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Quantum Mechanics of Many-Electron Systems.

By P. A. M. D i r a c , St. Jo h n ’s College, Cambridge.

(Communicated by R. H. Fowler, F.R .S.—Received March 12, 1929.)

§ 1. Introduction.

The general theory  of quantum  mechanics is now alm ost complete, the 

imperfections th a t  still rem ain being in  connection w ith  the  exact fitting in  

of the  theory  w ith re la tiv ity  ideas. These give rise to  difficulties only when 

high-speed particles are involved, and are therefore of no im portance in  the  con

sideration of atom ic and molecular structure  and ordinary chemical reactions, 

in  which it  is, indeed, usually sufficiently accurate if one neglects re la tiv ity  

variation  of mass w ith velocity and assumes only Coulomb forces between the  

various electrons and atom ic nuclei. The underlying physical laws necessary 

for the  m athem atical theory  of a large p a rt of physics and the  whole of chem istry 

are thus completely known, and the difficulty is only th a t  the  exact application 

of these laws leads to  equations m uch too com plicated to  be soluble. I t  there

fore becomes desirable th a t  approxim ate practical m ethods of applying quantum  

mechanics should be developed, which can lead to  an  explanation of the m ain 

features of complex atom ic systems w ithout too m uch com putation.

Already before the  arrival of quantum  mechanics there existed a theory  of 

atomic structure, based on B ohr’s ideas of quantised orbits, which was fairly 

successful in  a wide field. To get agreem ent w ith experim ent i t  was found 

necessary to  introduce the  spin of the electron, giving a doubling in the  num ber 

of orbits of an electron in  an atom . W ith  the  help of th is  spin and Pau li’s 

exclusion principle, a satisfactory theory of m ultiplet term s was obtained when 

one made the additional assum ption th a t  the  electrons in  an  atom  all set them 

selves with their spins parallel or antiparallel. If s denoted the m agnitude of 

the resultant spin angular momentum, th is  s was combined vectorially w ith the 

resultant orbital angular m om entum  l to  give a m ultiplet of m ultiplicity  2s -j-1. 

The fact th a t  one had to  make th is  additional assum ption was, however, a  

serious disadvantage, as no theoretical reasons to  support i t  could be given. 

I t  seemed to show th a t there were large forces coupling the spin vectors of the 

electrons in an atom, much larger forces th an  could be accounted for as due to  

the interaction of the magnetic moments of the electrons. The position was 

thus th a t there was empirical evidence in favour of these large forces, bu t th a t 

their theoretical nature was quite unknown.
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Q u a n tu m  M ech a n ic s  o f  . 7 1 5

The old o rb it theory  is now replaced by H artree’s m ethod of the self-con

sisten t field,* based on quantum  mechanics. The simplifying feature of the 

old theory, according to  which each electron has its  own individual orbit, 

is retained , b u t the  o rb it is now a quantum -m echanical sta te  of the single 

electron, represented by a wave function in  three dimensions. The only action 

of one o rb it on another is assum ed to  be th a t  of a sta tic  distribution  of electricity, 

causing a p a rtia l screening of the  nucleus. A theoretical justification for 

H artree  s m ethod, showing th a t  its  results m ust be in  approxim ate agreem ent 

w ith  those of th e  exact Schrodinger equation for the  whole system, has been 

given by  Gaunt.*}' The m ethod, however, suffers from th e  same lim itation as 

th e  old o rb it theory . I t  cannot give an  explanation of m ultiplet s tructure  

w ithout an  extraneous assum ption of large forces coupling the  spins.

The solution of th is  difficulty in  the  explanation of m ultip let structure is 

provided by  th e  exchange (austausch) in teraction  of the  electrons, which arises 

owing to  th e  electrons being indistinguishable one from  another. Two 

electrons m ay change places w ithout our knowing it, and the  proper allowance 

for th e  possibility  of quan tum  jum ps of th is  nature, wTiieh can be made in  a 

trea tm en t of the  problem  by  quan tum  mechanics, gives rise to  the new kind 

of in teraction . The energies involved, th e  so-called exchange energies, are 

quite  large. In  fact i t  is these exchange energies between electrons in  different 

atom s th a t  give rise to  hom opolar valency bonds, as shown by H eitler and

London.^

The application  of the  new exchange ideas to  the  problem  of m ultiplet 

s truc tu re  has been m ade by Wigner§ and  H und.|| The new theory  provides 

no justification  for th e  assum ption th a t  the  electrons all set themselves w ith 

the ir spins parallel or antiparallel. In  fact i t  does no t allow any meaning to  

be given to  th is  assum ption, since in  quantum  mechanics the  com ponent of 

the  spin  angular m om entum  of an  electron in any direction is a ^-num ber 

w ith th e  tw o eigen-values -Jt \ h ,so th a t  one cannot general give a

the  direction of th e  spin  of an electron in  a given sta tionary  state . W hat the * * * §

* D . R . H artree, ‘ Proc. Camb. Ph il. S o c .,’ vo l. 24 , p . 89 (1928).

t  J . A . Gaun t, ‘ Proc. Camb. Ph il. S o c .,’ vo l. 24, p . 328 (1928). I t  is  po in ted ou t by  

Gaunt th a t  there does n o t seem  to  be any  theoretica l ju stification  for Hartree’s m ethod of 

calcu la ting energ ies and th a t it s  ex trem ely  good agreem ent w ith  observation is probably  

accid en ta l. The som ewhat d ifferent m ethod proposed by  Gaunt is th e  one th a t should  

be used  in  connection  w ith  th e  present paper.

t  W . H e itler  and F . London, ‘ Z. P h y s ik ,’ vo l. 44, p. 455 (1927).

§ E . W igner, ‘ Z. P h y s ik ,’ vo l. 43, p . 624 (1927).

|| F . H und , ‘ Z. P h y s ik ,’ vo l. 43, p. 788 (1927).
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716 P . A . M. D ira c .

new theory shows instead is th a t  fo r  each stationary

one definite numerical value fo r  s, the magnitude of the total sp in  vector. If  i t  

were not for th is theorem , a m easurem ent of s for the  atom  in  a given stationary  

state  would lead to  one or other of a num ber of possible results, according to  a 

definite probability  law. This theorem  forms the  basis of the  theory  of 

m ultiplets. I t  is quite sufficient to  replace the previous idea of the  electrons 

all setting themselves parallel or antiparallel, since i t  shows th a t  we can take 

s to  be a quantum  num ber describing the  states of the  atom , while s combined 

vectorially w ith  l gives a m ultiplet of m ultiplicity  2s +  1.

