x)=O, 

and necessary brackets are (A '5) only. These are the complete set of Hamilton 
formalism. Hamilton equation gives 

.i;a={xa, H}D=pb(oab- nanb) , 

Fa={Pa, H}D=pbPC(nboCna- naOCnb)+(nand- Oda)Od Vex) 

with the constraint Pana=O; these equations lead to 

£a+(naoCnb).i; b.i; c=(nand- oad)· oV(x) /oxd , 

/(x)=O, .i;a·na=O. 

and are also obtained from Euler-Lagrange equation as follows: 
For 

L=1/2· .i;a.i;a- V(x)+M(x) , 

ox[L]=O gives £a=-oV(x)/oxa+;\o/(x)/oxa ; 

o,\[L] =0 gIves /(x)=O. 

(A'7a) 

(A·7b) 

(A ·Sa) 

(A·Sb) 

The second equation should be satisfied at all times. Then we have j (x)=O, i.e., 

o/(x)/oxa . .i;a=o. 

Multiply .i;a on both sides of (A·Sa) and, using (A·9), we have 

d(1/2' .i;a.i;a+ V(x))/dt=O. 

Thus, we obtain the total conserved energy as 

The second time derivative of /(x)=O gives 

oaod(x)· .i;a.i;b+ Oa/(X)' £a=o. 

(A·9) 

(A ·10) 

(A·n) 

Introducing (A· Sa) to (A ·n), we obtain the equation determining ;\, which coincides 
with (1)4=0. Then /(x)=O is trivial, and it is not necessary to take time derivative 
any more. Introducing the definition of;\ into (A·Sa) and by using (A'9), we obtain 
(A ·7a) again. 

Appendix B 

We start from Euclidean space 

Hamiltonian: H=1/2·papa+ V(x) , 

Constraints: /(x)=O, 

{Pa, na}=O, 

(B'l) 

(B·2a) 

(B'2b) 
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[xa, Pb]=i1i(8ab-nanb) , 

[x a, xb]=O, 

[Ea, Pb]=i1i{PC, (nboCna-naOCnb)} , 

and consider the general coordinate transformation 

X a -------> q I-' 

a:l ~ N· fL:O~ N-l 

Suppose 

Define 

d/(x)/dt={j;a, oa!(x)}. 

(B·3a) 

(B'3b) 

(B·3c) 

(B·4) 

which is consistent with Pa={el-'a,pl-'}. Here eal-' and el-'a are vielbeins. Then we 
obtain from (B·3b) 

and [x a
, Pb ] can be rewritten as 

which should be equal to i1i el-'beav{8VI-'-nl-'n V
} by (B·3a). Then we obtain 

[qV, PI-'] = i1i(8VI-'- nVnl-') . 

[PI-', Pv] can be calculated by using the relations (B·3) and 

[PI-', pv]=[{eal-', Pa}, {e bv, Pb}] . 

We obtain after the long calculations 

(B'7) 

(B·8) 

(B'9) 

(B'lO) 

Here Pi=PI-'=i. While, PI-'=o should be equal to zero due to the constraint, because 

PI-'=o={eal-'=o, Pa}={(goo)1/2. na, Pa}=(goo)1I2'{na, Pa}=O. 

This is consistent with commutation relations 

which are directly obtained from (B·9). 
Hamiltonian can be rewritten by using (B· 6); then we have 
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