
QUANTUM MECHANICS IN THE LIGHT OF
QUANTUM COSMOLOGY

Murray Gell-Mann
California Institute of Technology

Pasadena, CA 91125 USA

and

James B. Hartle
Department of Physics
University of California

Santa Barbara, CA 93106 USA

ABSTRACT

We sketch a quantum-mechanical framework for the universe as a whole. Within that
framework we propose a program for describing the ultimate origin in quantum cosmology
of the “quasiclassical domain” of familiar experience and for characterizing the process
of measurement. Predictions in quantum mechanics are made from probabilities for sets
of alternative histories. Probabilities (approximately obeying the rules of probability the-
ory) can be assigned only to sets of histories that approximately decohere. Decoherence
is defined and the mechanism of decoherence is reviewed. Decoherence requires a suffi-
ciently coarse-grained description of alternative histories of the universe. A quasiclassical
domain consists of a branching set of alternative decohering histories, described by a coarse
graining that is, in an appropriate sense, maximally refined consistent with decoherence,
with individual branches that exhibit a high level of classical correlation in time. We pose
the problem of making these notions precise and quantitative. A quasiclassical domain is
emergent in the universe as a consequence of the initial condition and the action function
of the elementary particles. It is an important question whether all the quasiclassical do-
mains are roughly equivalent or whether there are various essentially inequivalent ones.
A measurement is a correlation with variables in a quasiclassical domain. An “observer”
(or information gathering and utilizing system) is a complex adaptive system that has
evolved to exploit the relative predictability of a quasiclassical domain, or rather a set of
such domains among which it cannot discriminate because of its own very coarse grain-
ing. We suggest that resolution of many of the problems of interpretation presented by
quantum mechanics is to be accomplished, not by further scrutiny of the subject as it
applies to reproducible laboratory situations, but rather by an examination of alternative
histories of the universe, stemming from its initial condition, and a study of the problem
of quasiclassical domains.

This paper was the first in a series by the two authors developing a quantum mechanical
framework for the universe as a whole called Decoherent Histories Quantum Mechanics,
DH. Although developed independently, and differing on certain points, DH has much in
common with with Robert Griffiths’ and Roland Omnès’ earlier consistent histories formu-
lation of quantum mechanics as explicitly acknowledged. The paper has not been updated
or improved and the references are unchanged. The paper appeared in the Proceedings of
the Santa Fe Institute Workshop on Complexity, Entropy, and the Physics of Information,
May 1989 and in the Proceedings of the 3rd International Symposium on The Foundations
of Quantum Mechanics in the Light of New Technology, Tokyo, Japan, August 1989. It is
posted here to make it accessible to those who might not have easy access to the published
sources.



I. QUANTUM COSMOLOGY

If quantum mechanics is the underlying framework of the laws of physics, then there
must be a description of the universe as a whole and everything in it in quantum-mechanical
terms. In such a description, three forms of information are needed to make predictions
about the universe. These are the action function of the elementary particles, the initial
quantum state of the universe, and, since quantum mechanics is an inherently probabilistic
theory, the information available about our specific history. These are sufficient for every
prediction in science, and there are no predictions that do not, at a fundamental level,
involve all three forms of information.

A unified theory of the dynamics of the basic fields has long been a goal of elementary
particle physics and may now be within reach. The equally fundamental, equally necessary
search for a theory of the initial state of the universe is the objective of the discipline of
quantum cosmology. These may even be related goals; a single action function may describe
both the Hamiltonian and the initial state.a

There has recently been much promising progress in the search for a theory of the
quantum initial condition of the universe.3 Such diverse observations as the large scale
homogeneity and isotropy of the universe, its approximate spatial flatness, the spectrum
of density fluctuations from which the galaxies grew, the thermodynamic arrow of time,
and the existence of classical spacetime may find a unified, compressed explanation in a
particular simple law of the initial condition.

The regularities exploited by the environmental sciences such as astronomy, geology,
and biology must ultimately be traceable to the simplicity of the initial condition. Those
regularities concern specific individual objects and not just reproducible situations involv-
ing identical particles, atoms, etc. The fact that the discovery of a bird in the forest or a
fossil in a cliff or a coin in a ruin implies the likelihood of discovering another similar bird
or fossil or coin cannot be derivable from the laws of elementary particle physics alone; it
must involve correlations that stem from the initial condition.

The environmental sciences are not only strongly affected by the initial condition but
are also heavily dependent on the outcomes of quantum-probabilistic events during the
history of the universe. The statistical results of, say, proton-proton scattering in the
laboratory are much less dependent on such outcomes. However, during the last few years
there has been increasing speculation that, even in a unified fundamental theory, free of
dimensionless parameters, some of the observable characteristics of the elementary particle
system may be quantum-probabilistic, with a probability distribution that can depend on
the initial condition.4

It is not our purpose in this article to review all these developments in quantum
cosmology.3 Rather, we will discuss the implications of quantum cosmology for one of the
subjects of this conference — the interpretation of quantum mechanics.

II. PROBABILITY

Even apart from quantum mechanics, there is no certainty in this world; therefore
physics deals in probabilities. In classical physics probabilities result from ignorance; in
quantum mechanics they are fundamental as well. In the last analysis, even when treating
ensembles statistically, we are concerned with the probabilities of particular events. We
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then deal the probabilities of deviations from the expected behavior of the ensemble caused
by fluctuations.

When the probabilities of particular events are sufficiently close to 0 or 1, we make a
definite prediction. The criterion for “sufficiently close to 0 or 1” depends on the use to
which the probabilities are put. Consider, for example, a prediction on the basis of present
astronomical observations that the sun will come up tomorrow at 5:59 AM ± 1 min. Of
course, there is no certainty that the sun will come up at this time. There might have been
a significant error in the astronomical observations or the subsequent calculations using
them; there might be a non-classical fluctuation in the earth’s rotation rate or there might
be a collision with a neutron star now racing across the galaxy at near light speed. The
prediction is the same as estimating the probabilities of these alternatives as low. How low
do they have to be before one sleeps peacefully tonight rather than anxiously awaiting the
dawn? The probabilities predicted by the laws of physics and the statistics of errors are
generally agreed to be low enough!

All predictions in science are, most honestly and most generally, the probabilistic
predictions of the time histories of particular events in the universe. In cosmology we
are necessarily concerned with probabilities for the single system that is the universe as a
whole. Where the universe presents us effectively with an ensemble of identical subsystems,
as in experimental situations common in physics and chemistry, the probabilities for the
ensemble as a whole yield definite predictions for the statistics of identical observations.
Thus, statistical probabilities can be derived, in appropriate situations, from probabilities
for the universe as a whole.5

Probabilities for histories need be assigned by physical theory only to the accuracy
to which they are used. Thus, it is the same to us for all practical purposes whether

physics claims the probability of the sun not coming up tomorrow is 10−1057 or 10−1027 , as
long as it is very small. We can therefore conveniently consider approximate probabilities,
which need obey the rules of the probability calculus only up to some standard of accuracy
sufficient for all practical purposes. In quantum mechanics, as we shall see, it is likely that
only by this means can probabilities be assigned to interesting histories at all.

III. HISTORICAL REMARKS

In quantum mechanics not every history can be assigned a probability. Nowhere is
this more clearly illustrated than in the two-slit experiment (Figure 1). In the usual
discussion, if we have not measured which slit the electron passed through on its way to
being detected at the screen, then we are not permitted to assign probabilities to these
alternative histories. It would be inconsistent to do so since the correct probability sum
rules would not be satisfied. Because of interference, the probability to arrive at y is not
the sum of the probabilities to arrive at y going through the upper and the lower slit:

p(y) 6= pU (y) + pL(y) (1)

because
|ψL(y) + ψU (y)|2 6= |ψL(y)|2 + |ψU (y)|2 . (2)

If we havemeasured which slit the electron went through, then the interference is destroyed,
the sum rule obeyed, and we can meaningfully assign probabilities to these alternative
histories.
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Figure 1: The two-slit experiment. An electron gun at left emits an electron traveling towards
a screen with two slits, its progress in space recapitulating its evolution in time. When precise
detections are made of an ensemble of such electrons at the screen it is not possible, because of
interference, to assign a probability to the alternatives of whether an individual electron went
through the upper slit or the lower slit. However, if the electron interacts with apparatus which
measures which slit it passed through, then these alternatives decohere and probabilities can be
assigned.