F u rth er developm ents of the theory  of exchange have been made by Heitler, 

London and Heisenberg,* containing applications to  molecules held together 

by hom opolar valency bonds and to  ferrom agnetism. The trea tm en t given 

by these authors makes an  extensive use of group theory  and requires the 

reader to  be well acquainted w ith  th is  branch of pure m athem atics. Now 

group theory  is ju st a theory  of certain  quantities th a t  do not satisfy the  com

m utative law of m ultip lication, and should thus form a p a rt of quantum  

mechanics, which is the  general theory  of all quantities th a t  do not satisfy the 

com m utative law of m ultiplication. I t  should therefore be possible to  tran s

late  the methods and results of group theory  in to  the  language of quantum  

mechanics and so ob tain  a trea tm en t of the  exchange phenom ena which does 

not presuppose any knowledge of groups on the p a rt of the  reader. This is 

the object of the  present paper. The trea tm en t of groups on the lines of 

quantum  mechanics has the advantage th a t  i t  often gives a simple physical 

meaning to  an abstract theorem  in  the theory  of groups, enabling one to  

remember the  theorem  more easily and perhaps suggesting a simpler way of 

proving it. A further advantage of the trea tm en t of the exchange phenomena 

on these lines is th a t  one can avoid doing more work in  the  theory  of groups 

th an  is strictly  necessary for the  physical applications, which results in  a con

siderable shortening in  the method.

In  §§ 2 and 3 the  general theory is given of systems containing a num ber of 

similar particles, showing the  existence of exclusive sets of states (i.e., sets 

such th a t a transition  can never take place from a state  in one set to  a state  

in  another), and giving their m ain properties. In  § 4 an application is made to  

electrons, a proof being obtained of the fundam ental theorem  in italics above. 

The subsequent work is concerned w ith an approxim ate calculation of the 

energy levels of the states, the result of th is  being expressible by the single

* See various papers in the ‘ Z. Physik ,’ vo ls. 46 -51 . An excellen t account o f the 

whole theory is also contained in W eyl’s hook, ‘ Gruppentheorie und Quantummechanik .’
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Quantum Mechanics o f Many-Electron Systems. 717

sim ple form ula (26). This form ula shows th a t  in  the first approxim ation the 

exchange in teraction  between the electrons m ay be replaced by a coupling 

between th e ir spins, the  energy of th is  coupling for each pair of electrons being 

equal to  the  scalar p roduct of th e ir spin  vectors m ultiplied by a num erical 

coefficient given by  the  exchange energy. This form of coupling energy is, 

however, ju s t w hat was required  in  the  old orb it theory. We obtain  in th is 

way a justification for the  assum ptions of th is  old theory, in  so far as they  can 

be form ulated w ithout contradicting  the  quantum -m echanical description of 

the  spin. The form ula (26), com bined w ith  H artree’s m ethod for determ ining 

approxim ate wave functions for the  different electrons, should provide a power

ful w ay of dealing w ith  com plicated atom ic systems.

§ 2. Perm utations as D ynam ical Variables.

We consider a  dynam ical system  composed of sim ilar particles, the  r th  

particle being describable by  certain  generalised co-ordinates denoted by the 

single sym bol qr. Thus a wave function representing a s ta te  of the  system  

will be a  function  of the  variables q\, q2, ... , qn, which m a

. . .?»)  =

for b revity . Suppose now th a t  P  is any  perm utation  of qv  q2, ..., qn. This 

P  is an  operator which can be applied to  any wave function <j) to  give as 

result ano ther definite function of the  q’s, nam ely

p<M<7) =  <KP<z),

where Vq denotes th e  set of q’s obtained by applying the  p

5i> •••> (ln- F u rth e r P  is a linear operator. Now in  quantum  mechanics

any  dynam ical variable is a linear operator which can operate on any wave 

function, and  conversely any linear operator th a t  can operate on every wave 

function m ay be considered as a dynam ical variable. Thus P

m ay be considered to be a dynam ical variable.

The present paper consists in  a study  of these perm utations P  as dynamical 

variables. There are no classical analogues to  these variables and hence they  

give rise to  phenom ena, e.g., the  existence of exclusive sets of states and other 

exchange phenom ena, which have no classical analogue. There are n ! of 

these variables, one of them , P A say, being the identity, which m ust thus be 

equal to  un ity . One can add and m ultiply  these variables and form algebraic 

functions of them , in  exactly the same way in  which one can add and m ultiply 

and form  algebraic functions of the ordinary co-ordinates and m om enta. The 

product of any two perm utations is a th ird  perm utation, and hence any function
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718 P. A . M . D ira c .

of the perm utations is reducible to  a linear function of them . Any perm utation 

P has a reciprocal P -1 satisfying P P -1 =  P -1 P  =  P x =  1.

A perm utation  P, like any other dynam ical variable, can be represented by 

a m atrix. If  we take  the  representation in  which the  s are diagonal, P  will 

be represented by  a m atrix , whose general elem ent m ay be w ritten

for brevity . This m atrix  m ust satisfy

j V i r  I ?") dq" 4- (?") =  r<|- (s') =  4- (Ps '),

and hence

(?' | P | S " )  =  8 (P ? ' - ? " ) •  (1)

We are using the  no ta tion  8 (x), where x  is short for a set 

x 3, ..., to  denote
$(x )  =  n (x x) S(a?2) ...

which vanishes except when each of the  cc’s vanishes. W ith  th is notation  we 

have
Z (Pq ' -q " )  =  S ( q ' - V - Y ) ,

since the  condition th a t  the  left-hand side shall not vanish, which is th a t  the  

q' ns shall be given by applying the  perm utation  P  to  the s, is the  same as the 

condition th a t  the  right-hand side shall no t vanish, which is th a t  the  s shall 

be given by  applying the  perm utation  P -1  to  the s. Thus we have an 

alternative expression for the  m atrix  representing P.

