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Quantum Mechanics of Many-Electron Systems.
By P. A. M. Dirac, St. John’s College, Cambridge.

(Communicated by R. H. Fowler, F.R.8.—Received March 12, 1929.)

§ 1. Introduction.

The general theory of quantum mechanics is now almost complete, the
imperfections that still remain being in connection with the exact fitting in
of the theory with relativity ideas. These give rise to difficulties only when
high-speed particles are involved, and are therefore of no importance in the con-
sideration of atomic and molecular structure and ordinary chemical reactions,
in which it is, indeed, usually sufficiently accurate if one neglects relativity
variation of mass with velocity and assumes only Coulomb forces between the
various electrons and atomic nuclei. The underlying physical laws necessary
for the mathematical theory of alarge part of physics and the whole of chemistry
are thus completely known, and the difficulty is only that the exact application
of these laws leads to equations much too complicated to be soluble. It there-
fore becomes desirable that approximate practical methods of applying quantum
mechanics should be developed, which can lead to an explanation of the main
features of complex atomic systems without too much computation.

Already before the arrival of quantum mechanics there existed a theory of
atomic structure, based on Bohr’s ideas of quantised orbits, which was fairly
successful in a wide field. To get agreement with experiment it was found
necessary to introduce the spin of the electron, giving a doubling in the number
of orbits of an electron in an atom. With the help of this spin and Pauli’s
exclusion principle, a satisfactory theory of multiplet terms was obtained when
one made the additional assumption that the electrons in an atom all set them-
selves with their spins parallel or antiparallel. If s denoted the magnitude of
the resultant spin angular momentum, this s was combined vectorially with the
resultant orbital angular momentum/ to give a multiplet of multiplicity 2s +1.
The fact that one had to make this additional assumption was, however, a
serious disadvantage, as no theoretical reasons to support it could be given.
[t seemed to show that there were large forces coupling the spin vectors of the
electrons in an atom, much larger forces than could be accounted for as due to
the interaction of the magnetic moments of the electrons. The position was
thus that there was empirical evidence in favour of these large forces, but that
their theoretical nature was quite unknown.
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The old orbit theory is now replaced by Hartree’s method of the self-con-
sistent field,* based on quantum mechanics. The simplifying feature of the
old theory, according to which each electron has its own individual orbit,
15 retained, but the ** orbit ” is now a quantum-mechanical state of the single
electron, represented by a wave function in three dimensions. The only action
of one orbit on another is assumed to be that of a static distribution of electricity,
causing a partial screening of the nucleus. A theoretical justification for
Hartree’s method, showing that its results must be in approximate agreement
with those of the exact Schrédinger equation for the whole system, has been
given by Gaunt.f The method, however, suffers from the same limitation as
the old orbit theory. It cannot give an explanation of multiplet structure
without an extraneous assumption of large forces coupling the spins.

The solution of this difficulty in the explanation of multiplet structure is
provided by the exchange (austausch) interaction of the electrons, which arises
owing to the electrons being indistinguishable one from another. Two
electrons may change places without our knowing it, and the proper allowance
for the possibility of quantum jumps of this nature, which can be made in a
treatment of the problem by quantum mechanics, gives rise to the new kind
of interaction. The energies involved, the so-called exchange energies, are
quite large. In fact it is these exchange energies between electrons in different
atoms that give rise to homopolar valency bonds, as shown by Heitler and
London.

The application of the new exchange ideas to the probiem of multiplet
structure has been made by Wigner§ and Hund.|| The new theory provides
no justification for the assumption that the electrons all set themselves with
their spins parallel or antiparallel. In fact it does not allow any meaning to
be given to this assumption, since in quantum mechanics the component of
the spin angular momentum of an electron in any direction is a g-number
with the two eigen-values -1 34, so that one cannot in general give a meaning to
the direction of the spin of an electron in a given stationary state. What the

* D. R. Hartree, * Proc. Camb. Phil. Soc.,” vol. 24, p. 89 (1928).

t+ J. A, Gaunt, ‘ Proo, Camb, Phil, Soc.,” vol. 24, p. 328 (1928). It is pointed out by
Gaunt that there does not seem to be any theoretical justification for Hartree's method of
calculating energies and that its extremely good agreement with observation is probably
accidental. The somewhat different method proposed by Gaunt is the one that should
be used in connection with the present paper.

i W. Heitler and ¥. London, * Z. Physik,’ vol. 44, p. 455 (1927).

§ E. Wigner, ‘ Z. Physik," vol. 43, p. 624 (1927).

| ¥. Hund, * Z. Physik,” vol. 43, p. 788 (1927).
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new theory shows instead is that for each stationary state of the atom there is
one definite numerical value for s, the magnitude of the total spin vector. 1f it
were not for this theorem, a measurement of s for the atom in a given stationary
state would lead to one or other of a number of possible results, according to a
definite probability law. This theorem forms the basis of the theory of
multiplets. It is quite sufficient to replace the previous idea of the electrons
all setting themselves parallel or antiparallel, since it shows that we can take
s to be a quantum number describing the states of the atom, while s combined
vectorially with / gives a multiplet of multiplicity 2s - 1.