It is a general feature of quantum mechanics that one needs a rule to determine which
histories can be assigned probabilities. The familiar rule of the “Copenhagen” interpre-
tations described above is external to the framework of wave function and Schrödinger
equation. Characteristically these interpretations, in one way or another, assumed as
fundamental the existence of the classical domain we see all about us. Bohr spoke of
phenomena that could be described in terms of classical language.6 Landau and Lifshitz
formulated quantum mechanics in terms of a separate classical physics.7 Heisenberg and
others stressed the central role of an external, essentially classical observer.8 A measure-
ment occurred through contact with this classical domain. Measurements determined what
could be spoken about.

Such interpretations are inadequate for cosmology. In a theory of the whole thing there
can be no fundamental division into observer and observed. Measurements and observers
cannot be fundamental notions in a theory that seeks to discuss the early universe when
neither existed. There is no reason in general for a classical domain to be fundamental or
external in a basic formulation of quantum mechanics.

It was Everett who in 1957 first suggested how to generalize the Copenhagen framework
so as to apply quantum mechanics to cosmology.b His idea was to take quantum mechanics
seriously and apply it to the universe as a whole. He showed how an observer could
be considered part of this system and how its activities — measuring, recording, and
calculating probabilities — could be described in quantum mechanics.

Yet the Everett analysis was not complete. It did not adequately explain the origin of
the classical domain or the meaning of the “branching” that replaced the notion of mea-
surement. It was a theory of “many worlds” (what we would rather call “many histories”),
but it did not sufficiently explain how these were defined or how they arose. Also, Ev-
erett’s discussion suggests that a probability formula is somehow not needed in quantum
mechanics, even though a “measure” is introduced that, in the end, amounts to the same
thing.
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Here we shall briefly sketch a program aiming at a coherent formulation of quantum me-
chanics for science as a whole, including cosmology as well as the environmental sciences.17

It is an attempt at extension, clarification, and completion of the Everett interpretation.
It builds on many aspects of the post-Everett developments, especially the work of Zeh,18

Żurek,19 and Joos and Zeh20. In the discussion of history and at other points it is con-
sistent with the insightful work (independent of ours) of Griffiths21 and Omnès22. Our
research is not complete, but we sketch, in this report on its status, how it might become
so.

IV. DECOHERENT SETS OF HISTORIES

(a) A Caveat

We shall now describe the rules that specify which histories may be assigned prob-
abilities and what these probabilities are. To keep the discussion manageable we make
one important simplifying approximation. We neglect gross quantum variations in the
structure of spacetime. This approximation, excellent for times later than 10−43 sec after
the beginning, permits us to use any of the familiar formulations of quantum mechanics
with a preferred time. Since histories are our concern, we shall often use Feynman’s sum-
over-histories formulation of quantum mechanics with histories specified as functions of
this time. Since the Hamiltonian formulation of quantum mechanics is in some ways more
flexible, we shall use it also, with its apparatus of Hilbert space, states, Hamiltonian, and
other operators. We shall indicate the equivalence between the two, always possible in this
approximation.

The approximation of a fixed background spacetime breaks down in the early universe.
There, a yet more fundamental sum-over histories framework of quantum mechanics may be
necessary.23 In such a framework the notions of state, operators, and Hamiltonian may be
approximate features appropriate to the universe after the Planck era, for particular initial
conditions that imply an approximately fixed background spacetime there. A discussion of
quantum spacetime is essential for any detailed theory of the initial condition, but when,
as here, this condition is not spelled out in detail and we are treating events after the
Planck era, the familiar formulation of quantum mechanics is an adequate approximation.

The interpretation of quantum mechanics that we shall describe in connection with
cosmology can, of course, also apply to any strictly closed sub-system of the universe
provided its initial density matrix is known. However, strictly closed sub-systems of any
size are not easily realized in the universe. Even slight interactions, such as those of a planet
with the cosmic background radiation, can be important for the quantum mechanics of a
system, as we shall see. Further, it would be extraordinarily difficult to prepare precisely
the initial density matrix of any sizeable system so as to get rid of the dependence on the
density matrix of the universe. In fact, even those large systems that are approximately
isolated today inherit many important features of their effective density matrix from the
initial condition of the universe.

(b) Histories

The three forms of information necessary for prediction in quantum cosmology are
represented in the Heisenberg picture as follows24: The quantum state of the universe is
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described by a density matrix ρ. Observables describing specific information are repre-
sented by operators O(t). For simplicity, but without loss of generality, we shall focus
on non-“fuzzy”, “yes-no” observables. These are represented in the Heisenberg picture
by projection operators P (t). The Hamiltonian, which is the remaining form of informa-
tion, describes evolution by relating the operators corresponding to the same question at
different times through

P (t) = eiHt/h̄P (0)e−iHt/h̄ . (3)

An exhaustive set of “yes-no” alternatives at one time is represented in the Heisenberg
picture by sets of projection operators (P k1 (t), P

k
2 (t), · · ·). In P kα(t), k labels the set, α the

particular alternative, and t its time. A exhaustive set of exclusive alternatives satisfies

∑

α

P kα(t) = 1 , P kα(t)P
k
β (t) = δαβP

k
α(t) . (4)

For example, one such exhaustive set would specify whether a field at a point on a surface
of constant t is in one or another of a set of ranges exhausting all possible values. The
projections are simply the projections onto eigenstates of the field at that point with values
in these ranges. We should emphasize that an exhaustive set of projections need not involve
a complete set of variables for the universe (one-dimensional projections) — in fact, the
projections we deal with as observers of the universe typically involve only an infinitesimal
fraction of a complete set.

Sets of alternative histories consist of time sequences of exhaustive sets of alternatives.
A history is a particular sequence of alternatives, abbreviated [Pα] = (P 1

α1
(t1), P

2
α2
(t2), · ·

·, Pnαn
(tn)). A completely fine-grained history is specified by giving the values of a complete

set of operators at all times. One history is a coarse graining of another if the set [Pα] of
the first history consists of sums of the [Pα] of the second history. The inverse relation is
fine graining. The completely coarse-grained history is one with no projections whatever,
just the unit operator!

The reciprocal relationships of coarse and fine graining evidently constitute only a
partial ordering of sets of alternative histories. Two arbitrary sets need not be related to
each other by coarse/fine graining. The partial ordering is represented schematically in
Fig. 2, where each point stands for a set of alternative histories.

Feynman’s sum-over-histories formulation of quantum mechanics begins by specifying
the amplitude for a completely fine-grained history in a particular basis of generalized
coördinates Qi(t), say all fundamental field variables at all points in space. This amplitude
is proportional to

exp(iS[Qi(t)]/h̄), (5)

where S is the action functional that yields the Hamiltonian, H. When we employ this
formulation of quantum mechanics, we shall introduce the simplification of ignoring fields
with spins higher than zero, so as to avoid the complications of gauge groups and of
fermion fields (for which it is inappropriate to discuss eigenstates of the field variables.)
The operators Qi(t) are thus various scalar fields at different points of space.

Let us now specialize our discussion of histories to the generalized coördinate bases
Qi(t) of the Feynman approach. Later we shall discuss the necessary generalization to
the case of an arbitrary basis at each time t, utilizing quantum-mechanical tranformation
theory.
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Figure 2. The schematic structure of the space of sets of possible histories for the universe. Each
dot in this diagram represents an exhaustive set of alternative histories for the universe. (This is
not a picture of the branches defined by a given set!) Such sets, denoted by {[Pα]} in the text,

correspond in the Heisenberg picture to time sequences (P 1
α1
(t1), P

2
α2
(t2), · · · Pnαn

(tn)) of
sets of projection operators, such that at each time tk the alternatives αk are an orthogonal and
exhaustive set of possibilities for the universe. At the bottom of the diagram are the completely
fine-grained sets of histories each arising from taking projections onto eigenstates of a complete
set of observables for the universe at every time. For example, the set Q is the set in which
all field variables at all points of space are specified at every time. This set is the starting point
for Feynman’s sum-over-histories formulation of quantum mechanics. P might be the completely
fine-grained set in which all field momenta are specified at each time. D might be a degenerate
set of the kind discussed in Section VII in which the same complete set of operators occurs at
every time. But there are many other completely fine-grained sets of histories corresponding to all
possible combinations of complete sets of observables that can be taken at every time.

The dots above the bottom row are coarse-grained sets of alternative histories. If two dots are
connected by a path, the one above is a coarse graining of the one below — that is, the projections
in the set above are sums of those in the set below. A line, therefore, corresponds to an operation
of coarse graining. At the very top is the degenerate case in which complete sums are taken at every
time, yielding no projections at all other than the unit operator! The space of sets of alternative
histories is thus partially ordered by the operation of coarse graining.

The heavy dots denote the decoherent sets of alternative histories. Coarse grainings of de-
coherent sets remain decoherent. Maximal sets, the heavy dots surrounded by circles, are those
decohering sets for which there is no finer-grained decoherent set.