(?/ i P i < n  =  s ( ? ' - i > - v ) -  (2)

The conjugate complex of any dynam ical variable is given when one writes 

—i  for i in  the  m atrix  representing th a t  variable and also interchanges the 

rows w ith the columns. Thus we find for the  conjugate complex of a perm uta

tion P, w ith the help of (2) and (1)

W I P  I q") = 

—W I p -1  I q” )
or

P  =  P - 1.

Thus a perm utation is not in  general a real variable, its conjugate complex 

being equal to  its  reciprocal.

Any perm utation of the num bers 1, 2, 3, ..., n m ay be expressed in  the cyclic 

notation, e.g.,for n — 8
Pa =  (143) (27) (58) (6), (3)
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Q u a n tu m  M ech a n ic s  o f  M a n y -E le c tro n  S ystem s. 7 1 9

in  which each num ber is to  be replaced by the  succeeding num ber in a bracket, 

unless i t  is the  la st in  a bracket, when i t  is to  be replaced by the first in  

th a t  bracket. Thus P a changes the  num bers 12345678 into 47138625. 

The type of any perm uta tion  is specified by the  p artition  of the  num ber 

n  which is provided by the  num ber of num bers in each of the  brackets . Thus 

the  type  of P a is specified by th e  p a rtitio n  8 =  3 +  2 + 2  +  1. Perm utations 

of the  same type, i.e ., corresponding to  the  same partition , we shall call sim ilar. 

(The usual language of group theory is to  call them  conjugate.) Thus, for 

example, P a in  (3) is sim ilar to

P & =  (871) (35) (46) (2). (4)

The whole of th e  n ! possible perm utations m ay be divided in to  sets of similar 

perm utations, each such set being called a class. The perm utation  P x =  1 

forms a class by itself. Any perm uta tion  is sim ilar to  its  reciprocal.

W hen tw o perm utations P a and P 6 are similar, either of them  P& m ay be 

obtained by m aking a certain  perm utation  P  in the  other P a. Thus, in  our 

exam ple (3), (4) we can take  P  to  be the  perm utation  th a t  changes 14327586 

in to  87135462, i.e ., the  perm utation

P  =  (18623) (475).

We th en  have the  algebraic relation  between P 6 and Pa

P & =  P P aP - h  (5)

To verify this, we observe th a t  the  product P<+ of P a w ith  any wave function 

tj; is changed in to  P^ y if one applies the  perm utation  P to  the  P a in  the  product 

b u t no t to  the  <]>. I f  we m ultip ly  the  product by P  on the  left we are applying 

th is  perm uta tion  to  bo th  the  P a and the  <|/, so th a t  we m ust insert another 

factor P " 1 betw een the  P a and the  ty, giving us P P aP -1 ^ to  equate to  P*+  

E quation  (5) is th e  general form ula showing when two perm utations P a and 

P6 are sim ilar. Of course P  is no t uniquely determ ined when P a and P& are 

given, b u t th e  existence of any P  satisfying (5) is sufficient to  show th a t P a 

and P 6 are sim ilar.

§ 3. Perm utations as Constants oj the M otion.

We now in troduce a H am iltonian  I I  to  describe the  m otion of the system, 

so th a t  any  sta tionary  sta te  of energy H ' is represented by a wave function +

Sati8fying H *  =  H '+ ,

in  which H  is regarded as an  operator. This H am iltonian can be an a rb itrary  

function of the dynam ical variables provided it  is sym m etrical between all the
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720 P . A . M . D ira c .

particles. This sym m etry condition requires th a t  an elem ent (q' | H  | q") of 

the  m atrix representing H  shall be unaltered when one applies any  perm utation 

to  the  qr’s and the  same perm utation  to  the q" ’s, i.e.,

q") =  (Pq '| H | P<?") (6)
for a rb itra ry  P.

The fact th a t  H  is sym m etrical leads a t once to  the  equation

P H  =  H P. (7)

This equation m ay be verified by a sim ilar argum ent to  th a t  used for equation 

(5), or a lternatively  by a direct application of the  m atrix  representatives. Thus 

from (1)

(?' | P H  | q") =  j S (P j ' -  q'") dq'” ( f  |H  | q") =  (P3' | H  | q") 

and from (2)

(q’ I H P  I q") =  |  (?' | H  I q’") dq’" 8 (q’" -  P ~ Y ')  =  (q’ | II  | P -*}"),

and the  two right-hand sides are now equal from (6). E quation  (7) shows th a t  

each ‘permutation variable is  a constant of the motion. The P ’s are still constants 

when arb itra ry  perturbations are applied to  the  system, provided the per

tu rb a tio n  energy to  be added to  the  H am iltonian  is sym m etrical. Thus the 

constancy of the P ’s is absolute.

In  dealing w ith any system  in  quantum  mechanics, when we have found a 

constant of the  m otion a, we know th a t if for any sta te  a  in itia lly  has the 

num erical value a ' then  i t  always has th is  value, so th a t  we can assign different 

num bers a ' to  the  different states and so ob ta in  a classification of the states. 

This procedure is not so straightforw ard, however, when we have several 

constants of the  m otion a which do not comm ute (as is the case w ith our per

m utations P), since we cannot assign num erical values for all the a ’s sim ul

taneously to  any state. The existence of constants of the m otion a which do 

not commute is a sign th a t  the system  is degenerate. We m ust now look for a 

function (3 of the a ’s which has one and the same num erical value [i' for all 

those states belonging to  one energy level H ', so th a t  we can use (5 for classifying 

the energy levels of the  system. We can express the condition for (3 by saying 

th a t i t  m ust be a function of H  (a single-valued function is implied) according 

to  the general definition of a function of a variable in quantum  mechanics, 

or th a t  m ust commute w ith every variable th a t  commutes w ith H, i.e. 

every constant of the motion. If  the a ’s are the only constants of the motion, 

or if they  are a set th a t commute w ith all other independent constants of the 

motion, our problem reduces to  finding a function (3 of the a ’s which commutes
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w ith  all the  a ’s. We can th en  assign a num erical value {*' for p to  each energy 

level of the  system . If  we can find several such functions (S, they  m ust all 

com m ute w ith  each other, so th a t  we can give them  all numerical values 

sim ultaneously and  ob ta in  a complete classification of the  energy levels.