Further developments of the theory of exchange have been made by Heitler,
London and Heisenberg,* containing applications to molecules held together
by homopolar valency bonds and to ferromagnetism. The treatment given
by these authors makes an extensive use of group theory and requires the
reader to be well acquainted with this branch of pure mathematics. Now
group theory is just a theory of certain quantities that do not satisfy the com-
mutative law of multiplication, and should thus form a part of quantum
mechanics, which is the general theory of all quantities that do not satisfy the
commutative law of multiplication. It should therefore be possible to trans-
late the methods and results of group theory into the language of quantum
mechanics and so obtain a treatment of the exchange phenomena which does
not presuppose any knowledge of groups on the part of the reader. This is
the object of the present paper. The treatment of groups on the lines of
quantum mechanics has the advantage that it often gives a simple physical
meaning to an abstract theorem in the theory of groups, enabling one to
remember the theorem more easily and perhaps suggesting a simpler way of
proving it. A further advantage of the treatment of the exchange phenomena
on these lines is that one can avoid doing more work in the theory of groups
than is strictly necessary for the physical applications, which results in a con-
siderable shortening in the method.

In §§ 2 and 3 the general theory is given of systems containing a number of
similar particles, showing the existence of exclusive sets of states (i.e., sets
such that a transition can never take place from a state in one set to a state
inanother), and giving their main properties. In §4 an application is made to
electrons, a proof being obtained of the fundamental theorem in italics above.
The subsequent work is concerned with an approximate calculation of the
energy levels of the states, the result of this being expressible by the single

* See various papers in the °Z. Physik,' vols. 46-51. An excellent account of the
whole theory is also contained in Weyl's book, * Gruppentheorie und Quantummechanik.’
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simple formula (26). This formula shows that in the first approximation the
exchange interaction between the electrons may be replaced by a coupling
between their spins, the energy of this coupling for each pair of electrons being
equal to the scalar product of their spin vectors multiplied by a numerical
coefficient given by the exchange energy. This form of coupling energy is,
however, just what was required in the old orbit theory., We obtain in this
way a justification for the assumptions of this old theory, in so far as they can
be formulated without contradicting the quantum-mechanical description of
the spin. The formula (26), combined with Hartree’s method for determining
approximate wave functions for the different electrons, should provide a power-
ful way of dealing with complicated atomic systems,

§ 2. Permutations as Dynamvical Variables.

We consider a dynamical system composed of n similar particles, the rth
particle being describable by certain generalised co-ordinates denoted by the
single symbol ¢,. Thus a wave function representing a state of the system
will be a function of the variables gy, gy, ... , ¢,, which may be written

Y (@0 42 - ) = (@)
for brevity. Suppose now that P is any permutation of ¢, ¢y, ..., ¢,. This
P is an operator which can be applied to any wave function ¢ (¢) to give as
result another definite function of the ¢’s, namely

P (g) = ¢ (Pg), ;
where Pg denotes the set of ¢’s obtained by applying the permutation P to
% gy --+» Q- Further P is a linear operator. Now in quantum mechanics

any dynamical variable is a linear operator which can operate on any wave
function, and conversely any linear operator that can operate on every wave
function may be considered as a dynamical variable. Thus any permutation P
may be considered to be a dynamical variable.

The present paper consists in a study of these permutations P as dynamical
variables. There are no classical analogues to these variables and hence they
give rise to phenomena, e.g., the existence of exclusive sets of states and other
exchange phenomena, which have no classical analogue. There are n! of
these variables, one of them, P, say, being the identity, which must thus be
equal to unity. One can add and multiply these variables and form algebraic
functions of them, in exactly the same way in which one can add and multiply
and form algebraic functions of the ordinary co-ordinates and momenta. The
product of any two permutations is a third permutation, and hence any function
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of the permutations is reducible to a linear function of them. Any permutation
P has a reciprocal P~ satisfying PP =P1P =P, = 1.

A permutation P, like any other dynamical variable, can be represented by
a matrix. If we take the representation in which the ¢’s are diagonal, P will
be represented by a matrix, whose general element may be written

(@' g - 9 | P1@" g" - ") = (¢ | P | ¢")
for brevity. This matrix must satisfy

J@ipiaag 4@y =Py =y @),

and hence

(¢ | P|g")=38(Pg —g"). (1)
We are using the notation 8 (), where z is short for a set of variables @, «,,
Zg, ..., to denote

8 () = () 8 (x3) 8 () ...
which vanishes except when each of the 2’s vanishes. With this notation we
have

3(Pg' —¢")=38(¢ —P7¢"),

since the condition that the left-hand side shall not vanish, which is that the
¢'"’s shall be given by applying the permutation P to the ¢”s, is the same as the
condition that the right-hand side shall not vanish, which is that the ¢"’s shall
be given by applying the permutation P~! to the ¢"’s. Thus we have an
alternative expression for the matrix representing P.