Completely fine-grained histories in the coördinate basis cannot be assigned probabil-
ities; only suitable coarse-grained histories can. There are at least three common types of
coarse graining: (1) specifying observables not at all times, but only at some times: (2)

7



specifying at any one time not a complete set of observables, but only some of them: (3)
specifying for these observables not precise values, but only ranges of values. To illustrate
all three, let us divide the Qi up into variables xi and Xi and consider only sets of ranges
{∆k

α} of xi at times tk, k = 1, · · ·, n. A set of alternatives at any one time consists of ranges

∆k
α, which exhaust the possible values of xi as α ranges over all integers. An individual

history is specified by particular ∆α’s at the times t1, · · ·tn. We write [∆α] = (∆1
α1
, · · ·∆n

αn
)

for a particular history. A set of alternative histories is obtained by letting α1 · · ·αn range
over all values.

Let us use the same notation [∆α] for the most general history that is a coarse graining
of the completely fine-grained history in the coördinate basis, specified by ranges of the
Qi at each time, including the possibility of full ranges at certain times, which eliminate
those times from consideration.

(c) Decohering Histories

The important theoretical construct for giving the rule that determines whether proba-
bilities may be assigned to a given set of alternative histories, and what these probabilities
are, is the decoherence functional D [(history)′, (history)]. This is a complex functional on
any pair of histories in the set. It is most transparently defined in the sum-over-histories
framework for completely fine-grained history segments between an initial time t0 and a
final time tf , as follows:

D
[

Q′i(t), Qi(t)
]

= δ(Q′i
f −Qif ) exp

{

i
(

S[Q′i(t)]− S[Qi(t)]
)

/h̄
}

ρ(Q′i
0 , Q

i
0) . (6)

Here ρ is the initial density matrix of the universe in the Qi representation, Q′i
0 and Qi0 are

the initial values of the complete set of variables, and Q′i
f and Qif are the final values. The

decoherence functional for coarse-grained histories is obtained from (6) according to the
principle of superposition by summing over all that is not specified by the coarse graining.
Thus,

D
(

[∆α′ ], [∆α]
)

=

∫

[∆α′ ]

δQ′
∫

[∆α]

δQ δ(Q′i
f −Qif ) e

i{(S[Q′i]−S[Qi])/h̄}ρ(Q′i
0 , Q

i
0) . (7)

More precisely, the integral is as follows (Figure 3): It is over all histories Q′i(t), Qi(t)
that begin at Q′i

0 , Q
i
0 respectively, pass through the ranges [∆α′ ] and [∆α] respectively, and

wind up at a common point Qif at any time tf > tn. It is completed by integrating over

Q′i
0 , Q

i
0, and Q

i
f .

The connection between coarse-grained histories and completely fine-grained ones is
transparent in the sum-over-histories formulation of quantum mechanics. However, the
sum-over-histories formulation does not allow us to consider directly histories of the most
general type. For the most general histories one needs to exploit directly the transformation
theory of quantum mechanics and for this the Heisenberg picture is convenient. In the
Heisenberg picture D can be written

D
(

[Pα′ ], [Pα]
)

= Tr
[

Pnα′

n
(tn) · · ·P 1

α′

1
(t1)ρP

1
α1
(t1) · · ·Pnαn

(tn)
]

. (8)
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Figure 3. The sum-over-histories construction of the decoherence functional.

The projections in (8) are time ordered with the earliest on the inside. When the P ’s are

projections onto ranges ∆k
α of values of the Q’s, expressions (7) and (8) agree. From the

cyclic property of the trace it follows that D is always diagonal in the final indices αn and
α′n. (We assume throughout that the P ’s are bounded operators in Hilbert space dealing,
for example, with projections onto ranges of the Q’s and not onto definite values of the
Q’s). Decoherence is thus an interesting notion only for strings of P ’s that involve more
than one time. Decoherence is automatic for “histories” that consist of alternatives at but
one time.

Progressive coarse graining may be seen in the sum-over-histories picture as summing
over those parts of the fine-grained histories not specified in the coarse-grained one, accord-
ing to the principle of superposition. In the Heisenberg picture, eq. (8), the three common
forms of coarse graining discussed above can be represented as follows: Summing on both
sides of D over all P ’s at a given time and using (4) eliminates those P ’s completely.
Summing over all possibilities for certain variables at one time amounts to factoring the
P ’s and eliminating one of the factors by summing over it. Summing over ranges of values
of a given variable at a given time corresponds to replacing the P ’s for the partial ranges
by one for the total range. Thus, if [Pβ ] is a coarse graining of the set of histories {[Pα]},
we write

D
(

[Pβ′ ], [Pβ ]
)

=
∑

all P ′

α

not fixed by [P
β′

]

∑

all Pα

not fixed by [Pβ ]

D ([Pα′ ], [Pα]) . (9)

In the most general case, we may think of the completely fine-grained limit as obtained
from the coördinate representation by arbitrary unitary transformations at all times. All
histories can be obtained by coarse-graining the various completely fine-grained ones, and
coarse graining in its most general form involves taking arbitrary sums of P ’s, as discussed
earlier. We may use (9) in the most general case where [Pβ ] is a coarse graining of [Pα].
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A set of coarse-grained alternative histories is said to decohere when the off-diagonal
elements of D are sufficiently small:

D ([Pα′ ], [Pα]) ≈ 0 , for any α′k 6= αk . (10)

This is a generalization of the condition for the absence of interference in the two-slit
experiment (approximate equality of the two sides of (2)). It is a sufficient (although not
a necessary) condition for the validity of the purely diagonal formula

D
(

[Pβ ], [Pβ ]
)

≈
∑

all Pαnot

fixed by [Pβ ]

D ([Pα], [Pα]) . (11)

The rule for when probabilities can be assigned to histories of the universe is then this:
To the extent that a set of alternative histories decoheres , probabilities can be assigned
to its individual members. The probabilities are the diagonal elements of D. Thus,

p([Pα]) = D([Pα], [Pα])

= Tr
[

Pnαn
(tn) · · ·P 1

α1
(t1)ρP

1
α1
(t1) · · ·Pnαn

(tn)
]

(12)

when the set decoheres. We will frequently write p(αntn, · · ·α1t1) for these probabilities,
suppressing the labels of the sets.

The probabilities defined by (11) obey the rules of probability theory as a consequence
of decoherence. The principal requirement is that the probabilities be additive on “disjoint
sets of the sample space”. For histories this gives the sum rule

p
(

[Pβ ]
)

≈
∑

all Pα not

fixed by [Pβ ]

p ([Pα]) (13)

These relate the probabilities for a set of histories to the probabilities for all coarser grained
sets that can be constructed from it. For example, the sum rule eliminating all projections
at only one time is

∑

αk

p(αntn, · · ·αk+1tk+1, αktk, αk−1tk−1, · · · , α1t1)
≈ p(αntn, · · ·αk+1tk+1, αk−1tk−1, · · · , α1t1) . (14)

These rules follow trivially from (11) and (12). The other requirements from probability
theory are that the probability of the whole sample space be unity, an easy consequence of
(11) when complete coarse graining is performed, and that the probability for an empty set
be zero, which means simply that the probability of any sequence containing a projection
P = 0 must vanish, as it does.

The p([Pα]) are approximate probabilities for histories, in the sense of Section II, up
to the standard set by decoherence. Conversely, if a given standard for the probabilities is
required by their use, it can be met by coarse graining until (10) and (13) are satisfied at
the requisite level.

Further coarse graining of a decoherent set of alternative histories produces another
set of decoherent histories since the probability sum rules continue to be obeyed. That is
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illustrated in Fig. 2, which makes it clear that in a progression from the trivial completely
coarse graining to a completely fine graining, there are sets of histories where further fine
graining always results in loss of decoherence. These are the maximal sets of alternative
decohering histories.

These rules for probability exhibit another important feature: The operators in (12)
are time-ordered. Were they not time-ordered (zig-zags) we could have assigned non-
zero probabilities to conflicting alternatives at the same time. The time ordering thus
expresses causality in quantum mechanics, a notion that is appropriate here because of the
approximation of fixed background spacetime. The time ordering is related as well to the
“arrow of time” in quantum mechanics, which we discuss below.

Given this discussion, the fundamental formula of quantum mechanics may be reason-
ably taken to be

D ([Pα′ ], [Pα]) ≈ δα′

1α1
· · · δα′

nαn
p([Pα]) (15)

for all [Pα] in a set of alternative histories. Vanishing of the off-diagonal elements of D
gives the rule for when probabilities may be consistently assigned. The diagonal elements
give their values.

