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To use quantum systems for technological applications one first needs to preserve their coherence for

macroscopic time scales, even at finite temperature. Quantum error correction has made it possible to

actively correct errors that affect a quantum memory. An attractive scenario is the construction of

passive storage of quantum information with minimal active support. Indeed, passive protection is the

basis of robust and scalable classical technology, physically realized in the form of the transistor and

the ferromagnetic hard disk. The discovery of an analogous quantum system is a challenging open

problem, plagued with a variety of no-go theorems. Several approaches have been devised to

overcome these theorems by taking advantage of their loopholes. The state-of-the-art developments in

this field are reviewed in an informative and pedagogical way. The main principles of self-correcting

quantum memories are given and several milestone examples from the literature of two-, three- and

higher-dimensional quantum memories are analyzed.
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I. INTRODUCTION

Quantum mechanics holds the potential for performing

computational simulations (Feynman, 1982) and information

processing tasks (Deutsch, 1985; Shor, 1997) much faster than

classical technologies. To outperform modern classical

machines, a quantum computer must manipulate hundreds

of computational qubits to follow a program of millions of

quantum logical operations (Hastings et al., 2014; Poulin

et al., 2014; Wecker et al., 2014). To realize such a feat using a

real physical system, we must preserve a vast entangled

quantum state over a long duration while computations are

executed. Recognizing that any device exists in an ambient

environment at nonzero temperature, we see that probabilistic

errors will continually disrupt experimental efforts to coher-

ently control quantum states. It is widely understood that the

problem of decoherence is among the largest obstacles

impeding the realization of quantum technologies.

The breakthrough that validated the practical possibility of

quantum computation was the discovery of quantum error

correction (Shor, 1996; Steane, 1996; Lidar and Brun, 2013).

The principle behind quantum error correction is to use a

redundancy of physical quantum systems to encode a small

number of logical computational qubits. We are then able to

realize error-correcting protocols by measuring auxiliary

physical systems to identify errors affecting the encoded

information, and subsequently correct for them. Provided

the incident noise is suitably low, we can achieve robust

quantum states for an arbitrarily long time using a suitably

large redundancy of ancillary systems (Preskill, 1998). While

we have recently seen impressive experimental progress in

the direction of realizing quantum error-correcting codes

(Reed et al., 2012; Barends et al., 2014; Nigg et al., 2014;

Córcoles et al., 2015; Kelly et al., 2015), such active quantum

error-correction schemes present an uphill challenge in

preparing the complex entangled states that encode quantum

information and in reducing incident laboratory noise to the

encoded states below a threshold value.

A novel alternative to active error correction would be the

discovery of a self-correcting quantum memory (Kitaev, 2003;

Bacon, 2006), a physical system that is able to reverse the

effects of errors by itself. This could be achieved using a

many-body Hamiltonian whose energy landscape suppresses

large errors that directly affect encoded quantum information.

This suppression can be increased indefinitely by increasing

the size of the system, allowing arbitrarily large storage times

without the need to manually repair the memory.

Ideally, a self-correcting memory must be robust to all

forms of physical noise including both finite-temperature

effects and small imperfections on the ideal system. Our

main focus here will be the study of many-body quantum

systems coupled to a thermal bath. To the best of our

knowledge, there are no known quantum systems that can

preserve coherent quantum information for arbitrarily long

time scales at finite temperature, and as such this will be the

main consideration of this review (Bacon, 2006). It is also

important to recognize that no system will ever be free from

weak perturbations such as, for instance, an external magnetic

field. Such imperfections may also affect the ability of a

system to preserve quantum information so to this end we

discuss in parallel known results on the effects of local

perturbations on the considered many-body models.

Self-correction is the principle that lies behind the storage

of classical information in magnetic media. Here classical bits

of information are encoded in the magnetic orientation of

some ferromagnetic material. In such a system, thermal noise

can cause individual spins to flip, but they will be reoriented

quickly by the macroscopic effect of their neighboring spins.

As such, the ferromagnet is robust to a spontaneous change of

orientation due to the collective behavior of some Avogadro’s

number of physical spins.

It is an exciting and fundamental question of nature, and

indeed the topic of this review, as to whether we can find

macroscopic quantum systems to maintain coherent quantum

information while simultaneously equilibrating with its sur-

rounding environment. The discovery of such a system will

provide a beautiful solution for one of the largest puzzle pieces

required to achieve scalable quantum computation. In addition

to the remarkable practical applications, the realization of a

self-correcting universal quantum computer is also of signifi-

cant fundamental interest. A macroscopic system that is

capable of simulating arbitrarily complex quantum phenom-

ena would provide a powerful demonstration that quantum

mechanics is not restricted to only the microscopically

accessible parts of the Universe (Farrow and Vedral, 2014).

Many physical systems have been considered for the

storage of qubits, for instance, spin qubits in quantum dots

(Loss and DiVincenzo, 1998; Kloeffel and Loss, 2013), the

ground space of ions (Harty et al., 2014), superconducting

systems (Devoret and Scoelkopf, 2013), or other solid-state

devices (Fuchs et al., 2011; Saeedi et al., 2013). For a concise

review and comparison of different schemes see Schoelkopf

and Girvin (2008). A constant challenge for these schemes is
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increasing coherence times using mechanisms such as an

energy gap to separate excited states from their ground space.

Nevertheless, this time scale will always be finite in nature,

placing a limit on the computations that can be performed

without some error-correction protocol. Ideally, we want to

construct a quantum memory that can store quantum states for

times that can be tuned arbitrarily using a variable parameter,

such as system size.

Furthermore, mediating interactions that entangle qubits

encoded in atomic systems requires a coupling bus, for

example, the vibrational modes when considering trapped-

ion quantum computation or an optical cavity in the case of

neutral atoms. These additional structures are subject to

thermal errors and are therefore prone to decoherence while

performing computational tasks. Ultimately we seek a system

that is able to preserve coherent quantum states for time

scales much longer than the time it takes to perform logical

operations on the encoded states. This would allow the

execution of arbitrarily long quantum algorithms given

sufficient quantum resources.

Topologically ordered many-body systems (Wen, 2004)

play an important role in the study of self-correction. They

possess degenerate ground states that cannot be distinguished

by local observables. In this feature lies the appeal of

topological models as candidate systems for quantum memo-

ries; if quantum information is locally indistinguishable, local

noise cannot have irreversible effects. Moreover, properties of

topologically ordered models have been shown to be stable

against weak local perturbations acting on the ideal model

Hamiltonian at zero temperature (Kitaev, 2003; Bravyi,

Hastings, and Michalakis, 2010). This is an important feature,

as we hope that the robust features of topological phases will

still be present under realistic conditions where the system will

certainly be subject to small imperfections.

In addition to their locally inaccessible degrees of freedom,

topological quantum systems are of further interest due to their

amenable features for realizing fault-tolerant quantum com-

putation. This has been the subject of intense study (Nayak

et al., 2008; Pachos, 2012) for two-dimensional anyonic

systems, where quantum information can be stored in collec-

tive states of anyons and processed through their braiding. The

topological nature of the models again ensures a degree of

protection against local noise as long as the anyons are kept

well separated. Models that achieve universal fault-tolerant

quantum computation by anyon braiding are well known

(Freedman, Larsen, and Wang, 2002; Kitaev, 2003; Brennen

and Pachos, 2008).

The study of topological quantum computation has

extended far beyond the study of anyon braiding. Fault-

tolerant computational operations are also realized by the

manipulation of holes (Raussendorf, Harrington, and Goyal,

2006; Bombin and Martin-Delgado, 2009; Wootton, 2012),

twist defects (Bombin, 2010a; Barkeshli, Jian, and Qi, 2013;

Barkeshli et al., 2014), or by other means (Wootton and

Pachos, 2011b). It is also noteworthy that research in the

direction of computation using experimentally amenable

anyon models (Bravyi, 2006; Zilberberg, Braunecker, and

Loss, 2008) that do not support a universal set of topological

computational operations has led to schemes to supplement

such systems with nontopological operations to complete their

computational gate set (Bravyi and Kitaev, 2005; Wootton,

Lahtinen, and Pachos, 2009). Consideration of topologically

ordered systems as a basis for quantum memories therefore

allows us to draw from this wealth of established knowledge

to realize a fault-tolerant computational model.

In spite of many known interesting and attractive models,

we are yet to rigorously prove the existence of a low-

dimensional passively protected quantum memory. It is the

purpose of this review to highlight the challenges involved in

finding systems that maintain their quantum character at finite

temperatures and to discuss new models that come toward a

solution to this problem. The present review is separated into

two distinct parts. In the first part we introduce the field and

paint a picture that demonstrates the difficulty in discovering a

stable memory. We show this by means of explicit introduc-

tory examples, as well as discussions of rigorously proved no-

go theorems for the finite-temperature stability of large classes

of systems. In the second part we discuss new models that

come some way toward finite-temperature quantum stability

over macroscopic time scales. We offer insight into how such

models are discovered, and we assess their favorable features

and their drawbacks. In doing so we identify underlying open

problems and discover established tools that can be used to

approach this actively studied and exciting field.

The present review takes the following structure. In Secs. II

and III we introduce a common notation, concepts in quantum

error correction, and the analytical and numerical methods for

examining finite temperature. We conclude Sec. III with a

rigorous set of conditions that we demand of a quantum

memory, together with a list of attractive features that would

make a model suitable for quantum computation and plausible

for experimental realization. In Sec. IV, we review the plethora

of no-go theorems established so far with respect to passive

error correction. We use this study to chart the landscape of the

proposed models. The latter Secs. V, VI, VII, VIII, and IX

offer a comprehensive review of current actively studied

models that demonstrate favorable properties for self-

correction. In Sec. X we conclude with an overview of the

current state of the field where we discuss open problems that

remain unsolved.

II. LOCAL HAMILTONIANS AND QUANTUM

ERROR CORRECTION

The study of quantum memories at finite temperature lies at

the intersection of the fields of quantum error correction,

condensed-matter physics, and statistical mechanics. We

therefore require a unifying language that captures the breadth

of physics covered by all of these fields. We find such a

language in the stabilizer formalism. This formalism, initially

introduced as an efficient description of quantum error-

correcting codes (Gottesman, 2001), provides a natural way

of understanding the Hamiltonian models considered here.

The stabilizer formalism efficiently describes quantum

error-correcting codes using a list of commuting Pauli

operators, known as stabilizers. We can use this operator

description from quantum error correction to write down a

large class of degenerate Hamiltonians. The Hamiltonians we

obtain this way have ground-state subspaces that correspond
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to the code space of some quantum code, and its excited states

reflect the errors the code suffers.

We remark that the stabilizer formalism by no means

describes general many-body Hamiltonians that are capable

of robust information storage. Indeed, quantum double models

(Kitaev, 2003), string-net models (Levin and Wen, 2005;

Walker and Wang, 2012), subsystem codes (Poulin, 2005),

Turaev-Viro codes (Koenig, Kuperberg, and Reichardt, 2010),

and non-Abelian stabilizer codes (Ni, Buerschaper, and den

Nest, 2014) are only a few of the classes of interesting

Hamiltonian models that are not represented by the stabilizer

formalism. In this review, however, we largely restrict our

attention to stabilizer models as they provide an analytically

tractable class of Hamiltonians upon which many of the

developments in this field have been based.

In Sec. II.Awe begin by introducing the class of models that

we will mainly be concerned with here, namely, commuting

Pauli-Hamiltonians. In Sec. II.B we give a comprehensive

overview of the stabilizer formalism that enables us to identify

error-correcting procedures for the considered Hamiltonians.

We review how one might perform error correction on either a

quantum code or a commuting Pauli-Hamiltonian in Sec. II.C.

We then study an explicit and extensively studied example of a

commuting Pauli-Hamiltonian in Sec II.D, namely, Kitaev’s

toric code model. In addition to providing a straightforward

example of a commuting Pauli-Hamiltonian, the toric code

model also exhibits topological order and gives rise to anyonic

quasiparticle excitations. We discuss at length the topological

nature of the toric code in Sec. II.E. We conclude this section

by discussing the stability of the gap at zero temperature in

Sec. II.F, a feature presented naturally by topologically

ordered systems and an important feature to consider while

searching for stable quantum memories.

A. Commuting Pauli-Hamiltonians

We first define the Pauli group Pn ¼ P⊗n
1

acting on n

distinct two-level quantum systems that we refer to as qubits.

The Pauli group P1 includes, up to phases, the Pauli matrices

X ¼
�
0 1

1 0

�

; Y ¼
�
0 −i

i 0

�

;

Z ¼
�
1 0

0 −1

�

; ð1Þ

and identity 1. We often use indices with elements of P1 to

describe the elements of Pn that act on single qubits. For

instance, we write the operator U ∈ P1 that acts on the jth

physical qubit where 1 ≤ j ≤ n using the notation Uj ∈ Pn.

Written explicitly, we have

Uj ≡ 1 ⊗ 1 ⊗ � � � ⊗ 1
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

j−1

⊗ U ⊗ 1 ⊗ 1 ⊗ � � � ⊗ 1
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

n−j

: ð2Þ

This notation is particularly convenient as we can generate the

groupPn up to phases using only the single-qubit operators Xj

and Zj. We finally remark that all elements of Pn necessarily

have eigenvalues �1, which is seen from the fact that U2 ¼ 1

for all U ∈ Pn.

Having introduced the Pauli group acting on n qubits,

we are able to write down Pauli-Hamiltonians that describe

interactions between the qubits of a regular lattice. Consider a

D-dimensional lattice of qubits of linear size L, as shown in

Fig. 1. The n ∼ LD qubits of the lattice are arranged in a

structure that depends on the model we introduce. We write

down Hamiltonians of the type

H ¼ −
Δ

2

X

j

Sj; ð3Þ

where we sum over a set I of Hermitian interaction terms

Sj ∈ I such that I is a subset of Pn.

We must impose physical constraints on Hamiltonian (3).

We demand that the Hamiltonian interactions are local. We

therefore constrain all elements of I to have nontrivial, i.e.,

nonidentity, support only on qubits that can be contained

within a box on the lattice of linear size no greater than r,

where r is independent of the lattice size. We show a box of

linear size r ¼ 3 in Fig. 1. Additionally we must bound the

interaction strength of the Hamiltonian. To this end we impose

that Δ is a positive constant independent of system size.

Similarly, we enforce that each qubit supports only a constant

number of interaction terms independent of the size of the

system.

In general, Hamiltonians that are the sum of local elements

of Pn are intractable for study. We are able to impose

additional restrictions that enable us to find solvable classes

of Hamiltonians. We first demand that elements Sj ∈ I

commute, i.e.,

½Sj; Sl�≡ SjSl − SlSj ¼ 0; ∀ j; l: ð4Þ

In addition to this, we consider only frustration-free

Hamiltonians. Specifically, for all Hamiltonian ground states

jψi, all elements Sj ∈ I satisfy the condition

Sjjψi ¼ ðþ1Þjψi; ð5Þ

where ground states are described by an orthonormal basis

jψμi whose states are indexed by integers μ such that

FIG. 1. A regular two-dimensional lattice of qubits with linear

size L. All Hamiltonian interactions are contained within a box of

linear size r, shown in blue.

Brown et al.: Quantum memories at finite temperature

Rev. Mod. Phys., Vol. 88, No. 4, October–December 2016 045005-4



jψi ¼
X

μ

cμjψμi; ð6Þ

with
P

μjcμj2 ¼ 1. Conditions (4) and (5) enable us to employ

the stabilizer formalism that is described in Sec. II.B.

We finally remark on the excited eigenstates of Hamiltonian

(3). The Hamiltonian terms Sj ∈ I are elements of Pn, and

therefore all satisfy the property that S2j ¼ 1. It follows from

this that the eigenvalues Mj of operators Sj take only values

�1. We are therefore able to specify excited states of

Hamiltonian (3) using the list of eigenvalues Mj. The

Hilbert space can then be described completely by the ground

eigenspace of H, together with the list of eigenvalues fMjg.
The excited eigenstates of H are achieved by applying

operators E ∈ Pn to states jψi in the ground eigenspace of

H. It is therefore convenient to write Hamiltonian eigenstates

Ejψi and omit anyMj notation. The valuesMj are determined

by commutation relations SjE ¼ MjESj. The energy eigen-

value εE for eigenstate Ejψi follows immediately from the

values Mj such that

εE ¼ −
Δ

2

X

j

Mj: ð7Þ

B. The stabilizer formalism

Many quantum error-correcting codes can be described

using the stabilizer formalism (Gottesman, 2001). This for-

malism shares many parallels with the commuting Pauli-

Hamiltonians introduced in the previous section. Quantum

error-correcting codes describe a subspace of states called the

code space. We denote an orthonormal basis of states in the

code space with vectors jψμi for 1 ≤ μ ≤ 2k. The code space

of a stabilizer code is specified by the stabilizer group. The

stabilizer group S is an Abelian subgroup of Pn where we

have defined Pn, the Pauli group for n qubits, in the previous

section. A stabilizer group thus defines a quantum error-

correcting code such that the code subspace is the commonþ1

eigenspace of all the elements of the stabilizer group.

Formally, we write this property such that all elements

Sj ∈ S satisfy the condition

Sjjψμi ¼ ðþ1Þjψμi; ð8Þ

for all encoded states jψμi, thus specifying the code space of

the code.

The stabilizer group can be described using a generating set

of m ≤ n stabilizers, listed in angle brackets

S ¼ hS1; S2;…; Smi; ð9Þ

where all Sj of the generating set are independent elements of

the stabilizer group, i.e., the stabilizer generators satisfy the

condition that
Q

jS
nj
j ¼ 1 with nj ∈ f0; 1g only for nj ¼ 0 for

all j. A code of n qubits that is generated by m independent

stabilizer generators will encode k ¼ n −m logical qubits.

Encoded logical qubits are manipulated by the group of

logical operators L. The group L is denoted concisely by a

generating set of operators X̄j, Z̄j ∈ Pn for j ¼ 1; 2;…; k.

Operators X̄j and Z̄j commute with all elements of S, and with

logical operators X̄l and Z̄l for l ≠ j. Operators X̄j and Z̄j

mutually anticommute. The logical operators therefore gen-

erate the Pauli group over the k encoded logical qubits.

We remark that logical operators are not unique with respect

to their action upon the code space, but are unique only up to

multiplication by stabilizer operators. We consider logical

operators L̄, L̄0 ∈ L that differ only by multiplication by an

arbitrary element Sj ∈ S, i.e., L̄0 ¼ SjL̄. Then using the

commutation relation ½Sj; L̄� ¼ 0 we observe that

L̄0jψμi ¼ SjL̄jψμi ¼ L̄Sjjψμi ¼ L̄jψμi; ∀ μ; ð10Þ

thus demonstrating that the actions of L̄0 and L̄ on the code

space are equivalent.

We finally introduce the definition of the weight of an

operator and the distance of a quantum error-correcting code.

These are useful terms when comparing different error-

correcting codes. The weight of operator U, denoted

wtðUÞ, is the number of qubits that U has nontrivial support

over. For instance, the operator U ¼ X2X3 has wtðUÞ ¼ 2, as

it acts nontrivially on qubits 2 and 3. We use the weight to find

the distance d of a quantum error-correcting code. To define

the distance we consider least-weight nontrivial, i.e., non-

identity, logical operators of a code L̄� ∈ L that satisfy the

inequality wtðSjL̄�Þ ≥ wtðL̄�Þ for all elements Sj ∈ S. The

distance of a code is then defined as the weight of the least-

weight nontrivial logical operator L̄� ∈ L with the lowest

weight. We write this definition concisely such that

d ¼ min
Sj∈S

min
L̄∈L

wtðSjL̄Þ: ð11Þ

A quantum error-correcting code is able to tolerate and

correct for as many as d=2 − 1 errors on distinct physical

qubits with certainty. In general, however, a code can

probabilistically tolerate errors with weight greater than

d=2, provided the errors incident to the system do not find

adversarial configurations with respect to the error-correction

protocol, as discussed later. The quantum error-correcting

codes we review are typically designed to correct low-weight

errors with high probability. Here, where correctable errors

are discussed, we typically consider errors E such that

wtðEÞ=n ≪ 1.

Having introduced the stabilizer formalism, we are now

able to explicitly see the correspondence between stabilizer

quantum error-correcting codes and frustration-free commut-

ing Pauli-Hamiltonians. The ground states of Hamiltonian (3)

are the common þ1 eigenspace of the set of commuting local

interaction terms I . We are therefore able to identify the

ground space of Hamiltonian (3) with the code space of a

stabilizer group S, whose generators are included in I . In

general, I can be an overcomplete generating set and include

some extra elements that are not independent of the others. In

Sec. II.A, we specified only that elements of I are local with

respect to the geometry of its underlying lattice.
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C. Quantum error-correction protocols

The stabilizers of a quantum error-correcting code are

designed to detect the typical errors suffered by encoded

quantum states. Provided noise incident to a code occurs at a

suitably low rate, we can correctly identify errors with a

probability that increases with the distance of the code. This is

due to the celebrated accuracy threshold theorem (Shor, 1996;

Aharonov and Ben-Or, 1997; Kitaev, 1997; Knill, Laflamme,

and Zurek, 1998; Preskill, 1998; Aliferis, Gottesman, and

Preskill, 2006; Aliferis and Cross, 2007; Terhal, 2015). Once

we have identified an error, we can subsequently find an

operator that reverses the error and thus corrects for the

incident noise. Here we elaborate on the quantum error-

correction procedure.

We consider encoded states jψi decohering due to a local

quantum channel. Given the vast space of realistic noise

channels a physical quantum system can suffer, we might

suspect that one cannot possibly expect to reverse incident

noise. However, if the noise acting on the system is local, and

occurs at a sufficiently low rate, then the act of measuring

stabilizer operators projects the encoded state onto a state

arbitrarily close to Ejψi, where E ∈ Pn is some correctable

low-weight Pauli error acting on the state. Having measured

the stabilizer operators, attempting to determine and correct

for the discrete set of Pauli errors E becomes a much more

palatable challenge.

In addition to projecting local noise onto an error from the

Pauli group Pn, stabilizer measurements Sj also furnish us

with information that we can use to estimate the Pauli error E.

The set of measurement outcomes Mj ¼ �1 for stabilizers Sj
are referred to as the error syndrome. Values Mj are deter-

mined by the commutation relation

SjE ¼ MjESj; ð12Þ

which is seen by consideration of the eigenvalue equation

SjEjψi ¼ MjESjjψi ¼ MjEjψi that corresponds to the

measurement of operator Sj. Obtaining the syndrome data

greatly restricts the possible errors that could have occurred, as

the incident errors must be consistent with the syndrome

information.

There are many errors that can give rise to a given

syndrome. To reverse an error E, we consider correction

operators C ∈ Pn that are consistent with the measured

syndrome, i.e., such that SjC ¼ MjCSj. If the correction

operator satisfies the condition CE ∈ S, then application

of C will restore the quantum error-correcting code to its

initial state since CEjψi ¼ jψi if and only if CE ∈ S.

Alternatively, we may find a correction operator such that

CE is a nontrivial logical operator. In this case, we introduce

errors that effect the encoded information. We use a decoder to

attempt to find a correction operator that returns the code to its

initial state.

In addition to the error syndrome, the decoder uses

information about the error model to find a correction operator

that will most likely return the code to its initial state.

Specifically, a decoder evaluates the probability PðL̄Þ that

the error that caused the syndrome was a member of an

equivalence class of errors, where each member is equivalent

in the sense that they all have the same effect on the encoded

information. Explicitly, the probability that an error is a

member of a given equivalence class is determined by

PðL̄Þ ¼
X

j

probðSjCL̄Þ; ð13Þ

where probðEÞ is the probability that Pauli error E is

introduced by the known noise model, C is an arbitrary

choice of correction operator consistent with the error syn-

drome, L̄ ∈ L are the logical operators of the code, and where

we sum over all elements Sj ∈ S. The decoder will then

choose the correction operator CL̄ as a representative member

of the most likely equivalence class to attempt to recover

encoded information.

In general it is not always an efficient task to find the most

likely equivalence class for which the true error is a member.

Instead, we can devise efficient decoding algorithms that

approximately determine the most likely class of errors of

which the error incident to the code is a member. In

Appendix A we describe in detail a specific implementation

of an efficient decoder, namely, the clustering decoder, which

is commonly used throughout this review. The clustering

algorithm is very versatile for decoding the quantum error-

correcting codes defined by local commuting Pauli-

Hamiltonians.

The correspondence between the syndrome of a quantum

error-correcting code and the excited states of commuting

Pauli-Hamiltonians means that all the error-correction proce-

dures explained here can be adapted to correct errors suffered

by states encoded in the ground space of commuting Pauli-

Hamiltonian models.

D. The toric code

We illustrate the concepts introduced using Kitaev’s toric

code model (Kitaev, 2003). A comprehensive study of the

toric code model from the point of quantum error correction

can be found in Dennis et al. (2002). Qubits are arranged on

the edges of a two-dimensional square lattice of linear size L
with periodic boundary conditions, i.e., a torus, as shown in

Fig. 2. The stabilizer group is generated by star Av and

plaquette Bp, operators for each vertex v, and face p of the

lattice. The star and plaquette operators are defined such that

Av ¼
Y

∂j∋v

Xj; Bp ¼
Y

j∈∂p

Zj: ð14Þ

Written colloquially, a star operator Av is the tensor product of

Pauli-X operators supported on the edges j that include vertex
v in its boundary ∂j, and the plaquette operator is the tensor

product of Pauli-Z operators acting on the edges that bound a

face p, where the boundary of face p is denoted ∂p. We show

examples of such operators in Figs. 2(a) and 2(b). Star and

plaquette operators share either zero or two common qubits

and therefore commute. The set of all the star and plaquette

operators generate the stabilizer group.

When defined on a torus, the toric code model encodes two

logical qubits. The logical operators of the model correspond
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to extensive strings of Pauli-X and Pauli-Z operators that wrap

around nontrivial cycles of the torus. We show two such

operators in Figs. 2(c) and 2(d), respectively. One can see from

the diagram that these logical operators have distance d ¼ L,

the linear size of the system. It is easily checked that these

operators commute with all the stabilizers of the code, but

mutually anticommute. The displayed logical operators over-

lap at a single edge of the lattice where, in the diagram, the

Pauli operators are omitted.

Error correction for the toric code is particularly intuitive as

its syndrome follows a simple geometrical structure. Errors

can be regarded as “strings” on the lattice. We show two such

errors composed of Pauli-X and Pauli-Z operators in Figs. 2(e)

and 2(f), respectively. We cannot detect the positions of the

stringlike errors. Instead, the syndrome measurements identify

the end points of the stringlike errors. The decoding procedure

then consists of using the known end points of the strings and

trying to determine the least-weight operator E that may have

caused the syndrome. The decoder subsequently returns a

stringlike correction operator C that corresponds to a string

that reconnects all the stabilizers that returned a −1 meas-

urement outcome. If the errors are few and error strings are

very short with respect to the size of the lattice, it is

straightforward to identify likely correction operators. This

path will connect the end points of string errors such that CE

will correspond to a stabilizer operation with high probability,

i.e., CE ∈ S. In Fig. 2(e) we show a dotted line that supports a

suitable correction operator.

In general, the product of an error and its corresponding

correction operator will form closed loops on the toric code

lattice. The action of these operators will trivially affect the

code space only if the loops formed byCE are the boundaries of

regions on the lattice. We shade a bounded region in Fig. 2(e).

In the case that either the error strings are very long, such as

those shown in Fig. 2(f), or there are many error strings

scattered over the lattice, it becomes very difficult to unam-

biguously find the correction operator C such that no logical

error is introduced to the system. For the example given in

Fig. 2(f), there are two possible least-weight correction

operators of weight d=2, which we call C0 and C00, whose
trajectories are marked by red dashed and dotted lines,

respectively. Operator C0 is such that C0E ∈ S. In the diagram

we shade the region enclosed by the error and the dashed red

line that marks the correction operator. The action of C00E ∈ L

on the other hand does not enclose a region of the lattice.

Instead, as we see, the correction has nontrivial support over an

odd number of qubits that support the logical operator shown as

a solid blue line at Fig. 2(d). Such a correction will therefore

cause a logical error on the code space. It is with this example

that we see that determining the correct correction operator

becomes difficult once the weight of the error becomes large.

Error correction on the toric code and the structure of its

stabilizers can be understood at the fundamental level of

homology. This topic goes beyond the scope of the present

review, but the interested reader is referred to Nakahara (2003)

or Appendix A of Anwar et al. (2014) to find a discussion of

homology in the context of quantum error correction.