@ IP|g")=38(¢ —P1q"). (2)
The conjugate complex of any dynamical variable is given when one writes
—i for ¢ in the matrix representing that variable and also interchanges the
rows with the columns. Thus we find for the conjugate complex of a permuta-
tion P, with the help of (2) and (1)
(@1Plg") = @"TP[d) = 3(¢" — P'¢)
= (¢ |P| ")

P =P

or

Thus a permutation is not in general a real variable, its conjugate complex
being equal to its reciprocal.

Any permutation of the numbers 1, 2, 3, ..., » may be expressed in the cyclic
notation, e.g., for n = 8

Pg = (143) (27) (58) (6), ()
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in which each number is to be replaced by the suceeeding number in a bracket,
unless it is the last in a bracket, when it is to be replaced by the first in
that bracket. Thus P, changes the numbers 12345678 into 47138625.
The type of any permutation is specified by the partition of the number
n which is provided by the number of numbers in each of the brackets. Thus
the type of P, is specified by the partition 8 =3 4 2 4 2 4 1. Permutations
of the same type, i.., corresponding to the same partition, we shall call similar.
(The usual language of group theory is to call them conjugate.) Thus, for
example, P; in (3) is similar to

P, = (871) (35) (46) (2). (4)
The whole of the n! possible permutations may be divided into sets of similar
permutations, each such set being called a class. The permutation Py =1
forms a class by itself. Any permutation is similar to its reciprocal.

When two permutations P, and P, are similar, either of them P, may be
obtained by making a certain permutation P in the other P,. Thus, in our
example (3), (4) we can take P to be the permutation that changes 14327586
into 87135462, i.c., the permutation

P = (18623) (475).

We then have the algebraic relation between P, and P,

Py =Rk ()
To verify this, we observe that the product Pat of P, with any wave function
{ is changed into P, if one applies the permutation P to the P,in the product
but not to the . If we multiply the product by P on the left we are applying
this permutation to both the P, and the 1, so that we must insert another
factor P~1 between the P, and the ¢, giving us PP,P~*¢ to equate to Py.

Equation (5) is the general formula showing when two permutations P, and
P, are similar. Of course P is not uniquely determined when P, and P, are
given, but the existence of any P satisfying (5) is sufficient to show that P,

and P, are similar.

§ 3. Permutations as Constants of the Motion.
We now introduce a Hamiltonian H to deseribe the motion of the system.
so that any stationary state of energy H’ is represented hy a wave function Y

satisfying Ho — H'Y
Y = s

in which H is regarded as an operator. This Hamiltonian can be an arbitrary
function of the dynamical variables provided it is symmetrical between all the
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particles. This symmetry condition requires that an element (¢"| H|g¢") of
the matrix representing H shall be unaltered when one applies any permutation
to the ¢’ 's and the same permutation to the ¢"’

(¢' | H|g¢") = (Pg'| H| Pg") (6)

s, 1.6.,

for arbitrary P.
The fact that H is symmetrical leads at once to the equation
PH =HP. (M

This equation may be verified by a similar argument to that used for equation
(5), or alternatively by a direct application of the matrix representatives. Thus
from (1)

(ql l I)H I q’l) — j‘ S(qu o qfll) dqlll (q"l IH l qll) o (qu l H l qfl)
and from (2)
(ql [ HP ‘ q’I) — !’ (q’ l H l q"I) dqlll 8 (qlll — P—-lqll) S (q’ I H | P—lq'l),

and the two right-hand sides are now equal from (6). Equation (7) shows that
each permutation variable is a constant of the motion. The P’s are still constants
when arbitrary perturbations are applied to the system, provided the per-
turbation energy to be added to the Hamiltonian is symmetrical. Thus the
constancy of the P’s is absolute.

In dealing with any system in quantum mechanics, when we have found a
constant of the motion «, we know that if for any state « initially has the
numerical value o’ then it always has this value, so that we can assign different
numbers «" to the different states and so obtain a classification of the states.
This procedure is not so straightforward, however, when we have several
constants of the motion « which do not commute (as is the case with our per-
mutations P), since we cannot assign numerical values for all the o’s simul-
taneously to any state. The existence of constants of the motion « which do
not commute is a sign that the system is degenerate. 'We must now look for a
funetion 8 of the «’s which has one and the same numerical value 8’ for all
those states belonging to one energy level H', so that we can use B for classifying
the energy levels of the system. We can express the condition for § by saying
that it must be a function of H (a single-valued function is implied) according
to the general definition of a function of a variable in quantum mechanics,
or that § must commute with every variable that commutes with H, 7.e.
every constant of the motion. If the «’s are the only constants of the motion,
or if they are a set that commute with all other independent constants of the
motion, our problem reduces to finding a function £ of the «’s which commutes
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with all the «’s.  We can then assign a numerical value B’ for { to each energy
level of the system. If we can find several such functions {, they must all
commute with each other, so that we can give them all numerical values
simultaneously and obtain a complete classification of the energy levels.

An example of this procedure is provided by the study of the angular momen-
tum of an isolated system. This angular momentum has three components
My, My, M,, each a constant of the motion, which do not commute. We look
for a function of m,, m,, m, which commutes with them all three. We can
conveniently take for this function the variable / defined by

k(k+h) =m2+mp2 + m2 (8)
For each energy level of the system there will now be one definite numerical
value &’ for k. This constant of the motion % is the only significant one for
purposes of classifying the states, as the others merely describe the degeneracy.