We could have used a weaker condition than (10) as the definition of decoherence,
namely the necessary condition for the validity of the sum rules (11) of probability theory:

D ([Pα], [Pα′ ]) +D ([Pα′ ], [Pα]) ≈ 0 (16)

for any α′k 6= αk, or equivalently

Re {D ([Pα], [Pα′ ])} ≈ 0 . (17)

This is the condition used by Griffiths21 as the requirement for “consistent histories”.
However, while, as we shall see, it is easy to identify physical situations in which the off-
diagonal elements of D approximately vanish as the result of coarse graining, it is hard to
think of a general mechanism that suppresses only their real parts. In the usual analysis
of measurement, the off-diagonal parts of D approximately vanish. We shall, therefore,
explore the stronger condition (10) in what follows. That difference should not obscure
the fact that in this part of our work we have reproduced what is essentially the approach
of Griffiths21, extended by Omnès22.

(d) Prediction and Retrodiction

Decoherent sets of histories are what we may discuss in quantum mechanics, for they
may be assigned probabilities. Decoherence thus generalizes and replaces the notion of
“measurement”, which served this role in the Copenhagen interpretations. Decoherence
is a more precise, more objective, more observer-independent idea. For example, if their
associated histories decohere, we may assign probabilities to various values of reasonable
scale density fluctuations in the early universe whether or not anything like a “measure-
ment” was carried out on them and certainly whether or not there was an “observer” to
do it. We shall return to a specific discussion of typical measurement situations in Section
XI.

The joint probabilities p(αntn, · · · , α1t1) for the individual histories in a decohering set
are the raw material for prediction and retrodiction in quantum cosmology. From them,
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the relevant conditional probabilities may be computed. The conditional probability of,
one subset {αiti}, given the rest {αiti}, is

p
(

{αiti}|{αiti}
)

=
p(αntn, · · · , α1t1)

p
(

{αiti}
) . (18)

For example, the probability for predicting alternatives αk+1, · · ·αn, given that the alter-
natives α1 · · ·αk have already happened, is

p(αntn, · · ·αk+1tk+1|αktk, · · · , α1t1) =
p(αntn, · · · , α1t1)
p(αktk, · · ·α1t1)

. (19)

The probability that αn−1, · · ·α1 happened in the past, given present data summarized by
an alternative αn at the present time tn, is

p(αn−1tn−1, · · ·α1t1|αntn) =
p(αntn, · · · , α1t1)

p(αntn)
. (20)

Decoherence ensures that the probabilities defined by (18) – (20) will approximately add
to unity when summed over all remaining alternatives, because of (14).

Despite the similarity between (19) and (20), there are differences between prediction
and retrodiction. Future predictions can all be obtained from an effective density matrix
summarizing information about what has happened. If ρeff is defined by

ρeff =
P kαk

(tk) · · ·P 1
α1
(t1)ρP

1
α1
(t1) · · ·P kαk

(tk)

Tr[P kαk
(tk) · · ·P 1

α1
(t1)ρP

1
α1
(t1) · · ·P kαk

(tk)]
, (21)

then

p(αntn, · · ·αk+1tk+1|αktk, · · · , α1t1)
= Tr[Pnαn

(tn) · · ·P k+1
αk+1

(tk+1)ρeffP
k+1
αk+1

(tk+1) · · ·Pnαn
(tn)] . (22)

By contrast, there is no effective density matrix representing present information from
which probabilities for the past can be derived. As (20) shows, history requires knowledge
of both present data and the initial condition of the universe.

Prediction and retrodiction differ in another way. Because of the cyclic property of the
trace in (8), any final alternative decoheres and a probability can be predicted for it. By
contrast we expect only certain variables to decohere in the past, appropriate to present
data and the initial ρ. As the alternative histories of the electron in the two-slit experiment
illustrate, there are many kinds of alternatives in the past for which the assignment of
probabilities is prohibited in quantum mechanics. For those sets of alternatives that do
decohere, the decoherence and the assigned probabilities typically will be approximate in
the sense of Section II. It is unlikely, for example, that the initial state of the universe is
such that the interference is exactly zero between two past positions of the sun in the sky.

These differences between prediction and retrodiction are aspects of the arrow of time
in quantum mechanics. Mathematically they are consequences of the time ordering in (8)
or (12). This time ordering does not mean that quantum mechanics singles out an absolute
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direction in time. Field theory is invariant under CPT. Performing a CPT transforma-
tion on (8) or (12) results in an equivalent expression in which the CPT-transformed ρ
is assigned to the far future and the CPT-transformed projections are anti-time-ordered.
Either time ordering can, therefore, be usedc; the important point is that there is a know-
able Heisenberg ρ from which probabilities can be predicted. It is by convention that we
think of it as an “initial condition”, with the projections in increasing time order from the
inside out in (8) and (12).

While the formalism of quantum mechanics allows the universe to be discussed with
either time ordering, the physics of the universe is time asymmetric, with a simple con-
dition in what we call “the past.” For example, the indicated present homogeneity of
the thermodynamic arrow of time can be traced to the near homogeneity of the “early”
universe implied by ρ and the implication that the progenitors of approximately isolated
subsystems started out far from equilibrium at “early” times.

Much has been made of the updating of the fundamental probability formula in (19)
and in (21) and (22). By utilizing (21) the process of prediction may be organized so that
for each time there is a ρeff from which probabilities for the future may be calculated.
The action of each projection, P , on both sides of ρ in (21) along with the division by
the appropriate normalizing factor is then sometimes called the “reduction of the wave
packet”. But this updating of probabilities is no different from the classical reassessment
of probabilities that occurs after new information is obtained. In a sequence of horse races,
the joint probability for the winners of eight races is converted, after the winners of the first
three are known, into a reassessed probability for the remaining five races by exactly this
process. The main thing is that, because of decoherence, the sum rules for probabilities
are obeyed; once that is true, reassessment of probabilities is trivial.

The only non-trivial aspect of the situation is the choice of the string of P ’s in (8)
giving a decoherent set of histories.

(e) Branches (Illustrated by a Pure ρ)

Decohering sets of alternative histories give a definite meaning to Everett’s “branches”.
For a given such set of histories, the exhaustive set of P kαk

at each time tk corresponds to
a branching.

To illustrate this even more explicitly, consider an initial density matrix that is a pure
state, as in typical proposals for the wave function of the universe:

ρ = |Ψ >< Ψ| . (23)

The initial state may be decomposed according to the projection operators that define the
set of alternative histories

|Ψ > =
∑

α1···αn

Pnαn
(tn) · · ·P 1

α1
(t1)|Ψ >

≡
∑

α1···αn

|[Pα],Ψ > . (24)

The states |[Pα],Ψ > are approximately orthogonal as a consequence of their decoherence

< [Pα′ ],Ψ|[Pα],Ψ >≈ 0, for any α′k 6= αk . (25)
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Eq. (25) is just a reëxpression of (10), given (23).

When the initial density matrix is pure, it is easily seen that some coarse graining in
the present is always needed to achieve decoherence in the past. If the Pnαn

(tn) for the
last time tn in (8) were all projections onto pure states, D would factor for a pure ρ and
could never satisfy (10), except for certain special kinds of histories described near the
end of Section VII, in which decoherence is automatic, independent of ρ. Similarly, it is
not difficult to show that some coarse graining is required at any time in order to have
decoherence of previous alternatives, with the same set of exceptions.

After normalization, the states |[Pα],Ψ > represent the individual histories or indi-
vidual branches in the decohering set. We may, as for the effective density matrix of
(d), summarize present information for prediction just by giving one of these states, with
projections up to the present.

(f) Sets of Histories with the Same Probabilities

If the projections P are not restricted to a particular class (such as projections onto
ranges of Qi variables), so that coarse-grained histories consist of arbitrary exhaustive
families of projections operators, then the problem of exhibiting the decohering sets of
strings of projections arising from a given ρ is a purely algebraic one. Assume, for example,
that the initial condition is known to be a pure state as in (23). The problem of finding
ordered strings of exhaustive sets of projections [Pα] so that the histories Pnαn

· · ·P 1
α1
|Ψ >

decohere according to (25) is purely algebraic and involves just subspaces of Hilbert space.
The problem is the same for one vector |Ψ > as for any other. Indeed, using subspaces
that are exactly orthogonal, we may identify sequences that exactly decohere.

However, it is clear that the solution of the mathematical problem of enumerating the
sets of decohering histories of a given Hilbert space has no physical content by itself. No
description of the histories has been given. No reference has been made to a theory of
the fundamental interactions. No distinction has been made between one vector in Hilbert
space as a theory of the initial condition and any other. The resulting probabilities, which
can be calculated, are merely abstract numbers.