We briefly summarize the quantum error-correcting proto-

col for the toric code. The system is initialized in a code state

by applying appropriate operations; see Fig. 3(a). While the

quantum information is stored, errors might occur on the

system, as shown in Fig. 3(b). To identify these errors,

stabilizer measurements are performed to obtain syndrome

information. The locations of the stabilizers that returned a −1
outcome are recorded in Fig. 3(c). A decoder subsequently

uses the syndrome information to attempt to find a correction

operator. A suitable correction operator that successfully

corrects the incident error is applied in Fig. 3(d), thus enabling

the reliable readout of encoded quantum information.

E. Topological order and anyons in the toric code

The Hamiltonian of the toric code model (Kitaev, 2003)

gives rise to a Z2 lattice gauge theory (Wegner, 1971; Kogut

and Susskind, 1975; Kogut, 1979; Kitaev, 2003; Wen, 2003;

Nussinov and Ortiz, 2009a, 2009b). Here we consider the

model as a prototypical example of a topologically ordered

lattice model with anyonic quasiparticle excitations (Leinaas

and Myrheim, 1977; Wilczek, 1982). Its Hamiltonian

Htoric ¼ −
1

2

X

v

Av −
1

2

X

p

Bp ð15Þ

has degenerate ground states jψμi as defined previously. We

take interaction strength 1=2 such that quasiparticles have unit

FIG. 2. The toric code lattice. Qubits, shown by white points,

are arranged on the edges of a square lattice. The left and dotted

right boundaries are unified and similarly the top and dotted

bottom edges are unified. (a), (b) A star and plaquette operator,

respectively. (c), (d) Logical operators Z̄1 and X̄1, respectively.

The Pauli operator in the bottom-right corner of each operator is

omitted to show the crossing point. (e) A small error that is easily

corrected. The error syndromes are marked by points at the end of

the error string. (f) A string error with syndromes separated by

half the code distance. We cannot reliably correct this error as

there are two available correction operators with equal weight,

one of which will lead to a logical error on the code space. The

supports of the two distinct lowest-weight correction operators C0

and C00 are shown by red dashed and dotted lines, respectively.
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mass. Its anyonic excitations are a special class of particles

that exist in two-dimensional systems. Anyons are of par-

ticular interest due to their exchange statistics that are neither

fermionic nor bosonic. Interestingly, the concepts of topo-

logical quantum error correction and of anyons are intrinsi-

cally connected, as will become apparent from the toric code

example. For a comprehensive explanation of the general

theory of anyons see Appendix E of Kitaev (2006), or

alternatively Preskill (2004), Brennen and Pachos (2008),

Nayak et al. (2008), and Pachos (2012) for an introductory

overview. In this section we review the anyonic picture of

the excitations of the toric code as it will often provide an

efficient description of the dynamics of certain models

presented in this review.

The toric code has four types of quasiparticle excitations.

The first, known as the vacuum particle, is denoted 1.

The vacuum particle describes no anyons. All models,

topologically ordered or otherwise, support the vacuum

particle. Excited eigenstates of Hamiltonian (15), jϕi ¼ Ejψi,
have electric charges, labeled e, on vertices v that satisfy

Avjϕi ¼ −jϕi. Similarly, the toric code supports magnetic

charges m on faces p whenever Bpjϕi ¼ −jϕi. The fourth

particle of the toric code is known as the dion, labeled ϵ, that is

the combination of an e and an m particle.

Anyonic systems have fusion rules to describe the combi-

nation of pairs of particles. We write the fusion product of

particles a and b as a × b. The fusion product is commutative

and associative. For the toric code we have

a × 1 ¼ a;

e ×m ¼ ϵ;

a × a ¼ 1; ð16Þ

for all a ¼ 1, e, m, and ϵ. This anyon model and all others for

which the fusion product always leads to a definite result are

called Abelian.

In full generality, we can define non-Abelian anyon models,

where pairs of anyons can have multiple fusion outcomes.

Like Abelian models, these also require error correction.

However, the corresponding error correction problem is quite

distinct to that of Abelian anyons, as discussed by Wootton

et al. (2014). This will have important consequences for the

related problem of self-correction. Unlike Abelian anyons, no

current proposals for self-correction have been based on non-

Abelian models. As such they are beyond the scope of this

review. However, recent work on quantum error correction

with non-Abelian models can be found in Brell et al. (2014),

Hutter, Loss, and Wootton (2014), Wootton et al. (2014), and

Burton, Brell, and Flammia (2015).

Interestingly, quasiparticle excitations of the toric code are

created in pairs. We witness this at the microscopic level of the

lattice as anyons are created at the two end points of stringlike

operators. This feature is reflected by the fusion rule (16),

which shows that we require two anyons to recover the

vacuum state. Conversely, we can only create anyons from the

vacuum in particle-antiparticle pairs.

By using the anyonic description of error operators we find

an alternative understanding of the logical operators of the

toric code. As described in Sec. II.D, the logical operators are

stringlike operators that wrap around nontrivial cycles of the

torus. In the anyonic picture stringlike operators correspond to

the trajectories of anyons. A logical operator corresponds

to the creation of a pair of anyonic particles. One such particle

then follows some nontrivial trajectory around the torus and

subsequently annihilates with the other pair-created anyon that

remained at its initial point. With this point we can define a

natural basis for the ground space of the toric code, where

orthogonal ground states correspond to different particle

fluxes that pass around some arbitrarily selected nontrivial

cycle of the torus. We show such a cycle in Fig. 4(a), where the

flux of anyon a wraps around the torus along the red line. In

the case that many anyonic excitations move around the torus,

the ground state is well defined according to the fusion rules

of the different particle types. If we change the number of

handles, or genus g, of the surface where Hamiltonian (15) is

embedded, then we change its degeneracy to 22g and we are

able to encode 2g qubits there. This is attributed to the extra

nontrivial cycles that can be traversed by anyons on the

topologically deformed surface.

As an aside remark, the nontrivial braiding statistics

between anyons can be obtained from the commutation

relations of logical operators (Einarsson, 1990) of the toric

code, as the commutation relations between crossing logical

FIG. 3. The error-correcting protocol for the toric code model.

(a) The system is initialized. (b) An error occurs due to

unavoidable coupling to the environment. (c) The syndrome is

measured and fed to the decoding software. (d) The decoding

algorithm determines a correction to recover the encoded state

and in turn corrects the error.

FIG. 4. The ground space of the toric code and its low-energy

excitations. (a) The ground space of the toric code is naturally

described with a basis labeled by anyonic charges a, wrapping
around a nontrivial cycle of the torus and then annihilating with

its antiparticle, such as that shown in red. (b) Two anyonic

excitations created that can propagate at no energy cost to affect

the ground space of the system.
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operators that follow different nontrivial cycles of the torus

correspond to the braiding of anyonic quasiparticles.

Errors can also be interpreted in the anyonic picture. Errors

occur when energy is introduced to the system which then

creates anyons. Two such anyons are shown in Fig. 4(b).

Anyons that propagate around nontrivial cycles on the torus

introduce logical errors to the ground space of the system.

Unfortunately, once anyons are created on the toric code, it is

possible for them to propagate across the system via some

suitable mechanism with no additional energy cost. We find

this by observing that stringlike operators can be introduced

to a ground state of Hamiltonian (15) at constant energy,

independent of the length of the string. This insight is the

underlying problem that makes it very difficult to design

two-dimensional topologically ordered passive quantum

memories.

The low-energy excitation of the toric code is an example of

a topological quantum field theory (Witten, 1988). Models

that support topological field theories can be identified by

their anyonic statistics, nontrivial ground-state degeneracy, or

by means of order parameters such as topological entangle-

ment entropy (Kitaev and Preskill, 2006; Levin and Wen,

2006) that developed from earlier studies of entanglement

entropy in topologically ordered lattice models (Hamma,

Ionicioiu, and Zanardi, 2005a, 2005b). Topological quantum

field theories and extensions thereupon (Hamma, Zanardi, and

Wen, 2005; Haah, 2011; Walker and Wang, 2012; Yoshida,

2013) give rise to classes of models that are of interest in the

field of quantum memories. In the following section we

discuss the stability of the gap that is exhibited by topologi-

cally ordered systems at zero temperature in the presence of

stray perturbations.

F. Zero-temperature stability

In addition to considering the stability of memories against

thermal noise, we must also be mindful of the effects of

perturbations when designing quantum memories. Any

deviation of a Hamiltonian from our idealized expectations

will cause differences in energies as well as dynamics. This

can have deleterious effects for any quantum information

stored and processed in the system. Fortunately, topologically

ordered systems are naturally adept at suppressing the effects

of such perturbations at zero temperature. Even so, for

arbitrary suppression we require systems of arbitrarily large

size, so we are interested in the thermodynamic limit for true

stability.

Probably the most well known, but also most misinterpreted

result regarding perturbations in topological ordered systems

is that of Bravyi, Hastings, and Michalakis (2010). In that

work gapped Hamiltonians made up of local, frustration-free,

and commuting terms are considered at zero temperature

where the degenerate ground-state space is topologically

ordered. Local perturbations of general form with finite but

sufficiently low strength with respect to the unperturbed

Hamiltonian gap are then introduced. It is shown that the

splitting of the topologically originated ground-state degen-

eracy is at most exponentially small with the system size. It is

further shown that the gap between the ground-state space

and its excited states is also stable against small local

perturbations. The topologically ordered phase is then pre-

served in the thermodynamic limit, and any given degree of

suppression can be efficiently realized. The explicit example

of the toric code Hamiltonian perturbed by magnetic fields

has been well studied by Trebst et al. (2007), Vidal, Dusuel,

and Schmidt (2009), Tupitsyn et al. (2010), and Dusuel

et al. (2011).

This result suggests that the time scale at which

decoherence by dephasing is induced will diverge exponen-

tially with system size. However, this conclusion is too readily

adopted. It is very likely that the system will typically not be in

the ground state of the perturbed Hamiltonian. One reason is

that, for an arbitrarily large system, it will become a certainty

that localized excitations will exist somewhere. Another

reason is that the ground state may need to be prepared rather

than achieved by cooling. Since the perturbations are not

known in general, and since the resultant perturbed ground

states may be too complex to prepare, we would expect to use

the ground state of the unperturbed Hamiltonian. Finally,

perturbations will be time dependent in general.

Since the state of the system will not typically be an

eigenstate of the Hamiltonian, the effects of dynamics must be

considered. For the case of the toric code, it has been shown

that the coherence time will be at most OðlogLÞ in the

presence of certain local perturbations, including a simple

magnetic field (Kay, 2011). Much of this is due to the

perturbations enabling anyons to hop across the lattice. It

has been shown that this effect can be suppressed by

randomizing the couplings of the toric code Hamiltonian,

thus introducing Anderson localization (Stark et al., 2011;

Wootton and Pachos, 2011a). The lifetime then improves to

O(polyðLÞ) (Kay, 2011). These dynamical effects have also

been studied by Kay (2009), Pastawski et al. (2010),

Tsomokos, Osborne, and Castelnovo (2011), Bravyi and

König (2012), and Röthlisberger et al. (2012).

Properties such as these are not necessarily limited to

topologically ordered systems. In principle, other types of

order may possess equal or perhaps better ground-state

stability against unknown perturbations. However, topologi-

cally ordered phases are currently the only known means for

such suppression and thus form the backbone of current

proposals for self-correcting memories.

III. MEMORIES AT FINITE TEMPERATURE

In this section we consider the physics of a quantum

memory coupled to a thermal environment. We introduce

the necessary mathematical and numerical tools needed to

analyze the effects of finite temperature on specific quantum

memory models. As a concrete example we analyze the toric

code coupled to a finite-temperature environment. We study

both qualitatively and quantitatively the time evolution of this

system and we identify when the stored information decoheres

as a function of bath temperature. We conclude this section

with a list of criteria we demand from an experimentally

amenable quantum memory.

The present exposition is motivated as a search for systems

with quantum properties that are robust at finite temperatures.

Nevertheless, the generic thermal dynamics we consider here

are widely applicable to other instances of many-body physics
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as well as to quantum error correction. For example, it has

been understood that quantum error-correcting codes based on

self-correcting quantum memories can be decoded locally by

using an algorithm based on thermal evolution (Dennis et al.,

2002; Pastawski, Clemente, and Cirac, 2011). In a similar

spirit, the study of self-correcting memories has also led to the

discovery of single-shot error correction (Bombin, 2014). This

is a remarkable discovery that could allow us to construct

improved quantum error-correcting codes. We discuss local

decoders and single-shot error correction in Secs. V.B and IX.

C, respectively.

The study of finite-temperature quantum systems is further

motivated by the work of Pastawski et al. (2009). They

showed that an error-correcting code can be passively pro-

tected by coupling the code to an auxiliary clock system

whose qubits are maintained at infinite temperature. We also

point out the work of Kapit, Chalker, and Simon (2014),

mentioned in Sec. VI.C. They showed that photon loss at

zero temperature in superconducting systems can be modeled

as an infinite-temperature noise model in the weak-coupling

limit. They draw on this analogy to discover a medium that

passively protects quantum information from photon loss in

systems where temperature is neglected. From these examples

it becomes apparent that the tools and models we develop in

this review are broadly applicable to many areas of quantum

information and many-body physics.

A. Modeling a finite-temperature environment

Formally, to model a quantum memory at finite temper-

ature, we introduce an auxiliary system, which we call the

thermal bath. We couple the bath to the memory system using

some appropriate interaction terms that have nontrivial sup-

port on both systems. During evolution the interaction terms

entangle the memory and the bath. In this way, information

stored in the initial state of the memory is shared with the bath

and as such it becomes difficult to recover by only accessing

the memory.

In general the evolution of a many-body quantum system

interacting with a thermal bath is very complicated. In fact it is

unknown if the model describing the full thermal evolution is

even analytically solvable (Terhal and Burkard, 2005), so to

study a memory evolving in a thermal environment we need to

make some simplifying assumptions. We assume that the

memory interacts weakly with the environment and that the

thermal bath is Markovian. A Markovian heat bath is such

that the state of the bath is unmodified by interactions with

a memory. A consequence of this assumption is that infor-

mation transferred from a memory to the bath becomes

unrecoverable. Additionally, we assume that the bath acts

locally on the physical degrees of freedom of the memory. We

model the thermal environment such that each qubit is

independently coupled to a bath of harmonic oscillators.

With this assumption, each event that occurs during the

thermal evolution will affect only one physical qubit of the

memory system at a time.

In principle, a thermal evolution is accurately described by

the bipartite system of the quantum memory and the auxiliary

bath. In practice, we need only model the dynamics of the

memory subsystem. For this simplification to be valid the time

evolution needs to satisfy certain criteria. In particular, the

dynamics must evolve the memory toward its Gibbs state

ρβ ¼
X

j

e−βεj

Z
jejihejj; ð17Þ

where Z ¼ P

jhejje−βHjeji is the canonical partition func-

tion. The vectors jeji comprise an orthonormal basis of

eigenstates of the memory Hamiltonian, whose corresponding

energy eigenvalues are εj. We denoted by β ¼ 1=T the inverse

temperature of the heat bath and we took Boltzmann’s

constant equal to 1.

An extensive program of research has shown that we can

model thermal dynamics of a many-body quantum memory

with a simple rate equation (Davies, 1974; Alicki, Fannes, and

Horodecki, 2007, 2009; Alicki and Fannes, 2009; Alicki et al.,

2010; Chesi, Röthlisberger, and Loss, 2010; Alicki, 2012;

Viyuela, Rivas, and Martin-Delagado, 2012; Weiss, 2012).

These methods are built from the discovery of exact master

equations to study dissipation, a study initially pioneered by

Caldeira and Leggett (Calderia and Leggett, 1981; Leggett

et al., 1987; DiVincenzo and Loss, 2005). We next summarize

the derivation of the dynamical model.

The rate equation evaluates the rate at which an event,

described by operator V, occurs during a thermal evolution,

such that hef jVjeii ¼ 1, where jeii and jefi are the initial and
final eigenstates of the memory with respect to event V. The
rate at which event V occurs depends on the difference in

energy of the initial and final eigenstates, which we denote as

ωV ¼ −ðεf − εiÞ. We thus have the rate equation that describes

the frequency at which event V occurs under thermal evolution

γðωVÞ ¼
ωV

1 − e−βωV
: ð18Þ

Intuitively Eq. (18) dictates that processes that increase the

energy of the system are exponentially suppressed compared

with processes that do not increase the energy of the memory.

It is guaranteed that the memory system will evolve toward

the Gibbs state if rate Eq. (18) satisfies a detailed balance

(Kossakowski et al., 1977). Namely, it must satisfy

γðωVÞ ¼ eβωV γð−ωVÞ; ð19Þ

for all events V. It is easily verified that Eq. (18) satisfies the

detailed balance condition.

The open quantum dynamics we have described are derived

from a Lindbladian master equation (Kossakowski, 1972;

Lindblad, 1976). The master equation is obtained by con-

sidering the closed dynamics of the system evolving under

the Hamiltonian acting on both the memory and the bath

subsystems

H ¼ HM ⊗ 1B þ 1M ⊗ HB þ
X

α

Wα ⊗ fα: ð20Þ

The last term of Hamiltonian (20) describes the interactions

between the memory and the bath. Local Hermitian operators

Wα and fα act only on the memory subsystem and the bath

subsystem, respectively. Given certain assumptions that we
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specify shortly, the evolution of the memory is well described

by the master equation

_ρ ¼ i½HM; ρ� þ LðρÞ; ð21Þ

where ρ is the density matrix describing the state of the

memory subsystem and L is the Liouvillian. The Liouvillian

describes the dynamics due to the interactions between the

memory and the bath. It takes the form

LðρÞ ¼
X

α;ω≥0

LαωðρÞ; ð22Þ

where the individual terms of the Liouvillian are written

LαωðρÞ ¼ ĝαðωÞfVαðωÞ†½ρ; VαðωÞ� þ ½VαðωÞ†; ρ�VαðωÞ
þ e−βωðVαðωÞ½ρ; VαðωÞ†� þ ½VαðωÞ; ρ�VαðωÞ†Þg:

ð23Þ

In this expression ĝαðωÞ is the power spectrum of the bath and

VαðωÞ are the Fourier components of Wα, i.e.,

UðtÞWαU
†ðtÞ ¼

X

ω

VαðωÞe−iωt; ð24Þ

where UðtÞ ¼ e−iHMt.

It can be checked that if we take the interaction terms acting

on the memory Wα as single-qubit Pauli matrices Xj and Zj,

then the density matrix is diagonal in the energy eigenbasis at

any given point in the evolution ρðtÞ ¼ P

jpjðtÞjejihejj. It
can then be shown that Eq. (21) reduces to a much simpler

form

_pk ¼
X

j≠k

ðΓj→kpj − Γk→jpkÞ; ð25Þ

where Γj→k are the rates of transition from state j to k. Let V

be an error process that takes the system from eigenstate j to k

with energy cost ωV . Then the rates are expressed as

Γj→k ¼ γðωVÞ ∝
ĝðjωV jÞ

j1 − e−βωV j : ð26Þ

Making the additional assumption that the bath has Ohmic

spectral density and large cutoff energy, i.e., ĝαðωVÞ ∝ ωV

(Leggett et al., 1987; Weiss, 2012) then, up to a normalization,

Eq. (26) yields the rate equation (18).

In order to achieve thermalization it is important to require

that the interaction operatorsWα are ergodic. This means that

the thermal bath is able to address all eigenstates of the

memory system. It is known that ergodicity is assured if

the only operators that commute with both the memory

Hamiltonian and the set of interaction terms Wα are propor-

tional to the identity operator (Spohn, 1977; Frigerio, 1978).

It is easily checked that if the Wα terms are single-qubit Pauli

operators then ergodicity is assured.

B. Coherence time of memories

To determine how well a candidate memory performs at

finite temperature we need to introduce a suitable figure of

merit. To this end we define the coherence time τ as the

maximum amount of time information encoded in a system

can undergo thermal evolution and remain recoverable with

high probability. To evaluate the coherence time of a system,

we encode information in a system of interest and evolve the

system under the thermal dynamics introduced in the previous

section. To recover the information, we allow the use of active

error-correction techniques at the time of readout.

To understand the capacity of a system to support quantum

information at finite temperature we are primarily interested in

the dependence of the coherence time on parameters such as

the system size and the inverse temperature of the bath.

Naturally, the coherence time will also depend on microscopic

details of the system such as the natural units that describe the

strength of the local Hamiltonian interactions. These details

are overlooked as they are fixed by Eq. (18), but will always

take constant values independent of system size.

When evaluating coherence times, we often assume that we

can initialize a specific ground state of a system to encode

information. This choice is in the interest of providing a fair

comparison between different memory systems and also to

conceptually simplify our exposition. In general, we expect it

to be very hard to prepare a many-body Hamiltonian in its

ground state as this will require cooling the system to zero

temperature. Alternatively, we might consider manually pre-

paring ground states by means of controlled laboratory

operations. However, manual preparation of ground states

will also introduce small errors as in general laboratory

equipment is fallible (Lodyga et al., 2015). To this end, the

ground-state preparation we assume here is unreasonable.

However, we do not expect the results we discuss under this

assumption to be fundamentally different from the realistic

case. Indeed, it is shown in Bombin et al. (2013) that random

local errors will adjust only the phase transition point of a self-

correcting memory.

We also assume that we can realize Hamiltonians that

are free from small imperfections such as weak local

perturbations as has been discussed in Sec. II.F. Once again,

this is not a realistic assumption, as we would typically

expect stray fields and other imperfections to alter system

Hamiltonians. We make this assumption because the present

review is primarily concerned with the finite-temperature

behavior of quantum memories. Moreover, this assumption

greatly simplifies the computational methods we use to

analyze different models. In general, the simultaneous

consideration of both temperature and local perturbations

makes calculations notoriously difficult, and as such our

overview of the field will typically discuss these two forms

of noise independently.

We consider now a simple example where we find explicitly

the coherence time of a small four-qubit toric code. The four

qubits of the model, indexed j ¼ 1, 2, 3, and 4, are subject to

the Hamiltonian

H4Qu: toric ¼ −
Δ

2
ðAþ BÞ; ð27Þ
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with stabilizers

A ¼ X1X2X3X4; B ¼ Z1Z2Z3Z4: ð28Þ

The code states are given by the four-qubit Greenberger-

Horne-Zeilinger states (Greenberger, Horne, and Zeilinger,

1989; Bouwmeester et al., 1999), commonly known as GHZ

states, with an even number of qubits in the 1 state. Logical

operators for this code act on only two qubits. For example,

we can choose X̄ ¼ X1X2. The thermal error model defined

earlier applies single-qubit Pauli operators one at a time. It can

therefore apply a logical X̄ by first applying X1 and then X2.

The first operator anticommutes with B and so costs an energy

Δ as dictated by Hamiltonian (27). According to the rate

equation (18), this process will take a time of around eβΔ. The

next flip X2 required to introduce a logical error is a relaxation

process and so occurs much more quickly. The coherence time

of this small toric code then is τ ∼ eβΔ. This is exactly that

obtained from Arrhenius’ law

τ ∼ eβε: ð29Þ

This law asserts that the coherence time scales exponentially

with the energy cost ε of introducing a logical error into the

system. In the case of the small toric code, we have that the

energy cost of introducing a logical error is equal to the gap of

the system ε ¼ Δ.

Exponential coherence-time scaling with inverse temper-

ature, determined by the constant Hamiltonian interaction

strength, is common to all memories of small size. As such,

we must look to macroscopic models to find systems with

extended coherence times. We must therefore ask what

happens to the coherence time of the memory against thermal

noise as we increase the system size? It is useful to compare

with the benchmark τ ∼ eβΔ for small systems obtained from

Arrhenius’ law, Eq. (29). Theworst possible case for a memory

would be sub-Arrhenius scaling of coherence timewith β. This

would mean that large system sizes have entropic effects that

cause the memory to fail faster than for small system sizes.

A memory with Arrhenius scaling allows the same protection

as one would get against thermal errors for a small system size.

Although the resilience of the model to thermal errors may not

increase, it may be beneficial to increase the size of the system

to improve perturbative stability of a model. We might even

expect systems of larger sizes to have greater coherence times

than we expect of small system sizes. In which case we might

expect super-Arrhenius scaling in coherence time as the

temperature is reduced in the limit of large system sizes.

Examples of such models are discussed in later sections.

C. The energy barrier

A useful concept in the study of quantum memories is the

energy barrier. The four-qubit toric code discussed in the

previous section gave an example where Arrhenius’s law can

be directly applied. In that case we obtained that the lifetime of

the memory is correlated in a simple way to its gap Δ.

However, the corresponding process for larger many-body

systems is much more complicated. Thermal errors act locally,

and so it is not possible to transition between ground states via

a single excited state. Instead, errors must navigate a highly

degenerate landscape of excited states to modify the ground

space of the system. For this reason there is typically no

simple generalization to find the value ε that can be used to

estimate the lifetime via Arrhenius’s law. Nevertheless, we can

gain some intuition about the thermalization process by

identifying the dominant energy scale of the evolution.

Consider the case in which the commuting Pauli-

Hamiltonian system is initially in a logical ground state

jψi. We want to determine how easy it is for thermal errors

to rotate the encoded state to, for instance, X̄jψi, by intro-

ducing the logical error X̄. As we consider physically

motivated local noise models, the logical error operator X̄
is decomposed into a sequence of the single-qubit operators

Ut that the thermal bath can apply, such that

X̄ ¼
YN

t¼1

Ut: ð30Þ

Here Ut denotes the tth operator to be sequentially applied,

and N is the total number of operators required to construct X̄.

Note that this decomposition of the logical operator into

single-qubit operators is not unique. For instance, a permu-

tation in the ordering of the Ut will result in the same action X̄

upon state jψi. Indeed, choosing a different sequence of Ut

with different N can yield the same logical operator in the case

of commuting Pauli models.

Unlike the initial and final states, the states where the first

0 < t < N steps of the error sequence have been applied will

be an excited state. Let us use εt to denote its energy. For each

decomposition of X̄ into Ut operators we can consider the

energy maxtεt, the maximum energy cost incurred during the

sequence. This may be artificially high simply due to a badly

chosen sequence. We therefore minimize the energy over all

possible sequences to obtain the energy barrier of the model

εB. This is the minimum energy that the system must achieve

in order for a logical error to occur.

We take the toric code Hamiltonian (15) as an example to

calculate its energy barrier. A logical operator can be applied

by first creating a pair of anyons and then transporting them

around a noncontractible loop. The first operation incurs the

energy cost for creating a single pair but no subsequent

operation will increase the energy of the system, therefore

maxtεt ¼ 2. Alternatively, one could generate a logical

operator by first applying rotations on every other qubit

around a noncontractible loop and then annihilating all the

generated anyons by rotating the remaining qubits around the

loop. After the creation of all the anyons, the system reaches a

state of energy L. We thus have maxtεt ¼ L. Clearly the

former logical error path is energetically favorable as it has the

smallest energy. Hence, it will be the most common process

that introduces logical errors at low temperature. We therefore

find the energy barrier of the toric code to be εB ¼ 2.

Much of the study of finite-temperature quantum memories

has sought complex systems that achieve εB that scales with

the size of the system. For such systems we should expect

their coherence times to scale favorably with system size

according to Arrhenius’s law. Examples of such models are
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studied in Sec. VII. We must keep in mind that in general it is

not clear that models can realize logical operators via an

ordered sequence of local unitary operators (Haah and

Preskill, 2012; Landon-Cardinal and Poulin, 2013). For this

reason we reemphasize that the discussion given here is

restricted only to commuting Pauli-Hamiltonian models.

D. Free energy and the Curie-Weiss model

In general we cannot completely characterize the coher-

ence-time scaling of a memory by considering only its energy

barrier. It is possible that entropic effects can modify the

predictions obtained by Arrhenius’s law (Temme, 2014;

Yoshida, 2014). A more accurate characterization of a system

is obtained by consideration of its free energy.

With few exceptions, a careful analysis of the free energy of

a system is intractable due to its computational complexity.

Such an analysis involves careful consideration of an expo-

nentially large number of microstates of the given system.

However, evaluating the free energy of a system sheds

significant light on its behavior at non-negligible temper-

atures. In particular, analysis of the free energy enables us to

identify low-temperature ordered phases where we expect

self-correction to be possible.

The free energy F is the energy cost of an event E, offset by

an entropic contribution S, such that

F ¼ E − S=β: ð31Þ

It provides a more accurate estimate of coherence time

compared with the energy barrier as it includes the effect

of entropy. We obtain the coherence time using the expression

τ ∼ eβF: ð32Þ

In this section we consider a toy model, namely, the Curie-

Weiss model, for which the free energy can be evaluated.