We follow this method in dealing with our permutations P. 'We must find
a function y of the P’s such that PyP~! =y for every P. It is evident that
a possible y is ZP,, the sum of all the permutations P, in a certain class ¢,
1.e. the sum of a set of similar permutations, since XPP,P~! must consist of
the same permutations summed in a different order. There will be one such
y for each class. Further, there can be no other independent y, since an
arbitrary function of the P's can be expressed as a linear function of them with
numerical coefficients and it will not then commute with every P unless the
coefficients of similar P’s are always the same. We thus obtain all the y’s
that can be used for classifying the states. It is convenient to define each y
as an average instead of a sum, thus

Lo = ZP[ne,
where n, is the number of P’s in the class ¢. An alternative expression for
g P 2= BB Pl (9)
the summation being extended over all the »! permutations P,. For each
permutation P there is one y, y (P) say, equal to the average of all permutations
similar to P. One of the ’sis 7 (P,) = 1.

The dynamical variables 3, 7z ... % Obtained in this way will each have a
definite numerical value for every stationary state of the system. Thus for
every permissible set of numerical values Y1's %o o+« tm for the z's there will be
a set of states of the system. Since the y’s are absolute constants of the motion
these sets of states will be exclusive, ¢.e. transitions will never take place from

a state in one set to a state in another,
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The permissible sets of values " that one can give to the #’s are limited by
the fact that there exist algebraic relations between the ¥’s. The product of
any two 7’8, %p7e 18 of course expressible as a linear function of the P’s, and
since it commutes with every P it must be expressible as a linear function of
the y’s, thus

IoXe = Gqfs + Qe+ oor + Umitm (10)
where the @’s are numbers. Any numerical values y" that one gives to the
+’s must be eigen-values of the y’s and must satisfy these same algebraic equa-
tions. Kor every solution y’ of these equations there is one exclusive set of
states. One solution is evidently y," = 1 for every y,, and this gives the set
of states with symmetrical wave functions. A second obvious solution is
%y = =+ 1, the + or —sign being taken according to whether the permutationsin
the class p are even or odd, and this gives the set of states with antisymmetrical
wave functions. The other solutions may be worked out in any special case
by ordinary algebraic methods, as the coefficients @ in (10) may be obtained
directly by a consideration of the types of permutation to which the y’s con-
cerned refer. Any solution is, apart from a certain factor, what is called in
group theory a character of the group of permutations. The ’s are all real
variables, since each P and its conjugate complex P~1 are similar and will
occur added together in the definition of any 7, so that the z"”’s must be all real
numbers.

The number of possible solutions of the equations (10) may easily be deter-
mined, since it must equal the number of different eigen-values of an arbitrary
function B of the y's. We can express B as a linear function of the y’s with the
help of equations (10); thus

B = by +bgxa+ ..o + b (11)
Similarly we can express each of the quantities B2 B®... B™ as a linear function
of the #’s. From these m equations, together with the equation y (P;) = 1,
we can eliminate the m unknowns y;, %o ... %, Obtaining as result an algebraic
equation of degree m for B,

B™ 4 ¢,B™ 14 ¢, B"2 4 .. 4, =0.

The m solutions of this equation give the m possible eigen-values for B, each of
which will, according to (11), be a linear function of b,, b, ... b,, whose coefficients
are a permissible set of values ¥, 75" ... %" These m sets of values y’
thus obtained must be all different, since if there were fewer than m different
permissible sets of values ¥’ for the 4’s there would exist a linear function of
the 7’s every one of whose eigen-values vanishes, which would mean that the
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linear function itself vanishes and the y’s are not independent. Thus the
number of permissible sets of numerical values for the y’s is just equal to m,
which is the number of classes of permutations or the number of partitions of
n. This number is therefore the number of exclusive sets of states.

The properties of the P’s which are not properties of the ¥’s will only deseribe
the degeneracy of the states. If we obtain a matrix representation of all the
P’s consistent with each of the y’s being a certain number ', then the number
of rows and columns of the matrices will be the degree of degeneracy of the
states in the exclusive set y’, 1.¢., the number of independent states belonging
to each energy level. This degeneracy is an essential one and cannot be
removed by any perturbation that is symmetrical between all the similar
particles.

§ 4. Multiplet Structure.

The preceding theory of systems composed of similar particles will now be
applied to the case when the particles are electrons. The new features which
this requires us to take into consideration are the spin of the electrons and
Pauli’s exclusion principle.

The three Cartesian co-ordinates z, ¥, z of the rth electron we denote by the
single symbol z,. The spin angular momentum and magnetic moment of
this electron will be of the form A &, and }eh/mec . <, where &, is a vector
whose components G, Gy, 0. safisfy

. jp— e W —
Ope — 4y GppOpy = W0ps = — OpyOras ' (12)

with similar relations obtained by gyclic permutation of the suffixes z, y and
z. We take z, and ,, to be the variables describing the rth electron that appear
in the wave function. It is convenient to write the wave function

Y (€,6,840 +.. ZaTa) = ¥ (20)
without the suffixes z attached to the o’s, these suffixes being understood
whenever one is dealing with the variables in wave functions.