An exam ple of th is  procedure is provided by the  study  of the angular momen

tu m  of an  isolated system . This angular m om entum  has th ree components 

m x, m v,mx, each a constan t of the  m otion, which do not commute. We look

for a function  of mx, m v, m z which com m utes w ith them  all three. We can 

conveniently take  for th is  function  the  variable k defined by

k (k +  h) =  mx2 +  

For each energy level of th e  system  there  will now be one definite numerical 

value k! for k. This constan t of the  m otion k is the  only significant one for 

purposes of classifying th e  states, as the  others merely describe the degeneracy.

We follow th is  m ethod in  dealing w ith  our perm utations P . We m ust find 

a function  y of th e  P ’s such th a t  P y P -1 =  y for every P. I t  is evident th a t  

a possible y is XPC, the  sum  of all the  perm utations P c in a certain  class c, 

i.e. th e  sum  of a set of sim ilar perm utations, since UPPgP""1 m ust consist of 

th e  same perm utations sum m ed in a different order. There will be one such 

y for each class. F u rther, there  can be no other independent y, since an 

a rb itra ry  function  of the  P ’s can be expressed as a linear function of them  with 

num erical coefficients and i t  will no t then  com m ute w ith every P  unless the 

coefficients of sim ilar P ’s are always the  same. We thus- ob ta in  all the y ’s 

th a t  can  be used for classifying the  states. I t  is convenient to  define each 7 

as an  average instead  of a sum, thus

Xc =  2 P c K ,

where nc is the  num ber of P ’s in  the  class c. An alternative expression for 

y is
Xe =  2 rP rPcP ,-* /» ! , (9)

the  sum m ation being extended over all the  n ! perm utations P f. l o r  each 

perm uta tion  P  there is one 7, y (P) say, equal to  the  average of all perm utations 

sim ilar to  P . One of the  y ’s is 7 (Px) =  1.

The dynam ical variables 7^  y 2 •. • 7 m obtained in  th is  way will each have a 

definite num erical value for every sta tionary  s ta te  of the system. Thus for 

every permissible set of numerical values y / ,  y 2 ... 7m f°r the 7 s there will be 

a set of states of the  system . Since the  y ’s are absolute constants of the motion 

these sets of states will be exclusive, i.e. transitions will never take place from 

a s ta te  in  one set to  a sta te  in another.

Q u a n tu m  M ech a n ics o f  M a n y-E le c tro
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722 P . A . M . D ira c .

The permissible sets of values y  th a t  one can give t

the  fact th a t  there exist algebraic relations between the  The produc t of 

any two y s ,  XpX«> i>s °f course expressible as a linear function of the  P ’s, and 

since i t  commutes w ith every P  i t  m ust be expressible as a linear function of 

the y ’s, thus

X*X« =  «lXl +  a2l2 +  — +  «mXm (10)

where the a ’s are num bers. A ny num erical values th a t  one gives to  t

y ’s m ust be eigen-values of the  y ’s and m ust satisfy thes

tions. For every solution y ' of these equations there is on

states. One solution is evidently y vr — 1 for every

of states w ith  sym m etrical wave functions. A second obvious solution is 

■yj =  ±  1, the  -j- or — sign being taken  according to  w hether the perm utations in  

the class p  are even or odd, and th is  gives the  set of states w ith  antisym m etrical

wave functions. The other solutions m ay be worked ou t in  any special case 

by ordinary algebraic methods, as the  coefficients a  in  (10) m ay be obtained 

directly by a consideration of the  types of perm utation to  which the y ’s con

cerned refer. Any solution is, ap art from a certain  factor, w hat is called in  

group theory  a character of the  group of perm utations. The are all real 

variables, since each P  and its  conjugate complex P -1 are sim ilar and will 

occur added  together in  the  definition of any y, so th a t  the  y ”s m ust be all real 

numbers.

The num ber of possible solutions of the  equations (10) m ay easily be deter

mined, since it  m ust equal the  num ber of different eigen-values of an  a rb itra ry  

function B of the  ys. We can express B as a linear function of the  s w

help of equations (10); thus

B =  &1X1 +  &2X2 +  • • • +  bmym.(11)

Similarly we can express each of the quantities B2, B3 ... BTO as a linear function 

of the y s .  From  these on equations, together w ith the  

we can eliminate the  on unknowns y x, 

equation of degree on for B,

B”* +  ClB“ - i  +  c2B m~* +  ... +  

The on solutions of th is equation give the  m  possible eigen-values for B, each of 

which will, according to  (11), be a linear function of bv  b2 . . . b m whose coefficients 

are a permissible set of values y x , y 2' ... y.m'. These m  sets of values y ' 

thus obtained m ust be all different, since if there were fewer than  on different 

permissible sets of values y ’ for the y s  there would exist a linear function of 

the y s  every one of whose eigen-values vanishes, which would mean th a t the
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Q u a n tu m  M ech a n ic s  o f  M a n y -E le c tro n  S ystem s. 7 2 3

linear function itself vanishes and  th e  x ’s are not independent. Thus the 

num ber of perm issible sets of num erical values for the  x ’s is ju s t equal to m, 

which is th e  num ber of classes of perm utations or the  num ber of partitions of 

n. This num ber is therefore the  num ber of exclusive sets of states.

The  properties of the  P ’s w hich are no t properties of the  x ’s will only describe 

the  degeneracy of the  states. If  we ob ta in  a m atrix  representation of all the  

P ’s consistent w ith  each of th e  x ’s being a certain  num ber f ,  then  the  num ber 

of rows and  columns of th e  m atrices will be the  degree of degeneracy of the 

sta tes in  th e  exclusive set f ,  i.e ., th e  num ber of independent states belonging 

to  each energy level. This degeneracy is an  essential one and cannot be 

rem oved by  any  p e rtu rb a tio n  th a t  is sym m etrical between all the  similar 

particles.
§ 4. M u ltif le t Structure.

The preceding theory  of system s composed of sim ilar particles will now be 

applied to  th e  case when th e  particles are electrons. The new features which 

th is  requires us to  tak e  in to  consideration are the  spin of the  electrons and 

P au li’s exclusion principle.