While unphysical due to its nonlocal Hamiltonian interactions,

the Curie-Weiss model is a simple classical model that enables

a detailed analysis of the contribution of both the energy

barrier and the free energy that can be used to determine its

coherence time (Alicki and Horodecki, 2006). For a detailed

discussion on the Curie-Weiss model see Kochmański,

Paszkiewicz, and Wolski (2013) and references therein.

The Curie-Weiss model is a twofold degenerate model

comprised of n classical spins σj with 1 ≤ j ≤ n that take

values σj ¼ �1. We denote a configuration of the spins of the

system as σ. The energy of a state of the Curie-Weiss model is

ECWðσÞ ¼ −
Δ

n
EparaðσÞ2; ð33Þ

where Δ is a constant independent of system size and

EparaðσÞ ¼ −
P

jσj is the classical Hamiltonian that describes

a paramagnet. Specifically, Epara assigns one unit of energy to

each spin in the −1 state and negates one unit of energy for

each spin otherwise. We point out that the nonlocal nature of

the Hamiltonian is such that each spin is involved in a number

of interaction terms that scales with n. To compensate for this,

the 1=n factor in Hamiltonian (33) ensures that the energy cost

of a single spin flip does not scale with the size of the system.

The only relevant quantity when studying configurations σ

is x ¼ n↓=n, where n↓ is the number of spins of configuration

σ in the −1 state. The two ground states take values x ¼ 0 and

x ¼ 1, and the energy of a typical configuration is

ECWðxÞ ¼ −Δnð1 − 2xÞ2: ð34Þ

It is also important to note that we have C ¼ n!=ðn − n↓Þ!n↓!
unique configurations that give rise to a particular x.

Rearranging, and making use of Sterling’s approximation,

we obtain

CðxÞ ¼ eSðxÞ; ð35Þ

where

SðxÞ ¼ −n½x log xþ ð1 − xÞ logð1 − xÞ� ð36Þ

is the entropy of the system. The probability that a system is in

configuration σ is found using a Boltzmann weight,

probðσÞ ¼ e−βECWðσÞ=Z; ð37Þ

where Z ¼
P

σ
e−βECWðσÞ is the partition function of the

system. We thus find the probability that a system is in a

configuration that takes value x

probðxÞ ¼ CðxÞe−βECWðxÞ ¼ e−βFðxÞ=Z; ð38Þ

where now FðxÞ ¼ ECWðxÞ − SðxÞ=β.
We can use Eq. (38) to understand the behavior of the Curie-

Weiss model as a classical memory. We do not require that the

memory remains in the ground space to encode a state. We

require only that x remains close to its encoded value, where

either x ≪ 1=2 or x ≫ 1=2. Provided the value of x remains

far away from x ∼ 1=2, we can recover the state of the encoded

bit by measuring the magnetization of the system. Finding the

magnetization is physically equivalent to taking a majority

vote over all the spins of the system. We plot the free energy as

a function of x for various β in Fig. 5. The probability that a

state takes value x is inversely proportional to the exponent

of the free energy, as shown in Eq. (38). Therefore, we can

regard the free energy plot of Fig. 5 as a potential landscape,

where the system will preferentially find local minima and is

unlikely to achieve states with large free energy.

At low temperatures, Fig. 5 shows that the system has two

potential minima, one for x ≪ 1=2, and one at x ≫ 1=2. At

suitably low temperatures, we can increase the depth of the

two potential minima by increasing n. As such, it is highly

unlikely for a state to achieve a configuration with x ∼ 1=2 in

the thermodynamic limit, as states with a large free energy are

achieved very infrequently. Therefore, if we encode a state by

preparing it in, for example, a configuration with x ≪ 1=2, it

is unlikely that the thermal environment will evolve the state

to one of x ≫ 1=2 via a sequence of local spin flips, as the

evolution must pass through highly improbable states where

x ∼ 1=2. To this end, in the thermodynamic limit, and at
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suitably low temperatures, the Curie-Weiss model is able to

robustly encode a classical bit of information for arbitrarily

long time scales. This is shown in Alicki and Horodecki

(2006) by taking x to the continuum limit and applying

Kramer’s formula (Gardiner, 1983).

The Curie-Weiss model is one of the simplest examples of a

model that is in an ordered phase at finite temperature. As

observed, if the temperature is suitably low, we can robustly

encode classical information for arbitrarily long time scales.

Conversely, if we increase the temperature, the model under-

goes a phase transition into the disordered phase where the

storage of information is no longer possible. We observe this

in Fig. 5. Specifically, at high temperatures, the free energy

curve no longer has two well-resolved minima that are

separated by a large potential. Ideally, we seek to find

quantum systems that have an ordered phase at finite temper-

ature. We expect that such a system will be able to robustly

encode quantum information for long durations. We discuss

systems with ordered phases at finite temperature in more

depth in Sec. V.

We finally remark that while the free energy offers a much

more accurate description of the behavior of a system includ-

ing evaluation of the phase diagram of a system, it is often

difficult to evaluate. As such, we often resort to using simpler

concepts such as energy barriers to evaluate the behavior of a

system. Recent work has been conducted in this area by

Temme (2014), Temme and Kastoryano (2015), and Kómár,

Landon-Cardinal, and Temme (2016), where it is shown that

Arrhenius’s law gives an upper bound on the coherence time of

a memory for a large class of local commuting Hamiltonians.

Indeed, the resulting coherence times achieved by the use of

Arrhenius’s law, Eq. (29), is often considered as a widely

applicable (Laidler, 1972) rule of thumb.

E. Simulating finite-temperature effects

Monte Carlo methods are frequently used to numerically

analyze the evolution of a system where analytical methods

are intractable or to find data that support theoretical con-

jecture. Here we give an overview of a general method to

conduct finite-temperature Monte Carlo simulations for com-

muting Pauli-Hamiltonians (Bortz, Kalos, and Lebowitz,

1975; Chesi, Röthlisberger, and Loss, 2010).

The noise model approximates the thermal evolution

of an eigenstate jψðtÞi with respect to commuting Pauli-

HamiltonianH when interacting with a thermal bath of inverse

temperature β. As mentioned in Sec. II.A, eigenstates of

commuting Pauli-Hamiltonians are easily described using a

list of eigenvalues Mj. We simulate the noise model as a

sequence of discrete events that map between eigenstates of

H. At each event we look to obtain some V and δt such that

jψðtþ δtÞi ¼ VjψðtÞi. At t ¼ 0 we typically initialize the

state to a ground state of H and we simulate the thermal

evolution up to some time tmax.

For commuting Pauli-Hamiltonians the random incident

errors V are hopping operators that act like Xj, Yj, or Zj on the

state. Importantly, the action of operators V ensure that

jψðtþ δtÞi is an eigenstate of H. The relative probability

of error event V is determined using Eq. (18). Rates γðωVÞ are
evaluated with respect to H and jψðtÞi. Explicitly, we select

error event V by calling from the distribution

pV ¼ γðωVÞ
R

; ð39Þ

where we normalize using the total rate R ¼ P

VγðωVÞ with
the summation running over all errors V realizable by the

noise model.

The time δt that passes between each step as V is applied is

determined using R. Since each V occurs as a random process

at rate γðωVÞ, the time step δt is a random variable distributed

as an exponential distribution with parameter R, the total rate.

We numerically generate values of δt such that

δt ¼ −
lnðrandÞ

R
; ð40Þ

where rand is a random variable chosen uniformly from

the interval (0, 1]. We thus obtain the new eigenstate

after a time δt, which passes during the event, such that

jψðtþ δtÞi ¼ VjψðtÞi.
At the end of each event, we check the total time of the

system. If tþ δt < tmax we perform another event using the

new eigenstate jψðtþ δtÞi. Otherwise we stop the simulation

and use jψðtþ δtÞi and the total incident error to collect

sample data.

By averaging over many trials of this process we can obtain

estimates of many nonequilibrium thermal quantities, such as

the coherence time τ. We use two different methods to

estimate τ in this review. In the first we apply the decoder

repeatedly as we evolve the system and define τ as the average

time it takes for the decoder to fail once. Alternatively we

define τ as the time in which the decoder success rate falls

below some threshold, e.g., 99%. The values obtained with

these different methods may differ by a constant factor, but

ultimately will both reveal the coherence-time dependence of

the system on its size and temperature.

FIG. 5. Free energy plotted as a function of x for low,

intermediate, and high β, shown by the bottom blue line,

the intermediate red line, and the top yellow line, respectively.

With decreasing temperature the local minima become more

pronounced. At high temperature the entropic contribution is

dominant.
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F. Toric code at finite temperature

The dynamics of the toric code have been extensively studied

byAlicki, Fannes, andHorodecki (2009), Freeman et al. (2014),

Hutter andLoss (2014), and Jouzdani et al. (2014). In particular,

Alicki, Fannes, and Horodecki (2009) analytically showed

using the dynamical model reviewed in Sec. III.A that the

coherence time of the model will not exceed τ ∼ eβΔ. In this

section we provide a self-contained study of the thermal

dynamics of the toric codemodel.Wemake use of the numerical

tools we have discussed throughout this section to complement

known analytical results. Importantly, the thermalization

dynamics of the toric code provide an explicit example of

the behavior of the thermal dynamics of a Hamiltonian system

that we aim to defend against.

It is a generic feature of quantum memories that their finite-

size behavior differs from their behavior at the thermodynamic

limit. Both of these regimes are important. The latter considers

properties relevant to the scalability of the system and is

pertinent for many theoretical considerations. The former,

however, is more relevant to current experimental efforts. Here

we use the toric code as a specific example to identify and

compare the two different regimes. We identify a critical

system size below which finite-size effects are apparent. This

size is a function of temperature and the energy cost required

to create excitations.

The energy cost to create a single excitation is often referred

to as its mass. The mass equates to the interaction strength Δ

of the toric code Hamiltonian (15). In thermal equilibrium we

expect the average density of anyons in the toric code to scale

like ρ ∼ e−βΔ. Therefore the number of anyon pairs present in

a thermalized system of size L is

hNi ∼ L2ρ

2
¼ L2e−βΔ

2
: ð41Þ

Using Eq. (41) we see that for systems smaller than L≲ eβΔ=2

we have hNi ≲ 1. It follows that the probability that there is

more than one single pair of anyons on the lattice is negligible.

Therefore, in this regime the thermal decoherence of encoded

information will most likely occur due to the creation of a

single pair of anyons that rapidly propagate across the lattice

and introduce a logical error to the memory. We will

demonstrate that in the small-size limit the coherence time

can be approximated by Arrhenius’s law applied to the

minimum energy barrier up to system-size dependent cor-

rections, similar to the four-qubit toric code discussed in

Sec. III.B. This behavior differs from that of larger system

sizes where L2ρ=2 ∼ hNi ≫ 1 such that many anyon pairs are

uniformly distributed over the lattice. For this case we

observe that the coherence time is exponentially shorter than

Arrenhius’s law predicts and is no longer dependent on

system size. The two different limits for the toric code are

demonstrated in Fig. 6.

1. Small system size limit

For small systems, and at a temperature low enough for us

to expect a good memory, we can typically expect a single pair

of excitations to cause the toric code memory to fail. We show

such a configuration in Fig. 6(b). We estimate the coherence

time τsmall ¼ τc þ τm, where τc is the time it takes for this pair

to be created and τm the time it takes for the anyons to diffuse

across the lattice up to a separation L=2. When the anyons

have crossed a distance L=2 then the encoded information is

irrecoverable by quantum error correction. Only the separation

between the anyons is important, so we treat one as fixed and

just consider the relative motion. This motion is an unbiased

random walk allowing us to easily estimate the diffusion

time τm. The typical number of steps required for a two-

dimensional random walker to reach a distance L=2 from its

starting point is ðL=2Þ2. Under the noise model discussed in

Sec. III.E, the typical time of random walk steps is ½8γð0Þ�−1,
where the factor of 8 counts the number of processes on the

lattice that move anyons. We thus obtain

τm ≃
1

8γð0Þ

�
L

2

�
2

¼ βL2

32
: ð42Þ

To estimate τc we note that the energy cost of pair creation is

2Δ. Again applying the noise model from Sec. III.E, pairs are

created from the vacuum at rate R0 ¼ 2L2γð−2ΔÞ. This

implies that the time we wait to see a creation event is

1=R0 ∼ e2βΔ=L2. However, not all pairs diffuse to the required

distance. Some pairs will instead fuse back to the vacuum at

some point later in time; we can quantify the effect this has on

FIG. 6. The thermal dynamics of the excitations of the toric code

in both the (a) and (b) small and (c) and (d) large system-size

limits. Typical error configurations quickly achieve excitation

density ρ ≈ e−βΔ for excitations with mass Δ at inverse temper-

ature β. In the small system size limit where L2ρ=2≲ 1, it is

common for only a single pair of excitations to be created (a),

which then rapidly propagate to cause an uncorrectable error (b).

In contrast, in the large system-size limit a uniform distribution of

anyon pairs is quickly created (c). These pairs diffuse and overlap

eventually creating a chain that percolates over the lattice causing

an uncorrectable error (d).
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the coherence time by considering the random walks of

the pairs.

We denote by ΠðL; βÞ the probability that a pair does not

self-annihilate before reaching separation L=2. The motion of

the pair is described by an unbiased random walk. It is a

standard result for a two-dimensional random walk on a

square lattice that the probability of a walker not returning to

the origin in the first K steps scales as 1= lnðKÞ. On average

we need the walker to avoid self-annihilation for ðL=2Þ2 steps.
We therefore expect a factor of ½2 lnðL=2Þ�−1 in Π.

Additionally, in order to begin the random walk the pair

must avoid fusing back to the vacuum immediately. This is a

relaxation process that happens at a higher rate than beginning

the walk. We therefore include a factor ∼1=ð1þ AβÞ in Π,

where A is some constant and Aβ is the relative chance the

anyons annihilate when they are nearest neighbors. The

probability ΠðL; βÞ then takes the form

ΠðL; βÞ ∼ 1

1þ Aβ

1

lnðL=2Þ : ð43Þ

Combining these elements, we expect a creation time scale

τc ≃
1

R0

1

Π
∼
e2βΔ

L2
ð1þ AβÞ lnðL=2Þ: ð44Þ

The total coherence time is τsmall ¼ τc þ τm. In the small

system limit time clearly τc is the dominant contribution to

τsmall due to its exponential dependence on β.

To test these predictions we rigorously study the system

evolving in this limit using different numerical experiments

with various initial conditions and some variations to the

physical noise model. Key technical calculations involved in

finding the coherence-time scaling are discussed at length in

Appendix B. Here we present the main results concerning

the most significant contribution to the coherence time. We

separately estimate ΠðL; βÞ, τc, and τm using numerical

simulations. We find good agreement with the predictions

of Eqs. (42), (43), and (44) with the constant A ≈ 5 for the

function ΠðL; βÞ. The most significant contribution to τsmall

comes from τc, and the scaling of τc is dominated by the factor

1=R0. Figure 7 shows the 1=R0 scaling of τc. This observation

matches the predicted values of the key parameters very well,

demonstrating a dependence on 1=L2 and an exponential

growth with 2βΔ.

The minimum energy barrier of the toric code is 2Δ, giving

an Arrhenius law estimate of the coherence time τ ∼ e2βΔ. We

have shown that in the small-size limit the leading contribu-

tion to the coherence time is τc, given by Eq. (44). If we ignore

the subexponential β dependence inside 1=Π, we can approxi-

mate the coherence time by

τsmall ∼ e2βΔ
lnðL=2Þ

L2
: ð45Þ

We see that as L becomes larger the lifetime of the toric code

memory decreases polynomially up until L ∼ eβΔ=2. This is a

critical size above which the system starts to behave as it

would in the thermodynamic limit. We now show that in the

large-size limit the lifetime loses any dependence on system

size and is determined only by β.

2. Large system-size limit

In the large-size limit thermalization creates many anyons,

with an equilibrium density of ρ ∼ e−βΔ for single anyons. On

average, anyon pairs are created uniformly throughout the

system and each occupies an area of 2=ρ. We approximate the

area as a square of linear size Λ ¼ ðρ=2Þ−1=2 ∼ eβΔ=2 as shown
in Fig. 6(c). The probability the decoder fails becomes

appreciable once some fraction of pairs separates to distance

Λ such that an error chain can percolate through the whole

system as shown in Fig. 6(d).

Within a single Λ × Λ region the evolution proceeds like the

small-size case, i.e., there will be a creation event and the

anyons subsequently diffuse apart. We say that a region fails

once its anyons move close to anyons from neighboring

regions. Assuming each region evolves independently, the

time the system decoheres τlarge is estimated by the time the

typical region fails. This is given by Eqs. (42) and (44) where

we set L=2 ¼ Λ, giving diffusion and creation time scales

τm;Λ ∼ βΛ2 ≃ βeβΔ and

τc;Λ ∼
e2βΔ

Λ2
ð1þ 5βÞ lnðΛÞ: ð46Þ

To get an expression in terms of β we write Λ ¼ CeβΔ=2,
where C accounts for the constants absorbed into ρ. Then

substituting Λ into Eq. (46) and rearranging

τc;Λ ∼ eβΔð1þ rβ þ sβ2Þ; ð47Þ

where r and s are new constants related to those already

introduced. In contrast to the small-size case, the creation and

FIG. 7. Pair creation times for toric code excitations in the small

system size limit. The average time of pair creation from

initialization in the ground state τc is shown as a function of

system size L, for a range of values from β ¼ 12 (bottom line) to

β ¼ 22 (top line). The inset shows the values of the fittings in the

main plot at the y-axis intersection point, as a function of β. Times

τc are obtained by averaging over 1000 simulations. Here the

values of τc are divided by a factor of 1=ΠðL; βÞ, which we

determine numerically independent of τc. The gradient of the

linear fits, averaged over β, is −2.01, giving an overall scaling of

τc ¼ 0.150ðe1.99β=L2.01Þ=Π. This is in agreement with the

behavior predicted by Eq. (44).
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diffusion time scales have the same exponential dependence

on β, and so we expect them both to contribute appreciably

to the coherence time. Combining terms we obtain high-

temperature coherence time

τlarge ≃ τc;Λ þ τm;Λ ≃ eβΔð1þ r0β þ sβ2Þ; ð48Þ

where r0 also includes the motional contribution. This simple

modeling ignores thermal effects that can now take place such

as pair fusion, where two anyons from different pairs fuse to

vacuum combining their strings to form a longer string.

Processes such as these will alter both the diffusion speed

and the pair self-annihilation probability. As a result we do not

expect this model to give good predictions of the values of r0

and s. However, we do expect it to correctly predict the

general features of the dynamics: in particular, the altered

exponential dependence on β and the system-size independ-

ence of the lifetime. If we ignore its subexponential β

dependence the large-size coherence time is

τlarge ∼ eβΔ: ð49Þ

This is also exponentially growing with β but at a much slower

rate than Arrhenius’s law applied to the minimum energy

barrier predicts.

We simulate the system evolving in this regime in order to

test our assumptions and verify predictions about the dynam-

ics. Here we present the key results. A thorough discussion of

our methods and results is given in Appendix B. We verify that

anyon densities at the time the decoder fails obey ρ ∼ e−βΔ and

that for the parameters we consider the typical number of

anyons is always large hNi ≫ 1. The average separation

between anyon pairs that were either created together or

joined by a fusion is seen to scale as Λ ∼ eβΔ=2 as expected. In
addition we see that the maximum separation between any

pair is always much less than L=2 confirming that the

decoherence results from the average motion of anyons in

local regions. We give numerical data showing the scaling of

τlarge predicted in Eq. (48) in Fig. 8. Our results are also seen to

clearly demonstrate coherence time scaling that is independent

of the size of the toric code.

G. Characteristics of self-correcting memories

To properly compare and classify models that are proposed

as self-correcting quantum memories, we must have a clear

idea of what a self-correcting quantum memory is. We

conclude this section by presenting the general characteristics

we require from a quantum memory at finite temperature. We

use this criteria as a comparative tool to guide us through the

presentation of a wide variety of models. We emphasize that

the list we give should be regarded as a set of guidelines to be

challenged. Other variations of the desiderata asked of a

quantum memory are given in Landon-Cardinal et al. (2015)

and Brell (2016).

In the study of a quantummemory, we first require physically

realistic systems.We are interested in Hamiltonian models with

interaction terms that are defined locally in three or fewer

dimensions. Additionally, we consider only Hamiltonians

whose local interaction terms have eigenvalues that are bounded

by a constant independent of the size of the system. In a similar

vein, we also require that each physical degree of freedom in the

system supports only a constant number of Hamiltonian

interactions. These conditions have been specified for commut-

ing Pauli-Hamiltonians precisely in Sec. II.A.

We next ask what properties we expect of a self-correcting

quantum memory. Importantly, we must be able to write

information to a quantum memory. We can achieve this using

external control during the preparation of the system. Then,

encoded information should remain coherent without the

application of any control for an arbitrary amount of time

while the system is exposed to thermal errors. Ideally we hope

that the coherence time of encoded quantum information will

diverge to infinity as the size of the system is increased. We

require this behavior to be present at some arbitrarily small but

nonzero temperature. Such behavior is typically associated

with a phase of matter that is ordered at finite temperature

below some critical temperature, similar to the ordered phase

we observed in Sec. III.D with the Curie-Weiss model.

Further, to ensure that encoded information evolves coher-

ently for an arbitrarily long time, we require that the

orthogonal encoded states of a quantum memory are degen-

erate with respect to the system Hamiltonian. Otherwise,

encoded quantum information decoheres rapidly. To this end,

we require that the energy splitting between the orthogonal

states of the encoded space of the memory vanishes as the size

of the system diverges.

In general we do not expect to be able to realize an exact

quantum Hamiltonian. Typically a physical system will be

subject to minor perturbations due to stray fields or perhaps

imperfections in their preparation. We therefore require that

the properties that we ask of a quantum memory to be robust

against arbitrary local Hamiltonian perturbations, provided the

perturbations remain sufficiently weak.

Finally, we require the ability to read out encoded infor-

mation after the memory has suffered some errors. Even with a

FIG. 8. Coherence time of the toric code in the large system-size

limit. Times τ are averaged over 1000 simulations. They are

shown here as a function of β for a range of system sizes

L ¼ 100; 120;…; 200. The data are fit by Eq. (48). We

observe only small variations in the fit parameters between

system sizes and their averages give the expression τhigh ¼
0.56e1.01βð1þ 0.28β þ 0.31β2Þ. The inset shows the nonexpo-

nential part of the scaling obtained by dividing the values τ shown

in the main plot by eβΔ.
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memory with self-correcting properties, we still expect to

sustain some small errors that may affect the measurement of

logical states. We thus require a decoding algorithm such as

those discussed in Sec. II.C and in Appendix A to identify and

correct for small physical errors at the point of readout.

Moreover, in order for the memory to scale in a practical

manner, we require the execution time of the decoding

algorithm to scale efficiently with the size of the system.

With these considerations the following list summarizes the

criteria we ask of a self-correcting quantum memory:

(1) Locally embeddable in three or fewer dimensions with

bounded Hamiltonian interactions and where qubits

support a bounded number of interactions.

(2) Encodes a quantum state whose coherence time

diverges with system size at a sufficiently low nonzero

temperature.

(3) Splitting between the energy levels of the encoded

subspace vanishes in the thermodynamic limit.

(4) Memory properties are robust under local perturbations.

(5) Efficiently decodable at readout.

To the best of our knowledge there currently exists no

model that has been proven to satisfy all of these criteria.

Indeed, we see throughout this exposition that there are many

example models that achieve some of these properties, or

perhaps weaker notions of these properties, and compromise

others. Certainly, it remains interesting to discuss the capabil-

ity of a quantum memory that does not satisfy all of the listed

criteria. We see that some of the models discussed in this

review have coherence times that increase with system size up

to some cutoff. While not truly self-correcting by our criteria,

such models may be very useful if the coherence-time cutoff

is large.

While it is difficult to discover a system that satisfies the

proposed criteria for a self-correcting quantum memory, it is

the goal of this research program to realize a quantum memory

in the laboratory that can ultimately be manufactured for the

purposes of quantum technologies. Moreover, we require that

a memory serves as a component of a larger information

processing machine that must work and communicate with

other components of a larger processor to complete computa-

tional tasks. We therefore append to a list of criteria some

additional desiderata that we might reasonably ask of a

quantum memory.

We first consider the feasibility of realizing different

Hamiltonians. Although it already presents a significant

challenge to discover self-correction among Hamiltonians

with constant interaction terms, as we phrased the problem,

the constant weight of a Hamiltonian interaction can in general

be a large constant. In reality, naturally occurring Hamiltonians

typically have two-body interactions. It is therefore interesting

to discover self-correcting Hamiltonians that have strictly

two-body interactions. Similarly, imposing translational

invariance is particularly exciting with respect to scalability

as we could potentially engineer such a system by designing

simple repeating units of the many-body system. We may even

expect to find such a system in a regular strongly interacting

crystal.

Further, in the interests of experimental amenability,

although we can realize three-dimensional systems, such

models may be difficult to manipulate. Specifically, we might

expect that the quantum degrees of freedom in the center of a

three-dimensional crystal will be difficult to access. Such

accessibility is likely to be invaluable for encoding and reading

out encoded quantum states, and for measuring syndrome data

to identify errors suffered by the system. To this end, it is

favorable to find a quantum memory in dimensions smaller

than 3.

We finally consider fault-tolerant computational abilities in

our wish list. Indeed, although finding systems capable of

preserving coherent quantum states at finite temperature

already presents a considerable challenge, we also want to

directly perform interesting computational tasks on informa-

tion encoded within the memory. Such a property may help

reduce computational overhead when we consider manipu-

lating encoded information in a quantum circuit.

We summarize the discussed desiderata as follows:

(1) low-weight, ideally two-body, Hamiltonian interactions;

(2) translational invariance;

(3) embeddable in a low number of dimensions; and

(4) compatible with a fault-tolerant universal quantum

gate set.

IV. NO-GO THEOREMS

Before beginning the search for a quantum memory over

the vast space of many-body lattice Hamiltonians, it is wise to

rule out systems which we cannot expect to maintain quantum

information at finite temperature. For this purpose we now

consider no-go theorems that identify broad classes of models

with physical characteristics that we cannot expect to lead to

passively protected memories.

The study of finite-temperature quantum memories requires

a breadth of technical aspects, from the abstract mathematical

theory of coding to the more physically motivated field of

study of finite-temperature effects on lattice Hamiltonians.

To this end, no-go results can be broadly separated into two

types. We label these general no-go theorems and physically

motivated no-go results. The distinction is the following:

general no-go theorems seek to exclude large classes of

systems from possessing important properties that we expect

to be necessary for self-correction. Physically motivated no-go

results take into consideration dynamics and microscopic

thermal effects to show specific models that will fail to

behave well as a quantum memory. Both approaches have

complementary advantages and are ultimately of equal

importance.

The general no-go theorems typically eliminate the pos-

sibility of energy barriers in certain classes of systems.

Macroscopic energy barriers between degenerate ground

states are the basis of our current understanding of finite-

temperature stability in classical models. The prototypical

case of a classical stable model is the two-dimensional Ising

model, which is presented in detail in Sec. V.A. Moreover, it

has been shown that an energy barrier is required for a large

class of commuting Hamiltonian models (Temme, 2014;

Temme and Kastoryano, 2015; Kómár, Landon-Cardinal,

and Temme, 2016). It is therefore unlikely that we can expect

to find a passive quantum memory with a model that does not

support a macroscopic energy barrier.
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Physically motivated results lose the generality of their

counterpart class of no-go theorems. Instead, they model

thermal effects acting on specific models. This approach offers

new intuition to show that under physical considerations

certain models fail to perform well as a quantum memory.

Such results are typically obtained by studying the relevant

order parameters that correspond to logical operations acting

on the code space of quantum memories. Order parameters are

then studied with respect to the dynamics of quantum system

when interacting with an auxiliary environmental system, or in

its Gibbs thermal equilibrium state. These results support

known general no-go theorems for models where it is believed

that finite-temperature stability cannot exist.

Known no-go theorems are most limiting in two dimen-

sions. It was shown by Bravyi and Terhal (2009) that

two-dimensional commuting Pauli-Hamiltonian models,

including the toric code model, cannot support an energy

barrier that scales with the size of the system. This result is

generalized to two-dimensional topologically ordered com-

muting Hamiltonians by Landon-Cardinal and Poulin (2013).

These results are supported by a wealth of physical no-go

results, typically obtained using Kitaev’s toric code model,

where various order parameters are shown to rapidly decay at

finite temperature.

Three-dimensional no-go theorems are significantly less

restrictive when compared with their two-dimensional coun-

terparts (Yoshida, 2011; Haah, 2013; Pastawski and Yoshida,

2015). These results leave more promise for the discovery of

new models with a macroscopic energy barrier. Indeed,

the assumptions necessary to prove the discovered three-

dimensional no-go theorems describe a limited set of models

when compared with the theorems known in two dimensions.