The exclusion principle now requires that ¢ shall be antisymmetrical in the
#’s and o’s together, i.e., that if any permutation is applied to the #’s and also
to the ¢’s, Y must remain unchanged or change sign according to whether the
permutation is an even or an odd one. Thus permutations applied to the s
and o’s together, produce only trivial effects and no useful results would be
obtained by considering them as dynamical variables. We can, however,
consider permutations P applied to the z's alone and apply our preceding
theory to these. Any of these permutations is a constant of the motion when
we neglect the forces due to the spins, so that the Hamiltonian does not involve
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the spin variables o. We can now introduce our y’s as functions of these
P’s and assert that for any permissible set of numerical values y for the ¥’s
there will be one exclusive set of states. Thus there exist these exclusive sets
of states for systems containing many electrons even when we restrict ourselves
to a consideration only of those states that satisfy the exclusion principle.
The exclusiveness of the sets of states is now, of course, only approximate,
since the y’s are constants only when we neglect the spin forces. There will
actually be a small probability for a transition taking place from a state in
one set to a state in another.

Since ¢ is antisymmetrical, the result of any permutation P applied to the
2’s must equal -+ times the result when the same permutation is applied to the
o’s. Thus if we denote by P? a permutation applied to the ¢’s considered as a
dynamical variable, we shall have

P, = 4 P7,, (13)

for each of the n ! permutations P,. Thus instead of studying the dynamical
variables P we can get all the results we want, e.g., the characters ', by study-
ing the variables P°. The P”’s are much easier to study on account of the fact
that the variables o in the wave function have domains consisting each of
only the two points 1 and —1, which are the two eigen-values of each6,. This
fact results in there being fewer characters 3" for the group of permutations of
the ¢ variables than for the group of general permutations, since it prevents
a function of the variables 6y, 0,. ..., from being antisymmetrical in more than
two of them. 3

The study of the dynamical variables P” is made specially easy by the fact
that we can express them as algebraic functions of the dynamical variables
<. Consider the quantity

0 = {1 + (o, =)}
With the help of (12) we find readily that
(@1 @2) = (614092 + O1y Ogy + 61002 = 3 — 2( &y, &) (14)
and hence that
0,2=%4{142(op o2 + (o1, o)} =1. (15)
Again, we find
0,461 = ¥{oye — 161,00, + 10,,00 + Gy}

65012 = $ {01, + 161,004 — 101,59y + 6us)
and hence
0,401: = 02,045.
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Similar relations hold for ¢y, and ay,, so that we have

Ope,=¢c 2010
or
00,07 = &,

From this we can obtain with the help of (15)
010,07 = &
These ** Vertauschungs ™ relations for Oy, with o, and o, are precisely the

same as those for P7;,, the permutation consisting of the interchange of the spin
variables of electrons 1 and 2. Thus we can put

Oy = P}y

where ¢ is a number. Equation (15) shows that ¢ = 4-1. To determine
which of these values for ¢ is the correct one, we observe that the eigen-values
of P?, are 1, 1, 1, —1, corresponding to the fact that there exist three inde-
pendent symmetrical and one antisymmetrical function F(s,,, 6,,) of the two
variables oy, o5, whose domains contain only two points each. Thus the
mean of the eigen-values of P9}, is §. Now the mean of the eigen-values of
(o1, @) is evidently zero and hence the mean of the eigen-values of O, is §.
Thus we must have ¢ = - 1, and so we can put

Pc1a=%:{1 + (o, o)}

In this way any permutation P” consisting simply of an interchange can be
expressed as an algebraic function of the o’s. Any other permutation P*
can be expressed as a product of interchanges and can therefore also be expressed
as a function of the o’s. With the help of (13) we can now express the P’s
as algebraic functions of the o’'s and eliminate the P’s from the discussion.
We have, since the — sign must be taken in (13) when the permutations are
interchanges,

Pro=—4{l+ (o o)} (16)

The formula (16) may conveniently be used for the evaluation of the
characters ¥ which define the exclusive sets of states. We have, for example,

for the permutations consisting of interchanges
B |
X12='/.(P12)="‘43‘{1 + ;l“(n___'l‘)zr<t(¢n G‘c),‘-

If we introduce the variable s to describe the magnitude: of the total spin
angular momentum, }Z, o, in units of 4, through the formula
8 (8 -t ‘) = (}_’Sr T ézlal)-

VOL. CXXIIL—A.
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analogous to (8), we have
28, ci(op o) = Eron Byo) — Z, (o, o).

=4s(s + 1) — 3n.
Hence

[1 4s(s+l)—3n]=_1z(n—4)+4s(s+1) (17)

ta=—*% | nin—1) | 2n (n — 1)
Thus ,, 1s expressible as a function of the variable s and of # the number of
electrons. Any of the other %’s could be evaluated on similar lines and would
be found to be a function of s and » only, since there are no other symmetrical
functions of all the & variables which could be involved. There is therefore
one set of numerical values 7" for the s, and thus one exclusive set of states,
for each eigen-value 5" of s. The eigen-values of s are
n, in—1, in—2, ...
the series terminating with 4 or 0.