The th ree  C artesian co-ordinates x, y  of the  r th  ele

single sym bol xr. The spin angular m om entum  and m agnetic m om ent of 

th is  electron will be of th e  form  \h  c r Tand \eh \m a . cr „  

whose com ponents arx, arv, arz satisfy

Orx =  1, GnPry~ i^

w ith  sim ilar relations ob tained by j;yclic perm utation of the suffixes x, y  and 

We tak e  xr and  arz to  be the  variables describing the r th  electron th a t  appear 

in  th e  wave function. I t  is convenient to  w rite the  wave function

^  {X]G-)X g®2 ^vPn) 4* (*^)

w ithout the  suffixes z a ttached  to  the  a ’s, these suffixes being understood 

whenever one is dealing w ith  the  variables in  wav e functions.

The exclusion principle now requires th a t  shall be antisym m etrical in  the 

x’s and  a ’s together, i .e .,that if any perm utation is applied to the a

to  th e  a ’s, m ust rem ain unchanged or change sign according to  whether the 

perm uta tion  is an  even or an  odd one. Thus perm utations applied to the z ’s 

and a ’s together, produce only triv ia l effects and no useful results would be 

obtained by  considering them  as dynam ical variables. We can, however, 

consider perm utations P  applied to  the x ’s alone and apply our preceding 

theory  to  these. A ny of these perm utations is a constant of the m otion when 

we neglect the  forces due to  the spins, so th a t  the  H am iltonian does not involve
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7 2 4 P . A . M . D ira c .

the spin variables cr. We can now introduce our y ’s as functions of these 

P ’s and assert th a t  for any  permissible set of num erical values y ' for the  y ’s 

there will be one exclusive set of states. Thus there exist these exclusive sets 

of states for systems containing m any electrons even when we restric t ourselves 

to  a consideration only of those states th a t  satisfy  the  exclusion principle. 

The exclusiveness of the  sets of states is now, of course, only approxim ate, 

since the y ’s are constants only when we neglect the  spin forces. There will 

actually  be a small probability  for a transition  tak ing  place from a sta te  in  

one set to  a sta te  in  another.

Since ^ is antisym m etrical, the  result of any  perm utation P  applied to the 

ic’s m ust equal ±  tim es the result when the same perm utation is applied to  the  

cr’s. Thus if we denote by  P 0- a perm utation applied to the  o’s considered as a 

dynam ical variable, we shall have

P- =  ±  n ,  (13)

for each of the n  ! perm utations P r. Thus instead of studying the dynam ical 

variables P  we can get all the  results we want, e.g., the  characters y ', by study 

ing the  variables P 0-. The P^’s are m uch easier to  s tudy  on account of the  fact 

th a t  the  variables a  in  the  wave function have domains consisting each of 

only the two points 1 and —1, which are the  two eigen-values of each a*. This 

fact results in  there being fewer characters y ' for the  group of perm utations of 

the a variables th a n  for the  group of general perm utations, since i t  prevents 

a function of the  variables a v  a 2, ..., from  being antisym m etrical in  more th an  

two of them . $

The study  of the  dynam ical variables P* is m ade specially easy by the fact 

th a t  we can express them  as algebraic functions of the  dynam ical variables 

c r. Consider the  quan tity

Ol2 =  1(1 +  ( ®-l> ^2)}-

W ith the help of (12) we find readily th a t

( o*2)2 =  (<n*cr2* +  Giv g 2v +  <ylxa 2z)z =  3 — 2 ( c r2), (14)

and hence th a t

° i2 2 =  i l 1 +  2 ( oq, c r2) +  ( <rv  o“2)2} =  1. (15)

Again, we find

*̂ 2x̂ 12 == 2 i^lx ’ ’ e^2v “l- ^

^12°]* ~  ct2*^12-

and hence

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

4
 A

u
g
u
st

 2
0
2
2
 



Q u a n tu m  M ech a n ic s  o f  M a n y -E le c tro n  S ystem s. 725

These “ V ertauschungs ” relations for 0 12 w ith  o q  and <r2 are precisely the 

same as those for P a’12, the  perm uta tion  consisting of the  interchange of the spin 

variables of electrons 1 and 2. Thus we can p u t

where c is a num ber. E quation  (15) shows th a t  c =  ±  1. To determine 

which of these values for c is th e  correct one, we observe th a t  the eigen-values 

of P 0̂  are 1, 1, 1, —1, corresponding to  the  fact th a t  there exist three inde

pendent sym m etrical and  one antisym m etrical function F(ct1z, cr2z) of the two 

variables a lz, a 2z, whose dom ains contain  only two points each. Thus the 

m ean of the  eigen-values of P 0̂  is Now the  m ean of the  eigen-values of 

( o*!, c r2) is evidently  zero and hence the  m ean of the eigen-values of 0 12 is 

Thus we m ust have c =  +  1, and so we can p u t

In  th is  w ay any  perm uta tion  I )cr consisting sim ply of an interchange can be 

expressed as an  algebraic function of the  <r’s. A ny other perm utation I3cr 

can be expressed as a p roduct of interchanges and can therefore also be expressed 

as a function of th e  c r’s. W ith  the  help of (13) we can now express the P 's 

as algebraic functions of the  cr s and elim inate the  P°°s from the discussion. 

We have, since th e  — sign m ust be taken  in  (13) when the perm utations are 

interchanges,

P 12 —  —  4 * ( ° \ l  > a  2 ) } '

The form ula (16) m ay conveniently be used for the evaluation of the 

characters y ' which define the  exclusive sets of states. We have, for example, 

for the  perm utations consisting of interchanges

If we in troduce the  variable sto describe the  m agnitude of 

angular m om entum , <rr in  units of h, th rough the formula

P ° 1 2  "i_  \(1 H-  ( 1) 2)}*

X12 =  X (p i 2) =  — 2 I 1 + ( c r„  t) }-.

$ (s -|- 1 ) — ( |Air C r, 2’Xi/, ^ /) ,

3 B
VOL . C X X I I I .— A .
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726 P . A . M . D irac .

analogous to  (8), we have

2S r < t ( c r n crt) — (£ f o ’r, c—2,, ( a r) crr). 

=  4s (s +  1) — 3w.
Hence

n (n — 4) - f  4s (s +  1) .

2n { n - l )  ’ K ’

Thus X12 is expressible as a function of the  variable s and of n the  num ber of 

electrons. Any of the other y ’s could be evaluated on sim ilar lines and would 

be found to  be a function of s and n only, since there are no other sym m etrical 

functions of all the  cr variables which could be involved. There is therefore 

one set of num erical values yf for the  

for each eigen-value s' of s. The eigen-values of s are

the series term inating w ith  |  or 0.