Supporting these results, we also have various physical results

showing that topological entanglement entropy (Castelnovo

and Chamon, 2008), and the correlation functions of stringlike

logical operators (Alicki et al., 2010) decay rapidly for the

three-dimensional toric code model. We see in Sec. VII that

there are many known physically feasible three-dimensional

models that avoid the no-go assumptions we describe here and

present favorable properties for finite-temperature stability.

In this section we begin by reviewing no-go theorems in

two dimensions. We reproduce the proof of Bravyi and Terhal

to show that two-dimensional stabilizer models cannot sup-

port a macroscopic energy barrier, and we discuss the

supporting physically motivated no-go results. We follow

the discussion by considering the no-go theorems in three

dimensions. We conclude with possible avenues for avoiding

the known no-go theorems. The final section serves as

motivation for the positive results that we discuss later on,

which include the various models that have been proposed as

stable quantum memories.

A. No-go results in two dimensions

In this section we review no-go results in two dimensions.

We consider in detail the general no-go theorem due to Bravyi

and Terhal (2009), and we discuss the physically motivated

no-go results. We motivate this no-go theorem by first

considering the toric code, the prototypical model for quantum

error correction. We have seen in Sec. II.D that the logical

operators of the toric code are one-dimensional stringlike

operators. Models with logical operators of this type have a

constant energy barrier. To understand this from the anyonic

picture of two-dimensional topologically ordered memories

given in Sec. II.E, these logical operations correspond to

the creation of a pair of anyonic excitations at a constant

energy cost which are then free to walk across the lattice

at no additional energy penalty. This is discussed in detail

by Nussinov and Ortiz (2008) and Alicki, Fannes, and

Horodecki (2009), but ultimately follows from the fact that

one can find a sequence of single-qubit error operations that

will realize a logical operator without increasing the energy

of the system beyond a constant value that is independent of

the system size. With the toric code in mind it becomes

interesting to see if we can find a two-dimensional system

with logical operators that are not supported along a one-

dimensional line. We follow the proof of Bravyi and Terhal

(2009) to show that local two-dimensional stabilizer models

necessarily have one-dimensional logical operators which are

expected to be incompatible with finite-temperature stability.

In the exposition we show how a local noise model can

construct a logical operation over its code space at no more

than a constant energy cost with respect to the size of the

lattice, thus completing the proof.

We consider a two-dimensional square lattice of size L × L.

The qubits interact via the local Hamiltonian

H ¼ −
X

j

Sj; ð50Þ

where Sj are in general an overcomplete set of local generators

for stabilizer group S ⊂ Pn as defined in Sec. II. The ground

space of H is the code space of S. Without loss of generality,

each local stabilizer generator that acts on a small subset of

qubits on the lattice can be contained in a square box no larger

than constant linear size r. We show such a box in Fig. 9(a).

Moreover, each box can contain no more than a bounded

constant number of interaction terms. Hamiltonians with these

properties are physically well motivated as described in

Sec. II.A. We observe that for the described stabilizer group

with local generators Sj, there must exist a logical operator

that is supported on a one-dimensional strip of width r, as

shown in Fig. 9(a).

We now elaborate on the noise model that introduces a one-

dimensional logical error without increasing the energy of the

system above a constant independent of its size. The noise

model of interest can introduce Pauli errors to single qubits of

the lattice. We consider “segments” of a Pauli logical operator

supported on the shaded (green) region in Fig. 9(b) which is of

variable length 1 ≤ l ≤ L, cut off along the horizontal red

zigzag line. Importantly, the minimum energy cost associated

with this segment is upper bounded by ε ∼Oðr2Þ, independent
of the system size or l. The part of the logical operator

supported on the shaded (green) region will only violate, i.e.,

anticommute with, stabilizer generators of the physical

Hamiltonian that are within a radius ∼r from the cutoff point,

shown by the square (blue) area on the lattice. Violated

stabilizers correspond to the energy cost of the error on the

segment with respect to the Hamiltonian.
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Given that we have shown that the energy cost of a logical

operator segment is upper bounded by energy cost ε inde-

pendent of l, it suffices to demonstrate that the energy cost of

moving the cutoff by a single unit via single-qubit flips for a

generic two-dimensional stabilizer model is constant. Indeed,

we can change segment length from l to lþ 1 by overcoming

an energy barrier that does not exceed a constant energy cost

ω ∼Oðr3Þ, independent of system size, before returning to its

energy minima ε once the logical segment achieves length

lþ 1. We bound ω by considering the introduction of a single-

qubit Pauli error on the lattice. Because of the locality of the

terms of the physically constrained Hamiltonian, introducing a

new Pauli error can only increase the energy of the system by a

constant at most ∼r2. To increase the logical operator segment

from length l to length lþ 1 the noise model introduces a

specific set of r single-qubit Pauli errors close to the red

zigzag line in Fig. 9(b). This requires the addition of no more

than r single-qubit Pauli operators, whose energy cost can be

no more than r2. We are therefore able to bound ω ∼ r × r2.

The described argument holds in the generality of creating a

logical operator segment from the ground space of the lattice

by considering the increase of the size of a segment from l ¼ 0

to l ¼ 1.

We have shown that a logical operator segment of length l

has energy at most ε, and that we can increase the length of the

logical operator segment with energy cost no greater than ω.

It follows from this that the single-qubit Pauli error noise

model can introduce a logical error to the ground space of the

model using a logical operator segment with length l ¼ Lwith

energy never greater than εþ ω. This demonstrates that

commuting Pauli-Hamiltonians with a one-dimensional log-

ical operator have a constant energy barrier.

It only remains to show that a stabilizer group generated

locally in two dimensions necessarily has one-dimensional

logical operators. The technical proof makes use of the

cleaning lemma, proved by Bravyi and Terhal (2009).

Cleaning lemma. Given a stabilizer group S that acts on a

set of qubits Q, one of the following statements holds for any

subset of qubits A ⊆ Q:

(1) There exists a nontrivial logical operator L̄ ∈ Pn

supported entirely on A.
(2) All logical operators L̄ ∈ Pn can be deformed by a

stabilizer S ∈ S, such that L̄S is not supported on A.
We complete the proof using the cleaning lemma. We

separate the lattice into an even number of strips of width

either r or r − 1. We can check that a lattice of size L ¼
aðr − 1Þ þ br can be decomposed into some even number of

aþ b strips for L ≥ 2ðr − 1Þ2.1 We index the strips in order,

and we consider the region of odd strips A ¼ ∪k∈oddAk, as

shown in Fig. 9(c).

We now obtain this proof by contradiction. We assume that

there exists a logical operator L̄0 ∈ Pn whose minimum

support cannot be contained on a vertical strip of width r.

Because of the width of the strips, such a logical operator

cannot be deformed by stabilizers away from region A.

Therefore, by the cleaning lemma, it must be possible to find

a logical operator L̄ ¼ L̄0S for some S ∈ S such that L̄ is

supported entirely on region A. As the logical operator support

is wider than a single strip, it must be supported on multiple

odd strips Ak. Accordingly, we decompose the logical operator

L̄ ¼ Q

k∈oddL̄k, where Pauli operators L̄k are the support of L̄

on strip Ak for odd k.
To complete the argument, we consider operators L̄k.

A logical operator will commute with all elements of S.

Given the choice of strip width, we observe that the support of

any stabilizer overlaps with no more than one odd strip. We

show examples of the supports of stabilizer generators within

squares in Fig. 9(c). It follows from this fact that, in addition to

the logical operator L̄, all operators L̄k must also commute

with the stabilizer group. The Pauli operators that commute

with the stabilizer group are one of two types of operators.

Either they are elements of the stabilizer group, such that

Lk ∈ S, or they themselves are logical operators. Given that

L̄ is a logical operator, there must be one L̄k that is a logical

operator with width less than or equal to r, providing

the desired contradiction. With the observation that we

necessarily have at least one logical operator with a one-

dimensional support for a stabilizer group which is generated

by local two-dimensional stabilizer generators, we conclude

the proof that there exists a constant energy barrier between

two orthogonal ground states of a commuting Pauli-

Hamiltonian in two dimensions.

The discussed work of Bravyi and Terhal was extended in a

number of different directions. Landon-Cardinal and Poulin

(2013) showed that given a local topologically ordered

commuting Hamiltonian there always exists a noise model

FIG. 9. A sketch of the proof of the no-go theorem due to Bravyi

and Terhal. Figures depict square lattices where qubits are

marked by black points. (a) Local stabilizer generators are

confined to small squares of size r such as that shown in blue

in the top-left corner where r ¼ 3. For such a code Bravyi and

Terhal show that there must exist a logical operator supported on

a quasi-one-dimensional strip of width r, such as the vertical strip
which is shaded green. (b) An error that forms part of a logical

operator, supported on the shaded green vertical strip, does not

violate more than a constant number of local stabilizers, marked

by blue squares of width r, that extend no further than a distance

of r − 1 away from the broken end point of the shaded strip,

shown as a red zigzag line. (c) A high weight logical operator can

be cleaned onto region A ¼ ⋃kAk for odd values of k, where each

stabilizer generator, examples of which are supported inside small

squares such as those displayed in blue, has common support

with no more than one strip. The proof finally uses this fact to

conclude that a logical operator must be supported on a single

vertical strip.

1
Proof by induction. We obtain L ¼ 2ðr − 1Þ2 with solution

a ¼ 2ðr − 1Þ and b ¼ 0. Assume true for L ¼ aðr − 1Þ þ br for

all L ≥ 2ðr − 1Þ2. In the case that a > 0 we obtain Lþ 1 ¼
a0ðr − 1Þ þ b0r with values a0 ¼ a − 1 and b0 ¼ bþ 1. If a ¼ 0

we choose a0 ¼ 2r − 1 and b0 ¼ b − 2ðr − 1Þ þ 1, which satisfies

a0 þ b0 ¼ even, since b is even.
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that can locally create a logical operation on the ground space

of the model at no more than a constant increase in system

energy, thus extending the result of Bravyi and Terhal to a

more general class of systems. We remark also on the work of

Haah and Preskill (2012) where it is shown that two-

dimensional stabilizer models do not support any logical

errors that cannot be achieved with an energy cost that is

independent of the size of the system under a local

noise model.

Supporting the discussed general results in two dimen-

sions, there is also a plethora of physically motivated

results in the literature that typically consider the proto-

typical case: the toric code model. The approaches include

a study of topological entanglement entropy (Kitaev and

Preskill, 2006; Levin and Wen, 2006) for the toric code

model in the thermal equilibrium state; see Castelnovo and

Chamon (2007) and Iblisdir et al. (2009, 2010). Iblisdir

et al. (2009, 2010) identified that in realistic systems the

topological entanglement entropy vanishes in the large

system-size limit at finite temperature for the general class

of Kitaev quantum double models (Kitaev, 2003). A further

physically motivated study includes the rigorous proof of

instability in the toric code model using the Liouvillian

open dynamics to show that the expectation values of the

logical operators of the toric code model decay rapidly

when weakly coupled to a Markovian environment (Alicki,

Fannes, and Horodecki, 2009). These results are general-

ized by Chesi et al. (2010) and are considered for the toric

code with higher-dimensional spins in Viyuela, Rivas, and

Martin-Delagado (2012).

In addition to the physically motivated no-go results, we

also remark on the result due to Hastings (2011) which shows

that commuting two-dimensional models are unable to sup-

port topological order at finite temperature. Similar conclu-

sions were derived by Nussinov and Ortiz (2008, 2009a,

2009b) by consideration of lattice models using methods

that were later improved by Chesi et al. (2010). Results such

as these are particularly important with respect to finite-

temperature perturbative stability, which we regard as a

required condition for a stable quantum memory. The results

of Hastings are supported numerically as discussed by

Wootton (2013), where he compares the topological order

of unstable memories at finite temperature with stable

interacting models. These results are discussed later in

Sec. VI.E.

B. No-go results in three dimensions

Thus far we have seen that no-go theorems are very

restrictive against energy barriers in two-dimensional systems.

It is shown that both commuting topologically ordered

Hamiltonians and commuting Pauli-Hamiltonians in two

dimensions necessarily support at most a constant energy

barrier. In this section we discuss known results in three

dimensions. Here the landscape of local Hamiltonians is much

more rugged. Indeed, we observed that no-go theorems for

three-dimensional models are often superseded by models that

avoid the assumptions of a given theorem in a physically

sound way.

The first general no-go result in three dimensions is

given by Yoshida (2011). Here the methods of Kay and

Colbeck (2008) and Yoshida and Chuang (2010) are used

to show that three-dimensional Pauli-Hamiltonians that are

translationally invariant, and have a constant ground-state

degeneracy, must have a one-dimensional logical operator,

which can be produced with energy cost independent of the

system size.

The work of Yoshida has been supported by physically

motivated results that study the three-dimensional toric code

model (Hamma, Zanardi, and Wen, 2005) following various

approaches. Castelnovo and Chamon (2008) studied the

topological contributions to the entanglement entropy of

the three-dimensional model in its Gibbs equilibrium state.

They found that, while some topological order parameters

remain robust up to a critical temperature, a qubit cannot be

stored in the three-dimensional toric code at finite temperature

because looplike order parameters decay rapidly in the large

system-size limit. Similar results are anticipated using the

methods of Alicki et al. (2010), where they studied the

thermal dynamics of the three-dimensional toric code model

by considering the model weakly coupled to a Markovian

thermal reservoir.

It was explicitly shown that one can surpass the no-go

theorem of Yoshida. Haah (2011) constructed a translationally

invariant three-dimensional Pauli-Hamiltonian with a macro-

scopic energy barrier. The model, commonly known as the

cubic code, does not have a constant ground-state degeneracy

and thus avoids the no-go theorem of Yoshida. We discussed

this model in detail in Sec. VII.B.

Following the discovery of the cubic code, Haah general-

ized Yoshida’s no-go theorem (Haah, 2013). He used an

elegant representation of the Pauli group to show that trans-

lationally invariant three-dimensional commuting Pauli-

Hamiltonians can support at best an energy barrier that scales

logarithmically with the size of the system. Subsequently,

Michnicki (2012, 2014) demonstrated an explicit example of a

Pauli-Hamiltonian model that supports a power-law energy

barrier, which is not translationally invariant, known as the

welded toric code model. In this model the energy barriers of

the noncommuting logical operators are varied by changing

the size of the system over different length scales. Notably, the

welded code has a constant twofold ground-state degeneracy

and violates only the translational invariance assumption of

the Yoshida proof. We discuss the welded toric code in

Sec. VII.C.

Finally, we remark on a recent result given by Pastawski

and Yoshida (2015). There they showed that there is a tradeoff

for three-dimensional commuting Pauli-Hamiltonians

between their capability to support an energy barrier and

the fault-tolerant quantum gates that can be achieved by local

operations within the ground space of the Hamiltonian.

Specifically they considered commuting Pauli-Hamiltonians

that can perform a fault-tolerant non-Clifford logical operation

by local operations. They show Hamiltonians with such a

property cannot support a macroscopic energy barrier. This

result is obtained by extending the results of Bravyi and König

(2013). An example of such a code which performs a non-

Clifford gate, namely, the π=8 gate, by applying the π=8 gate

locally to each of the physical qubits, is the three-dimensional
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color code (Bombin and Martin-Delagado, 2007b). Indeed,

this model is not expected to support finite-temperature

stability, as it falls into the class of models described by

the no-go theorem due to Yoshida.

C. On no-go results

In this section we considered several no-go results.

Known no-go theorems identified two large classes of two-

dimensional models that cannot support a macroscopic energy

barrier; commuting Pauli-Hamiltonians and topologically

ordered commuting Hamiltonians. In addition we discussed

no-go theorems showing three-dimensional commuting Pauli-

Hamiltonians are constrained in their ability to support a

power-law energy barrier if they are translationally invariant.

These results are summarized in the Venn diagram shown in

Fig. 10. Importantly, we provide specific models as examples

of the general categories that demonstrate the corresponding

behavior.

The no-go results significantly restrict the models we

might consider in two dimensions for finite-temperature

quantum memories. In particular, it is shown that commuting

two-dimensional models cannot support topological order

at finite temperature (Hastings, 2011) and conversely that

commuting topologically ordered models cannot support a

macroscopic energy barrier (Landon-Cardinal and Poulin,

2013). These are very restrictive findings given that

we demand perturbative stability for a quantum memory,

which is assured with the condition of topological order.

Nevertheless, it is not known that topological order is

necessary for perturbative stability. As such, there may exist

perturbatively stable models that are not topologically

ordered that can support a macroscopic energy barrier

(Landon-Cardinal and Poulin, 2013). With this in mind,

there may still exist commuting two-dimensional models that

are suitable as quantum memories.

Another approach to overcoming no-go results in two-

dimensional topologically ordered systems is to simply violate

their physical assumptions. One study that has attracted

notable interest is interacting anyon models. In general,

achieving such systems requires the violation of the locality

assumption of the discussed no-go theorems. Considerable

work has been conducted to find condensed-matter systems

that give rise to an effective interacting anyon theory in a local

setting. Interacting anyon models are the topic of Sec. VI.

Further, as touched upon in this section, we can obtain

positive results for macroscopic energy barriers in three-

dimensional commuting Pauli-Hamiltonians. In Sec. VII we

review three-dimensional models including the cubic code

model, a translationally invariant model with logarithmic

energy barrier, and the welded toric code model that

obtains a power-law energy barrier by breaking translational

invariance.

Curiously, we see in Sec. VII that the logarithmic energy

barrier of the cubic code or the power-law energy barrier of the

welded toric code do not satisfy the required conditions for a

self-correcting quantum memory given in Sec. III.G. To this

end, it is even an interesting point of study to try to better

understand general necessary and sufficient conditions for

models to satisfy the desiderata of a self-correcting memory.

Work in this direction has been conducted by Temme (2014),

Temme and Kastoryano (2015), and Kómár, Landon-

Cardinal, and Temme (2016).

Beyond commuting Pauli-Hamiltonians there may exist

stable quantum memories based on two- or three-dimensional

noncommuting Hamiltonians. Because of the difficulty in

analytical and numerical calculations for such models, these

classes of systems are less well understood compared with

their commuting counterparts. However, interesting results

have emerged in the field of subsystem codes; see, for

instance, Bacon (2006), Bravyi and Terhal (2009), and

Bravyi (2011). Subsystem codes of particular recent interest

with respect to finite-temperature stability include the three-

dimensional Bacon-Shor code (Bacon, 2006), the gauge color

code (Bombin, 2014, 2015), and the sparse-circuit codes due

to Bacon et al. (2015). We discuss subsystem codes in Sec. IX.

FIG. 10. The landscape of no-go theorems in the space of

candidate memory Hamiltonians. Two- and three-dimensional

models are shown in magenta and blue circles which are centered

in the middle of the diagram. Commuting and stabilizer models

are shown inside the orange and purple circles that are centered in

the bottom-right corner of the diagram. Translationally invariant

models lie within the green circle which is centered at the top-

right corner of the diagram. Models satisfying topological

order conditions are shown inside the red circle centered at

the bottom-left corner of the diagram. Three-dimensional models

with a constant ground-state degeneracy lie inside the gray

“egg-shaped” region to the right of the figure. Dark red shaded

regions have been proven to support an energy barrier that does

not scale with the size of the system. Light green shaded areas

correspond to models that have energy barriers that scale at best

logarithmically with system size. We mark some specific exam-

ples of models that we discuss later.
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Finally, we note that the presented general no-go theorems

only rule out the possibility of energy barriers in certain

classes of models. One might try to sidestep these no-go

theorems by finding an alternative method to prevent a finite-

temperature environment from corrupting information in the

ground space of a quantum memory. We discuss work toward

finding such alternatives in Sec. VIII.

In the next section we give consideration to both classical

and quantum systems that are known to be thermally stable.

Unfortunately, known quantum systems that are proven to be

thermally stable are local in dimensions larger than 3.

Nevertheless, such analysis gives constructive insight into

the properties that give rise to a finite-temperature quantum

memory.

V. THERMAL STABILITY IN HIGH DIMENSIONS

Thermal stability in classical systems was first understood

by the discovery of the Peierls argument (Peierls, 1936). It

shows us that in statistical mechanics stability increases with

dimensionality. In this section we follow this trend in the

quantum realm. We consider high-dimensional generaliza-

tions of well-studied quantum memories to arrive at systems

that support finite-temperature stability. Disappointingly, this

approach has not yet uncovered a stable model with dimen-

sionality smaller than 4. However, to take a positive outlook

on the results summarized in this section, it is demonstrated

that finite-temperature stability is not fundamentally inhibited

by quantum mechanics. Furthermore, the consideration of

high-dimensional quantum models that support finite-

temperature stability may enable us to develop a new intuition

of thermal stability and may inspire the discovery of a stable

quantum memory in lower dimensions.

In this section we review the seminal case of finite-

temperature stability by studying the famous two-dimensional

classical Ising model. We go on to describe the four-

dimensional toric code, the first quantum model rigorously

proven to be thermally stable at finite temperature. We

conclude this section with a further high-dimensional gener-

alization, namely, the six-dimensional color code model. This

model supports both finite-temperature stability and a set of

fault-tolerant operations that can implement universal quan-

tum computation.

A. Stability in classical models

In this section, we review the Peierls argument of stability

in the two-dimensional classical Ising model (Ising, 1925).

The Peierls argument (Peierls, 1936), later refined by Griffiths

(1964), shows that the critical phenomena of the Ising model

are dependent on its dimensionality. For a modern overview of

the Peierls argument, and other important topics relating to the

Ising model, we refer the interested reader to Huang (1987)

and McCoy and Wu (2014). A modern numerical study of this

model is given in the context of a classical memory by Day

and Barrett (2012).

While we have more sophisticated methods of extracting

the phase diagram of the two-dimensional Ising model due to

its exact solution by Onsager (Onsager, 1944; Yeomans,

1992), the intuition developed from Peierls original argument

is a very useful tool for understanding the stability of models

where no exact solution is known; see, for instance, Lebowitz

and Mazel (1998), Campari and Cassi (2010), and Bonati

(2014). Indeed, Peierls argument is used to demonstrate

the stability of the high-dimensional quantum systems. It is

therefore instructive to give a detailed discussion of Peierls

argument applied to the simplest case.

We consider the Ising model defined on an L × L periodic

square lattice of V ¼ L2 spins on its vertices, as shown in

Fig. 11. The spin variables σj take two values �1 and interact

via nearest-neighbor interactions described by the classical

Hamiltonian

EðσÞ ¼ −
1

2

X

hj;ki
σjσk; ð51Þ

where hj; ki denote pairs of vertices that are connected by

edges of the square lattice, and σ is a configuration of all

lattice spins. The model behaves as a classical memory that

stores a single bit in its twofold degenerate ground space,

where the bit is encoded in the magnetization of the system

σ̄ ≡
P

jσj=V. The ground states of the model are σ̄ ¼ �1,

such that the state σ̄ ¼ �1 corresponds to the configuration

where σj ¼ �1 for all j, respectively.

In practice, the Ising model exists at finite temperature. At

nonzero temperature the probability of finding the system in

the ground state vanishes in the thermodynamic limit.

However, for the purpose of storing a bit of information,

the stored data will be maintained if the sign of the magneti-

zation is constant. It is expected that the magnetization will

maintain the correct sign in the ordered phases of the system.

To this end, we must check that the thermal average of the

absolute value of the magnetization hjσ̄ji remains nonzero in

the thermodynamic limit for some suitably low but finite

temperature.

FIG. 11. An example spin configuration of the two-dimensional

Ising model. Spins lie on the vertices of a lattice with periodic

boundary conditions, and interactions are shown as edges of the

lattice. All the spins have the same orientation except for those

that have been flipped, which we mark with red crosses. In

general, we say that patches of flips occur in “droplets.” The

energy penalty introduced by a droplet will scale like the length

of its boundary. We mark boundaries that enclose droplets with

thick solid blue lines which form closed loops.
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The argument begins by considering a spin configuration

with respect to Hamiltonian (51). In Fig. 11 we have a lattice

of spins that are mostly in the þ1 state, shown by white

circles, with regions, or “droplets,” of flipped spins in the

σj ¼ −1 state. We show three such droplets in the example

configuration by patches of red crosses. The Hamiltonian will

impose a unit energy cost for each pair of nearest-neighbor

spins that have opposite states. As such, the energy cost of a

droplet is proportional to the length of its boundary. These

boundaries are known as Peierls contours, indexed by b, and
are marked in blue in Fig. 11. We note that a contour is a

single boundary of a droplet, and that in general a given

configuration can contain many contours. The probability

that a state is in a given configuration from a thermal

Gibbs distribution is pðσÞ ¼ exp½−βEðσÞ�=Z, where Z ¼
P

σ∈Ce
−βEðσÞ is the partition function and C is the set of all

possible configurations. The expectation value of the absolute

magnetization is then found by

hjσ̄ji ¼
X

σ∈C

jσ̄jpðσÞ; ð52Þ

which we seek to bound using Peierls argument.

To determine hjσ̄ji, we begin by finding an approximation

to the simpler value hN−i, the thermal average of the number

of spins in the −1 state, for configurations where spins in the

þ1 state are dominant, i.e., states where σ̄ > 0. We refer to

regions of σj ¼ −1 as lying “inside” the boundary. In order to

evaluate hN−i, we first find an upper bound for the number of

spins found inside a given contour. Consider a contour of

length l. The largest number of flipped spins within such a

contour is l2=16. This is because the largest number of flipped

spins for a contour of fixed length l occurs when the droplet is

square with sides of length l=4. For the more general case on

the lattice with periodic boundary conditions, one can find

droplets that span the lattice with a disjoint boundary of two

parts with l ∼ 2L. In this case, we find an upper bound

of l2=8 flipped spins before the number of spins in state þ1

become dominant. We thus obtain an upper bound for the

number of spins in the −1 state for configurations with

positive magnetization

N−ðσÞ ≤
X

b

l2b
8
δbðσÞ; ð53Þ

where δbðσÞ ¼ 1 if σ contains contour b and 0 otherwise. The

term lb denotes the linear size of contour b.
For Eq. (53) to be meaningful, we must bound the number

of contours that have length l. Of course, a boundary must be a

closed loop. However, we can find an upper bound for the

number of closed loops by calculating the number of random

walks of length l that can occur on the lattice, where a walk

can begin from any initial position. A walk can begin from

one of V possible points. The first step moves in one of four

possible directions, and subsequently, to avoid moving

backward, we choose from one of three possible directions.

Under these conditions we find 4 × 3l−1V possible paths. This

method will count each closed loop l times, as a given contour

can begin from any of the l faces that the contour crosses. We

therefore arrive at an upper bound for the number of

configurations 4 × 3l−1V=l. We thus have

hN−i ≤
V

6

X

l¼4;6;…

l3le−βl; ð54Þ

where we also used the fact that the thermal average for

configurations containing contour b of length lb ¼ l is sup-

pressed by a Boltzmann factor hδbi ≤ e−βlb. We next take the

infinite volume limit to obtain

hN−i≲ 27Ve−4β
2 − 9e−2β

ð1 − 9e−2βÞ2 ; ð55Þ

for e−2β < 1. By symmetry we find an equivalent value for

hNþi ¼ hN−i over configurations where σ̄ < 0.

We return to the initial problem of obtaining hjσ̄ji. We

divide the set of all configurations C into two subsets: Cþ
and C−, where C� contains configurations with a greater

number of �1 spins. Configurations with σ̄ ¼ 0 will not

contribute to magnetization, and we therefore neglect them.

We then have that

hjσ̄ji ¼
X

σ∈Cþ

σ̄ pðσÞ −
X

σ∈C−

σ̄ pðσÞ: ð56Þ

To complete the argument we use the fact that, by definition,

configurations in Cþ have at least V=2 spins in the þ1 state.

We can use that
P

σ∈Cþ
σ̄ pðσÞ ≥ 1=2 − hN−i=V. Similarly,

we use the relationship
P

σ∈C−
σ̄ pðσÞ ¼ hNþi=V ¼ hN−i=V

to arrive at

hjσ̄ji ≥ 1=2 − 2
hN−i
V

: ð57Þ

We see from Eq. (55) that Eq. (57) has solutions larger than

zero for finite values of β, independent of system size, thus

demonstrating an ordered phase where the magnetization of

the Ising model remains stable in the infinite volume limit of

the lattice.