We obtain a description of the sets of alternative histories of the universe when the
operators corresponding to the fundamental fields are identified. We make contact with
the theory of the fundamental interactions if the evolution of these fields is given by a
fundamental Hamiltonian. Different initial vectors in Hilbert space will then give rise
to decohering sets having different descriptions in terms of the fundamental fields. The
probabilities acquire physical meaning.

Two different simple operations allow us to construct from one set of histories an-
other set with a different description but the same probabilities. First consider unitary
transformations of the P ’s that are constant in time and leave the initial ρ fixed

ρ = UρU−1 , (26)

P̃ kα(t) = UP kα(t)U
−1 . (27)

If ρ is pure there will be very many such transformations; the Hilbert space is large and
only a single vector is fixed. The sets of histories made up from the {P̃ kα} will have an

identical decoherence functional to the sets constructed from the corresponding {P kα}. If
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one set decoheres, the other will and the probabilities for the individual histories will be
the same.

In a similar way, decoherence and probabilities are invariant under arbitrary reassign-
ments of the times in a string of P ’s (as long as they continue to be ordered), with the
projection operators at the altered times unchanged as operators in Hilbert space. This
is because in the Heisenberg picture every projection is at any time a projection operator
for some quantity.

The histories arising from constant unitary transformations or from reassignment of
times of a given set of P ’s will, in general, have very different descriptions in terms of
fundamental fields from that of the original set. We are considering transformations such
as (27) in an active (or alibi) sense so that the field operators and Hamiltonian are un-
changed. (The passive (or alias) transformations, in which these are transformed, are easily
understood.) A set of projections onto the ranges of field values in a spatial region is
generally transformed by (27) or by any reassignment of the times into an extraordinarily
complicated combination of all fields and all momenta at all positions in the universe!
Histories consisting of projections onto values of similar quantities at different times can
thus become histories of very different quantities at various other times.

In ordinary presentations of quantum mechanics, two histories with different descrip-
tions can correspond to physically distinct situations because it is presumed that various
different Hermitian combinations of field operators are potentially measurable by different
kinds of external apparatus. In quantum cosmology, however, apparatus and system are
considered together and the notion of physically distinct situations may have a different
character.

V. THE ORIGINS OF DECOHERENCE

What are the features of coarse-grained sets of histories that decohere, given the ρ and
H of the universe? In seeking to answer this question it is important to keep in mind the
basic aspects of the theoretical framework on which decoherence depends. Decoherence
of a set of alternative histories is not a property of their operators alone. It depends on
the relations of those operators to the density matrix ρ. Given ρ, we could, in principle,
compute which sets of alternative histories decohere.

We are not likely to carry out a computation of all decohering sets of alternative
histories for the universe, described in terms of the fundamental fields, anytime in the near
future, if ever. However, if we focus attention on coarse grainings of particular variables,
we can exhibit widely occurring mechanisms by which they decohere in the presence of the
actual ρ of the universe. We have mentioned in Section IVc that decoherence is automatic if
the projection operators P refer only to one time; the same would be true even for different
times if all the P ’s commuted with one another. Of course, in cases of interest, each P
typically factors into commuting projection operators, and the factors of P ’s for different
times often fail to commute with one another, for example factors that are projections
onto related ranges of values of the same Heisenberg operator at different times. However,
these non-commuting factors may be correlated, given ρ, with other projection factors
that do commute or, at least, effectively commute inside the trace with the density matrix
ρ in Equation (8) for the decoherence functional. In fact, these other projection factors
may commute with all the subsequent P ’s and thus allow themselves to be moved to the
outside of the trace formula. When all the non-commuting factors are correlated in this
manner with effectively commuting ones, then the off-diagonal terms in the decoherence
functional vanish, in other words, decoherence results. Of course, all this behavior may be
approximate, resulting in approximate decoherence.
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This type of situation is fundamental in the interpretation of quantum mechanics.
Non-commuting quantities, say at different times, may be correlated with commuting or
effectively commuting quantities because of the character of ρ and H, and thus produce
decoherence of strings of P ’s despite their non-commutation. For a pure ρ, for example, the
behavior of the effectively commuting variables leads to the orthogonality of the branches
of the state |Ψ >, as defined in (24). We shall see that correlations of this character
are central to understanding historical records (Section X) and measurement situations
(Section XI).

As an example of decoherence produced by this mechanism, consider a coarse-grained
set of histories defined by time sequences of alternative approximate localizations of a
massive body such as a planet or even a typical interstellar dust grain. As shown by Joos
and Zeh,20 even if the successive localizations are spaced as closely as a nanosecond, such
histories decohere as a consequence of scattering by the 3◦ cosmic background radiation (if
for no other reason). Different positions become correlated with nearly orthogonal states of
the photons. More importantly, each alternative sequence of positions becomes correlated
with a different orthogonal state of the photons at the final time. This accomplishes the
decoherence and we may loosely say that such histories of the position of a massive body
are “decohered” by interaction with the photons of the background radiation.

Other specific models of decoherence have been discussed by many authors, among
them Joos and Zeh,20 Caldeira and Leggett,25 and Żurek.26 Typically these discussions
have focussed on a coarse graining that involves only certain variables analogous to the
position variables above. Thus the emphasis is on particular non-commuting factors of
the projection operators and not on correlated operators that may be accomplishing the
approximate decoherence. Such coarse grainings do not, in general, yield the most refined
approximately decohering sets of histories, since one could include projections onto ranges
of values of the correlated operators without losing the decoherence.

The simplest model consists of a single oscillator interacting bilinearly with a large
number of others, and a coarse graining which involves only the coördinates of the special
oscillator. Let x be the coördinate of the special oscillator, M its mass, ωR its frequency
renormalized by its interactions with the others, and Sfree its free action. Consider the
special case where the density matrix of the whole system, referred to an initial time,
factors into the product of a density matrix ρ̄(x′, x) of the distinguished oscillator and
another for the rest. Then, generalizing slightly a treatment of Feynman and Vernon27,
we can write D defined by (7) as

D ([∆α′ ], [∆α]) =

∫

[∆α′ ]
δx′(t)

∫

[∆α]
δx(t)δ(x′f − xf )

exp

{

i
(

Sfree[x
′(t)]− Sfree[x(t)] +W [x′(t), x(t)]

)

/h̄

}

ρ̄(x′0, x0) , (28)

the intervals [∆α] referring here only to the variables of the distinguished oscillator. The
sum over the rest of the oscillators has been carried out and is summarized by the Feynman
- Vernon influence functional exp(iW [x′(t), x(t)]). The remaining sum over x′(t) and x(t)
is as in (7).

The case when the other oscillators are in an initial thermal distribution has been exten-
sively investigated by Caldeira and Leggett.25 In the simple limit of a uniform continuum
of oscillators cut off at frequency Ω and in the Fokker - Planck limit of kT ≫ h̄Ω ≫ h̄ωR,
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they find

W [x′(t), x(t)] = −Mγ

∫

dt[x′ẋ′ − xẋ+ x′ẋ− xẋ′]

+ i
2MγkT

h̄

∫

dt[x′(t)− x(t)]2 , (29)

where γ summarizes the interaction strengths of the distinguished oscillator with its en-
vironment. The real part of W contributes dissipation to the equations of motion. The
imaginary part squeezes the trajectories x(t) and x′(t) together, thereby providing ap-
proximate decoherence. Very roughly, primed and unprimed position intervals differing by
distances d on opposite sides of the trace in (28) will decohere when spaced in time by
intervals

t >∼
1

γ

[(

h̄√
2MkT

)

·
(

1

d

)]2

. (30)

As stressed by Żurek26, for typical macroscopic parameters this minimum time for deco-
herence can be many orders of magnitude smaller than a characteristic dynamical time,
say the damping time 1/γ. (The ratio is around 10−40 for M ∼ gm, T ∼ 300◦K, d ∼ cm!)

The behavior of a coarse-grained set of alternative histories based on projections, at
times spaced far enough apart for decoherence, onto ranges of values of x alone, is then
roughly classical in that the successive ranges of positions follow roughly classical orbits,
but with the pattern of classical correlation disturbed by various effects, especially (a) the
effect of quantum spreading of the x-coördinate, (b) the effect of quantum fluctuations of
the other oscillators, and (c) classical statistical fluctuations, which are lumped with (b)
when we use the fundamental formula. We see that the larger the mass M , the shorter
the decoherence time and the more the x-coördinate resists the various challenges to its
classical behavior.

