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Quantum Melting of Magnetic Order due to Orbital Fluctuations
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We have studied the phase diagram and excitations of the spin-orbital model derived for
a three-dimensional perovskite lattice, as inKCuF3. The results demonstrate that the orbital
degeneracy drastically increases quantum fluctuations and suppresses the classical long-range ord
near the multicritical point in the mean-field phase diagram. This indicates the presence of a
quantum liquid state, and we present explicit evidence for valence bond type correlations in three
dimensions. [S0031-9007(97)02824-X]
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It is common knowledge that macroscopic ensemb
of interacting particles tend to behave classically. T
is not always true, however, and the study of collecti
quantum systems starts to become a prominent the
in condensed matter physics. Central to this pursuit
low-dimensional quantum spin systems (spin chains a
ladders [1]), and it proves difficult to achieve quantu
melting of magnetic long-range order (LRO) in empir
cally relevant systems in higher dimensions. Here
suggest a class of systems in which quantum melt
occurs even in three dimensions: small spin, orb
degenerate magnetic insulators, and the so-called Ku
Khomskii (KK) systems [2]. There might already exi
a physical realization of such a three-dimensional (3
“quantum spin-orbital liquid”:LiNiO2.

Global SUs2d by itself is not symmetric enough to
defeat classical order inD . 1, and the pursuit has
been open for some time to engineer more fluctuatio
into these systems. Three (related) strategies to r
ize quantum melting have proven to be successful:
adding zero-dimensional fluctuations as in the bilay
Heisenberg model which leads to an incompressible s
liquid [3,4], (ii) frustrating the system so that the cla
sical sector gets highly degenerate, as in the case of
S  1y2 square lattice with longer ranged antiferroma
netic (AF) interactions (J1-J2-J3 models [5,6]). These
systems involve fine-tuning of parameters and are the
fore hard to realize by chemistry. (iii) Finally, th
third strategy would be to reduce the number of ma
netic bonds, as in the 1y5-depleted square lattice, wher
the resulting plaquette resonating valence bond (PRV
state explains the spin gap observed inCaV4O9 [7].
In this Letter we show that orbital degeneracy opera
through the same basic mechanisms to produce qu
tum melting in the KK systems. The novelty is th
these systems tend to “self-tune” to (critical) points
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high classical degeneracy. There are interactions wh
may lift the classical degeneracy, but they are usu
ly weak.

An interaction of this kind is the electron-phono
coupling—the degeneracy is lifted by a change in crys
structure, the conventional collective Jahn-Teller (J
instability. However, as was pointed out in the semin
work by Kugel and Khomskii [2], in orbital degenerat
Mott-Hubbard insulators one has to consider in th
first instance the purely electronic problem. Becau
of the large local Coulomb interactions (HubbardU),
a low energy Hilbert space splits off, spanned byspin
and orbital configuration space, with superexchangelik
couplings between both spin and orbital local degrees
freedom. The orbital sector carries a discrete symme
and the net outcome is that the clocklike orbital degre
of freedom get coupled into theSUs2d spin problem.
Such a system might undergo symmetry breaking in sta
with simultaneous spin and orbital order. The lattice h
to react to the symmetry lowering in the orbital secto
but it was recently shown, at least in the archetypic
compound KCuF3, that such a distortion is a side
effect [8].

The fundamental question arises if these forms of cla
sical order are always stable against quantum fluctuatio
Although the subject is much more general (singlet-trip
models in rare earth compounds [9],V2O3 [10], LaMnO3

[11], heavy fermions [12]), we focus here on the sim
plest situation encountered inKCuF3 and related sys-
tems [2]. These are JT-distorted cubic, 3D analogs of
cuprate superconductors [13]. The magnetic ion is in
3d9 state, characterized in the absence of JT distortion
two degenerateeg (x2 2 y2 , jxl, 3z2 2 r2 , jzl) or-
bitals next to theS  1y2 spin degeneracy. Kugel and
Khomskii derived the effective Hamiltonian [2] with AF
superexchangeJ  t2yU (wheret is the hopping between
© 1997 The American Physical Society 2799
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jzl orbitals along thec axis),