B. High-dimensional stable quantum models

In the previous section we studied suitable conditions for

finite-temperature stability by considering the equilibrium

state of the two-dimensional classical Ising model. This

model is in stark contrast with its one-dimensional counterpart

(Ising, 1925), which does not have a finite-temperature phase

transition. Instead, it has thermal dynamics akin to those of

the two-dimensional toric code model. Indeed, it is a well-

understood principle of statistical mechanics that the stability

of a model will increase with dimensionality.

Following this reasoning, Dennis et al. (2002) showed,

using Peierls argument, that the generalized toric code in four

dimensions has a finite critical temperature, below which the

model is thermally stable. The four-dimensional toric code is

defined on a hypercubic lattice. Qubits are placed on the faces

of the lattice f. The interactions of the model are six-body

operators associated with the links l and the cubes c of the
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lattice. Link operators Al are the tensor product of Pauli-X

operators on the faces f which include link l in the boundary

of each face ∂f. Similarly, cube operators Bc associated with

cube c are the tensor products of Pauli-Z operators on the face

qubits that lie on the boundary of the respective cube ∂c. We

define the four-dimensional toric code Hamiltonian as

H4D toric ¼ −
X

l

Al −
X

c

Bc; ð58Þ

where the link and cube operators are given by

Al ¼
Y

∂f∋l

Xf; Bc ¼
Y

f∈∂c

Zf; ð59Þ

respectively. The logical operators of the model are supported

in two-dimensional planes which, in four dimensions, inter-

sect at a single point. Each qubit in the model supports four Al

operators, and four Bc operators, such that excitations of the

four-dimensional model are not pointlike particles, but instead

are linelike particles created by two-dimensional membrane-

shaped operators. These geometric features reproduce the

energetics of the two-dimensional Ising model that we

described earlier in this section. An environment must there-

fore overcome an OðLÞ energy barrier to decohere informa-

tion encoded in the ground space of the model. Dennis et al.

(2002) used these features of the model and followed a Peierls

argument to show that there is a finite temperature, below

which the model lies in an ordered phase.

As an aside, we remark that the argument of Dennis et al.

(2002) was constructed to show the discussed stable model

could be decoded using a local algorithm, i.e., an algorithm

that does not require the long-range propagation of classical

information. Typically when we consider active error correc-

tion, such as the decoder described in Appendix A, we

reasonably assume that the classical computation can propa-

gate messages at an infinite velocity when compared with the

frequency at which the underlying quantum hardware oper-

ates. We are therefore able to design effective decoding

algorithms that use syndrome information obtained instanta-

neously from the entire quantum error-correcting code.

Realistically, classical information is communicated at a finite

rate bounded by the speed of light. The study of thermally

stable quantum memories is therefore interesting from the

point of view of decoding algorithms, where benefits might be

gleaned from considering quantum error-correcting codes that

are analogous to thermally stable memories. The local

decoding scheme proposed by Dennis et al. has been studied

numerically by Pastawski, Clemente, and Cirac (2011). This

direction of study has been extended by Harrington (2004)

and Herold et al. (2014), where a local decoder for the two-

dimensional toric code is designed and numerically analyzed.

Results in this direction may have important applications from

the point of view of local thermally stable quantum memories

in low dimensions.

Finally, we remark on extensions to the study of high-

dimensional quantum systems. Consideration of Peierls argu-

ment suggests that a phase transition occurs at the temperature

where the Peierls contours percolate over the system with

high probability. The recent work of Hastings, Watson, and

Melko (2014) shows, using mean-field arguments and sup-

porting numerical evidence, that as dimensionality increases,

the critical temperature of the transition diverges from the

temperature at which Peierls contours percolate. This is well

understood in the classical case of the D-dimensional Ising

model (Lebowitz and Mazel, 1998). The study of high-

dimensional quantum memories generalizes known classical

results and offers new insights into the physics of phase

transitions and critical phenomena.

C. The dynamics of the four-dimensional toric code

Discovering ordered phases as discussed so far in the

section only provides a statement about the static equilibrium

state of a system. To interrogate the memory time of a

quantum memory, one must consider the dynamics of the

memory under some realistic evolution.

Alicki et al. (2010) rigorously proved that the memory time

of the four-dimensional toric code grows exponentially with

the size of the system when weakly coupled to a Markovian

heat bath. Their results rely on quantum dynamical semigroups

(Alicki and Lendi, 2007). The tools that were developed to

derive their results were built over a series of papers (Alicki and

Fannes, 2009; Alicki, Fannes, and Horodecki, 2009). We point

out that the results we summarize in this section are generalized

and simplified in Chesi et al. (2010) and Bombin et al. (2013),

where subsystem codes and high-dimensional color codes are,

respectively, considered.

The thermal evolution of a many-body quantum state is

very difficult to analyze. To simplify the problem, Alicki et al.

(2010) studied the evolution of an anticommuting pair of

observables ~X and ~Z that we specify shortly, which act on a

two-dimensional subspace of the Hilbert space of the physical

system. Specifically, they related the fidelity of the qubit acted

upon by the observables ~X and ~Z to their decay rates λ, which

is defined with respect to some Liouvillian L as is given in

Eq. (17). The decay rate of observable O is defined

λðOÞ ¼ −tr½ρβO†LðOÞ�; ð60Þ

for observables satisfying trðρβOÞ ¼ 0 and trðρβO†OÞ ¼ 1,

where ρβ is the Gibbs state of the system; see Eq. (17). The

interaction terms of the Liouvillian considered by Alicki et al.

(2010) are single-qubit Pauli operators.

The work of Alicki et al. then showed that the fidelity F of

an encoded state ρðtÞ decays over time like

F(ρðtÞ)≡ hψ jρðtÞjψi ≥ 1

2
ðe−λð ~XÞt þ e−λð ~ZÞtÞ; ð61Þ

with respect to the initial pure state ρð0Þ ¼ jψihψ j.
This discussion reduces the problem of finding the coher-

ence time of the four-dimensional toric code to finding an

upper bound for λð ~XÞ and λð ~ZÞ. In order to do so, we must first

describe the dressed logical operators ~X and ~Z for the four-

dimensional toric code. A dressed logical operator takes

the form

~X ¼ X̄CX; ~Z ¼ Z̄CZ; ð62Þ
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where X̄ and Z̄ are the two-dimensional logical operators of

the four-dimensional toric code. The operators CX and CZ,

rigorously defined by Alicki et al. (2010), Chesi et al. (2010),

and Bombin et al. (2013), effectively performed the role of

error correction, as discussed in Sec. II.C. Specifically,

operator CX first projects the encoded state onto an eigenstate

of the Bc operators, defined in Eq. (59), and subsequently

applies a low-weight Pauli correction operator that returns the

system to theþ1 eigenspace of the Bc operators. Similarly, CZ

projects the system onto an eigenstate of the Al operators, and

subsequently applies a low-weight correction operator that

returns the system onto the þ1 eigenspace of the Al operators.

The low-weight correction operators of the CX and CZ

operators are obtained efficiently from a configuration of

eigenvalues of Al or Bc operators using the clustering decoder

described in Appendix A.

Having defined the dressed observables of the four-

dimensional toric code, it remains only to upper bound the

decay rates λð ~XÞ and λð ~ZÞ to show that the fidelity of an

encoded qubit decays slowly if the system is large. Because of

the symmetry between ~X and ~Z, we restrict our attention to

only the ~X operator. An equivalent discussion holds for the ~Z

operator.

To bound λð ~XÞ, an extension of Peierls argument, discussed

in Sec. V.A, is employed. First it is shown that the equilibrium

state of the four-dimensional toric code at a suitably low

temperature is dominantly populated by configurations of

small loop excitations that are created by low-weight con-

figurations of errors. Such an equilibrium state can be

successfully corrected by the CX operator with arbitrarily

high probability. Indeed, it is easily checked using Peierls

argument that the probability of observing loop excitations

that are larger than a specified length that is a fraction of the

linear size of the system is exponentially suppressed (Dennis

et al., 2002).

Finally, to understand the dynamics of the equilibrium state

of the four-dimensional toric code one must consider the

action of the Liouvillian on the dressed observable. Once

again, an extension of Peierls argument is used to show that

the probability that local errors will introduce large looplike

excitations to the Gibbs state is exponentially suppressed in

the size of the system. It follows that the decay rate of both ~X

and ~Z operators are exponentially suppressed, thus providing

the desired result by application of the decay rates to

Eq. (61).

This argument demonstrates that the four-dimensional toric

code Hamiltonian given in Eq. (58) is self-correcting at a

sufficiently low temperature. Moreover, the four-dimensional

toric code satisfies the conditions required to demonstrate

perturbative stability at zero temperature by the proof given by

Bravyi, Hastings, and Michalakis (2010). It will be interesting

to show that the four-dimensional toric code, or indeed a

quantum system of any dimensionality, is self-correcting at

finite temperature, even in the presence of weak local

perturbations. Hastings (2011) proposed a definition for

topological order at finite temperature and showed that it is

satisfied by the four-dimensional toric code. One approach to

demonstrating that the self-correcting properties of a model

are preserved under local perturbations might be to determine

if the definition proposed by Hastings implies that a system is

perturbatively stable.

D. Thermally stable quantum computation

We conclude this section with a discussion on the more

general problem. What is the smallest dimensionality where

we obtain both thermal stability and the desirable feature of a

gate set that can be executed fault tolerantly to realize

universal quantum computation? This problem has been

approached by Bombin et al. (2013). They considered

D-dimensional generalizations of the color code models

(Bombin and Martin-Delagado, 2007a). These models are

of particular interest due to the extended set of gates they can

achieve on their ground states transversally.

A logical gate on the ground space of the code is executed

transversally when one can make a logical rotation on the code

space of a code by applying local rotations to its physical

degrees of freedom. This is a favorable approach to perform-

ing gates as local operations on individual degrees of freedom

do not propagate errors during their application. In general,

the available transversal gates of a given model are limited by

its microscopic details. Notably, the two-dimensional color

code (Bombin and Martin-Delagado, 2006) can perform the

Clifford gate set transversally. Together with the noisy

preparation of magic states (Bravyi and Kitaev, 2005), the

Clifford gate set achieves universal quantum computation. It

has also been discovered that a three-dimensional color code

can achieve fault-tolerant universal quantum computation

(Bombin and Martin-Delagado, 2007b). Transversally, this

three-dimensional model can achieve a π=8 gate, and a

controlled-not gate. Together with the ability to prepare and

measure the ground space in the logical X and the Z basis, this

model achieves universal quantum computation. Sadly, how-

ever, the three-dimensional color code does not support finite-

temperature stability, as shown by the no-go theorem due to

Yoshida (2011).

To achieve a universal gate set and have stable excitations

akin to those of the two-dimensional Ising model within the

color code family of models one needs D ¼ 6 (Bombin et al.,

2013). Together with preparation and measurement in both the

Pauli-X and Pauli-Z bases, the six-dimensional color code is

compatible with the transversal application of the π=8 gate,

and the controlled-not gate, which gives rise to universal fault-

tolerant quantum computation.

Six dimensions are by no means a tight lower bound on the

system dimensionality where both of these features coincide.

Instead, this result is to be understood as a first estimate on the

lowest spatial dimensionality that is to be improved upon. The

result is obtained for the restricted case of models of commut-

ing two-level physical systems. One may indeed be able to

reduce the discovered critical dimension by considering

many-body systems composed of higher-dimensional spins

or fermionic degrees of freedom (Bombin et al., 2013).

Moreover, this result is restricted to models that give rise to

fault-tolerant quantum computation by transversal gates. Indeed,

quantum coding theory has shown that universal transversal

operations are known to be incompatible with stabilizer error

correction (Eastin and Knill, 2009; Zeng, Cross, and Chuang,

2011; Anderson and Jochym-O’Connor, 2014). The reader may
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question this remark as to how the six-dimensional color

code achieves a universal set of operations given known

restrictions on universal transversal gate sets. Indeed, its trans-

versal gate set is not truly universal, but, as pointed out earlier,

its universal set of operations are completed by the ability

to prepare and measure in both the Pauli-Z and Pauli-X bases.

We finally remark that we may find stable low-dimensional

systems with universal fault-tolerant operations by considering

different types of fault-tolerant operations other than trans-

versal gates.

VI. INTERACTING ANYON MODELS

As discussed in Sec. II.E, the syndrome of two-dimensional

topological stabilizer codes can be interpreted in terms of

pointlike anyonic quasiparticles. This leads to some favorable

properties, such as the simple structure of the stabilizer space

and the intuitive means by which the syndrome may be

decoded. However, as explained in Sec. IV, it is precisely this

pointlike nature that prevents the realization of self-correcting

memories in two dimensions.

One path toward self-correction is to consider models with

all the advantages of two-dimensional topological codes, but

which are nevertheless able to realize self-correcting behavior.

Interacting anyon models have been proposed to this end. All

consider coupling a toric or planar code (Bravyi and Kitaev,

1998; Dennis et al., 2002), the toric code Hamiltonian defined

with open boundary conditions, to an external system, and

then using this to mediate interactions between the anyons.

These interactions change the energy landscape of the anyons

and can lead to models with diverging energy barriers. Here

we review the different types of anyonic interactions. We go

on to review proposals to generate them.

A. Forms of anyonic interaction

To understand interacting anyon models, it is useful to first

make a distinction between stabilizers and projective anyon

number operators. The toric code stabilizers, introduced in

Sec. II.D, are known as star and plaquette operators, denoted

as Av and Bp, respectively. Star and plaquette operators have

eigenvalues �1. A state where a vertex v or a plaquette p of

the toric code lattice holds an anyon lies in the −1 eigenspace

of its corresponding stabilizer. Vacuum states, where there is

no anyon on a given plaquette or vertex, lie within the þ1

eigenspace of all the stabilizers.

By convention the stabilizer space corresponds to the þ1

eigenspace of all stabilizers. We can use stabilizer operators to

define projectors onto the common −1 eigenspace of the code
and hence onto anyon states, such that

nv ¼ 1

2
ð1 − AvÞ; np ¼ 1

2
ð1 − BpÞ: ð63Þ

We call these projectors anyon number operators, as their

eigenvalues are the anyonic occupation of vertex v or

plaquette p.
For local Hamiltonians, the replacements Av → −nv and

Bp → −np define an equivalent Hamiltonian, up to a constant

shift in energy. However, interacting Hamiltonians that use nj
projectors lead to different physics. To illustrate this point, we

consider the example of two different Hamiltonians that

describe interactions between a single pair of vertices, which

we index 1 and 2. These Hamiltonians are

Hs ¼ −A1 − A2 −
1

2
A1A2;

Hn ¼ −A1 − A2 þ n1n2:
ð64Þ

The first two terms ensure that the ground state is that of

anyonic vacuum. The remaining term is an interaction.

The A1 and A2 terms contribute an energy penalty of 1 for

each anyon present in both cases. The A1A2=2 term contrib-

utes an energy penalty of 1 when there is a single anyon, but

nothing when there are two. The n1n2 term contributes

nothing for a single anyon, but an energy penalty of 1 for

a pair of anyons.

The different behaviors of Hs and Hn lead to different

interpretations about what form the interactions take. For Hn

the n1n2 contributes only when multiple anyons are present.

We therefore call it an anyon-anyon interaction. The A1A2=2
term of HamiltonianHs contributes only when there is both an

anyon on one vertex and vacuum on the other, so we call it an

anyon-vacuum interaction. In what follows we consider both

of these interaction types extended over the entire lattice.

B. Interacting anyon Hamiltonians

The first proposals for interacting anyon models considered

anyon-anyon interactions of the form

HAA ¼ ΔHtoric þ V
X

k

X

k0≠k

nknk0Uðrkk0Þ; ð65Þ

with Htoric defined in Eq. (15), values Δ and V are arbitrary

coupling constants, indices k denote all stabilizers, both

vertices and plaquettes, and rkk0 is the Euclidean distance

between k and k0. The first term here is the standard stabilizer

Hamiltonian and the second is the anyon-anyon interaction.

1. Logarithmic potential

Hamma, Castelnovo, and Chamon (2009) proposed the

following attractive potential:

Uðrkk0Þ ¼ ln rkk0 : ð66Þ

Note that this diverges with distance, leading to a diverging

energy barrier ofOðlnLÞ. This potential has a confining effect
for temperatures of T < V=2. In this regime, all anyons

present in the code will typically be within an Oð1Þ distance
of each other. A logical error is caused when a single anyon

breaks free and winds around the torus. This corresponds to a

random walk in an Oðln rkk0Þ potential formed by the other

anyons, from which the typical coherence time τ ¼ OðLVβÞ
can be found. This diverges polynomially with L and has an

exponent that increases as temperature decreases.

For higher temperatures the model continues to have a

diverging coherence time. This is due to a different mecha-

nism, described in more detail later. The scaling in this case is

τ ¼ OðL2Þ (Wootton, 2013). Note that, although this remains

polynomial, the exponent no longer depends on temperature.
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This analysis applies only to the toric code. For the planar

code (Bravyi and Kitaev, 1998; Dennis et al., 2002) a single

anyon can be created at a boundary. Since this has no other

anyons to confine it, it does not experience a τ ¼ OðLVβÞ
coherence time for any temperature. Instead the coherence

time scales as τ ¼ OðL2Þ for all temperatures.

An interaction of this form can be mediated by coupling the

anyons to a two-dimensional lattice of hopping bosons. Only

local couplings are needed to produce the interaction (66).

However, the coupling strength must diverge with system

size to realize the potential. This violates a requirement

for a self-correcting memory, that of bounded interactions.

Nevertheless, note that these diverging couplings are not

directly responsible for the increasing lifetime, since the

physical energy scales remain finite. Moreover, the model

needs to be fine-tuned. Small perturbations in the hopping

couplings of the bosons can cause the long-range interactions

to become short range and thus stop the effectiveness of the

model.

2. Power-law potential

In Chesi, Röthlisberger, and Loss (2010) the interactions

have the following repulsive potential:

Uðrkk0Þ ¼ r−α
kk0 ; α ≥ 0: ð67Þ

At first glance this would appear to be ineffective. The

potential does not diverge with distance and in fact it decays

in general such that the energy barrier for the creation and

separation of a pair is finite. Furthermore, the potential is

repulsive, making anyons less likely to annihilate once created

than in the noninteracting case. Nevertheless, when the

interactions are sufficiently long range α < 2 they have a

strong beneficial effect.

The simplest case to consider is that of α ¼ 0, where the

potential does not decay over distance but remains constant.

The energy of the system does not depend on the positions of

anyons in this case, only their number N. Every anyon repels

every other one with an energy V. The energy above the

ground state is then

εN ¼ NΔþ V

2
NðN − 1Þ: ð68Þ

Note that this grows quadratically with N, rather than simply

linearly as in the noninteracting case. A similar superlinear

scaling of energy with anyon number occurs for other α < 2 as

well as the logarithmic potential.

By using simple arguments, it is possible to find a lower

bound on the coherence time for the α ¼ 0 case. Since we can

realistically expect only a finite energy density, i.e., states with

εN ¼ OðL2Þ, the system is limited to states with N ¼ OðLÞ
anyons at most. This corresponds to an infinitely sparse anyon

configuration, with a distance of Oð
ffiffiffiffi
L

p
Þ between each pair of

anyons created by the thermal noise. The time required to

cause a logical error is then no less than that required for

random walks over this length scale, and so τ ¼ OðLÞ.
Using a more careful treatment it can be shown that the

number of anyons is suppressed further than the argument

implies. This leads to a longer coherence time which, for

general α < 2, scales like τ ¼ OðL2−αÞ. This is a polynomial

scaling that is quadratic in the best case. This effect is also

responsible for the τ ¼ OðL2Þ scaling of coherence time for

the logarithmic potential we met earlier.

The power-law potential can be mediated by interaction

with cavity modes. This is a nonlocal interaction, but is

nevertheless reasonable up to a cutoff system size. The self-

correcting behavior is therefore not truly scalable, as we

require. However, it may still be possible to achieve system

sizes that are useful in practice.

C. Anyon-vacuum interactions

Recently interacting anyon model proposals have focused

on engineering couplings between anyons and the vacuum

rather than interactions between anyons. It is found that this

approach allows significantly more powerful self-correction.

The first studies of such models are found in Pedrocchi, Chesi,

and Loss (2011) and Hutter et al. (2012).

These proposals consider Hamiltonians of the form

HAV ¼ ΔHtoric − V
X

k

X

k0≠k

SkSk0r
−α
kk0 : ð69Þ

Here Sk are the stabilizer operators, either Av or Bp depending

on whether each k is a vertex or a plaquette. The only

difference between this Hamiltonian and that of the power-law

potential is the substitution of anyon number projectors nk
with stabilizer operators Sk.
To compare HAV with that for the anyon-anyon case HAA,

we can rewrite it in terms of anyon number operators. This

yields

HAV ¼ μðLÞ
X

k

nk − 4V
X

k

X

k0≠k

nknk0r
−α
kk0 þ const: ð70Þ

The first term here is the effective anyon gap, the energy that

an anyon must overcome in order to be created

μkðLÞ ¼ Δþ 4

X

k0
ð1 − δk;k0Þr−αkk0 : ð71Þ

The large energy penalty for creation is due to the anyons

being repelled by the majority of plaquettes and vertices,

which are in the vacuum state. The second term in

Hamiltonian (70) is an attractive and nondivergent anyon-

anyon attraction.

The effects of thermal errors are suppressed first by the

anyon gap, which significantly slows the creation of anyons.

Once anyons have been created, errors are further suppressed

by the attractive potential that favors reannihilation. Let us

focus on the effects of the anyon gap.

To suffer a logical error, an error must first occur on a single

qubit. This will create at least n anyons, where n ¼ 1 for the

planar code, for the case where a qubit is created on the

boundary, and n ¼ 2 for the toric code. These n anyons will

feel a repulsion from all the OðL2Þ plaquettes and vertices

on which there is vacuum. This results in the energy gap
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μðLÞ ¼ OðL2−αÞ for each anyon when α < 2. The typical time

before the first error occurs is then eβnμðLÞ.
It is this time scale that dominates the lifetime of the code.

Other factors must be taken into account to fully deduce the

lifetime: the number of qubits on which it is possible for an

error to occur; the probability that a pair, once created, will

cause a logical error; and the time required for an anyon to

diffuse across the code. However, these will contribute factors

that are polynomial in L at most. They are insignificant in

comparison to the exponential time scale to overcome the

anyon gap. As such, we can simply say that τ ¼ eβnμðLÞ ¼
eβOðL2−αÞ. Note that the higher n for the toric code will result in

asymptotically longer lifetimes than the planar code, assuming

all else is equal.

The main difference between proposals with this interaction

is the physical system used to mediate it and the value of α that

is achieved. Pedrocchi, Chesi, and Loss (2011) and Hutter

et al. (2012) achieved the optimal case of α ¼ 0 by coupling to

cavity modes. However, as noted, this prevents the model

from achieving the scalability that we require. A Hamiltonian

simulation of this case was considered by Becker et al. (2013).

Pedrocchi et al. (2013) mediated the interaction by coupling

to a three-dimensional lattice of hopping bosons, as shown in

Fig. 12. The resulting interacting model corresponds to that of

α ¼ 1. This gives rise to an energy barrier of μðLÞ ¼ OðLÞ
and coherence time τ ¼ eβOðLÞ. This model uses only local,

bounded strength and constant weight interactions and yet is

able to preserve the quantum information for an exponentially

long time.

A related model was also proposed by Hutter et al. (2014).

Here the role of the bosons is played by magnons in a three-

dimensional ferromagnet. The code is simply coupled to the

spins of the ferromagnet, avoiding the need for unbounded

operators. Perturbative gadgets (Bravyi et al., 2008; Bravyi,

DiVincenzo, and Loss, 2011) are used in order to realize the

entire Hamiltonian using only local two-body interactions on

a three-dimensional system of spin-half particles.

The effective interacting anyon model in the case of the

ferromagnet is the same as for the three-dimensional boson

lattice. However, it is expected to be valid only in the regime

for which the coupling of the code to a thermal bath is much

weaker than the coupling to the ferromagnet. The Monte Carlo

simulation of thermal noise described in Sec. III.E therefore

cannot be used. This approximates the true dynamics by

allowing the thermal bath to instantaneously transfer large

energies to the system and so is unable to capture the subtle

effects arising from the full time evolution of the system-bath

interaction. It is in these effects that we expect to observe

self-correcting behavior. Since a study of this time evolution

seems intractable, the full extent of the self-correcting

behavior in this model is not known. This model can also

be adapted to protect topological systems composed of

superconducting qubits for which errors correspond to infi-

nitely weak coupling to an infinite-temperature bath (Kapit,

Chalker, and Simon, 2014).

D. Open questions in interacting anyon models

As discussed, interacting anyon models are capable of

impressive memory times which grow polynomially or even

exponentially with system size. However, due to the diffi-

culties in solving the proposed interacting models, further

study is required to better understand potential challenges we

may need to overcome to realize effective long-range inter-

actions. In this section we outline some of the important

directions of study that we must follow to understand the

feasibility of realizing a self-correcting quantum memory by

means of interacting anyons.

One such direction concerns the effects of local perturba-

tions on interacting anyon models. The nonlocal terms of an

interacting anyon Hamiltonian can cause local pertubations to

affect the system nonlocally. Any perturbation that gaps the

bosons, for example, will cause the anyonic interactions to

become short range. This will induce a finite cutoff length

scale, beyond which the lifetime no longer increases with

system size. This was discussed for the ferromagnet based

model in Hutter et al. (2014) and elaborated upon for the

bosonic model in Landon-Cardinal et al. (2015).

Such problems with perturbations are not unique to

proposals for quantum memories. The same is true for the

ferromagnetic systems currently used as classical memories.

Perturbations in these systems limit the magnetic susceptibil-

ity, inducing an equivalent finite cutoff. However, this has not

constrained the development of classical computation. It is

therefore important to determine how large the cutoff will be

for quantum memories when realistic perturbations are con-

sidered. Whether or not it is large enough to allow for large-

scale quantum computation is a crucial test of these proposals

and remains an open area of study. Additionally, possible

avenues toward the discovery of interacting anyon models that

are stable against perturbations have also been discussed

(Landon-Cardinal et al., 2015). Concrete examples, however,

remain to be found.

Another caveat of the interacting anyon proposals concerns

the thermal bath used for their analysis. In all of the cases

discussed in this review, it was assumed that the thermal bath

will act locally on the anyonic system. However, it may be that

thermalization will occur in a more complex manner, with the

mediating system allowing thermal errors to become long

FIG. 12. Schematic of the planar code coupled to a bosonic

bath. Anyon-vacuum interactions in an L × L code can be

induced by embedding them in a Λ3 lattice of hopping bosons

for Λ > L. The stabilizers of the code locally couple to the

bosonic lattice. The interactions are mediated by the low-energy

collective excitations of the bosons.
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range. Analysis of the self-correcting properties with realistic

thermalization dynamics therefore remains an open area

of study.

E. Finite-temperature topological order

It is important to determine if a system can maintain

topological order at nonzero temperature. We might expect

such a system to be stable against local perturbations which is

a property that we require of a self-correcting quantum

memory. For many systems, topological order vanishes at

nonzero temperature (Nussinov and Ortiz, 2008, 2009a,

2009b; Chesi et al., 2010). Indeed, it was shown by

Hastings that local commuting Hamiltonians in two dimen-

sions are incompatible with a condition for topological order

at finite temperature (Hastings, 2011). Some models, however,

demonstrate a finite-temperature phase transition between a

phase with topological order and a disordered phase.

The relationship between topological order and self-

correction is not well understood in the general case

(Yoshida, 2011). So far, we have considered only specific

models to learn the correspondence between topological order

and self-correction; see, for instance, Mazáč and Hamma

(2012) where topological entanglement entropy and the

coherence times of the toric code are studied on lattices of

varying dimensionality. For the cases studied there is a strong

coincidence between these two features. The interacting

anyon models are also shown in Wootton (2013) to provide

an interesting perspective on this problem which we discuss in

this section.

The signature of topological correlations in systems such as

the toric code are loop correlations. For finite-temperature

systems these can be found using the topological entropy

(Hamma, Ionicioiu, and Zanardi, 2005a; Kitaev and Preskill,

2006; Levin and Wen, 2006), topological mutual information

(Iblisdir et al., 2009), or anyonic topological entropy

(Wootton, 2013). In all cases one must consider a region of

the system whose size is on the order of the system size which

can be arbitrarily large. If topological correlations are detected

for large regions, the state is said to be topologically ordered.

For power-law anyon-anyon interactions, any finite-

temperature thermal state contains a diverging number of

anyons (Chesi, Röthlisberger, and Loss, 2010). These anyons

will also be deconfined due to the repulsive nature of the

interactions. Such a diverging number of delocalized anyons

ensures that topological order according to the above defi-

nition is not present for any finite temperature. However, the

interactions are still known to support self-correction with a

polynomial lifetime. This fact, along with the Oð1Þ energy

barrier, makes these models an interesting exception to widely

held opinions about what is required for self-correction.