What the above models convincingly show is that decoherence will be widespread in
the universe for certain familiar “classical” variables. The answer to Fermi’s question to
one of us of why we don’t see Mars spread out in a quantum superposition of different
positions in its orbit is that such a superposition would rapidly decohere. We now proceed
to a more detailed discussion of such decoherence.

VI. QUASICLASSICAL DOMAINS

As observers of the universe, we deal with coarse grainings that are appropriate to our
limited sensory perceptions, extended by instruments, communication, and records, but in
the end characterized by a great amount of ignorance. Yet we have the impression that
the universe exhibits a finer-grained set of decohering histories, independent of us, defining
a sort of “classical domain”, governed largely by classical laws, to which our senses are
adapted while dealing with only a small part of it. No such coarse graining is determined
by pure quantum theory alone. Rather, like decoherence, the existence of a quasiclassical
domain in the universe must be a consequence of its initial condition and the Hamiltonian
describing its evolution.

Roughly speaking, a quasiclassical domain should be a set of alternative decohering
histories, maximally refined consistent with decoherence, with its individual histories ex-
hibiting as much as possible patterns of classical correlation in time. Such histories cannot
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Figure 4. If the completely fine grained histories arise from a single complete set of observables,

say the set Q of field variables Qi at each point in space and every time, then the possible coarse-
grained histories will be a subset of those illustrated in Figure 2. Maximal sets can still be defined
but will, in general, differ from those of Figure 2.

be exactly correlated in time according to classical laws because sometimes their classical
evolution is disturbed by quantum events. There are no classical domains, only quasiclas-
sical ones.

We wish to make the question of the existence of one or more quasiclassical domains
into a calculable question in quantum cosmology and for this we need criteria to measure
how close a set of histories comes to constituting a “classical domain”. We have not solved
this problem to our satisfaction, but, in the next few Sections, we discuss some ideas that
may contribute toward its solution.

VII. MAXIMAL SETS OF DECOHERING HISTORIES

Decoherence results from coarse graining. As described in Section IVb and Fig. 2,
coarse grainings can be put into a partial ordering with one another. A set of alternative
histories is a coarse graining of a finer set if all the exhaustive sets of projections {P kα}
making up the coarser set of histories are obtained by partial sums over the projections
making up the finer set of histories.

Maximal sets of alternative decohering histories are those for which there are no finer-
grained sets that are decoherent. It is desirable to work with maximal sets of decohering
alternative histories because they are not limited by the sensory capacity of any set of ob-
servers – they can cover phenomena in all parts of the universe and at all epochs that could
be observed, whether or not any observer was present. Maximal sets are the most refined
descriptions of the universe that may be assigned probabilities in quantum mechanics.

The class of maximal sets possible for the universe depends, of course, on the completely
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fine-grained histories that are presented by the actual quantum theory of the universe. If we
utilize to the full, at each moment of time, all the projections permitted by transformation
theory, which gives quantum mechanics its protean character, then there is an infinite
variety of completely fine-grained sets, as illustrated in Figure 2. However, were there
some fundamental reason to restrict the completely fine grained sets, as would be the case
if sum-over-histories quantum mechanics were fundamental, then the class of maximal sets
would be smaller as illustrated in Figure 4. We shall proceed as if all fine grainings are
allowed.

If a full correlation exists between a projection in a coarse graining and another pro-
jection not included, then the finer graining including both still defines a decoherent set
of histories. In a maximal set of decoherent histories, both correlated projections must
be included if either one is included. Thus, in the mechanism of decoherence discussed
in Section V, projections onto the correlated orthogonal states of the 3◦K photons are
included in the maximal set of decohering histories along with the positions of the massive
bodies. Any projections defining historical records such as we shall describe in Section X,
or values of measured quantities such as we shall describe in Section XI, must similarly be
included in a maximal set.

More information about the initial ρ and H is contained in the probabilities of a finer-
grained set of histories than in those of a coarser grained set. It would be desirable to have
a quantitative measure of how much more information is obtained in a further fine graining
of a coarse-grained set of alternative histories. Such a quantity would then measure how
much closer a decoherent fine graining comes to maximality in a physically relevant sense.

We shall discuss a quantity that, while not really a measure of maximality, is useful in
exploring some aspects of it. In order to construct that quantity the usual entropy formula
is applied to sets of alternative decohering histories of the universe, rather than, as more
usually, alternatives at a single time. We make use of the coarse-grained density matrix
ρ̃ defined using the methods of Jaynes28, but generalized to take account of the density
matrix of the universe and applied to the probabilities for histories. The density matrix ρ̃
is constructed by maximizing the entropy functional

S(ρ̃) = −Tr(ρ̃ log ρ̃) (31)

over all density matrices ρ̃ that satisfy the constraints ensuring that each

Tr
[

Pnα′

n
(tn) · · ·P 1

α′

1
(t1)ρ̃P

1
α1
(t1) · · ·Pnαn

(tn)
]

(32)

has the same value it would have had when computed with the density matrix of the
universe, ρ, for a given set of coarse-grained histories. The density matrix ρ̃ thus reproduces
the decoherence functional for this set of histories, and in particular their probabilities,
but possesses as little information as possible beyond those properties.

A fine graining of a set of alternative histories leads to more conditions on ρ̃ of the
form (32) than in the coarser-grained set. In non-trivial cases S(ρ̃) is, therefore, lowered
and ρ̃ becomes closer to ρ.

If the insertion of apparently new P ’s into a chain is redundant, then S(ρ̃) will not
be lowered. A simple example will help to illustrate this: Consider the set of histories
consisting of projections Pmαm

(tm) which project onto an orthonormal basis for Hilbert
space at one time, tm. Trivial further decoherent fine grainings can be constructed as
follows: At each other time tk introduce a set of projections P kαk

(tk) that, through the
equations of motion, are identical operators in Hilbert space to the set Pmαm

(tm). In this
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way, even though we are going through the motions of introducing a completely fine-grained
set of histories covering all the times, we are really just repeating the projections Pmαm

(tm)
over and over again. We thus have a completely fine-grained set of histories that, in fact,
consists of just one fine-grained set of projections and decoheres exactly because there is
only one such set. Indeed, in terms of S(ρ̃) it is no closer to maximality than the set
consisting of Pmαm

(tm) at one time. The quantity S(ρ̃) thus serves to identify such trivial
refinements which amount to redundancy in the conditions (32).

We can generalize the example in an interesting way by constructing the special kinds
of histories mentioned after Equation (25). We take tm to be the final time and then
adjoin, at earlier and earlier times, a succession of progressive coarse grainings of the set
{Pmαm

(tm)}. Thus, as time moves forward, the only projections are finer and finer grainings
terminating in the one-dimensional Pmαm

(tm). We thus have again a set of histories in which
decoherence is automatic, independent of the character of ρ and for which S(ρ̃) has the
same value it would have had if only the conditions at the final time were considered.

In a certain sense, S(ρ̃) for histories can be regarded as decreasing with time. If we
consider S(ρ̃) for a string of alternative projections up to a certain time tn, as in (32),
and then adjoin an additional set of projections for a later time, the number of conditions
on ρ̃ is increased and thus the value of S(ρ̃) is decreased (or, in trivial cases, unchanged).
That is natural, since S(ρ̃) is connected with the lack of information contained in a set of
histories and that information increases with non-trivial fine graining of the histories, no
matter what the times for which the new P ’s are introduced. (In some related areas, a
quantity like S that keeps decreasing as a result of adjoining projections at later times can
be converted into an increasing quantity by adding an algorithmic complexity term.29)

The quantity S(ρ̃) is closely related to other fundamental quantities in physics. One
can show, for example, that when used with the ρeff representing present data and with
alternatives at a single time, these techniques give a unified and generalized treatment of
the variety of coarse grainings commonly introduced in statistical mechanics; and, as Jaynes
and others have pointed out, the resulting S(ρ̃)’s are the physical entropies of statistical
mechanics. Here, however, these techniques are applied to time histories and the initial
condition is utilized. The quantity S(ρ̃) is also related to the notion of thermodynamic
depth currently being investigated by Lloyd.30

VIII. CLASSICITY

Some maximal sets will be more nearly classical than others. The more nearly classical
sets of histories will contain projections (onto related ranges of values) of operators, for

different times, that are connected to one another by the unitary transformations e−iH(∆t)

and that are correlated for the most part along classical paths, with probabilities near
zero and one for the successive projections. This pattern of classical correlation may be
disturbed by the inclusion, in the maximal set of projection operators, of other variables,
which do not behave in this way (as in measurement situations to be described later).
The pattern may also be disturbed by quantum spreading and by quantum and classical
fluctuations, as described in connection with the oscillator example treated in Section
V. Thus we can, at best, deal with quasiclassical maximal sets of alternative decohering
histories, with trajectories that split and fan out as a result of the processes that make
the decoherence possible. As we stressed earlier, there are no classical domains, only
quasiclassical ones.