H1  J
X
kijl

∑
4s $Si ? $Sjd

µ
ta

i 2
1
2

∂ µ
ta

j 2
1
2

∂
1

µ
ta

i 1
1
2

∂ µ
ta

j 1
1
2

∂
2 1

∏
, (1)

neglecting the Hund’s rule splittings of the intermedia
d8 states. Including those up to orderh  JHyU (JH is
the singlet-triplet splitting) yields, in addition,

H2  Jh
X
kijl

∑
s $Si ? $Sjd sta

i 1 ta
j 2 1d

1
1
2

µ
ta

i 2
1
2

∂ µ
ta

j 2
1
2

∂
1

3
2

µ
ta

i ta
j 2

1
4

∂∏
. (2)

In Eqs. (1) and (2),$Si is the spin at sitei, while the orbital
degrees of freedom are described by

t
asbd
i 

1
4

s2sz
i 6

p
3sx

i d , tc
i 

1
2

sz
i , (3)

anda selects the cubic axis (a, b, or c) that corresponds
to the orientation of the bondi 2 j. The s’s are
Pauli matrices acting on the orbital pseudospinsjxl 
s 1

0 d, jzl  s 0
1 d. Hence, we find a Heisenberg Hamiltonia

for the spins, coupled into an orbital problem whic
is clock-model-like (there are three directional orbita
3x2 2 r2, 3y2 2 r2, and 3z2 2 r2, but they are not
independent) [14]. As we shall see, the Hund’s ru
coupling term (2) acts to lift the degeneracy. Next to th
we introduce another control parameter,

H3  2Ez

X
i

tc
i , (4)

a “magnetic field” for the orbital pseudospins, loose
associated with a uniaxial pressure along thec axis.

The classical phase diagram of the spin-orbital mo
H  H1 1 H2 1 H3, shown in Fig. 1, demonstrates th
competition between the spin and orbital interactio
similar to that found before in two dimensions [15].
consists of five phases with staggered (two-sublatti
magnetic long-range order: (i) At large positiveEz, the
orbital system is uniformly polarized alongx2 2 y2. As
no superexchange is possible in thec direction, the
sa, bd planes decouple magnetically, and we recogn
the two-dimensional (2D) antiferromagnet, called furth
AFxx, well known from the cuprate superconductor
(ii) At large negative Ez, the orbitals polarize along
3z2 2 r2, and the spin system is an anisotropic 3
antiferromagnet, calledAFzz. These two AF phases
(AFxx and AFzz) are stabilized by the anisotropi
superexchange which amounts to4J betweenz orbitals
along thec axis, and to9Jy4 sJy4d between thex szd
orbitals in the sa, bd planes, respectively. In contras
the Hund’s ruleJH stabilizes mixed-orbital (MO) phase
in which both AF and ferromagnetic (FM) coupling
occur. (iii) At largeJHyU andEz , 0, a MOFFA phase
is found, characterized at each site by orbitals,jisl 
2800
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FIG. 1. Mean-field phase diagram of the spin-orbital mod
(1)–(4) in the sEz , JHd plane. Full lines indicate transitions
between the classical states, while LRO is destroyed above
dashed (below the dotted) lines for the AF (MO) phases.

cosui jxsl 1 sinui jzsl, with the sign ofui alternating
between the two sublattices in thesa, bd planes. At
small jEzj the orbitals stagger likex2 2 z2, y2 2 z2,
x2 2 z2, . . . , and point towards each other along thec
axis, which results in strongs,Jd AF interactions. In
contrast, weak FM interactionss,JHd occur within the
sa, bd planes. (iv) A similar MO state, called MOAFF,
is found at largeJHyU and Ez . 0, with the directional
orbitals staggered in FMsb, cd planes and AF order
along the a direction [16]. The MOFFA and MOAFF