We obtain in this way a proof of the fundamental theorem of multiplet
structure, that for each stationary state of the atom there is one definite
numerical value 5" for s. We obtain further that the probability of transitions
oceurring in which s changes is small, of the order of magnitude of the spin
forces.

The degree of degeneracy of the states in any exclusive set s = s" must equal
the number of independent eigen-functions ¥ (s, 6,) that the variable s has,
belonging to the eigen-value s’. This is just 25" 4 1, as can be seen without
detailed calculation from the fact that any of the Cartesian components of the
total spin angular momentum, 1¥s,, say, has the 25" + 1 eigen-values

’ R 'I 5] i)
s, s —1, 8 — 2 .us — 8.

When the gpin forces are not neglected, each (2s” 4 1)-fold degenerate energy
level will in general be split up into 25 4 1 non-degenerate energy levels,
differing slightly one from another. Thus the exclusive set of states s = s
becomes a system of multiplets of multiplicity 2s -- 1.

§ 5. Determaination of Energy Levels.

We must now consider the application of perturbation theory for an approxi-
mate calculation of the energy levels. We shall take first the general case of
a system with n similar particles, discussed in §§2 and 3. We shall follow the
usual method in the theory of the perturbations of the stationary states of a
degenerate system, according to which, if we label the states of the unperturbed
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system «', &, ..., we obtain the matrix (2’| V | ") representing the perturba-
tion energy V and neglect all those matrix elements ', " for which the un-
perturbed states o’ and o have two different energies. The remaining matrix
elements will form a number of small matrices, one referring to each energy
level of the unperturbed system, and having as the number of its rows and
columns the number of independent states belonging to this energy level. The
eigen-values of these matrices will then be, in the first approximation, the
changes in the energy levels caused by the perturhation.

*We suppose that for our unperturbed states each of the similar particles has
its own “ orbit,” represented by a wave function (¢, |2) involving only the
co-ordinates ¢, of this one particle. We shall have altogether » orbits, one
for each particle, which we assume for the present to be all different, and label

%, %gs .us &, The wave function representing an unperturbed state of the
whole system will then be the product.
(01 ] o) (2] o) voe (@] o) = (] @) (18)

say, for brevity. If we apply an arbitrary permutation P, to the o’s, we shall
obtain another wave function

(QI I O(,) (‘12 | a‘l) wee (in O(‘) = (¢ | Paor) (19)

representing another unperturbed state with the same energy. There are thus
altogether n ! unperturbed states with this energy, if we assume there are no
other causes of degeneracy. The matrix elements of V that we must take into
consideration are therefore of the type (P, | V | Pyx), where P, and P, are two
permutations of the «’s, and form a matrix with » ! rows and columns. The
eigen-values of this matrix are what we must calculate.

It is necessary in the present discussion to distinguish between the two kinds
of permutations, those of the ¢'s and those of the «’s. The essential difference
between them can perhaps be seen most clearly in the following way. Let us
consider a permutation in the general case, say that consisting of the inter-
change of 2 and 3. This may be interpreted either as the interchange of the
objects 2 and 3 or as the interchange of the objects in the places 2 and 3,
these two operations producing in general quite different results. The first
of these interpretations is the one we have been using throughout §§ 2 and 3,
the objects concerned being the ¢’s. A permutation with this interpretation
can be applied to an arbitrary function of the ¢’s. A permutation with the
second interpretation has a meaning, however, when applied to a function of
the ¢’s only if each of the ¢’s has a definite specifinble place in the function.
This is not the case for a general function of the ¢’s, but it is the case for any of
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the n ! functions of the type (19), the place of each ¢ being specified by the o
with which it is bracketed. Any permutation applied to the ¢’s in given places
now produces the same result as the reciprocal permutation applied to the
a’s. A permutation of the ¢’s (i.e., one with the first interpretation) since it
can be applied to any function of the ¢’s, may be regarded as an ordinary
dynamical variable. On the other hand a permutation of places or of the o’s
can be considered as a dynamical variable only in a very restricted sense, since
it has a meaning only when multiplied into one of the n ! wave functions (19)
or into some linear combination of them. We denote such a permutation of the
a’s, considered as a dynamical variable in this restricted sense, by a symbol P¢.

We can form algebraic functions of the variables P¢ which will be other
variables in the same restricted sense. In particular we can form y (P%,),
the average of all P*s similar to P*,. This must equal 7 (P,), the average of
the similar permutations of the ¢’s, since the total set of all permutations of a
given type must evidently be the same whether the permutations are applied
to the objects ¢ or to the places a.

If we set up arbitrarily a one-one correspondence between the ¢'s and the
s, as is done automatically when we label both the ¢’s and the a’s by the
numbers 1, 2, 3, ..., n, as in (18), then, if we have any permutation of the
q’s, we can give a meaning to this same permutation of the «’s. This meaning
is such that

(g1 a) = (Pg| Pa).
In this equation we can apply a permutation P, to the «’s on both sides, which
will give us
(¢] Pax) = (Pq| P Pa) (20)
an equation which shows us the connection between permutations of the g’s
and those of the «’s when applied to the wave function (19).