For the case of the logarithmic anyon-anyon interaction, it

is found that the topological order persists up to a finite

temperature of Tc ¼ V=2. It therefore corresponds exactly to

the confined anyon phase for which the lifetime is

τ ¼ OðLVβÞ. Beyond this temperature the topological order

is no longer present, although the system is still self-correcting

with a lifetime of τ ¼ OðL2Þ. The phase transition does not

have the effect of destroying the self-correction, as we might

expect, but it does alter the scaling of the lifetime.

To regain some semblance of our intuition that topological

order is required at finite temperature for self-correction, we

can redefine what we mean by topological order. Instead of

simply considering whether topological correlations can be

detected for regions of an arbitrarily large size, we can

determine the exact range of these correlations. This means

considering regions of different sizes, calculating how the

topological correlations decay as the size is increased, and

then determining a correlation length to quantify this. This

correlation length is denoted λ.

Even when a system is not topologically ordered, it is

possible for topological correlations to be present on an

Oð1Þ length scale. The case of λ ¼ Oð1Þ therefore corre-

sponds to topologically trivial states. Standard topological

order requires that the correlations do not decay at all, even up

to the linear system size L. This corresponds to a super-

extensive λ > OðLÞ. In between these extremes there exists

the possibility for the range λ to increase with system size, but

just not as quickly as is required for standard topological

order. We refer to such states as weakly topologically ordered.

Studying the interacting anyon models from this perspec-

tive, it has been shown that all models at all temperatures are

in either a standard or weakly topologically ordered phase

(Wootton, 2013). All transitions between these two types of

topological order correspond to a change in the way that the

lifetime scales with system size. All known self-correcting

memories correspond to phases that are either topologically

ordered or weakly topologically ordered. As such, some

relationship between finite-temperature topological order

and self-correction does persist. However, it would be

interesting to determine whether counter examples exist even

for the case of this weaker relationship.

VII. COMMUTING THREE-DIMENSIONAL MODELS

With limitations challenging the construction of finite-

temperature quantum memories with commuting two-

dimensional Hamiltonians, it is exciting to consider

three-dimensional models. Indeed, as discussed in Sec. IV

there are still no-go results toward the feasibility of a finite-

temperature quantum memory in three dimensions. However,

these results are not as restrictive as their two-dimensional

counterparts. Recently proposed models have shown positive

progress, which, together with supporting numerical data offer

promise for the discovery of good quantum memories at finite

temperature. In this section we provide an overview of the

positive results found in three-dimensional models. We first

review the concept of partial self-correction: a new paradigm

for macroscopic coherence time scaling that has emerged from

the study of three-dimensional models. In Sec. VII.B we study

the cubic code model, a quantum system demonstrating partial

self-correction. In Secs. VII.C and VII.D we review other

three-dimensional proposals that break translational invari-

ance to achieve phenomena potentially important for self-

correction in quantum systems.

A. Partial self-correction

A new phenomenon to develop from the study of three-

dimensional systems is that known as partial self-correction.
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Partially self-correcting models are notable for polynomial

coherence-time scaling with system size up to some cutoff size

that depends on temperature. Moreover, they exhibit super-

exponential inverse-temperature scaling. These features of

known partially self-correcting models are attributed to its

energy barrier, which grows logarithmically with the size of an

error incident to a memory.

Partially self-correcting models were discovered independ-

ently by both Haah (2011) and Castelnovo and Chamon

(2012) following remarkably different methods. Haah (2011)

exhaustively searched over all translationally invariant stabi-

lizer models on a cubic lattice with one or two qubits on each

vertex of the lattice to find models that satisfy the “no-strings”

condition, as defined rigorously by Haah (2011). Broadly

speaking, the no-strings condition is a property of the

excitation structure of a commuting Pauli-Hamiltonian,

whereby a cluster of nontrivial excitations cannot be trans-

ported across a lattice over an arbitrary distance without

introducing new excitations to the lattice. Models that satisfy

the no-strings condition are thus expected to provide good

protection against thermal interactions due to the large energy

cost that is required to introduce logical errors to the lattice via

local operations. Indeed, it was later proved that models

satisfying the no-strings condition must have an energy barrier

that scales at least logarithmically with the size of the system

(Bravyi and Haah, 2011b). Independent of the work of

Haah, Castelnovo and Chamon (2012) looked to find a

quantum generalization of known low-dimensional classical

models with nontrivial energy barriers between ground states

which are well known in the context of glassy systems

(Newman and Moore, 1999; Garrahan and Newman, 2000).

The derived generalization is described locally in three

dimensions. Similar models are studied in further generality

by Kim (2012).

We now give a heuristic analysis explaining partial self-

correction where we assume Arrhenius’s law, Eq. (29). Known

partial self-correcting memories are characterized by an

energy barrier that grows logarithmically with the size of

an error ξ. The energy ε that is required for an error to increase

in size to occupy a volume of lattice of diameter ξmust thus be

at least

ε ∼ κΔ log ξ; ð72Þ

where κ is a positive constant and Δ is the gap of the model.

Given the typical finite-temperature noise analysis we

described in Sec. III, we assume that errors are created with

an average separation that scales with β like Λ ∼ eβΔ=D, where

D is the dimensionality of the system. Given then that we

require ξ ∼ Λ for the memory to decohere, we arrive at the

typical excitation energy of the model as a function of β.

Namely, we obtain ε ∼ κΔ2β=D at the point of decoherence.

Applying this to Arrhenius’s law, Eq. (29), we obtain

τ ∼ eκΔ
2β2=D: ð73Þ

We can follow a similar analysis to study small system sizes

such that L≲ Λ. In this case a diffusing error must attain

energy ε ∼ κΔ logL. Once again, applying this expression to

Arrhenius’s law it follows that partially self-correcting quan-

tum memories have a coherence time that grows polynomially

in system size

τ ∼ LκΔβ; ð74Þ

whose exponent is linear in β. This scaling is effective up to

some cutoff Lopt ∼ Λ. We thus obtain a cutoff Lopt ∼ ecβ that

grows exponentially in β for positive constant c (Bravyi and

Haah, 2013).

An interesting feature of the known partially self-correcting

models is that they do not have a constant ground-state

degeneracy, which is outside the assumptions of the no-go

theorem of Yoshida (2011). As an aside, it is interesting to

consider that the known partially self-correcting models are

not purely topological models. While the ground space of

these systems is topologically ordered in the sense that the

degenerate ground states of the model cannot be locally

distinguished, their ground-state degeneracy still depends

on the microscopic physics of the model. A similar model

whose ground-state degeneracy depends on microscopic

details (Bravyi, Leemhuis, and Terhal, 2011) is introduced

by Chamon (2005). We remark, however, that unlike the cubic

code, the model due to Chamon has a constant energy barrier

and is well understood not to give rise to self-correcting

properties (Chamon, 2005; Castelnovo and Chamon, 2012;

Nussinov, Ortiz, and Cobanera, 2012; Temme, 2014). We

finally remark that the study of exotic partially self-correcting

systems has led to new classifications of systems under the

context of fractal topological quantum field theories (Yoshida,

2013; Haah, 2014).

In the following section we review and reproduce previ-

ously obtained numerics of the rigorously studied cubic

code model. We remark that the fragile glassy model intro-

duced by Castelnovo and Chamon (2012) is expected to

behave in a phenomenologically equivalent way to the cubic

code model.

B. The cubic code

The cubic code model (Haah, 2011) is defined on a three-

dimensional lattice of L × L × L vertices, where two qubits lie

on each vertex of the lattice. Associated with each of the unit

cubes of the lattice, indexed j, we have two stabilizers SXj and

SZj shown in red (left) and blue (right) in Fig. 13, respectively.

We then write the Hamiltonian

Hcubic ¼ −
1

2

X

j

ðSXj þ SZj Þ: ð75Þ

We take constant interaction strength 1=2 such that excitations

have unit energy cost. The model has a nontrivial ground-state

degeneracy that varies with L. The ground-state degeneracy is

studied in detail by Haah (2013) using the language of

commuting free modules. For simplicity, we consider only

lattices of size L < 200 that do not have factors 2, 15, or 63.

All of these system sizes have a fourfold ground-state

degeneracy (Bravyi and Haah, 2011a). We do not discuss

the complex fractal structure of the logical operators of the
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model here, but we refer the interested reader to Haah (2013).

We point out, however, that for lattices of odd L, we find two

logical operators by taking X̄1 ¼
Q

k∈LXk, Z̄1 ¼
Q

k∈LZk,

X̄2 ¼
Q

k∈RXk, and Z̄2 ¼
Q

k∈RZk, whereL andR denote the

subset of all the left and right qubits of each vertex,

respectively. It is easily checked that these operators satisfy

a suitable algebra for the logical qubits of the model. These of

course are not the minimum-weight logical operators (Bravyi

and Terhal, 2009). However, we find these logical operators

particularly convenient for numerical simulations.

1. Excitations of the cubic code

The excitations of the cubic code have a more complicated

structure to those of the two-dimensional models considered

in earlier sections. Indeed, the model was designed such that

its excitations are created by operators that satisfy the no-

strings rule (Haah, 2011) and instead have a fractal-like

structure. In Fig. 13 we can observe a symmetry over the

SXj and SZj stabilizers, such that both Pauli-X and Pauli-Z–type

errors act with equal effect on the SZj and SXj stabilizers of the

model. Analysis of only Pauli-X–type errors therefore serves

for a sufficient study of the excitations of the cubic code.

Pauli operators acting on single qubits of the lattice in the

ground state create four localized excitations to the dual lattice

of the model, shown in Figs. 14(a) and 14(b). We mark the

stabilizers violated by the error by shaded (yellow) points

on the vertices of the dual lattice, where vertices of the dual

lattice correspond to fundamental cubes of the primal lattice.

Similar to the excitations of the stringlike models we already

discussed, these particles are delocalized. Also, the excitations

are their own antiparticles, which are transported by applying

additional error operators that annihilate excitations and create

additional excitations at other locations on the lattice. In this

way, it is possible to delocalize these excitations over arbitrary

distances. We show an error configuration in Fig. 14(c) where

four fundamental excitations have delocalized over two lattice

spacings.

An important distinction between the excitations of the

cubic code model and excitations in two-dimensional models

is that the delocalization of these particles cannot be achieved

using stringlike operators. Instead, if we want to delocalize the

excitations of the cubic code model over arbitrary distances,

we have to use transport operators that have a fractal-like

support. As a finite-temperature noise model will only apply

transport operators to the lattice via local single-qubit oper-

ations, such operators are only achieved by temporarily

increasing the energy of the error configuration, which

reduces the propagation of excitations. In Fig. 14(d), we

show an intermediate error configuration necessary to delo-

calize excitations over two lattice sites.

The error configuration creates six excitations, which

increases the energy of the system. Models where excitations

are not propagated by stringlike operators satisfy the no-

strings rule. This is an important concept for partial self-

correction. An extensive program of analytical study from

Bravyi and Haah (2011b) has proved that models satisfying

the no-strings rule necessarily have at least a logarithmic

energy barrier. Further work in this program of research

numerically showed that the cubic code model behaves as a

partially self-correcting memory with a logarithmic energy

barrier (Bravyi and Haah, 2013). Beyond the study of self-

correcting memories, the cubic code is also noteworthy from

the point of view of localization. Kim and Haah (2016)

showed that the glassy nature of the cubic code localizes the

excitations of the model. This is particularly interesting since

localization is typically attributed to disorder (Anderson,

1958). Localization in the cubic code however is achieved

with a frustration-free Hamiltonian with uniform interactions.

In the remainder of this section we numerically simulate the

cubic code at finite temperature to demonstrate its partial self-

correcting behavior.

2. Numerical simulations

In this section we simulate the cubic code coupled to

a finite-temperature environment using the numerical

Monte Carlo methods described in Sec. III.E. We reproduce

FIG. 13. The stabilizers of the cubic code. The model is defined

on a cubic lattice with two qubits on each vertex. Stabilizers

denoted SXj and SZj are shown on the left and right, respectively.

FIG. 14. The excitations of the cubic code. The lattice support-

ing the cubic code is shown in black where two qubits lie on the

vertices of the lattice. The dual lattice that supports excitations is

shown in gray. (a), (b) The excitations generated by an XI error
and an IX error acting on a single two-qubit vertex, respectively.

Both errors generate four pointlike excitations, marked by shaded

(yellow) points on the vertices of the dual lattice. (c) The error

configuration that creates four excitations delocalized over two

lattice spacings. (d) An example of a high-energy intermediate

error configuration that must be achieved to delocalize four

excitations over a long distance as in (c).
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the phenomenological behavior demonstrated by Bravyi and

Haah (2013). We remark that the results we present differ from

those given by Bravyi and Haah (2013) due to the choice of

rate equation used in the simulation. Where we use the rate

equation discussed in Sec. III.A, Bravyi and Haah use the

rate equation of Bortz, Kalos, and Lebowitz (1975). Both rate

equations satisfy the detailed balance given in Eq. (19) and

ultimately will reproduce the same physics up to some

variation in the obtained constant factors.

We simulate Hamiltonian (75) under rate equation (18). To

obtain coherence times, we periodically attempt to decode the

state of the evolving lattice using a variant of the clustering

decoder described in Appendix A. The first time at which the

decoder fails gives the coherence time of the sample. We find

the coherence time by averaging over N samples. Errors are

determined by taking the standard deviation of the samples,

divided by
ffiffiffiffi
N

p
.

Identifying coherence times for the cubic code using

numerical simulations is particularly challenging due to the

glassy nature of the model (Chamon, 2005; Castelnovo and

Chamon, 2012). Specifically, as the system evolves toward

the equilibrium state, the simulation frequently finds states

that are local minima of the considered Hamiltonian. At the

computational level we must simulate many events to escape

these metastable configurations, which we find to be numeri-

cally intensive. To overcome this, for the small system sizes

we study, we find that decoding with very high frequency

reduces the number of error events that we must simulate as

the state decoheres. We attempt to decode the system at time

intervals ∼10−10e4β. The time units e4β are natural as this is

the frequency at which four excitations are created from the

vacuum which then mutually annihilate themselves shortly

afterward with high probability. This behavior is typical in the

small system size and low-temperature regime.

To identify partial self-correction in the cubic code we plot

the coherence times as a function of L in Fig. 15. Here we

consider many different temperatures to identify polynomial

coherence time scaling with system size whose exponent

depends on β. We plot the gradients of the linear fittings,

shown in the inset of Fig. 15. The gradients we obtain show

good agreement with polynomial coherence time scaling

whose exponent grows linearly with β, as we expect for

partial self-correction, derived in Eq. (74). We also plot the

optimal coherence time as a function of system size for a

given β, as shown in Fig. 16. We identify superexponential

inverse-temperature scaling, as we expect for a partially self-

correcting model due to Eq. (73).

We use the fittings we obtain from the presented numerical

data to obtain Δ and κ of Eqs. (73) and (74) for the cubic code

model

ΔCC ¼ 2.0; κCC ¼ 0.79; ð76Þ

thus identifying the partial self-correcting behavior described

in the previous section. It is interesting that diverging

coherence times at low temperatures are achieved here via

a glassy mechanism (Castelnovo and Chamon, 2012), and not

with some ordered phase of matter such as those we

considered in Secs. III.D and V. The glassy nature of the

model may introduce new difficulties in encoding information

to the cubic code since cooling the system to its ground space

will be very slow (Chamon, 2005). Instead, we might consider

some manual method of state preparation by measurement or

otherwise. Work in this direction has been conducted by

Lodyga et al. (2015).

Haah (2013) showed that by imposing translational invari-

ance on three-dimensional commuting Pauli-Hamiltonians we

cannot expect to find a system where the energy barrier scales

better than logarithmically with system size. In the remainder

of this section we consider commuting Pauli-Hamiltonian

models that surpass the result of Haah (2013) by breaking

translational invariance. The models of interest are the

welded three-dimensional toric code (Michnicki, 2014) and

embeddable-fractal product codes (Brell, 2016).

C. The welded toric code

The welded toric code, due to Michnicki (2012, 2014), is

the first explicit example of a three-dimensional commuting

Pauli-Hamiltonian with a power-law energy barrier.

Remarkably, the model surpasses the no-go result of Haah

(2013) by breaking the translational invariance assumption

that is required to complete the theorem.

The model is found using an idea called welding, described

by Michnicki (2012). Welding gives a procedure to combine

stabilizer codes. The advantage of welding codes is that

logical operators are also combined nontrivially over a weld.

We follow the exposition of Michnicki showing how he

arrived at the welded toric code.

The welded toric code is achieved by welding a macro-

scopic number of copies of the three-dimensional toric code

(Hamma, Zanardi, and Wen, 2005). The three-dimensional

toric code is defined on a cubic lattice with qubits on the

lattice edges. The model has two types of stabilizers, vertex

operators, and face operators, as shown in Fig. 17(a). Vertex

operators are six-body operators of Pauli-X operators sup-

ported on the edges incident to a vertex. Face operators are
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FIG. 15. Numerically evaluated coherence times τ for the cubic

code shown as a function of system size L. We show separate

lines for β ¼ 9.2; 9.4;…; 10.8, where β ¼ 9.2 is shown by the

lower dark blue line and β ¼ 10.8 is shown by the light blue line

at the top. The inset shows the gradients of each of the lines in

the main figure which, in this temperature regime, grow like

τ ∼ L1.58β−11.38.
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four-body Pauli-Z operators supported on edges that bound

faces of the cubic lattice.

With a suitable choice of boundary conditions the three-

dimensional toric code will support one logical qubit. The

model has two types of boundaries, rough boundaries and

smooth boundaries. We show a macroscopic picture of the

code in Fig. 17(b), where we have rough boundaries on the top

and bottom faces of the lattice. Later, we will refer to one copy

of the three-dimensional toric code that encodes a single

logical qubit as a block.

There are two types of logical operators, membrane logical

operators and string logical operators, shown in red and blue,

respectively, in Fig. 17(b). The membrane logical operators

have dynamics akin to those of the two-dimensional Ising

model and as such are stable below a critical temperature

(Castelnovo and Chamon, 2007; Alicki et al., 2010).

However, stringlike logical errors introduce pointlike excita-

tions whose creation and transport need only overcome a

constant energy barrier. It is for this reason that a thermal noise

model is able to introduce stringlike logical errors in constant

time. The three-dimensional toric code therefore does not

behave as a self-correcting quantum memory.

Michnicki surpasses the problem of stringlike logical

operators using welding. He shows that it is possible to weld

blocks of three-dimensional toric code along rough faces to

generate a large energy barrier. We show an example of a weld

in Fig. 17(c), where four copies of the three-dimensional toric

code are welded along a common rough boundary. The

diagram shows that the stringlike logical operator divides at

the weld. A single pointlike excitation therefore cannot pass

through a weld from one code block to another, but must

instead split into v − 1 excitations where v is the valency of

the weld, i.e., the number of code blocks that meet at

the weld. Since these excitations must overcome an energy

barrier to propagate across the weld, the diffusion of errors is

suppressed.

Michnicki combines many three-dimensional toric code

blocks in a latticelike structure with dimensions greater than 1

to generate a macroscopic energy barrier over the stringlike

logical operators of the model. We show such a lattice of two

dimensions in Fig. 17(d). Now, the stringlike logical operators

of the composite parts of the code are combined into a coarse

lattice whose vertices are welded faces and whose edges are

code blocks. Interestingly, the model has interactions resem-

bling high-dimensional Ising-like interactions across the

welded boundaries, separated by three-dimensional blocks

of toric code lattice. With this lattice configuration, thermal

fluctuations must overcome a polynomial energy barrier in the

number of welds of the macroscopic welded lattice to

introduce a logical error to the model.
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FIG. 16. Coherence-time data τ for the cubic code plotted as a

function of inverse temperature β. The plotted data are found

using system size L ¼ Lopt for each value of β. We also show

Lopt as a function of β in the inset. We fit the data shown in the

main figure to the function τ ∼ e1.05β
2−13.7βþ58.5. We compare

this fitting to a fitting based on Arhenius’s law where we find

τ ∼ e5.6β−30.3, also shown in the figure. The inset shows

Lopt ∼ e0.54β−2.2.

FIG. 17. The welded toric code. (a) The stabilizers of the three-

dimensional toric code where qubits lie on the edges of the lattice.

A vertex operator is shown in red in the top-left corner of the

figure. Three examples of face operators are also shown on the

lattice, each with a different orientation relative to the cubic

lattice. Vertex operators are the tensor product of Pauli-X
operators supported on all the edges adjacent to a vertex. Face

operators are the tensor product of Pauli-Z operators supported

on the edges that bound a face of the lattice. (b) The three-

dimensional toric code with two disjoint rough faces. The model

supports one encoded qubit described by a membrane logical

operator, shown as a red horizontal plane, and a stringlike

operator, shown by a vertical blue line that runs between the

two disjoint rough edges. (c) A single weld between the rough

faces of four blocks of three-dimensional toric code. We outline

one block in red and one block in green where the blocks are

overlapping. The stringlike logical operators of the original

code blocks must now overcome the high-energy barrier at the

interface between thewelds. (d)Manyblocks of three-dimensional

toric code are welded into a lattice. In this welded configuration,

the stringlike logical operators combine to give a two-dimensional

logical operator that spans the lattice.
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The membrane logical operator of a code block is not

extensive with the number of welded interfaces of the lattice.

In fact, the membrane logical operator can be supported on a

single block of the code. To scale the power-law energy barrier

correctly, the volume of the blocks must grow with the size of

the welded lattice. Michnicki (2014) suggested scaling the

volume of the block size polynomially with the number of

welds in the lattice. It is with this point that we see the model

breaks translational invariance; we can vary the size of the

model over two different length scales, the block size, and the

volume of the lattice of welds.

1. Excitations of the welded toric code

The welded toric code model shares many similarities to the

Ising model, with the code blocks in the former serving a

similar function as the nearest-neighbor ferromagnetic cou-

plings, or “bonds,” in the latter. We now discuss this analogy

to find a better understanding of the finite-temperature

behavior of the welded toric code.

We consider the simple case in which we do not know the

full details of the excitation configuration within each code

block. Instead we know only the total parity of the number of

pointlike excitations that each block contains. Each code

block then has two possible states: even or odd parity. These

correspond to the two possible states of a bond of the Ising

model: aligned and antialigned. In general we are able to

determine the locations of all the excitations in a code block.

However, since the excitations of the code blocks become

disordered after a constant time, information regarding their

locations becomes irrelevant. For this reason the total parity of

each code block will be the only useful syndrome information

after thermalization occurs. The error-correction procedure of

the welded toric code is then equivalent to that of the

corresponding Ising model.

The parity of a code block is changed only if a pointlike

excitation moves through one of its welds, which occurs only

if an error occurs on one of the qubits involved in a weld. We

refer to a weld that has suffered an odd number of errors as

“broken.” Breaking a weld is equivalent to flipping the spin on

a vertex of its corresponding Ising model. A region of broken

welds (flipped spins) will be surrounded by a surface of odd

parity codes (antialigned bonds). To perform a logical error,

these surfaces must be removed by breaking all welds or

flipping all spins, respectively.

Given this correspondence between the welded toric code

and the Ising model, we can expect the former to inherit the

exponential lifetime and finite-temperature phase transition of

the latter. However, this is not the case, since the welds of the

welded toric code experience temperature differently from the

spins of its corresponding Ising model. We observe that due to

the OðL2Þ area of each weld, for code blocks of size

L × L × L, the probability that any given weld is broken

after the constant thermalization time converges exponentially

to 1=2 as L → ∞. It follows from this that the probability of

finding any code block in odd parity also quickly converges to

1=2 as the model approaches the thermodynamic limit. For the

Ising model at effective inverse temperature ~β, the probability

of finding a bond in antialignment approaches 1=2 only as
~β → 0. Equating these probabilities it is clear that ~β vanishes

as L → ∞. Hence, the welded toric code at finite temperature

corresponds to an Ising model with an effective temperature

that diverges with system size, and so it does not fare well as a

memory in the thermodynamic limit.

We next consider the low-temperature behavior of the

welded code. To decay encoded information, the thermal

environment must overcome a macroscopic number of welds.

The most energetically challenging process for a weld to break

is for an error to occur on a qubit involved in a weld. This

event happens at a constant rate ∼e−βv, where v is the valency

of the welded lattice and excitations have unit mass. A weld

breaks then at a rate r1 ∼ L2e−βv, where we include an L2 term

to account for the size of the welded surface. High-energy

processes such as creation on a weld are exponentially

suppressed with inverse temperature compared with processes

that reduce the energy of the system and we might thus expect

the Hamiltonian to reverse the effects of thermal errors.

Indeed, this is ultimately why the two-dimensional Ising

model performs as an effective memory in its ordered phase.

In spite of having favorable energetics that are analogous to

those of the Ising model, at low temperatures we expect to

observe processes that break the weld at a rate much quicker

than r1, which are due to the large volume of qubits within

each code block involved in a weld. These processes are

summarized in Fig. 18. To analyze the low-energy processes

we examine the surface of a weld. A single excitation created

within a code block cannot pass the weld without incurring a

high-energy cost. However, if multiple excitations from

different blocks meet at the same point along the weld, the

excitations can pass through at a low-energy cost. We make

use of the ideal gas equation PV ¼ nRT to show that we can

expect these low-energy processes to occur most commonly in

the low-temperature limit.

We model the excitations that have occurred in a single

block of volume V ¼ L3 as an ideal gas of point excitations of

FIG. 18. The excitations of the welded toric code. (a) The

blocks that make up the welded code contain an excitation gas of

density ρ ∼ e−β at thermalization. (b) A zero-energy process; if

v=2 excitations of different blocks meet at a common point on a

v-valent weld, a weld can be broken at no energy cost.
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density e−β, as shown in Fig. 18(a), which is achieved quickly

as the model approaches equilibrium. Using the fact that the

number of point excitations in a given block is n ¼ Ve−β and
that T ¼ 1=β, the excitation pressure on the boundaries of a

given block follows from the ideal gas equation

P ∼ e−β=β; ð77Þ

where we take the gas constant R as unity. We use the pressure

to estimate the rate at which excitations fall on a particular

point on the boundary to find the rate at which multiple

excitations from different blocks of the weld meet at a

common point, as shown in Fig. 18(b). If v=2 point particles

from v=2 different blocks that share a welded face meet at a

common point, a weld can be overcome at no energy cost.

This event occurs at a rate r2 ∼ L2Pv=2, where the L2 term

comes from the size of the welded face. We compare this rate

with r1 to find

r1

r2
∼ βv=2e−βv=2; ð78Þ

which vanishes in the limit β → ∞. This shows that low-

energy processes are the dominant processes in the low-

temperature limit and we thus argue that the energy barrier

will be ineffective in this regime. We obtain the same

conclusion by modeling the free motion of excitations using

other physically reasonable dynamics.

By consideration of low-energy processes and heuristic

calculations we have argued that we cannot easily predict the

thermal behavior of the welded model by simple under-

standing of its nontrivial energy barrier or by application of

Arrhenius’s law. As such, it is interesting to understand the

thermal behavior of the model at intermediate size and

temperature regimes. Indeed, while the present manuscript

was under peer review, work by Siva and Yoshida (2016)

emerged indicating that the welded code will demonstrate

superexponential coherence-time scaling with inverse temper-

ature through the study of finite temperature topological order.

More generally, a careful study of the dynamics of the model

may allow us to derive new no-go theorems for finite-

temperature stability that rely on a clearer understanding of

entropic mechanisms that decohere encoded quantum infor-

mation. Recent work following this direction was conducted

by Temme (2014) by consideration of the case of commuting

Pauli-Hamiltonians.

D. Fractal product codes

We finally remark on the new result of Brell (2016),

where fractal product codes are introduced. In Brell

(2016), the proposed family of models are mapped onto a

classical model known to have a finite-temperature phase

transition to argue that the model will be stable below a finite

critical temperature.

The model is found using the formalism of homological

product codes (Bravyi and Hastings, 2013; Freedman and

Hastings, 2014). The homological product is an operation that

combines pairs of codes to find new codes that in general

are locally embeddable only in a larger number of spatial

dimensions than their composite parts. The homological

product of two two-dimensional toric codes for instance

returns the four-dimensional toric code.

The model presented by Brell (2016) is the homological

product of two two-dimensional toric codes defined on the

Sierpiński carpet graph. This gives a code that resembles the

four-dimensional toric code defined on a fractal-like sublattice

of the four-dimensional hypercubic lattice. It is conjectured

that the choice of graph enables a local embedding of the

product code in three dimensions. To demonstrate the stability

of the model, it is shown that the model can be mapped onto

the partition function of the product code onto an Ising model

defined on a Sierpiński carpet, a model which has been

rigorously proven to have a finite-temperature phase transition

(Shinoda, 2002; Vezzani, 2003; Campari and Cassi, 2010).