The impression that there is something like a classical domain suggests that we try
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to define quasiclassical domains precisely by searching for a measure of classicity for each
of the maximal sets of alternative decohering histories and concentrating on the one (or
ones) with maximal classicity. Such a measure would be applied to the elements of D
and the corresponding coarse graining. It should favor predictability, involving patterns
of classical correlation as described above. It should also favor maximal sets of alternative
decohering histories that are relatively fine-grained as opposed to those which had to be
carried to very coarse graining before they would give decoherence. We are searching for
such a measure. It should provide a precise and quantitative meaning to the notion of
quasiclassical domain.

IX. QUASICLASSICAL OPERATORS

What are the projection operators that specify the coarse graining of a maximal set
of alternative histories with high classicity, which defines a quasiclassical domain? They
will include, as mentioned above, projections onto comparable ranges of values of certain
operators at sequences of times, obeying roughly classical equations of motion, subject
to fluctuations that cause their trajectories to fan out from time to time. We can refer
to these operators, which habitually decohere, as “quasiclassical operators”. What these
quasi-classical operators are, and how many of them there are, depends not only on H and
ρ, but also on the epoch, on the spatial region, and on previous branchings.

We can understand the origin of at least some quasiclassical operators in reasonably
general terms as follows: In the earliest instants of the universe the operators defining
spacetime on scales well above the Planck scale emerge from the quantum fog as quasi-
classical.31 Any theory of the initial condition that does not imply this is simply incon-
sistent with observation in a manifest way. The background spacetime thus defined obeys
the Einstein equation. Then, where there are suitable conditions of low temperature, etc.,
various sorts of hydrodynamic variables may emerge as quasi-classical operators. These
are integrals over suitable small volumes of densities of conserved or nearly conserved
quantities. Examples are densities of energy, momentum, baryon number, and, in later
epochs, nuclei, and even chemical species. The sizes of the volumes are limited above by
maximality and are limited below by classicity because they require sufficient “inertia”
to enable them to resist deviations from predictability caused by their interactions with
one another, by quantum spreading, and by the quantum and statistical fluctuations re-
sulting from interactions with the rest of the universe. Suitable integrals of densities of
approximately conserved quantities are thus candidates for habitually decohering quasi-
classical operators. Field theory is local, and it is an interesting question whether that
locality somehow picks out local densities as the source of habitually decohering quantities.
It is hardly necessary to note that such hydrodynamic variables are among the principal
variables of classical physics.32

In the case of densities of conserved quantities, the integrals would not change at all if
the volumes were infinite. For smaller volumes we expect approximate persistence. When,
as in hydrodynamics, the rates of change of the integrals form part of an approximately
closed system of equations of motion, the resulting evolution is just as classical as in the
case of persistence.
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X. BRANCH DEPENDENCE

As the discussion in Sections V and IX shows, physically interesting mechanisms for
decoherence will operate differently in different alternative histories for the universe. For
example, hydrodynamic variables defined by a relatively small set of volumes may decohere
at certain locations in spacetime in those branches where a gravitationally condensed body
(e.g. the earth) actually exists, and may not decohere in other branches where no such
condensed body exists at that location. In the latter branch there simply may be not
enough “inertia” for densities defined with too small volumes to resist deviations from
predictability. Similarly, alternative spin directions associated with Stern-Gerlach beams
may decohere for those branches on which a photographic plate detects their beams and
not in a branch where they recombine coherently instead. There are no variables that are
expected to decohere universally. Even the mechanisms causing spacetime geometry at
a given location to decohere on scales far above the Planck length cannot necessarily be
expected to operate in the same way on a branch where the location is the center of a
black hole as on those branches where there is no black hole nearby.

How is such “branch dependence” described in the formalism we have elaborated? It
is not described by considering histories where the set of alternatives at one time (the

k in a set of P kα) depends on specific alternatives (the α’s) of sets of earlier times. Such
dependence would destroy the derivation of the probability sum rules from the fundamental
formula. However, there is no such obstacle to the set of alternatives at one time depending
on the sets of alternatives at all previous times. It is by exploiting this possibility, together
with the possibility of present records of past events, that we can correctly describe the
sense in which there is branch dependence of decoherence, as we shall now discuss.

A record is a present alternative that is, with high probability, correlated with an
alternative in the past. The construction of the relevant probabilities was discussed in
Section IV, including their dependence on the initial condition of the universe (or at least
on information that effectively bears on that initial condition). The subject of history is
most honestly described as the construction of probabilities for the past, given such records.
Even non-commuting alternatives such as a position and its momentum at different, even
nearby times may be stored in presently commuting record variables.

The branch dependence of histories becomes explicit when sets of alternatives are
considered that include records of specific events in the past. To illustrate this, consider
the example above, where different sorts of hydrodynamic variables might decohere or
not depending on whether there was a gravitational condensation. The set of alternatives
that decohere must refer both to the records of the condensation and to hydrodynamic
variables. Hydrodynamic variables with smaller volumes would be part of the subset with
the record that the condensation took place and vice versa.

The branch dependence of decoherence provides the most direct argument against the
position that a classical domain should simply be defined in terms of a certain set of vari-
ables (e.g. values of spacetime averages of the fields in the classical action). There are
unlikely to be any physically interesting variables that decohere independent of circum-
stance.

XI. MEASUREMENT SITUATIONS

When a correlation exists between the ranges of values of two operators of a quasi-
classical domain, there is a measurement situation. From a knowledge of the value of one,
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the value of the other can be deduced because they are correlated with probability near
unity. Any such correlation exists in some branches of the universe and not in others; for
example, measurements in a laboratory exist only in those branches where the laboratory
was actually constructed!

We use the term “measurement situation” rather than “measurement” for such corre-
lations to stress that nothing as sophisticated as an “observer” need be present for them
to exist. If there are many significantly different quasiclassical domains, different measure-
ment situations may be exhibited by each one.

When the correlation we are discussing is between the ranges of values of two quasi-
classical operators that habitually decohere, as discussed in Section IX, we have a measure-
ment situation of a familiar classical kind. However, besides the quasiclassical operators,
the highly classical maximal sets of alternative histories of a quasiclassical domain may
include other operators having ranges of values strongly correlated with the quasiclassical
ones at particular times. Such operators, not normally decohering, are, in fact, included
among the decohering set only by virtue of their correlation with a habitually decoher-
ing one. In this case we have a measurement situation of the kind usually discussed in
quantum mechanics. Suppose, for example, in the inevitable Stern-Gerlach experiment,
that σz of a spin-1/2 particle is correlated with the orbit of an atom in an inhomogeneous
magnetic field. If the two orbits decohere because of interaction with something else (the
atomic excitations in a photographic plate for example), then the spin direction will be
included in the maximal set of decoherent histories, fully correlated with the decohering
orbital directions. The spin direction is thus measured.

The recovery of the Copenhagen rule for when probabilities may be assigned is imme-
diate. Measured quantities are correlated with decohering histories. Decohering histories
can be assigned probabilities. Thus in the two-slit experiment (Figure 1), when the elec-
tron interacts with an apparatus that determines which slit it passed through, it is the
decoherence of the alternative configurations of the apparatus that enables probabilities
to be assigned for the electron.

Correlation between the ranges of values of operators of a quasiclassical domain is the
only defining property of a measurement situation. Conventionally, measurements have
been characterized in other ways. Essential features have been seen to be irreversibility,
amplification beyond a certain level of signal-to-noise, association with a macroscopic vari-
able, the possibility of further association with a long chain of such variables, and the
formation of enduring records. Efforts have been made to attach some degree of precision
to words like “irreversible”, “macroscopic”, and “record”, and to discuss what level of
“amplification” needs to be achieved.33 While such characterizations of measurement are
difficult to define precisely,d some can be seen in a rough way to be consequences of the
definition that we are attempting to introduce here, as follows:

Correlation of a variable with the quasiclassical domain (actually, inclusion in its set of
histories) accomplishes the amplification beyond noise and the association with a macro-
scopic variable that can be extended to an indefinitely long chain of such variables. The
relative predictability of the classical world is a generalized form of record. The approxi-
mate constancy of, say, a mark in a notebook is just a special case; persistence in a classical
orbit is just as good.