phases are degenerate at the lineEz  0, where cos2ui 
2s1 2

h

2 dys2 1 3hd, and one is close to the KK phase
(for which cos2ui  21y2 [2]) in KCuF3, where, within
the limitations of chemistry, the magnetic order appears
be equivalent to an ideal one-dimensional (1D)S  1y2
spin system. (v) Finally, the MOAAF phase with a small
jzl amplitude, AF order in thesa, bd planes and FM
order along thec axis, is stable between the MOAFF and
AFxx phases. Thus, we find the same ingredient as
the frustrated Heisenberg antiferromagnet (HAF): critic
lines where different classical spin structures becom
degenerate. The present case appears to be more extr
as even the effective dimensionality of the spin syste
changes because of the coupling to the orbital sect
The frustration manifests itself at the classical degenera
point M ; sEz , hd  s0, 0d, where the orbitals may be
rotated freely when the spins are AF, and the spins m
be rotated freely within the FM planes of the MO phase
The same energy of23J per site is obtained either in
a 3D antiferromagnet with completely frustrated orbita
[considerk $Si

$Si1dl  21y4 in Eq. (1)] or in a disordered
spin system due to the orbital sector.

It is instructive to consider the stability of the class
cal phase diagram to Gaussian quantum fluctuations [1
The collective modes can be calculated using, e.g., a r
dom phase approximation (RPA) within the Green functio
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technique [17]. Next to the Goldstone modes of the s
system, one finds optical modes corresponding to orb
excitations which occur both in the presence (“transvers
and in the absence (“longitudinal”) of a simultaneous s
flip. The new feature is that thespin and transverse or
bital excitations are coupled, so that fluctuations in the
orbital sector also affect the spin sector. The appro
of the critical lines is signaled by the softening of bo
longitudinal and transverse orbital modes. The (mix
transverse modes give the dominating contribution to
renormalization of energy and magnetic order parame
In the AFxx (AFzz) phase the lowest transverse mo
softens along$k  sp, 0, kzd [ $k  skx , 0, 0d], and equiva-
lent lines in the Brillouin zone (BZ), regardless of ho
one approaches the critical lines. Thus, these modes
come dispersionless along particular (soft-mode) line
the BZ, where we findfinite masses in the perpendicul
directions,

vAFxxs $kd ! Dx 1 Bxsk4
x 1 14k2

xk2
y 1 k4

y d1y2,

vAFzzs $kd ! Dz 1 Bzsk2
y 1 4k2

z d , (5)

with Di  0 and Bi fi 0 at the M point, and
the quantum fluctuations diverge logarithmical
kdSl ,

R
d3kyvs $kd ,

R
d2kysDi 1 Bik2d , ln Di , if

Di ! 0 at the transition. An analytic expansion could n
be performed in the MO phases, but the numerical res
reported below suggest a qualitatively similar behavior

We have verified that the above behavior of the s
mode results in large quantum correctionskdSzl to the or-
der parameter in all magnetic phases close to the cri
lines. As an example, we showkSzl in AFxx andAFzz
phases, being significantly lower than in a 2D HAF in
broad parameter regime (Fig. 2). Similarly, as in two
mensions [15], the LRO is overwhelmed by quantum fl
tuations at particular lines, wherejkdSzlj  kSzl (Fig. 1).
Unlike kdSzl, the RPA energies of the ordered phases sh
no divergence, with quite similar energy gains in AF a

FIG. 2. Renormalization of AF LROkSz
i l in AFzz (left) and

AFxx (right) phases as functions ofEzyJ.
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MO phases of the order of0.6J [18]. We therefore believe
that here RPA is as accurate as in the pure-spin HAF,
conclude that theclassical order is destroyed by quantum
fluctuationsin the smalljEzj and smallh region between
dashed and dotted lines in Fig. 1.