We obtain  in  th is  way a proof of the fundam ental theorem  of m ultiplet

num erical value s' for s. We obtain  further th a t  the  probability  of transitions 

occurring in  which schanges is small, of the  order of m agnitude 

forces.

The degree of degeneracy of the  states in any exclusive set s — s' m ust equal 

the num ber of independent eigen-functions F  (oq, cr2) th a t the variable s has, 

belonging to  the  eigen-value s'. This is ju st -f- 1, as can be seen w ithout 

detailed calculation from the  fact th a t  any of the  Cartesian components of the 

to ta l spin angular m om entum , iSorr2 say, has the  2s' +  1 eigen-values

s', s' — l ,  s' 2, . . .  — s'.

When the spin forces are not neglected, each (2s' -f- l)-fold degenerate energy 

level will in  general be split up into 2s' -f- 1 non-degenerate energy levels, 

differing slightly one from another. Thus the  exclusive set of states s =  s' 

becomes a system  of m ultip lets of m ultiplicity  2s' +  1. §

We m ust now consider the application of perturbation theory for an approxi

m ate calculation of the energy levels. We shall take first the general case of 

a system with n similar particles, discussed in §§ 2 and 3. We shall follow the 

usual method in the theory of the perturbations of the stationary  states of a 

degenerate system, according to  which, if we label the states of the unperturbed

^n, \ u  — 1, — 2, ...

structure, th a t for each sta tionary  s ta te  of the atom  there is one definite

§ 5. Determination of Energy Levels.
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Quantum Mechanics o f Many-Electron Systems.

system  a ', a " , we ob ta in  th e  m a trix  (a ' | V | a") representing the pertu rba

tion  energy Y and  neglect all those m a trix  elem ents a ', a "  for which the  un

pertu rbed  sta tes  a  and  a "  have tw o different energies. The rem aining m atrix 

elem ents will form  a num ber of sm all m atrices, one referring to  each energy 

level of the  unpertu rbed  system , and having as the  num ber of its rows and 

columns the  num ber of independent sta tes belonging to  th is  energy level. The 

eigen-values of these m atrices will th en  be, in  the  first approxim ation, the 

changes in  the  energy levels caused by the  perturbation.

*We suppose th a t  for our unpertu rbed  states each of the sim ilar particles has 

its  own “ o rb it,” represented  by  a wave function (qr |a) involving only the 

co-ordinates qr of th is  one particle . Y'.e shall have altogether n orbits, one 

for each particle, which we assum e for the  present to  be all different, and label 

a i ’ a 2> •••» a »- The wave function  representing an unperturbed state  of the 

whole system  will th e n  be th e  product.

(?i i a i) (?21 a 2) . ..  (qn| a j  =  | a) 

say, for b rev ity . I f  we apply  an  a rb itra ry  perm utation P a to  the a ’s, we shall 

ob ta in  another wave function

(?i I «r) (?2 1«.) ••• (q» I a =  (q | P aa) (19)

representing another unpertu rbed  s ta te  w ith the  same energy. There are thus 

altogether n ! unpertu rbed  states w ith th is  energy, if we assume there are no 

o ther causes of degeneracy. The m atrix  elem ents of Y th a t  we m ust take in to  

consideration are therefore of the  type (Paa | V | P6a), where Pa and P 6 are two 

perm utations of th e  a ’s, and form a m atrix  w ith n ! rows and columns. The 

eigen-values of th is  m a trix  are w hat we m ust calculate.

I t  is necessary in  the  present discussion to  distinguish between the  two kinds 

of perm utations, those of the  q’s and those of the  a ’s. The 

betw een them  can perhaps be seen m ost clearly in  the  following way. L et us 

consider a perm uta tion  in  the  general case, say th a t  consisting of the in te r

change of 2 and 3. This m ay be in terpre ted  either as the  interchange of the 

objects 2 and 3 or as the  interchange of the objects in  the places 2 and 3, 

these tw o operations producing in  general quite  different results. The first 

of these in terpretations is the  one we have been using throughout §§ 2 and 3, 

the  objects concerned being the  q’s. A perm utation w

can be applied to  an  a rb itra ry  function of the  A perm utation with the 

second in te rpre ta tion  has a meaning, however, when applied to a function of 

the  q’s only if each of the  q’s has a definite specifiable plac

This is no t the  case for a general function of the s, b u t i t  is the case for any of
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728 P . A . M . D ira c .

the n ! functions of the  type (19), the  place of each being specified by the a 

w ith which it  is bracketed. Any perm utation applied to  the  s in  given places 

now produces the same result as the  reciprocal perm utation applied to  the 

oc’s. A perm utation of the q’s (i.e., one w ith  the  first in

can be applied to any function of the  s, m ay be regarded as an ordinary 

dynam ical variable. On the  other hand a perm utation of places or of the  a ’s 

can be considered as a dynam ical variable only in  a very restricted sense, since 

i t  has a m eaning only when m ultiplied in to one of the n  ! wave functions (19) 

or into some linear com bination of them . We denote such a perm utation of the 

a ’s, considered as a dynam ical variable in  th is  restricted sense, by a symbol P “.

We can form algebraic functions of the variables P “, which will be other 

variables in  the  same restricted  sense. In  particu lar we can form y  (PaJ ,  

the average of all P a’s sim ilar to  P “a. This m ust equal y (Pa), the  average of 

the sim ilar perm utations of the  q’s, since the  to ta l se

given type m ust evidently be the  same w hether the perm utations are applied 

to  the  objects q or to  the  places a.

If  we set up arb itra rily  a one-one correspondence between the s and the 

a ’s, as is done autom atically  when we label both  the s and the  a ’s by the 

num bers 1, 2, 3, ..., n, as in  (18), then, if we have any perm utation of the 

q’s, we can give a meaning to  th is  same perm utation of the a ’s. This meaning 

is such th a t

iq I a) =  (Pq | Pa).

In  th is  equation we can apply a perm utation P a to  the a ’s on both sides, which 

will give us

f o | P afx) =  (P? |P .P « )  (20)

an equation which shows us the connection between perm utations of the q’s 

and those of the a ’s when applied to the wave function (19).