The discovery of fractal product codes has opened a new

avenue of research, and as such they have raised many new

questions. For instance, it is yet to be shown that the model

can be efficiently decoded. Moreover, the model has an

extensive ground-state degeneracy. This means we cannot

easily apply known results to prove that it is perturbatively

stable. Indeed, it is not even clear what the geometry of such a

code might look like in three spatial dimensions if it is indeed

embeddable. Further study of this model may lead to exciting

insight toward stable quantum memories that can be realized

in the laboratory.

VIII. OTHER PROTECTION MECHANISMS

Following the restrictive no-go theorems described in

Sec. IV that forbid nontrivial energy barriers for large classes

of two-dimensional commuting systems, it is interesting to

consider other mechanisms that inhibit the long-range propa-

gation of errors. Such a study is well motivated as protection

mechanisms that do not require a macroscopic energy barrier

may be compatible with experimentally amenable two-

dimensional models. The purpose of this section is to discuss

other proposed mechanisms for the preservation of quantum

information that do not rely on macroscopic energy barriers.

In Sec. VIII.A we discuss a model introduced by Brown,

Al-Shimary, and Pachos (2014) that is designed to exploit

entropic effects to suppress thermal errors from developing.

We go on to discuss known limitations of entropic protection

in Sec. VIII.B. Finally, in Sec. VIII.C we briefly discuss

mechanisms to protect quantum information where the dom-

inant noise source is coherent in nature.

A. Entropically suppressed thermal errors

It is interesting to ask if it is possible to protect quantum

information from thermal errors by optimizing the entropic

term of the free energy in Eq. (32) to increase the coherence

time of a system (Landon-Cardinal and Poulin, 2013),

particularly in low-dimensional systems, where the energy

barrier between orthogonal ground states is necessarily con-

stant. In this section we describe a two-dimensional model

(Brown, Al-Shimary, and Pachos, 2014) that relies exclusively

on entropic effects to protect encoded quantum information at

finite temperature. We see by consideration of the dynamics of

the system that the propagation of the commonly occurring

Brown et al.: Quantum memories at finite temperature

Rev. Mod. Phys., Vol. 88, No. 4, October–December 2016 045005-36



excitations is suppressed. Here we give a qualitative picture

of the mechanism that gives rise to entropic behavior by

consideration of the anyonic excitation spectrum of the model.

For a technical description of the underlying Hamiltonian, we

refer the interested reader to Brown, Al-Shimary, and

Pachos (2014).

The entropically protected model makes use of the fusion

space of a generalized toric code model defined on a lattice

of L × L vertices with N-level spins on the edges of the

lattice. For the reader familiar with quantum double models

(Kitaev, 2003), we are considering the quantum double of the

group ZN .

The relevant feature of the generalized toric code model that

we discuss here is its anyonic excitation structure. Like the

toric code, the generalized model has two types of anyons,

electric charges, and magnetic fluxes. However, in the

generalized model they carry integer charges 1≤k≤N−1.

We label excitations ek and mk. The relevant fusion rules for

the model are

ek × el ¼ ek⊕l and mk ×ml ¼ mk⊕l; ð79Þ

where ⊕ denotes addition modulo N. It follows from these

fusion rules that the antiparticles of ek and mk excitations are

ek ¼ eN−k and mk ¼ mN−k. Henceforth, we restrict the dis-

cussion to only ek particles. Because of the symmetries of the

model an equivalent discussion holds for mk particles.

1. Thermal dynamics

As with the case of the toric code, excitations of the

generalized model are free to propagate long distances across

the lattice at no energy cost. This introduces large errors to the

underlying physical lattice and thus rapidly decoheres infor-

mation encoded in the ground state. Unlike the toric code, the

excitations of the generalized model have a splitting structure,

where excitations ek can divide into two spatially separated

excitations ej and el provided the charge is conserved, i.e.,

j ⊕ l ¼ k; see Eq. (79). We write this splitting process as

ek → ej × el. This additional structure follows immediately

from the fusion rules (79). Errors incident to the lattice can

achieve high-energy configurations of many excitations due to

the splitting structure of the model. We adapt the generalized

toric code to exploit this splitting structure.

To encourage splitting processes to occur when coupled to

the thermal environment, we write a Hamiltonian that assigns

different masses to excitations of different charges. We choose

the masses of the model such that it is energetically favorable

for a subset of excitations to split. At this point we consider the

explicit case for N ¼ 5. We set the Hamiltonian such that

masses Mk of particles ek are

2M1 ¼ 2M4 ≤ M2 ¼ M3: ð80Þ

With this setup, it is energetically favorable for the decay

processes e2 → e1 × e1 and e3 → e4 × e4 to occur.

With the described setup at moderately low temperatures,

and given that the model is initialized in the ground state, the

most common process that we expect will decohere the

information encoded in the ground space is the creation of

an e1 × e4 pair that will subsequently propagate rapidly across

the lattice. The innovation of Brown, Al-Shimary, and Pachos

(2014) is the introduction of defect lines that entropically

inhibit the long-range low-energy propagation of excitations by

encouraging high-energy splitting processes. Defect lines are

studied in generality in Kitaev and Kong (2012) and Barkeshli

et al. (2014). Loosely speaking, in the general theory of defect

lines, Hamiltonian terms are modified along a defect line such

that when anyonic excitations cross the defect line, theymodify

their particle type according to some mapping.

The entropically protected model uses defect lines that

modify the charge of crossing excitations. We show two defect

lines lying on the lattice in red in Fig. 19(a). Importantly, a

defect line maps ek excitations crossing the line in the negative

direction onto ek⊕k excitations, where the addition is carried

out modulo N. Conversely mk excitations multiply their

charge to become mk⊕k excitations if they cross the defect

lines in the opposite direction. The inverse operation occurs if

excitations move over the defect line in the reversed direction.

Importantly, the defect lines are designed such that if the

commonly occurring low-mass e1 and e4 excitations cross

defect lines in either direction their charge will always be

modified to those of high-mass excitations.

We consider the long-range propagation of excitations in a

moderately low-temperature regime, where low-mass excita-

tions are generated sparsely across the lattice. In Fig. 19(a) an

e1 excitation is shown in the bottom-left corner of the lattice.

Because of the choice of masses (80), commonly occurring

FIG. 19. Entropically suppressed excitations. (a) A single e1
excitation is marked by a blue circle. Defect lines are drawn in red

along diagonal lines of the lattice. (b) The e1 particle propagates
across the defect line to become an e2 particle. This process is

energetically suppressed by the choice of Hamiltonian. (c) A

common process for the entropically protected model is for high-

mass excitations to decay into pairs of low-mass excitations. The

low-mass excitations are confined between the defect lines. (d) In

the limit of very low temperatures, the lowest energy process for

pairs of low-mass excitations to pass a defect line is by

recombination. This limits the entropic effects we describe at

low temperatures.

Brown et al.: Quantum memories at finite temperature

Rev. Mod. Phys., Vol. 88, No. 4, October–December 2016 045005-37



low-mass excitations are energetically suppressed from mov-

ing right across a defect line. The energy penalty reduces the

rate of decoherence. The energetically suppressed process is

shown in Fig. 19(b).

Once the excitation crosses the defect line, it can continue

to propagate across the lattice and over the next defect line as

an e2 particle with no energy penalty. However, we can

configure the model such that this process is highly improb-

able. Because of the energetics of the model, it is favorable for

the decay process e2 → e1 × e1 to occur. This process is

shown in Fig. 19(c). Following the decay process, the two e1
excitations are confined between its enclosing defect lines, as

they are subject to an energy penalty to propagate beyond a

defect. Given the freedom to choose the defect line separation,

we can optimize the system to make this process highly

probable, thus commonly suppressing low-energy diffusion of

errors. In what follows we discuss the numerics demonstrating

the entropically favorable process that we have described

thus far.

2. Numerical simulations

Brown, Al-Shimary, and Pachos (2014) simulated the

entropically protected model in a thermal environment to

show that the typical excitations increase in energy as they

diffuse in some appropriate parameter regime. The model is

set up with a square grid of defect lines with separations

alternating between one and two lattice units where the

excitation masses M1 ¼ M4 ¼ 0.38 and M2 ¼ M3 ¼ 1 are

taken. These values best embellish the entropic effects with

numerically tractable system sizes.

The thermalization data obtained by Brown, Al-Shimary,

and Pachos (2014) are compared to the partial self-correction

hypothesis introduced in Sec. VII.A in the temperature

regime 6 ≤ β ≤ 9. By comparison to Eqs. (73) and (74),

the values

ΔEP ∼ 0.5 and κEP ∼ 0.2 ð81Þ

are obtained for the entropically protected model. The positive

κEP value is indicative of error dynamics with excitation

masses that grow with the total size of the error. We observe

that the entropic error suppression shown here is significantly

weaker than those found in three-dimensional partially

self-correcting models. This is reflected by comparing the

obtained data (81) with the data found for the cubic code (76).

This can be explained by the fact that entropic protection

relies on probabilistic effects for energetic suppression,

unlike the cubic code model where an energy barrier is

inherent in the system. We further remark that unlike the

cubic code model these effects are limited to the regime β ≤ 9,

and as such do not satisfy the conditions we require of a

quantum memory. This is because at very low temperatures

the thermal environment will find low-energy paths to

propagate excitations such as that shown in Fig. 19(d).

This low-temperature behavior is reminiscent of that which

occurs in the welded code, as discussed in Sec. VII.C.1. In the

following section we discuss known fundamental limitations

on entropic protection.

B. On entropic protection

It is interesting that the entropic protection of the model

introduced in the previous section is effective only above a

certain moderately high temperature. Following the introduc-

tion of the entropically protected model, significant work has

been conducted to learn the limitations of error suppression by

entropic effects.

Temme (2014) and Temme and Kastoryano (2015) showed

for commuting Pauli-Hamiltonians that a macroscopic energy

barrier is necessary to achieve a coherence time that diverges

with system size. This work was extended by Kómár, Landon-

Cardinal, and Temme (2016) to show the necessity of an

energy barrier for a more general class of models, namely,

Abelian quantum double models (Kitaev, 2003), which

include the entropically protected model discussed in

Sec. VIII.A. It is thus clear that improvements in coherence

time that are achieved by the introduction of defect lines are

strictly finite in nature and will never lead to diverging

memory time, or super-Arrhenius-law coherence-time scaling

in the β → ∞ limit.

Despite the negative results toward self-correction via

entropic effects, as two-dimensional quantum memories will

almost certainly be more experimentally amenable than their

higher-dimensional counterparts, it may still be worthwhile

improving low-dimensional memories with entropic effects.

As such, it may be interesting to optimize the parameters of

entropically protected memories, such as that we reviewed in

the previous section, to boost their coherence times.

We finally remark that the known no-go theorems for

entropic protection are applicable to Abelian quantum double

models. It may be interesting to consider other mechanisms

for entropic protection in noncommuting Hamiltonians, or

even with commuting models that give rise to non-Abelian

anyon theories (Kitaev, 2003; Levin and Wen, 2005). Another

interesting proposal for a two-dimensional memory was given

by Bardyn and Karzig (2015). They considered coupling the

toric code Hamiltonian to driven-dissipative ancilla systems

(Pastawski, Clemente, and Cirac, 2011) to inhibit the propa-

gation of excitations. It is the role of the dissipative systems to

reduce the energy of the interaction terms of the Hamiltonian

to introduce potential minima to the system to increase the

likelihood of diffusing excitations retracing their steps which

will thus reverse incident errors. It was shown in Bardyn and

Karzig (2015) that coupling the toric code to a dissipative

ancilla system gives rise to superexponential coherence-time

scaling with inverse temperature.

C. Coherent noise suppression

The majority of this review has been concerned with finding

systems that protect quantum information encoded in many-

body systems from incoherent sources of noise, namely,

where the system of interest is coupled to a thermal bath.

However, we might consider some implementation of a

system where finite-temperature effects are negligible, and

where coherent sources of noise are dominant. Specifically,

we consider here weak local perturbations such as external

magnetic fields. Protection against coherent sources of noise

will become increasingly relevant as the temperature of the

Brown et al.: Quantum memories at finite temperature

Rev. Mod. Phys., Vol. 88, No. 4, October–December 2016 045005-38



system becomes very low. In such a regime we might consider

designing systems where we sacrifice the self-correction

and instead focus on experimental amenability. Here we

discuss mechanisms that have been considered to defend

low-dimensional Hamiltonian systems from various forms of

coherent noise.

As discussed in Sec. II.F, perturbative stability at zero

temperature is a natural property of topologically ordered

systems. It is this inherent stability that first motivated their

use for quantum computation (Kitaev, 2003). In such systems,

quantum information can be stored within locally indistin-

guishable degenerate ground states, which are separated from

excited states by a finite gap. Perturbations will cause some

energy splitting between ground states and can cause the gap

to close to a degree. However, it has been shown that these

effects will be suppressed with system size for perturbations

whose strength is below some finite threshold (Bravyi,

Hastings, and Michalakis, 2010). Such topological systems,

including the simple toric code, therefore provide a stable

memory at zero temperature.

Similar properties also arise in so-called symmetry pro-

tected topological phases (Chen, Gu, and Wen, 2011; Else,

Bartlett, and Doherty, 2012; Bonderson and Nayak, 2013).

These offer protection against perturbations that respect

nontrivial symmetries of the model. As compensation for

this, they are typically more experimentally accessible than

topological models that do not rely on a symmetry.

A well-known example is an open chain for spinless

fermions with a superconducting pairing term (Kogut, 1979;

Kitaev, 2001). For a suitable choice of Hamiltonian

parameters, this system can be brought to a phase support-

ing topological superconductivity (Kitaev, 2001) with a

perturbatively stable degenerate ground state and Majorana

fermion zero-energy modes localized at opposite ends of

the chain.

Quantum information encoded within this subspace

spanned by these modes (Kitaev, 2001; Bravyi, 2006) will

remain stable as long as the fermionic parity of the wire is

conserved, which relies on only Cooper pairs being exchanged

with the environment. Exchange of single unpaired fermions

can cause fatal decoherence (Rainis and Loss, 2012). The

system must therefore be engineered to ensure that such

symmetry-violating processes are rare.

So far, low-dimensional symmetry protected phases have

not been shown to offer self-correction against thermal noise.

In fact, certain models have been found to decohere in a way

that is not efficiently suppressed by reducing temperature

(Campbell, 2015). In such cases, it has been argued that active

error correction is the only hope of preserving the symmetry

protected quantum memory at finite temperature (Pedrocchi

and DiVincenzo, 2015).

This discussion on the suppression of coherent noise

assumes that information can be encoded directly into the

ground-state manifold. However, in practice we must expect

that preparing the state will be noisy such that we may prepare

an excited state with some mobile quasiparticle excitation on

the lattice. It is thus problematic that the coherent noise can

propagate these excitations and decohere stored information

very quickly.

One mechanism studied to suppress this is disorder-assisted

protection. Pastawski et al. (2010), Stark et al. (2011),

Wootton and Pachos (2011a), Bravyi and König (2012),

and Röthlisberger et al. (2012) showed that randomizing

the Hamiltonian interaction strengths inhibits the coherent

propagation of excitations across the lattice. This is attributed

to the Anderson localization effect (Anderson, 1958), where it

is understood that randomized Hamiltonian interactions lead

to “friction” in the motion of excitation dynamics due to

quasiparticles becoming trapped in small potential minima of

the random energy landscape. It is tempting then to believe

that randomness might then be useful as a resource for error

suppression. However, Anderson localization is not a well-

understood principle. Remarkably, Bravyi and König (2012)

showed that pseudorandom potentials outperform truly ran-

domly chosen potentials.

Some of the randomness studied by Röthlisberger et al.

(2012) was of the underlying lattice structure in the two-

dimensional toric code model, rather than the coupling

strengths. This demonstrates the important effect that the

chosen lattice will have on coherence time, as expanded upon

in Al-Shimary, Wootton, and Pachos (2013). Although this

focuses primarily on thermal noise, its main purpose is to

optimize the lattice in the case in which noise is biased toward

certain kinds of errors, specifically, either bit flip or dephasing

noise. It is identified that reducing the connectivity of the

lattice geometry which embeds the toric code will reduce the

rate of one type of noise from decohering the lattice. However,

due to the dual structure of the toric code lattice, changing the

lattice geometry to protect against one type of noise will

detrimentally affect the performance of the lattice against the

other type of noise. This approach therefore presents a tradeoff

between protection against bit flip and dephasing noise

introduced by a general thermal noise model. Therefore these

effects provide a constant improvement in coherence in the

presence of an asymmetric noise model that may be present in

a realistic experimental setting (Douçot, Feigel’man, and

Ioffe, 2003).

IX. BEYOND COMMUTING HAMILTONIANS:

SUBSYSTEM CODES

In this section we discuss progress toward the study of a

class of noncommuting models that has developed over the

last decade, namely, the subsystem codes. This framework

provides a natural extension to the stabilizer formalism that we

have relied upon throughout this review. Among the sub-

system code literature are three-dimensional models that are

conjectured to be self-correcting quantum memories.

Subsystem codes were introduced by Kribs, Laflamme, and

Poulin (2005) and Kribs et al. (2006). The language of

subsystems was introduced to find a unifying language for

decoherence free subspaces (Palma, Suominen, and Ekert,

1996; Duan and Guo, 1997; Zanardi and Rasetti, 1997; Lidar,

Chuang, and Whaley, 1998; Beige et al., 2000; Pachos and

Beige, 2004) and noiseless subsystems (Knill, Laflamme, and

Viola, 2000; Zanardi, 2000; Kempe et al., 2001). Initially

coined operator quantum error correction, subsystem codes

principally encode logical information in a quantum error-

correcting code that is embedded in a subsystem of a larger
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Hilbert space. In a subsystem code the remainder of the

Hilbert space of the total system is referred to as the gauge

subsystem.

A general language for subsystem codes is provided by

Poulin (2005). A subsystem code is uniquely defined by its

gauge group Gn, a subgroup of the Pauli group of n qubits.

Given a gauge group, a stabilizer code is defined on the

subsystem acted upon by the centralizer of the gauge group

N ðGnÞ, i.e., operators that commute with elements of Gn. The

stabilizers of the code are also members of the gauge group

S ¼ N ðGnÞ ∩ Gn, whereas logical operators L ¼ N ðGnÞnGn

commute with but are not themselves members of the gauge

group. It is easily checked that for the special case in which Gn

is Abelian, we recover the stabilizer formalism where Gn ¼ S

up to phases.

Throughout this section we give examples which show that

this innocuous abstraction of the stabilizer formalism behaves

qualitatively differently from the stabilizer error-correcting

model. First, by definition, the gauge subsystem can take any

state. It can, for instance, become arbitrarily mixed due to

incident noise or otherwise, and encoded quantum informa-

tion will remain robust. One might also consider using the

gauge subsystem for other practical purposes. Herrera-Martì,

Li, and Kwek (2014) made frequent measurements on the

subsystem surface code presented by Bravyi et al. (2013) to

suppress the coherent diffusion of excitations at zero temper-

ature. It is also shown that the subsystem structure of certain

codes can be used to realize universal quantum computation

(Paetznick and Reichardt, 2013), or to design advantageous

error-correcting protocols (Bombin, 2014) which we discuss

in Sec. IX.C.

We additionally remark that subsystem codes may have

some differences in their practical realization compared with

their stabilizer counterparts which must be taken into account

if one is to build a quantum memory based on a subsystem

code. In particular, certain local subsystem codes give rise to

high-weight stabilizer measurements that become increasingly

error prone in the large system-size limit. We urge the

interested reader to find a comprehensive review of this topic

in Terhal (2015) and references therein to better understand

the practical difficulties in realizing certain subsystem

error-correcting codes. Conversely, some subsystem codes

(Bombin, 2010b; Bravyi et al., 2013) are specifically designed

to reduce the weight of syndrome measurements such that

they are less demanding to implement from an experimental

perspective.

Little is known about the fundamental features or thermal

characteristics of subsystem codes, although progress has

been made in this area by Chesi et al. (2010) where bounds on

their relaxation times are obtained. Much of the work in this

area has been a constructive search for models that we might

expect to give rise to favorable properties for self-correction.

Of particular interest is the three-dimensional Bacon-Shor

code (Bacon, 2006). This model has drawn significant

attention to subsystem codes as it is conjectured to behave

as a self-correcting memory. This argument is made as its

Hamiltonian has key features in common with thermally

stable classical models, namely, the Ising model, discussed

in Sec. V.A. We introduce the three-dimensional Bacon-Shor

code by first reviewing the two-dimensional Bacon-Shor

code, a simple example of a subsystem code that has some

qualitatively different features from local stabilizer codes. We

conclude our discussion of the two-dimensional Bacon-Shor

code by considering its generalizations and other subsystem

codes that are shown to surpass constraints physically

imposed on general commuting models.

Subsystem codes are of further interest when considered in

the context of topological order. For the reader familiar with

topologically ordered lattice models, we remark that Kitaev’s

honeycomb model (Kitaev, 2006) provides an illustrative

example of a subsystem code (Suchara, Bravyi, and Terhal,

2011); the model is studied by considering loop degrees of

freedom that commute with its noncommuting parent

Hamiltonian. The honeycomb model falls into a broader

subclass of subsystem codes, known as topological subsystem

codes (Bombin, 2010b; Suchara, Bravyi, and Terhal, 2011).

Recently a three-dimensional generalization of topological

subsystem codes, namely, the gauge color code model, has

been conjectured to be self-correcting. We conclude this

section with an overview of this model and its features that

have led to this conjecture. We also discuss other interesting

results that have arisen by consideration of the gauge color

code as a self-correcting quantum memory.

A. The Bacon-Shor code

The Bacon-Shor code (Bacon, 2006), otherwise known as

the quantum compass model (Kugel and Khomskii, 1982;

Dorier, Becca, and Mila, 2005), provides a nontrivial example

of a subsystem code that demonstrates physical features

not accessible with local stabilizer codes. For an extensive

review of compass models see Nussinov (2013). In the two-

dimensional model, we observe that its local gauge generators

give rise to nonlocal stabilizer generators. Moreover, we see

how the nontrivial gauge group affects the error-correction

procedure. We conclude this section by reviewing results that

show the fundamental differences between subsystem codes

and commuting models.

The two-dimensional Bacon-Shor code is defined on an

L × L square lattice with qubits on its vertices, as shown in

Fig. 20. The gauge group Gn where n ¼ L2 is generated by

two types of operator. It has two-body nearest-neighbor

interactions Ax and Bx associated with lattice sites x ¼
ðj; kÞ, where Aj;k ¼ Xj;kXjþ1;k are aligned along the horizon-

tal direction and Bj;k ¼ Zj;kZj;kþ1 operators are aligned in the

vertical direction, as shown in Fig. 20(a) in green and blue,

respectively. We write the corresponding Hamiltonian of this

model as

H2DBS ¼ −
X

x

ðAx þ BxÞ: ð82Þ

In general, Ax and Bx operators do not commute. The

stabilizers of this code S¼N ðGnÞ∩Gn are nonlocal operators

of the gauge group generated by products of Ax and Bx

operators. They are SXj ¼
Q

kAj;k and SZk ¼
Q

jBj;k. The stabi-

lizers SXj and SZk are supported on bands, two vertices wide,

such as those shown in green and blue in Figs. 20(b) and 20(c).
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The horizontal bands that support SZk stabilizers have four

common qubits with the support of the vertical bands support-

ing SXj stabilizers. As such, it is easily checked that all

stabilizers commute. The model encodes a single logical qubit.

Its logical operators L ¼ N ðGnÞnGn are X̄ ¼ Q

kXj;k for fixed

j and Z̄ ¼ Q

jZj;k for fixed k. The support of X̄ and Z̄ are shown

in red and yellow in Fig. 20. They cross at a single point by

Fig. 20(d).

The two-dimensional Bacon-Shor code shows how sub-

system codes respond differently to noise. We consider a noise

model that introduces Pauli-X errors. An equivalent discus-

sion holds for Pauli-Z errors where the lattice is rotated by

π=2. Remarkably, for any given row of the lattice, we need

only to correct the parity of errors. A pair of Pauli-X errors

along a horizontal strip are elements of Gn and thus commute

with all S and L. Errors of this type therefore do not affect

information encoded in the subsystem code. As in the case for

stabilizer codes, we make stabilizer measurements to identify

the parity of errors between pairs of strips, and we correct the

parity of a given row using a single-qubit Pauli-X operation

along that row.

Importantly, as pointed out in the original paper (Bacon,

2006), it was argued persuasively that the gap of Hamiltonian

(82) vanishes in the thermodynamic limit. This is shown in

Dorier, Becca, and Mila (2005) using extensive numerical

methods in an extended region of phase space. The model is

therefore only likely to perform well as a quantum memory in

some limited regime where the system size is relatively small.

Nevertheless, the example shows that a clever choice of gauge

enables us to ignore large classes of errors that affect only the

gauge subsystem. Further, the Bacon-Shor code provides an

example of a local subsystem code model that gives rise to a

nonlocal stabilizer code, thus indicating a fundamental differ-

ence between local stabilizer and subsystem codes.

Indeed, the study of local subsystem codes that give rise to

nonlocal stabilizer codes has been significantly extended due

to the recent work by Bacon et al. (2015). In this work they

show a very general scheme where one can find a local

subsystem code that gives rise to a stabilizer code, that is not

necessarily local, given the quantum circuit that measures the

stabilizer generators of the stabilizer code. They use their

formalism to find codes with favorable code distance scaling

that saturates known bounds for commuting projector codes.

As remarked by Bacon et al. (2015), perhaps one could

consider using their formalism to construct local subsystem

codes that correspond to nonlocal stabilizer models with

favorable properties at finite temperature to find stable

quantum memories. Certainly, it is shown that the presented

construction can give rise to models with no stringlike logical

operators, even if one considers the more general class of

dressed logical operators, i.e., logical operators with nontrivial

action on the gauge subsystem of the model.

We finally remark on an extension of the Bacon-Shor code

due to Bravyi et al. (2013), where he shows that the

fundamental storage capacity of a two-dimensional subsystem

code can surpass the storage capacity of commuting models

(Bravyi, Poulin, and Terhal, 2010). In the commuting case, it is

known that kd2 ≤ OðnÞ, where k is the number of qubits of

the code, and d is the minimum weight of the lowest weight

logical operator of the code. Bravyi shows that in the case of

subsystem codes one can obtain scaling like kd ≤ OðnÞwith a
local gauge group, and that randomly chosen codes saturate

this bound asymptotically in the limit of large n. Unfortunately,
this bound cannot be saturated for codes with constant k.
Indeed it is also known from Bravyi and Terhal (2009) and

Haah and Preskill (2012) that the distance of two-dimensional

subsystem codes must satisfy d2 ≤ OðnÞ. Results such as these
provide further intrigue and motivation toward the study of

subsystem codes, as we clearly see that these noncommuting

codes are capable of supporting encoding properties provably

unattainable by their commuting counterparts.

B. The three-dimensional Bacon-Shor code

Subsystem codes have attracted a lot of interest from the

point of view of thermal stability due to the three-dimensional

Bacon-Shor code. Bacon (2006) conjectured that the model

gives rise to self-correcting behavior in a thermal setting.

The model is defined on an L × L × L lattice for odd Lwith

sites labeled by x ¼ ðj; k; lÞ. The corresponding Hamiltonian

is given by

H3DBS ¼ −
X

x

ðAx þ Bx þ Cx þDxÞ; ð83Þ

where the interaction terms are two-body nearest-neighbor

Pauli operators Aj;k;l ¼ Xj;k;lXjþ1;k;l, Bj;k;l ¼ Xj;k;lXj;kþ1;l,

Cj;k;l ¼ Zj;k;lZj;kþ1;l, andDj;k;l ¼ Zj;k;lZj;k;lþ1 which generate

the gauge group. The logical operators of the code are

two-dimensional planelike operators X̄ ¼ Q

k;lX1;k;l and Z̄ ¼
Q

j;kZj;k;1 that anticommute due to the condition that L is odd.

FIG. 20. The Bacon-Shor code in two dimensions. Qubits are

represented by white circles. (a) Example of gauge generators.