The matrix (P, | V | Pyx), which we must now study, may be obtained from
the matrix (¢" | V| ¢') representing the same dynamical variable V by a canonical
transformation, in which the transformation functions are just (¢|P,x), the
wave function (19), and its conjugate complex (P, | ¢), provided these functions
are properly normalised. Thus

(Pyr| V| Pyat) = j [ (Pax | ) dg’ (¢ | V1g") dg” (¢ | Pa).  (21)
Again, for arbitrary P, '
(P,Pa| V| P,Pe) = jj(PaPaIQ') dg (¢ | V] g") dg" (¢ | PyPx)

= j' j (P.Px| Pg') dg’ (Pq’ | V| Pg”) dg” (Pq” | PyPa)
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when we apply the permutation P to the variables of integration ¢’ and ¢"’.
With the help of (20), this reduces to

(PoPa | V| PPa) = ” (Po | ¢') d¢’ (g’ | V| Pg”) dg” (¢ | Pyr).  (22)

Now since V is symmetrical between all the particles, we must have
(@ 1V]¢") = (Bg' | V| Py,
like (6), and hence, comparing (21) and (22), we obtain
(Pox | V| Pyat) = (PP | V | P,Pa) (23)
Let (Poc| V| &) = V}, for brevity. Then, taking P = P, 1in (23), we obtain
(Pax | V| Pyar) = (PP, | V | &) = Ve,

Thus the general matrix element (P |V | Pyx) depends only on the ratio
P.P,~1, and of the total of (n!)? matrix elements there are only n! different
ones. The coefficient of any Vp in this matrix will be a matrix, each of whose
elements is 0 or 1, the 1 occurring when

(Pox | V| Pyx) = Vo,

i.e,, when P,P,™" = P. But this matrix, multiplied into any wave function
(¢] Pyx), gives the result (¢|Pyx) with P,P,"? =P, i.e., it gives the result
(¢| PPyz), so that it is precisely the matrix representing the variable P=, or
the permutation P applied to the o’s. Thus the whole matrix (P, | V | Pyr)is
equal to the matrix representing X V,P?, where the summation is over all the
n ! permutations P, and we can put

V =3 VP (24)

This formula shows that the perturbation energy V is equal to a linear
function of the permutation variables P%, with numerical coefficients Vp, which
are the exchange energies. It is, of course, only an approximate formula,
as it holds only with neglect of those matrix elements of V that refer to two
different energy levels of the unperturbed system. It can, however, be used
for the calculation of the energy levels in the first approximation, and is very
convenient for this purpose as the expression ¥ VpP* is easily handled. This
expression, it should be remembered, is a dynamical variable only in the
restricted sense mentioned above, but this sense is just sufficiently general for
equation (24) to be valid with neglect of those matrix elements of V referring
to two different energy levels of the unperturbed system.

As an example of an application of (24) we shall determine the average
energy of all those states arising from a given state of the unperturbed system
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that belong to one exclusive set. This requires us to caleulate the average
eigen-value of V when the y’s have specified numerical values y’. Now the
average eigen-value of P* equals that of Pe,P*(P<,)~! for arbitrary P°, and
thus equals that of (n!)™* Z,P,P* (P%,)7%, whichis 3" (P*) or ' (P). Hence
the average eigen-value of V is ZVyy'(P). A similar method could be used for
calculating the average eigen-value of any function of V, it being only necessary
to replace each P* by % (P) to perform the averaging.

The modifications required in the theory when the orbits o, oy, %4, ..., OF
the undisturbed system are not all different may easily be made. Suppose,
for example, that o, and =, are the same. Then the permutation P¢, that
causes an interchange of «, and z, must equal unity. Only functions of the

P*s that commute with P%,, now have a meaning. This, however. is sufficient *
12

for us to be able to follow out the same sort of argument as before, and obtain
aresult of the same form (24). The term in the summation in (24) that involves
the permutation P* , now does not occur, since it could be added on to the term
involving the identical permutation P¢,. For the remaining terms, any
two terms P%, and P% must have the same coefficient if the permutations
Pe, and P% can be obtained from one another by the interchange of «, and
tg. This results in TVpP* commuting with P*, and thus having a meaning.
The condition P¢, =1 will impose restrictions on the possible numerical
values y that the #’s can have and will reduce the number of characters.

§ 6. The Energy Levels in the Case of Electrons.