The m atrix (Paa | Y | P6a), which we m ust now study, m ay be obtained from 

the m atrix (q'| Y | q") representing the same dynam ical variable Y by a canoni

transform ation, in  which the  transform ation functions are just (g'lPaa), the 

wave function (19), and its conjugate complex (P„a | q), provided these functions 

are properly normalised. Thus

(P„ot I V I P„«) =  f j  (P.0C I q') iq' (q' | V | q") dq" (q" | P,a). (21)

Again, for arb itra ry  P,

(P .P a  I V I P ,Pa) =  I f <P„Pa [ q’) dq' | V | q") dq" \ P„P«)

=  j j  (P„Pa | Pq') dq' (Pq' | V | Pq") dq" (Pgr" | P.Por)
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when we apply  the  perm uta tion  P  to  the  variables of in tegration  and a". 

W ith  the  help of (20), th is  reduces to

(P„Pa | V | P 8P«) =  j  | (P„« | q>) (Pj-1 V | P ?") i f  ( f  | p 6a). (22)

Now since Y is sym m etrical betw een all the  particles, we m ust have

(?' I V | q") =  (P \ V | P  

like (6), and hence, com paring (21) and (22), we obtain

(P aa  | V | P 6a) =  (PaP a  | Y | P 6Pa) (23)

L et (P a  | V | a) =  YP for b revity . Then, tak ing  P  =  P6~i in (23), we obtain 

(P aa  | Y | P 6a) =  ( P ^ r ' a  | Y f a) — V ^ " 1.

Thus the  general m a trix  elem ent (Ptta | Y | P 6a) depends only on the ra tio  

15 aiid  of the  to ta l of {n !)2 m a trix  elem ents there are only n  ! different 

ones. The coefficient of any YP in  th is  m atrix  will be a m atrix , each of whose 

elem ents is 0 or 1, th e  1 occurring when

(Paa  | V | P6a) =  VP,

i.e ., when P aP& 1 =  P. B u t th is  m atrix, m ultiplied in to any wave function 

W I * » >  gives th e  resu lt (q | P aa) w ith  P aP &_1 =  P, it  gives the result 

(q | P P 6a), so th a t  i t  is precisely the  m atrix  representing the variable P a, or 

th e  perm uta tion  P  applied to  the  a ’s. Thus the  whole m atrix  (P0a | Y | P6a) is 

equal to  the  m atrix  representing 2  VPP “, where the  sum m ation is over all the 

n  ! perm utations P, and we can p u t

Y =  2  VPP a. (24)

This form ula shows th a t  the  pertu rba tion  energy Y is equal to  a linear 

function of the  perm uta tion  variables P tt, w ith num erical coefficients YP, which 

are the  exchange energies. I t  is, of course, only an  approxim ate formula, 

as i t  holds only w ith  neglect of those m atrix  elements of Y th a t  refer to  two 

different energy levels of the  unperturbed system . I t  can, however, be used 

for the  calculation of the  energy levels in  the first approxim ation, and is very 

convenient for th is  purpose as the  expression 2  VPP a is easily handled. This 

expression, i t  should be remembered, is a dynam ical variable only in  the 

restric ted  sense m entioned above, b u t th is  sense is ju s t sufficiently general for 

equation (24) to  be valid  w ith neglect of those m atrix  elements of V referring 

to  two different energy levels of the  unperturbed system.

As an  exam ple of an  application of (24) we shall determ ine the  average 

energy of all those states arising from a given sta te  of the unperturbed system

Q u a n tu m  M ech a n ics o f  M a n y -E le c tro n  S ystem s. 7 2 9
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730 P . A . M . D ira c .

th a t belong to  one exclusive set. This requires us to  calculate the  average 

eigen-value of V when the  y ’s have specified num erical values Now the 

average eigen-value of P “ equals th a t  of P aaP a (P“a)_1 for a rb itra ry  P “0 and 

thus equals th a t  of (n !)_1 2 aP aaP “ (Paa)_1, which is y ' (P a) or 7/ (P

the average eigen-value of Y is 2Y Py ' (P). A sim ilar m ethod could be used for 

calculating the average eigen-value of any function of Y, i t  being only necessary 

to  replace each P “ by 7 (P) to  perform  the  averaging.

The modifications required in  the  theory  when the  orbits oq, a 2, a 3, ..., or 

the  undisturbed system  are no t all different m ay easily be made. Suppose, 

for example, th a t oq and oc2 are the  same. Then the  perm utation P “12 th a t  

causes an  interchange of oq and oc2 m ust equal un ity . Only functions of the 

P “’s th a t  com m ute w ith  P a12 now have a m eaning. This, however, is sufficient 

for us to  be able to  follow out the  same sort of argum ent as before, and ob tain  

a result of the  same form (24). The term  in  the  sum m ation in  (24) th a t  involves 

the  perm utation P “12 now does not occur, since i t  could be added on to  the  term  

involving the  identical perm utation P “r  For the  rem aining terms, any 

two term s P*a and P a6 m ust have the  same coefficient if the  perm utations 

P “a and P “6 can be obtained from one another by the  interchange of oq and 

oc2. This results in  SV PP “ com m uting w ith  P a12 and thus having a meaning. 

The condition P “12 =  1 will impose res trictions on the  possible num erical 

values 7 ' th a t the y ’s can have and will reduce the  num ber of characters.

§ 6. The Energy Levels in  the Case of Electrons.

We shall now consider the  application of the  form ula (24) to  the case of 

electrons. If  we assume only Coulomb forces between the  electrons, then  the 

perturbation will consist of a num ber of term s, each involving the  co-ordinates 

of one or a t m ost two electrons, so th a t  all the  exchange energies VP will vanish 

except those referring to  the  identical perm utation P x and to simple interchanges 

of two orbits, P ars. Thus (24) reduces to

V =  Vj -f- S r < sY „Pa„,

Vrs being the exchange energy of orbits r  and s. Since the P “’s have exactly 

the same properties as the P ’s, we can  replace the P a’s in  th is expression for Y 

by P ’s w ithout changing its eigen-values. This gives us

Y =  Vx +  S r < ,Vr<Prf, (25)

where the =  sign is now to  be interpreted  as denoting the equality of the eigen

values of the two sides and not the  complete equality  of the two sides as 

dynam ical variables or operators.
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With, the  help of (16), the  resu lt (25) m ay be p u t in  the more expressive 

form

V =  Vx — |L r<sV „ { l  - f  ( ° “r, 0%)}* (26)

This shows th a t, for th e  purpose of calculating energies, the  exchange in te r

action  due to  the  equivalence of the  electrons m ay be replaced by  a constant 

p e rtu rb a tio n  energy — - |2 r<gVrg, together w ith  a coupling between the spin 

vectors w ith  energy — |V rs ( o ’,, c rs) for each pair of electrons r, s. I t  is th is 

coupling w hich m ay be considered as giving rise, for instance, to  the large 

differences in  energy betw een the  singlet and trip le t term s of helium. The 

to ta l num ber of eigen-values of the  righ t-hand  side of (26) is a factor 2 

occurring for th e  represen ta tion of the  spin vector of each of the  n electrons. 