The gauge group Gn is generated by nearest-neighbor two-body

operators including the horizontal Ax operators and the vertical

nearest-neighbor Bx operators which are shown, respectively, in

green and blue. The shaded regions by (b) and (c) show the

support of stabilizers of the Bacon-Shor code. (d) The support of

X̄ and Z̄ is shown by the narrow, red shaded vertical strip and the

narrow, yellow shaded horizontal strip, respectively. The logical

operators intersect at a single qubit marked by dark orange

shading near (d).
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The stabilizer generators are two-dimensional planelike oper-

ators that are two vertices wide, such thatSXj ¼
Q

k;lXj;k;lXjþ1;k;l

and SZl ¼ Q

j;kZj;k;lZj;k;lþ1.

The Hamiltonian of the three-dimensional Bacon-Shor code

has the gauge terms of many intersecting two-dimensional

Ising models. It has two-body Pauli-X–type interactions along

one two-dimensional plane, and Pauli-Z–type interactions

along an orthogonal plane. We show the construction in

Fig. 21. Bacon and Casaccino (2006) showed that in general

one can design generalized Bacon-Shor codes, where one

takes an arbitrary classical code input to find its gauge group.

Its overlying stabilizer code then inherits the properties of the

input classical code. The intuition of the three-dimensional

Bacon-Shor code is that it inherits the stability properties of its

input code, the two-dimensional Ising model, as discussed in

Sec. V.A. Bacon (2006) considered a simple Pauli noise model

and mean-field arguments to show that the model may

demonstrate a macroscopic power-law energy barrier. The

question of stability of the three-dimensional Bacon-Shor

code remains an open problem.

The challenge of interrogating this conjecture, as pointed

out by Bacon (2006), is that the noise model considered is

not representative of all possible channels under which

encoded information can decohere. It is possible that a

finite-temperature environment may find a low-energy path

to introduce errors to the encoded logical information. Indeed,

no exact diagonalization of Hamiltonian (83) has been found

and without one it is difficult to make strong statements about

the model.

Certainly, flaws have been identified with the model that

must be overcome to satisfy the required conditions of a stable

memory. First, the model provably has no error-correction

procedure in the thermodynamic limit (Pastawski et al., 2010).

Further, given that we are relying on the model to inherit the

stability properties of the two-dimensional Ising model, we

may also expect it to inherit its perturbative instability,

described in Richards et al. (1995), Cirillo and Lebowitz

(1998), Grinstein (2004), and Pastawski et al. (2010). One

might support this assertion by extrapolating results regarding

the gap from the well-studied two-dimensional case (Dorier,

Becca, and Mila, 2005). If the model is indeed gapless, like

the two-dimensional code, we may encounter issues with the

perturbative stability of the three-dimensional Bacon-Shor

code as we increase the size of the system toward the

thermodynamic limit.

C. The gauge color code

We conclude this section with a discussion of the gauge

color code (Bombin, 2015), the smallest realization of which

was first discovered by Paetznick and Reichardt (2013) by

consideration of Reed-Muller codes. The model represents a

three-dimensional topological subsystem code. Topological

subsystem codes are discussed in two dimensions in Bombin

(2010b), Brell et al. (2011), Suchara, Bravyi, and Terhal

(2011), Sarvepalli and Brown (2012), Bravyi et al. (2013), and

Kubica and Beverland (2015). The model is of particular

interest as it is conjectured to give rise to finite-temperature

stability (Bombin, 2015). For a comprehensible overview of

the gauge color code see Kubica and Beverland (2015) and

Watson et al. (2015).

We briefly elaborate on the fault-tolerant computational

properties of the color codes. Notably the color code models

are favorable for their implementation of transversal gates.

The two-dimensional color code has a transversal implemen-

tation of the Clifford gate set (Bombin and Martin-Delagado,

2006) which, importantly here, includes the Hadamard gate.

In the two-dimensional model, the feature that enables its

implementation is the self-duality of its stabilizers. Explicitly,

a self-dual stabilizer group is such that for every stabilizer

SX ¼ Q

j∈T Xj supported on a subset of qubits T , there exists

also the stabilizer SZ ¼ Q

j∈T Zj.

The three-dimensional stabilizer color code (Bombin and

Martin-Delagado, 2007b) gives rise to a transversal implemen-

tation of the controlled-not gate and theπ=8 gate. Supplemented

by the Hadamard gate, the gate set of the three-dimensional

color code is capable of universal fault-tolerant quantum

computation. However, the three-dimensional stabilizer color

code is not self-dual, and as such does not support a universal

transversal gate set.

Bombin (2015) showed that a universal gate set can be

realized with a subsystem generalization of the three-

dimensional color code. Importantly, the stabilizer group of

the three-dimensional color code contains a self-dual subset of

stabilizers that are capable of successfully identifying an

arbitrary set of errors below a certain weight. Given a suitable

choice of gauge generators, we can restrict the gauge

color code stabilizers to its self-dual subset, such that we

FIG. 21. The gauge group of the three-dimensional Bacon-Shor

Hamiltonian. The three-dimensional Bacon-Shor code is sup-

ported on qubits arranged on cubic lattice. The gauge group

consists of two-body nearest-neighbor terms, where different

planes of the lattice support different types of gauge operators.

Horizontal planes such as those we outline in blue support two-

body Pauli-X gauge operators between their qubits. Similarly, the

vertical planes outlined in green that protrude out of the page

support two-body Pauli-Z gauge terms along its edges. The full

model is described by an array of L of these planes arranged in

parallel along their respective directions. The locations of the full

set of planes are marked by black lines at the back of the figure.

Indeed, the gauge group of the three-dimensional Bacon-

Shor code can be regarded as intersecting copies of the two-

dimensional Ising model supported on each of these planes.
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have a code with a transversal implementation of the

Hadamard gate.

The proposal of Bombin represents an explicit lattice

realization of gauge fixing, introduced by Paetznick and

Reichardt (2013). Gauge fixing avoids resource costly meth-

ods of achieving a universal gate set using, for instance, magic

state distillation (Bravyi and Kitaev, 2005). Instead, gauge

fixing enables us to fault tolerantly move information between

different codes by changing the gauge operators of a given

subsystem code. Specifically, one can “promote” certain

elements of the gauge group of a code to elements of the

stabilizer group by imposing that the code states of the code

take particular eigenstates of gauge operators, thus changing,

or fixing, the code. The development of gauge fixing has

shown that we can move between different error-correcting

codes that collectively support a universal gate set. Gauge

fixing is shown explicitly for the Reed-Muller codes in

Anderson, Duclos-Cianci, and Poulin (2014). The idea of

gauge fixing extends ideas presented by Knill, Laflamme, and

Zurek (1996) where fault-tolerant gates that do not preserve

the code space are suggested.

Here we consider the gauge color code for a candidate self-

correcting quantum memory. A lattice suitable to describe the

code is shown in Fig. 22. Another appropriate lattice geometry

is given by Kim (2011); see also Brown, Nickerson, and

Browne (2016). Importantly, the lattice is four valent and four

colorable, i.e., the lattice is such that we can assign to each cell

one of four colors in such a way that no two neighboring cells

are of the same color. It follows that three-dimensional lattices

that satisfy these properties have faces that contain an even

number of vertices (Kubica and Beverland, 2015). The

generators of the gauge group are associated with the faces

f of cells of the lattice. Specifically, for every face of a cell, we

have gauge generators Af ¼ Q

v∈fXv and Bf ¼
Q

v∈fZv,

where we use shorthand v ∈ f to mean the vertices adjacent

to face f. On the lattice shown, gauge generators are either

four- or six-body terms. We therefore have the Hamiltonian

HGCC ¼ −
X

f

ðAf þ BfÞ: ð84Þ

The stabilizers are then associated with the cells c of the

lattice, such that Ac ¼
Q

v∈cXv and Bc ¼
Q

v∈cZv, where

v ∈ c are qubits associated with vertices adjacent to cell c.
The conjecture due to Bombin (2015) is based on the

structure of the Af and Bf Hamiltonian terms. Specifically, if

one considered the simpler Hamiltonian HX ¼ −
P

fBf sub-

ject only to the Pauli-X error channel, then the excitations of

the model are exclusively akin to Peierls contours, as

discussed in Sec. V. An equivalent argument holds for

Pauli-Z noise for Hamiltonian HZ ¼ −
P

fAf, and as such

one can argue that there may be a macroscopic energy barrier

for arbitrary local quantum noise channels. Of course, given

the difficulty in diagonalizing Hamiltonian (84) this argument

is not rigorous.

When defined on a tetrahedron, the logical operators that

commute with the gauge generators are two dimensional. We

show the smallest tetrahedron that embeds a gauge color code

in Fig. 23. Both X̄ and Z̄ are supported on one face of the

tetrahedral lattice. Their support is shown in blue (dark

shaded) on the example lattice in Fig. 23(a). The geometry

of the color code ensures that the support of a face of the

tetrahedron remains odd for any size of lattice.

While it is a promising feature with respect to self-

correction that the logical operators are two dimensional, it

is not clear that such logical operators are sufficient for self-

correction in subsystem codes. Indeed, the support of logical

operators of subsystem codes can be reduced by multiplica-

tion by gauge generators. Such a logical operator will not

necessarily commute with the gauge group, but still commutes

with the stabilizer group, as required. A logical operator of this

type is known as a dressed logical operator.

In contrast to the models proposed by Bacon et al. (2015)

mentioned in Sec. IX.A, the gauge color code has one-

dimensional dressed logical operators. We show the support

of the dressed logical operators of the gauge color code in

Fig. 23(b). We can conclude little from discovering this

operator, but we make this point only to illustrate some of

the additional complexity involved in studying subsystem

codes. Indeed, due to the nontrivial commutation relations of

the dressed operator with respect to the interaction terms of

Hamiltonian (84), it is not clear that such an operator can be

achieved at a constant energy cost under a local noise channel.

As such, it is not known if the discovery of a low-dimensional

FIG. 22. The lattice of the gauge color code. Qubits reside on the

vertices of a four-valent lattice. The lattice is also four colorable.

This means we can assign each of the three-dimensional cells of

the lattice one of four colors such that no two cells of the same color

touch. The cells are colored dark blue, red, light green, and yellow

to show the four colorability of the cells.

FIG. 23. A 15-qubit tetrahedral lattice that supports the gauge

color code. (a) The two-dimensional logical operator of the gauge

color code, marked in blue with shaded vertices at the back of the

lattice. (b) The support of the dressed logical operator is shaded

red. The faces which support Hamiltonian terms that anticom-

mute with the dressed logical operator are shaded.
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dressed logical operator rules out the possibility of self-

correction in the gauge color code model. We additionally

remark that, like the three-dimensional Bacon-Shor code, it is

not even obvious that the gauge color code is gapped. To this

end, the thermal stability of the gauge color code remains an

open problem.

We finally mention further progress in the study of the

gauge color code with respect to its error-correcting capabil-

ities. Bombin (2014) showed that the gauge color code model

has favorable properties for decoding when measured using

unreliable laboratory equipment. He argued that we need to

measure each face operator of the gauge color code only once

to obtain reliable fault-tolerant syndrome information. This

phenomenon, coined single-shot error correction, has been

demonstrated numerically by Brown, Nickerson, and Browne

(2016). This differs from the well-studied case of two-

dimensional stabilizer models where syndrome information

is read out using an unreliable measurement apparatus.

Known schemes for fault-tolerant error correction require

that each stabilizer must be measured a macroscopic number

of times to read out logical information reliably (Dennis et al.,

2002; Wang, Harrington, and Preskill, 2003). Bombin

remarked that the special error-correcting properties he

demonstrated are generic to known self-correcting stabilizer

models (Bombin, 2014). Certainly, this is an exciting advance

in active error correction that has been derived from the study

of a candidate self-correcting model.

X. DISCUSSION AND OUTLOOK

Among the major discoveries that led to scalable classical

information processing was the discovery of a transistor. The

physics of these little solid-state devices ensure the reliable

storage and robust processing of classical information that is

easily scaled. The discovery of an experimentally amenable

stable quantum memory presents a monumental hurdle,

which, if overcome, will be invaluable for the discovery of

fault-tolerant quantum information processing (Bacon, 2006).

In the present review we have given an overview of the

analytical and numerical tools we use to approach the study of

many-body quantum systems at finite temperature. We have

examined the no-go theorems that have been discovered in this

field, and we have presented many new physical models with

certain properties suitable for the passive protection of

quantum information. We conclude by highlighting some

of the forthcoming challenges we face toward discovering and

developing a quantum memory.

This review has highlighted many open problems in this

field. We have discussed models that arguably present

favorable properties to make them resilient in a thermal

environment. Such models include the ferromagnet-coupled

toric code, the welded toric code, embeddable-fractal product

codes, the three-dimensional Bacon-Shor code, and the gauge

color code. These conjectures need to be interrogated by

numerical experiments or by rigorous proofs. To study these

models we need to develop both analytical and numerical

techniques in both condensed-matter physics and fundamental

statistical mechanics. In addition to this, it needs to be checked

that these models have other features that are required of a

passive quantum memory, such as efficient decoding algo-

rithms and perturbative stability.

A noteworthy theme that has occurred frequently through-

out this review is that many of the candidate models for finite-

temperature stability are composed of simpler systems. For

instance, the work in Sec. VI shows that we can introduce

anyonic interactions with a local model by coupling the toric

code to either a system of bosons or a Heisenberg ferromag-

net. Similarly, the nontranslationally invariant models in

Secs. VII.C and VII.D are constructed by combining simpler

topologically ordered models using either welding or by

taking the homological product of many codes. Indeed, the

entropically protected model presented in Sec. VIII.A can be

regarded as a patchwork lattice of many different, albeit

equivalent, topological phases. Moreover, the Bacon-Shor

codes enable the combination of favorable classical models

using the underlying gauge structure of subsystem codes.

To develop new models one might consider adapting

these composition tools further to construct new hybrid

Hamiltonians with features we require of a quantum memory.

Finally, we conclude by emphasizing that all the promising

theoretical models that are proposed must be developed until

they are sympathetic to the engineering constraints of the

laboratory. Certain proposals for a finite-temperature quantum

memory are more amenable to experimentalists than others,

for instance, the ferromagnetic coupled toric code was

designed with physical media in mind. Moreover, subsystem

codes offer an avenue to simplify the architectural challenges

of building high-weight stabilizer models. However, in spite

of a few exceptions, experimentally amenable quantum

memories that can be realized using existing technology is

an avenue of research which thus far remains untrodden. We

consider the example of the celebrated cubic code model, a

well-studied model whose favorable partial self-correcting

properties have been analyzed and numerically verified. We

must work now to develop models such as this one into a form

that an experimentalist can prepare in the laboratory.

Undoubtedly, such an achievement will be directly incorpo-

rated in the design of fault-tolerant quantum technologies of

the future.
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APPENDIX A: DECODERS

Throughout this review we make use of decoding algo-

rithms for numerical analysis. Given an encoded quantum

state that has been subject to noise, a decoder takes classical

syndrome information, i.e., all the outcomes of stabilizer

measurements, and returns a correction operation that returns

the state to the code space (Dennis et al., 2002). Provided the

errors occur at a suitably low density, the decoder will

successfully find a correction operator that will recover the

initially encoded state with probability that grows with the size

of the system. Here we briefly discuss decoding, and a

particular decoding routine, namely, the clustering decoder.

This present discussion makes use of the stabilizer formalism

described in Sec. II.

Even in the case that we find a self-correcting quantum

memory, a decoding step will still be required to correct for

errors caused by small thermal fluctuations when information

is read from the system. To illustrate this, we briefly consider

the two-dimensional Ising model, as discussed in Sec. V.A.

We encode classical bits in the twofold degenerate ground

space, and we read out by measuring the magnetization, the

average spin value of all the spins of the system. The ground

states for the model have magnetization �1. At finite temper-

ature in the limit of large system sizes we cannot expect all the

spins to be aligned. Instead it is suitable to take the sign of the

magnetization measurement to read out the memory. This

measurement corresponds to taking a majority vote over all

the encoded spins of the lattice. Measuring the encoded

ferromagnet in this way accounts for small thermal fluctua-

tions that take the spin configuration out of the ground space.

For robust quantum information storage we require a decoding

algorithm to deal with small errors incident to a code during

readout.

As we cannot measure the state of individual physical

qubits of a code, accounting for the errors during the readout

of a quantum code is not as straightforward as the classical

case we have described. Instead, for the quantum case, we

perform stabilizer measurements to learn the errors that are

incident to a code. The stabilizer measurements perform the

task of collapsing the incident noise onto an error E that is an

element of the Pauli group and provides syndrome informa-

tion we can use to attempt to determine E. It is the task of the

decoder to predict the error E of the Pauli group and return a

correction operator C such that CE acts trivially on the

encoded state.

Many approaches to decoding have been studied with

tradeoffs between speed, performance, and versatility.

Decoders have been designed that make use of minimum-

weight perfect matching (Dennis et al., 2002), renormalization

group techniques (Duclos-Cianci and Poulin, 2010, 2013),

and Monte Carlo methods (Wootton and Loss, 2012;

Hutter, Wootton, and Loss, 2014). Moreover, the study of

decoding has a foundation in the study of glassy statistical

mechanical models (Dennis et al., 2002; Wang, Harrington,

and Preskill, 2003; Bombin et al., 2012; Andrist, Wootton,

and Katzgraber, 2014).

Here we describe the clustering decoder which is com-

monly used throughout this review. The clustering decoder

was introduced by Harrington (2004) and developed by

Bravyi and Haah (2011a, 2013) specifically for the study

of the cubic code at finite temperature, as discussed in

Sec. VII.B. The clustering decoder was further refined in

Anwar et al. (2014) and Hutter, Loss, and Wootton (2014).

This simple algorithm is particularly suitable for the present

work as it can be adapted for any translationally invariant local

stabilizer code (Bravyi and Haah, 2011a).

To find a correction operator for the most likely error

configuration, the clustering decoder will implicitly make use

of the locality constraint of commuting Pauli-Hamiltonian

models. In addition to this, we assume that a low-weight

correction operator will approximate the inverse of the most

probable error that has occurred in the limit of a low error rate.

Here we sketch the clustering algorithm routine. A rigorous

explanation of the implementation of the decoder can be found

in Bravyi and Haah (2011a), Anwar et al. (2014), and Hutter,

Loss, and Wootton (2014). In Fig. 24(a) we show a series

errors, marked in white, and the syndrome that corresponds to

the error. Violated stabilizers, i.e., stabilizers that return −1
outcomes, are marked by black points for some local code. We

consider this example to demonstrate the clustering decoder.

To find a low-weight correction we find a set of small boxes

that enclose all of the error syndromes. We search for a set of

boxes that contains a correction operator that is consistent with

the violated stabilizers in each box. The algorithm begins by

putting all the violated stabilizers in individual boxes of unit

size, as shown in Fig. 24(b). The algorithm then proceeds by

incrementally increasing the size of the boxes. This is achieved

by combining pairs of boxes that liewithin some small radius of

one another. The routine continues until the boxes are large

enough to contain a correction operator that corrects for all the

violated stabilizers contained within the box.

FIG. 24. The clustering decoding algorithm. (a) Unknown errors,

marked in white on a three-dimensional lattice, are identified by

syndrome measurements, marked in black. (b) The measured

syndromes are initially contained in unit boxes. The unknown

errors are not shown. (c) Box sizes increase to contain other nearby

syndromes within a small fixed radius of the existing boxes. Boxes

that contain a correction operator are colored dark blue (right,

bottom); they are otherwise colored light green. (d) The search

increases the box size to find boxes large enough to contain

correction operators for all the syndromes on the lattice.
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For the initially chosen boxes, where all of the boxes are of

unit size, we cannot find a local correction operator that is

consistent with the single violated stabilizer that is contained

within each box. We increase the size of the boxes by checking

within a fixed radius r of each of the violated stabilizers of

each box. In the event that another violated stabilizer con-

tained in a different box is found within a distance r of the

violated stabilizer from which we are searching, their two

respective boxes are combined giving a single larger box.

Once it is confirmed that no pairs of disjoint boxes contain any

violated stabilizers that lie within distance r of one another, we

check to find a correction operator that is consistent with all of

the violated stabilizers in each box.

If a box contains a correction operator that is consistent with

all of its violated stabilizers, the box is considered neutral, and

the violated stabilizers within the box are no longer considered

in later searches of the routine. In the case that all the boxes are

neutral, the algorithm terminates and the correction operator

of each of the boxes is returned. If some boxes remain

unneutralized, r is increased and the algorithm is repeated

for the violated stabilizers that are contained in boxes that are

not yet neutral.

We continue to follow the example syndrome in Fig. 24. In

Fig. 24(c) we show the new boxes obtained after searching

within a radius of r ¼ 1 of each of the violated stabilizers.

After this search, not all the boxes contain a local correction

operator. Two boxes, colored blue in Fig. 24(c), are neutral-

ized. Violated stabilizers in the blue boxes are no longer

considered in the algorithm. Three boxes found at radius

r ¼ 1, marked in green, do not contain a correction operator

consistent with their respective violated stabilizers. To find a

correction operator consistent with the violated stabilizers in

the green boxes, the algorithm increases its box search radius

once again to r ¼ 2 for all the remaining violated stabilizers.

At r ¼ 2, all boxes contain a correction operator that is

consistent with all of the violated stabilizers. Figure 24(d)

shows the boxes that together contain a correction operator

consistent with the syndromes of the error configuration. The

decoder will return the correction operator contained within

the blue boxes to return the encoded information to the

ground state, enabling the readout of the encoded quantum

information.

We remark that this algorithm is suitable for any transla-

tionally invariant local stabilizer code. The description of the

algorithm we give makes no reference to the underlying code.

We need only assume that the code is local, such that violated

stabilizers can be interpreted as lying within a fixed radius of

an incident error. Moreover, Bravyi and Haah (2011a) showed

that for transitionally invariant codes one can efficiently

determine if a box contains a correction operator consistent

with its enclosed violated stabilizers.

We can evaluate decoder performance by obtaining a

threshold with respect to an identical and independently

distributed noise model. This noise model is where each qubit

suffers an error with probability p. The threshold value pth is

the value below which the logical error rate of a quantum error-

correcting code decreases as we increase the size of the system

to the thermodynamic limit. In this review we use cluster

decoding for the toric code model in Sec. III.F and the cubic

code in Sec. VII.B. The toric code threshold is already found to

be ∼8.3%, shown in Anwar et al. (2014). The threshold for the

cubic code using the clustering algorithm has not been

published to the best of our knowledge, although good

estimates are given in Bravyi and Haah (2011a). We estimate

a threshold pth ∼ 1.17% for the cubic code using a bit-flip

noise model. We show the threshold data in Fig. 25.

APPENDIX B: SIMULATING THE TORIC CODE AT

FINITE TEMPERATURE

Here we present additional numerical results for the finite-

temperature behavior of the toric code, supporting the argu-

ments we make in Sec. III.F.

For system sizes L that are small compared to the natural

scale imposed by the finite-temperature dynamics,

decoherence is typically the result of a single pair of anyons.

In Sec. III.F we predicted scaling with L and inverse temper-

ature β ¼ 1=T of three independent elements of the coherence

time, which we called ΠðL; βÞ, τc, and τm. We isolate each of

these terms and estimate them numerically.

We first investigate ΠðL; βÞ. This term quantifies the

probability that after a pair of anyons is created they do

not annihilate by mutually fusing together before reaching a

significant enough distance to cause logical errors L=2. To
evaluate this function we alter the standard simulation scheme;

rather than beginning in a ground state we initialize the system

with a single pair of anyons present on the lattice, where the

initialized anyons are separated by a single lattice spacing. We

additionally set the rate of creation equal to zero such that no

additional pairs of anyons are created. Indeed, we model only

the random motion of a single pair of anyons walking across

the lattice. We evolve the system until either the separation

of the anyons reaches the Euclidean distance L=2 or the pair

meet at a common point on the lattice and annihilate. The

quantity Π is the fraction of samples that reach separation L=2

rather than annihilating. We estimate Π by sampling over 104

trials. The results we obtain are shown in Fig. 26. We find

the fitting

FIG. 25. Threshold calculation using the clustering decoder for

the cubic code model. We study an independent and identically

distributed bit-flip noise model using system sizes between

L ¼ 101 and 201 with Monte Carlo samples. We find the

crossing at pth ¼ 1.17%.
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1=Π ¼ ð0.108þ 0.513βÞ lnðL=2Þ: ðB1Þ

This is in good agreement with the scaling we hypothesized in

Eq. (43), where constant A ≈ 5.

We next numerically study how τc and τm scale with L and

β. Time τc is the typical time it takes for a pair of anyons to be

created that will cause a logical error, and τm is the average

time it takes for a pair of anyons to achieve separation L=2

after they have been created. To find these values we simulate

the thermal evolution of the system prepared in a ground state.

We attempt to decode the lattice after each simulated event of

the thermal evolution, and the simulation is stopped once the

decoder fails. Every time a pair of anyons is created its

creation time is recorded; this information is discarded if

the pair annihilates. Estimates of the creation time scale τc
and diffusion time τm are obtained by averaging over 103

simulation runs. These data are plotted in Figs. 7 and 27,

respectively. The data we obtain scale as we expect with

fittings given in Eqs. (42) and (44), where we find numerical

fits τm ≃ 0.028βL2 and

τc ¼ 0.150
e1.99β

L2.01

1

Π
; ðB2Þ

where we take the function Π that we evaluated numeri-

cally, Eq. (B1).

For large systems, decoherence results due to the interaction

of many thermally created anyons. In Sec. III.F we describe a

model of these dynamics that gives an estimate, Eq. (48), of

the coherence time τlarge. We test some of the assumptions of

this model and compare the predicted coherence time to

numerical values.

We simulate the system evolving in the large size regime.

The decoder runs after every event are introduced to the

system by the thermal evolution. At the earliest time the

decoder fails we stop the simulation and record the time

elapsed during the simulation. Results are obtained by

averaging over 103 simulations runs. We find average anyon

numbers hNi which confirm that the anyon density at the time

the decoder fails scales like ρ ∼ e−βΔ. These numbers are also

seen to satisfy hNi ≫ 1, indicating that our data are taken for

sufficiently large systems.

In Sec. III.F we argued that for large systems, in contrast to

the smaller case, the important length scale is Λ ∼ eβΔ=2 as

opposed to system size. This value is the typical separation

between creation events and thus corresponds to the average

distance each anyon must diffuse to cause the decoder to fail.

To test that the described motion is the main decoherence

mechanism for large systems we study the distance between

anyon pairs at the time the decoder fails. During the

simulation each pair of anyons is given a unique mark to

FIG. 26. The reciprocal of the probability showing that a pair of

toric code excitations reach critical separation L=2. Values of Π
are obtained by averaging over 10 000 simulations. They are

plotted against L over a range of temperatures from β ¼ 1

(bottom line) to β ¼ 6 (top line). The linear fittings show that

1=Π grows linearly with lnðL=2Þ, with a gradient that increases

with β. The inset shows the gradients found with the fittings

shown in the main plot displayed as a function of β.

FIG. 28. Average separation between paired anyons at the time

the decoder fails in the large system-size limit. The separation is

plotted as a function of β for fixed system size L ¼ 200 where

each data point is obtained by averaging over 1000 simulations.

The solid line is a linear fit to the data with gradient ∼0.49 on

logarithmic axes, consistent with a scaling of hrsepi ∼ eβΔ=2. The

dashed line is the maximum pair separation, averaged over the

simulations, which is seen to be much smaller than L=2.

FIG. 27. Contribution to the coherence time from anyon motion

in the small system-size limit. Times τm are obtained by

averaging over 1000 simulations. They are plotted against β

for a range of system sizes L ¼ 50; 52; 54;…; 100. The values of

τm are divided by L2 to show data points that are independent of

the size of the system, thus validating the L2 factor we derive on

the right-hand side of Eq. (42). The linear fit displayed uses the

average values of the fit parameters obtained from the different

system sizes τm ∼ 0.028βL2.
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indicate their pair created partner. At the end of the simulation

we measure the Euclidean distance between each marked pair.

If two anyons from two separate pairs fuse, the remaining two

unpaired anyons on the lattice are marked as members of the

same extended pair.

As one might expect, we find that extended pairs created

from a fusion will typically achieve a greater separation than

pairs that are initialized by creation from vacuum. However,

its effect is small with respect to the average data. Our

numerical results show that the average separation between

all anyon pairs grows like eβΔ=2, as predicted. In addition we

find that the maximum separation between any pair is always

much less than L=2. The scalings of the average and

maximum separations are shown in Fig. 28. These observa-

tions confirm that the decoherence results from the average

motion of anyons in local regions.

The scaling of coherence time with β is shown in Fig. 8. We

see that the data reproduce the exponential dependence on βΔ

predicted in Eq. (48). Another prediction of the model is that

τlarge is independent of system size. Figure 29 plots the

numerical values of coherence times against L showing that

the data are consistent with this hypothesis.
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