Although the above theory is known to perform qui
well in the simplest systems [19], it might be misleadin
in more complicated situations. For instance, the “fin
mass mode softening” occurs also in theJ1-J2-J3 model
where it is shown to be inconsequential in the largeS
limit because of an “order out of disorder” phenomen
[6]. In contrast, low order spin-wave theory is blind fo
the quantum transition occurring in the bilayer model [4
In all these cases, including ours, the quantum melting
promoted by the drastic enhancement oflocal fluctuations.
It is then instructive to consider valence bond (VB) stat
[20] with the individual spins paired into singlets an
the orbitals optimized variationally. As the energy of
singlet is lowest when the orbitals point along the bon
the optimal states with all singlets lined up in parall
(see Fig. 3) are (i) forEz . 0, singlets along thea axis
with orbitals close to3x2 2 r2 (VBa, degenerate with
the analogousVBb phase), and (ii) forEz , 0, singlets
along thec axis with orbitals,jzl (VBc). Both optimize
spin and orbital energy on every second bond, and h
lower energy than the classical states close to the class
degeneracy.

Further, we included the leading quantum fluctuatio
in the VB states. A resonatingVBc (RVBc) state
was obtained by making the singlets resonate along
c axis, and its energy was calculated using the Be
ansatz result for the 1D HAF, still including the orbita
energies due to the bonds within thesa, bd planes.
The excitation spectrum is gapless, in agreement w
Haldane’s conjecture [21]. We also attempted to im
prove theVBa state by constructing the PRVB state
jChl , sjCal 1 eifjCbld, from the singlet pairs along
a and b, jCal and jCbl. Surprisingly, more energy is
gained instead in VB states in which plaquettes w
singlet pairsjCal and jCbl, respectively, alternate and
form a superlattice. The exceptional stability of the

FIG. 3. Schematic representation of spin singlets (dou
lines) in the disordered states:VBa, VBc, and PVBA. In
the PVBA state the plaquettes occupied by singletsk a andk b
alternate in both thesa, bd planes and thec direction.
2801
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(nonresonating) VB states is due to a unique mec
nism involving the orbital sector. Unlike in the HAF
the bonds not occupied by the singletscontribute orbital
energy, and this is optimized when singlets in orthogon
directions are connected. Ifh , 0.30, this plaquette VB
alternating (PVBA) state (Fig. 3) is stable atEz . 0, while
another VB state, with singlesa, bd planes of PVBA phase
interlayered with double layers ofVBc phase (PVBIc),
is stable atEz , 0. Finally, a state analogous toPVBIc,
but interlayered alonga (PVBIa), occurs in between the
PVBA andPVBIc states. Thus, a spin liquid is stabilize
by theorbital degeneracyover the MO phases with RPA
fluctuations in a broad regime (Fig. 4). This resemb
the situation in a 2D 1y5-depleted lattice [7], but the
present instability is much stronger and happens inthree
dimensions.

In summary, we find strong theoretical arguments s
porting the conjecture that quantum melting might occ
in orbital degenerate Mott-Hubbard insulators. Why do
it not occur always (e.g., inKCuF3)? Next to the Hund’s
rule couplingJH , the electron-phonon couplingl is dan-
gerous. The lattice will react to the orbital fluctuation
dressing them up in analogy with polaron physics, a
thereby reducing the coupling constant. In order to qu
tum meltKCuF3-like states, one should therefore look fo
ways to reduce both the effectiveJH andl. We believe
that this situation is encountered inLiNiO2: Although
the spin-spin interactions in the (111) planes should
very weakly FM according to the Goodenough-Kanam
rules, magnetic LRO is absent [22] and the system mi
represent the spin-orbital liquid. More strikingly,LiNiO2
is cubic at the Ni site and should undergo a collecti
JT transition, whose absence is actually an old chemi
mystery. Upon electron-hole transformation,d7 low-spin
Ni31 maps ond9 Cu21 in KCuF3, but with a difference
in chemistry. While theeg hole in KCuF3 is almost en-
tirely localized on the Cu, theeg electron inLiNiO2 is

FIG. 4. The same as in Fig. 1, but including quantum fluc
ations. The spin liquid (RVBc, PVBIc, PVBIa, and PVBA)
takes over in the shaded region between AF and MO phase
2802
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rather strongly delocalized over the Ni and surrounding
ions, which reduces bothJH and l, and explains the ab-
sence of classical ordering. A more precise experimen
characterization ofLiNiO2 is needed.
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