These 2n eigen-values will not, in  general, all be different, as each one will 

occur repeated  a num ber of tim es to  give the  correct m ultiplicity  of the corre

sponding term .

W hen tw o of th e  o rb its of the  unpertu rbed  system  are the  same, say the 

orbits 1 and  2 are the  same, the  only eigen-values of the  right-hand side of 

(25) or (26) th a t  will be eigen-values of V are those consistent w ith the  equation 

P 12 =  1 or =  — 1. In  th is  case we have V12 =  0 and

V lf =  V 2r (r * 3 , 4 , 5 ,  . ..) ,

which results in  the  righ t-hand  side of (26) being sym m etrical between cr! 

and  c r2. I t  follows from  th is  th a t  any eigen-function F  (g1x, g 2z, g 3z, ...) of 

th is  righ t-hand  side, considered as an  opera tor, m ust be either sym m etrical or 

antisym m etrical between olz and g 2z. The condition P ^o  =  — 1 now shows 

th a t  only the  antisym m etrical ones, representing states for which the  spins 

crq and o*, are antiparallel, m ust be tak en  in to accoimt. I he num ber of 

eigen values of (26) th a t  m ust be used is thus reduced by  a factor 4, on account 

of there  being only one antisym m etrical eigen-function for every three sym m etri

cal ones. The case of more th a n  two orbits the  same cannot occur w ith 

electrons.

In  our theory  of the  energies we have nowhere had to  assume th a t the 

wave functions (q | oq), (q \ a2), ..., representing the  various orbits

perturbed system, are orthogonal, or th a t  they  are eigen-functions of any 

unperturbed  H am iltonian  If (). This enables an  im portan t generalisation to  

be made in  the  application of our results. I t  is not necessary th a t  we should 

be able to  sp lit up our H am iltonian for the whole system  H  into a H am iltonian 

for the  unperturbed  system  H 0 and a pertu rbation  energy V, and then use tin 

eigen-functions of H 0 to  give our (q | oq), (q | a 2), .... We can take our (q | oq),

Q u a n tu m  M ech a n ics o f  M a n y -E le c tro n  S ystem s. 731
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732 P . A . M . D ira c .
♦

(q | a 2) to be any  functions giving a good approxim ation to  the  actual d istribu

tion  of electrons in  the system, and m ust then  th roughout the  analysis replace 

V, which now no longer exists, by  the  whole H am iltonian  H . The wave 

functions supplied by H artree’s theory  can thus very conveniently be used. 

The only m athem atical conditions which the  (q | a!), (q | a 2), ..., need satisfy 

is th a t  in the m atrix  (a ' | H  | a") representing H, those m atrix  elements for which 

the oc"’s are not sim ply a perm utation of the  od’s m ust be small.

As an  example of the  application of (25), H eitler’s formula* for the  in te r

action of two atom s A and B, each w ith  valency electrons, will be deduced. 

The fundam ental theorem  of m ultiplet struc tu re  shows th a t  there will be a 

quantum  num ber s describing the  m agnitude of the resu ltan t spin of the electrons 

in  both atoms. This same theorem  shows th a t, provided the  in teraction 

between the atom s is small com pared w ith the  exchange energies w ithin  either 

of them , the  whole energy of the  system  will depend very largely on the  

m agnitudes sx  and sB of the resu ltan t spins for the  two atom s separately

th a t for each energy level of the  whole system  there m ust be definite numerical 

values for sA and sB, which will thus be two more quantum  num bers describing 

states of the  whole system. For valency electrons the  resu ltan t spin vector 

has its  m axim um  possible value (we can if we like in  th is case speak of the 

electron spins all being parallel) and hence

Sa  =  % =  (27)

Again, if Z,is the valency of the  hom opolar bond uniting the two atom s (i.e.

Z, — 1, 2, . . . ,  for a single, double, . . .  bond)

s — n -j- Z-(28)

We now apply our form ula (25), tak ing  the sum m ation onty over pairs of 

orbits r,s of which one is in  each atom , since we w ant the  interaction energy 

between the two atoms. This gives

V =  Vx +  £ ab Vrs P„.

As a rough approxim ation we m ay take all the exchange energies Yri between 

two orbits one in each atom  to  be equal. Calling these exchange energies 

Yq, we get
Y =  Vx + V QS AB P rs.

We m ust now evaluate S AB Prt, summed over all pairs one in each atom, which 

we .can best do by first summing over all possible pairs and then subtracting

* \Y. H eitler, ‘ Z. P hysik ,’ vol. 47, p. 835 (1928), equation  (33).
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Q u a n tu m  M ech a n ic s  o f  M a n y -E le c tro n  S ystem s. 7 3 3

the  tw o sums for pairs both  in  atom  A and bo th  in  atom  B respectively. 

Thus

S ar  Pr S P f s  ^ A A  P » s  —JBB  P r s

|  {2n (2n 4) +  4s (s +  1)} +  l  {n (n — 4) +  4s A (sA + 1 )}

+  l  {n {n — 4) +  4sB (s b  +  1)}

by a three-fold application of (17), in  the  first case to  a system  of 2 electrons. 

This reduces to

^AB -Prs — — I  {2m2 +  4s (s-}- 1 ) — 4.Sa  (sa -j- 1) 4sB (sB -j- 1) }

=  K ~ ( n ~ Q 2.

Thus

which is H eitle r’s result.

3 c
VOL. CXX III.— A .

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

4
 A

u
g
u
st

 2
0
2
2
 