Irreversibility is more subtle. One measure of it is the cost (in energy, money, etc.) of
tracking down the phases specifying coherence and restoring them. This is intuitively large
in many typical measurement situations. Another, related measure is the negative of the
logarithm of the probability of doing so. If the probability of restoring the phases in any
particular measurement situation were significant, then we would not have the necessary
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amount of decoherence. The correlation could not be inside the set of decohering histories.
Thus, this measure of irreversibility is large. Indeed, in many circumstances where the
phases are carried off to infinity or lost in photons impossible to retrieve, the probability
of recovering them is truly zero and the situation perfectly irreversible — infinitely costly
to reverse and with zero probability for reversal!

Defining a measurement situation solely as the existence of correlations in a quasi-
classical domain, if suitable general definitions of maximality and classicity can be found,
would have the advantages of clarity, economy, and generality. Measurement situations
occur throughout the universe and without the necessary intervention of anything as so-
phisticated as an “observer”. Thus, by this definition, the production of fission tracks in
mica deep in the earth by the decay of a uranium nucleus leads to a measurement situation
in a quasiclassical domain in which the tracks directions decohere, whether or not these
tracks are ever registered by an “observer”.

XII. COMPLEX ADAPTIVE SYSTEMS

Our picture is of a universe that, as a consequence of a particular initial condition
and of the underlying Hamiltonian, exhibits at least one quasiclassical domain made up of
suitably defined maximal sets of alternative histories with as much classicity as possible.
The quasiclassical domains would then be a consequence of the theory and its boundary
condition, not an artifact of our construction. How do we then characterize our place as a
collectivity of observers in the universe?

Both singly and collectively we are examples of the general class of complex adaptive
systems. When they are considered within quantum mechanics as portions of the universe,
making observations, we refer to such complex adaptive systems as information gathering
and utilizing systems (IGUSes). The general characterization of complex adaptive systems
is the subject of much ongoing research, which we cannot discuss here. From a quantum-
mechanical point of view the foremost characteristic of an IGUS is that, in some form
of approximation, however crude or classical, it employs the fundamental formula, with
what amounts to a rudimentary theory of ρ, H, and quantum mechanics. Probabilities of
interest to the IGUS include those for correlations between its memory and the external
world. (Typically these are assumed perfect; not always such a good approximation!) The
approximate fundamental formula is used to compute probabilities on the basis of present
data, make predictions, control future perceptions on the basis of these predictions (i.e.,
exhibit behavior), acquire further data, make further predictions, and so on.

To carry on in this way, an IGUS uses probabilities for histories referring both to the
future and the past. An IGUS uses decohering sets of alternative histories and therefore
performs further coarse graining on a quasiclassical domain. Naturally, its coarse graining
is very much coarser than that of the quasiclassical domain since it utilizes only a few of
the variables in the universe.

The reason such systems as IGUSes exist, functioning in such a fashion, is to be
sought in their evolution within the universe. It seems likely that they evolved to make
predictions because it is adaptive to do so.e The reason, therefore, for their focus on
decohering variables is that these are the only variables for which predictions can be made.
The reason for their focus on the histories of a quasiclassical domain is that these present
enough regularity over time to permit the generation of models (schemata) with significant
predictive power.

If there is essentially only one quasiclassical domain, then naturally the IGUS utilizes
further coarse grainings of it. If there are many essentially inequivalent quasiclassical
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domains, then we could adopt a subjective point of view, as in some traditional discussions
of quantum mechanics, and say that the IGUS “chooses” its coarse graining of histories
and, therefore, “chooses” a particular quasiclassical domain, or a subset of such domains,
for further coarse graining. It would be better, however, to say that the IGUS evolves to
exploit a particular quasiclassical domain or set of such domains. Then IGUSes, including
human beings, occupy no special place and play no preferred role in the laws of physics.
They merely utilize the probabilities presented by quantum mechanics in the context of a
quasiclassical domain.

XIII. CONCLUSIONS

We have sketched a program for understanding the quantum mechanics of the universe
and the quantum mechanics of the laboratory, in which the notion of quasiclassical domain
plays a central role. To carry out that program, it is important to complete the definition
of a quasiclassical domain by finding the general definition for classicity. Once that is
accomplished, the question of how many and what kinds of essentially inequivalent quasi-
classical domains follow from ρ and H becomes a topic for serious theoretical research. So
is the question of what are the general properties of IGUSes that can exist in the universe
exploiting various quasiclassical domains, or the unique one if there is essentially only one.

It would be a striking and deeply important fact of the universe if, among its maximal
sets of decohering histories, there were one roughly equivalent group with much higher
classicities than all the others. That would then be the quasiclassical domain, completely
independent of any subjective criterion, and realized within quantummechanics by utilizing
only the initial condition of the universe and the Hamiltonian of the elementary particles.

Whether the universe exhibits one or many maximal sets of branching alternative
histories with high classicities, those quasiclassical domains are the possible arenas of
prediction in quantum mechanics.

It might seem at first sight that in such a picture the complementarity of quantum
mechanics would be lost; in a given situation, for example, either a momentum or a
coördinate could be measured, leading to different kinds of histories. We believe that
impression is illusory. The histories in which an observer, as part of the universe, measures
p and the histories in which that observer measures x are decohering alternatives. The
important point is that the decoherent histories of a quasiclassical domain contain all
possible choices that might be made by all possible observers that might exist, now, in the
past, or in the future for that domain.

The EPR or EPRB situation is no more mysterious. There, a choice of measurements,
say, σx or σy for a given electron, is correlated with the behavior of σx or σy for another
electron because the two together are in a singlet spin state even though widely separated.
Again, the two measurement situations (for σx and σy) decohere from each other. but
here, in each, there is also a correlation between the information obtained about one
spin and the information that can be obtained about the other. This behavior, although
unfortunately called “non-local” by some authors, involves no non-locality in the ordinary
sense of quantum field theory and no possibility of signaling outside the light cone. The
problem with the “local realism” that Einstein would have liked is not the locality but
the realism. Quantum mechanics describes alternative decohering histories and one cannot
assign “reality” simultaneously to different alternatives because they are contradictory.
Everett9 and others11 have described this situation, not incorrectly, but in a way that
has confused some, by saying that the histories are all “equally real” (meaning only that
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quantum mechanics prefers none over another except via probabilities) and by referring to
“many worlds” instead of “many histories”.

We conclude that resolution of the problems of interpretation presented by quantum
mechanics is not to be accomplished by further intense scrutiny of the subject as it applies
to reproducible laboratory situations, but rather through an examination of the origin
of the universe and its subsequent history. Quantum mechanics is best and most fun-
damentally understood in the context of quantum cosmology. The founders of quantum
mechanics were right in pointing out that something external to the framework of wave
function and Schrödinger equation is needed to interpret the theory. But it is not a postu-
lated classical world to which quantum mechanics does not apply. Rather it is the initial
condition of the universe that, together with the action function of the elementary particles
and the throws of quantum dice since the beginning, explains the origin of quasiclassical
domain(s) within quantum theory itself.
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NOTES

a. As in the “no boundary” and the “tunneling from nothing proposals” where the wave
function of the universe is constructed from the action by a Euclidean functional in-
tegral in the first case or by boundary conditions on the implied Wheeler-DeWitt
equation in the second. See, e.g., Refs 1 and 2.

b. The original paper is by Everett9. The idea was developed by many, among them
Wheeler10, DeWitt11, Geroch12, and Mukhanov13 and independently arrived at by
others e.g. Gell-Mann14 and Cooper and VanVechten15. There is a useful collection of
early papers on the subject in Ref 16.

c. It has been suggested23 that, for application to highly quantum-mechanical spacetime,
as in the very early universe, quantum mechanics should be generalized to yield a
framework in which both time orderings are treated simultaneously in the sum-over-
histories approach. This involves including both exp(iS) and exp(−iS) for each history
and has as a consequence an evolution equation (the Wheeler-DeWitt equation) that
is second order in the time variable. The suggestion is that the two time orderings
decohere when the universe is large and spacetime classical, so that the usual framework
with just one ordering is recovered.

d. An example of this occurs in the case of “null measurements” discussed by Renninger34,
Dicke35, and others. An atom decays at the center of a spherical cavity. A detector
which covers all but a small opening in the sphere does not register. We conclude that
we have measured the direction of the decay photon to an accuracy set by the solid
angle subtended by the opening. Certainly there is an interaction of the electromag-
netic field with the detector, but did the escaping photon suffer an “irreversible act
of amplification”? The point in the present approach is that the set of alternatives,
detected and not detected, exhibits decoherence because of the place of the detector
in the universe.

e. Perhaps as W. Unruh has suggested, there are complex adaptive systems, making no
use of prediction, that can function in a highly quantum-mechanical way. If this is the
case, they are very different from anything we know or understand.
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