We shall now consider the application of the formula (24) to the case of
electrons. If we assume only Coulomb forces between the electrons, then the
perturbation will consist of a number of terms, each involving the co-ordinates
of one or at most two electrons, so that all the exchange energies Vp, will vanish
except those referring to the identical permutation P, and to simple interchanges
of two orbits, P*,. Thus (24) reduces to

V=V, +Z <.V, P%,
V,. being the exchange energy of orbits r and s. Since the P*'s have exactly
the same properties as the P’s, we can replace the P*’s in this expression for V
by P’s without changing its eigen-values. This gives us
V=V+2%<.V.Py (25)
where the = sign is now to be interpreted as denoting the equality of the eigen-

values of the two sides and not the complete equality of the two sides as
dynamical variables or operators.
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With the help of (16), the result (25) may be put in the more expressive

form
V= Vl. == %Er<avn {1 + ( T O“)} (26)
This shows that, for the purpose of calculating energies, the exchange inter-
action due to the equivalence of the electrons may be replaced by a constant
perturbation energy — 3X,,V,,, together with a coupling between the spin
vectors with energy — $V,,(e&,, o) for each pair of electrons 7, s. 1t is this
coupling which may be considered as giving rise, for instance, to the large
differences in energy between the singlet and triplet terms of helium. The
total number of eigen-values of the right-hand side of (26) is 2", a factor 2
occurring for the representation of the spin vector of each of the » electrons.

" These 2" eigen-values will not, in general, all be different, as each one will

occur repeated a number of times to give the correct multiplicity of the corre-
sponding term.

When two of the orbits of the unperturbed system are the same, say the
orbits 1 and 2 are the same, the only eigen-values of the right-hand side of
(25) or (26) that will be eigen-values of V are those consistent with the equation
P, =1or P?, = — 1. In this case we have V,, = 0 and

Vo=V Mr=354705 )

which results in the right-hand side of (26) being symmetrical between o,
and o, It follows from this that any eigen-function F (o4, 0a Gge )0t
this right-hand side, considered as an operator, must be either symmetrical or
antisymmetrical between o,, and oy. The condition P%, = — 1 now shows
that only the antisymmetrical ones, representing states for which the spins
o, and o, are antiparallel, must be taken into account. The number of
eigen values of (26) that must be used is thus reduced by a factor 4, on account
of there being only one antisymmetrical eigen-function for every three symmetri-
cal ones. The case of more than two orbits the same cannot occur with
electrons.

In our theory of the energies we have nowhere had to assume that the
wave functions (¢ | %), (¢ %), ..., representing the various orbits in the un-
perturbed system, are orthogonal, or that they arve eigen-functions of any
unperturbed Hamiltonian H,. This enables an important generalisation to
be made in the application of our results, It is not necessary that we should
be able to split up our Hamiltonian for the whole system H into a Hamiltonian
for the unperturbed system H, and a perturbation energy V, and then use the
eigen-functions of H, to give our (¢ =), (7] xg). ... We can take our (¢ | %),
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i
(¢ | &g) to be any functions giving a good approximation to the actual distribu-
tion of electrons in the system, and must then throughout the analysis replace
V, which now no longer exists, by the whole Hamiltonian H. The wave
functions supplied by Hartree’s theory can thus very conveniently be used.
The only mathematical conditions which the (g |a,), (¢]es), ..., need satisfy
is that in the matrix (o’ | H | «”) representing H, those matrix elements for which
the '"’s are not simply a permutation of the «"”s must be small.

As an example of the application of (25), Heitler’s formula* for the inter-
action of two atoms A and B, each with n valency electrons, will be deduced.
The fundamental theorem of multiplet structure shows that there will be a
quantum number s describing the magnitude of the resultant spin of the electrons
in both atoms. This same theorem shows that, provided the interaction
between the atoms is small compared with the exchange energies within either
of them, the whole energy of the system will depend very largely on the
magnitudes s, and sy of the resultant spins for the two atoms separately, so
that for each energy level of the whole system there must be definite numerical
values for s, and sy, which will thus be two more quantum numbers describing
states of the whole system. For valency electrons the resultant spin vector
has its maximum possible value (we can if we like in this case speak of the
electron spins all being parallel) and hence

8y =108p =3N . (27)

Again, if T is the valency of the homopolar bond uniting the two atoms (i.e.,
=1, 2, ..., for a single, double, ... bond)

s=mn-—C (28)

We now apply our formula (25), taking the summation only over pairs of

orbits 7, s of which one is in each atom, since we want the interaction energy

hetween the two atoms. This gives
V= \'l == '\-‘AB vn Prx'

As a rough approximation we may take all the exchange energies V,, between
two orbits one in each atom to be equal. Calling these exchange energies
Va, we get

V=V, 4+ VqZ P,
We must now evaluate X5 P,,, summed over all pairs one in each atom, which
we can best do by first summing over all possible pairs and then subtracting

*W. Heitler, * Z. Physik,” vol, 47, p, 835 (1928), equation (33).
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the two sums for pairs both in atom A and both in atom B respectively.
Thus

EAB Pn =2 Pra — EAA P" e SBB P"
= —1 2n(2n — 4) + 4s(s 4+ 1)} + 1 {n(n — 4) + 43, (82 + 1)}

+ L{n(n — 4) + 4s5(sp + 1)}
by a three-fold application of (17), in the first case to a system of 2n electrons.
This reduces to

SanPr= — 120 - ds(s + 1) — dsp(sa + 1) — 4sp(sp+ 1)}
Thus ‘
V=1V, + Vofl — (n — ¥},

which is Heitler's result.
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