
Quantum Monge–Kantorovich problem and transport distance between density matrices

Shmuel Friedland,1 Michał Eckstein,2 Sam Cole,3 and Karol Życzkowski2, 4
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A quantum version of the Monge–Kantorovich optimal transport problem is analyzed. The transport cost is
minimized over the set of all bipartite coupling states ρAB, such that both of its reduced density matrices ρA

and ρB of dimension N are fixed. We show that, selecting the quantum cost matrix to be proportional to the
projector on the antisymmetric subspace, the minimal transport cost leads to a semidistance between ρA and
ρB, which is bounded from below by the rescaled Bures distance and from above by the root infidelity. In the
single qubit case we provide a semi-analytic expression for the optimal transport cost between any two states
and prove that its square root satisfies the triangle inequality and yields an analogue of the Wasserstein distance
of order two on the set of density matrices. We introduce an associated measure of proximity of quantum states,
called SWAP-fidelity, and discuss its properties and applications in quantum machine learning.

Introduction.—Remarkable progress in quantum technolo-
gies stimulates further research on foundations of quantum
mechanics. In particular, one aims to improve our understand-
ing of the structure of the set of quantum states [1] – the arena
in which quantum information processing takes place. It is
therefore important to analyze various distances in the space
of quantum states and to describe their properties and diverse
physical applications.

In the classical case one considers several distances in
the space of probability distributions. A prominent role is
played by the Monge distance, directly linked to the famous
mass transport problem [2], in which one minimizes the work
against friction required to move a pile of earth of shape pA

into the final shape pB. For continuous distributions the prob-
lem is solved analytically in any 1D case [4] and in several
particular 2D cases [3], while effective numerical algorithms
can be applied for any discrete probability distributions.

More general formulations of Kantorovich [5, 6] and
Wasserstein [7], relying on joint probability distributions with
marginals pA and pB, are explicitly symmetric with respect
to given probability distributions. Due to numerous applica-
tions of the mass transport problem in operations research and
economics and its relation to the assignment problem, it re-
mains a subject of intensive mathematical research [8, 9]. The
transport problem was inspected from the perspective of free
probability [10] and applied in the study of causality [11–13].

An attempt to generalize the notion of the Monge distance
for quantum theory was pursued for the setup of infinite [14]
and finite dimensional [1, 15] Hilbert spaces. Such a distance
between any two quantum states, defined by the Monge dis-
tance between the corresponding Husimi distributions, enjoys
the semiclassical property: the distance between two coherent
states, centered at points x and y in the classical phase space,
is equal to the distance, |x− y|, between the points at which
both coherent states are concentrated. This property, crucial
for studies on quantum analogues of the Lyapunov exponent
[16], is also shared by the distance recently proposed in [17].

Any definition based on the notion of the Husimi func-
tion depends on the choice of the set of coherent states. It
is therefore natural to look for a universal method to intro-

duce the transport distance between quantum states directly
by applying the Kantorovich–Wasserstein approach and per-
forming optimization over the set of bipartite quantum states
with fixed marginals [18–20]. In spite of recent vibrant activ-
ity in this field [21–27], this aim has not been fully achieved
until now [28–31].

In parallel, the quantum optimal transport has found numer-
ous applications in quantum physics, in particular in connec-
tion with the measures of proximity of quantum states [32–
35]. The latter play a key role in quantum metrology [36–38],
as well as in quantum machine learning [39–42].

In this work we introduce a measure of proximity of quan-
tum states, dubbed the “SWAP-fidelity”, as it is inspired by
the quantum optimal transport with a specific quantum cost
matrix. It shares many properties with the standard Uhlmann–
Jozsa fidelity [43, 44] and agrees with the latter if at least one
of the states is pure. We prove that the square root of the as-
sociated quantum optimal transport cost yields a new distance
on the space of qubits which is a quantum analogue of the
Wasserstein-2 distance. For larger dimensions we show ana-
lytically that this quantity gives a semidistance, bounded from
above by the root infidelity and from below by the rescaled
Bures distance. We further discuss the general form of a quan-
tum cost matrix and study the quantum-to-classical transition
of the transport problem. The latter shows that the quantum
optimal transport is cheaper than the classical one, generaliz-
ing the results of [35]. Finally, we discuss an application of
the new quantum metric in the context of quantum generative
adversarial networks.

Classical transport problem.—To formulate the mass trans-
port problem in the setup of Kantorovich for any probability
distributions pA

i and pB
j one introduces the notion of a clas-

sical coupling – a joint probability distribution PAB
i j with two

specified marginals, pA
i =∑ j PAB

i j and pB
j =∑i PAB

i j . In the case
of two probability vectors of order N, pA, pB ∈ ∆N , any joint
distribution PAB ∈ ∆N2 , which determines a transport plan, is
represented by a single vector Pµ , with µ = (i− 1)N + j =
1, . . . ,N2. The set Γcl(pA, pB) of all admissible couplings
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forms a convex subset of the simplex ∆N2 , with extreme points
characterized in [45].

Consider a set of N points X := {xi}N
i=1 equipped with a

distance function d. With the latter we associate a symmet-
ric N×N matrix Ei j := d(xi,x j). Assuming that the transport
cost of a unit of mass from point xi to point x j is equal to the
distance Ei j, one can formulate the classical transport problem
[3, 25]. In order to study its quantum analogue it will be con-
venient to reshape the square distance matrix Ei j of dimension
N into a distance vector Dµ of length N2.

To generate a Wasserstein distance between probability
distributions pA and pB one can use a N2 × N2 classical
cost matrix C which is diagonal, Cµν = Dµ δµν for µ,ν =

1, . . . ,N2, and a diagonal density matrix ρAB
µν = Pµ δµν . For

a given transport plan PAB and some parameter p ≥ 1 the to-
tal transport cost is given by the scalar product, T̂C,p(P) :=

∑
N2

µ=1(Dµ)
pPµ = Tr CpρAB. The minimal transport cost,

T cl
C,p := minP T̂C,p(P), optimized for a given value of the pa-

rameter p, leads to the family of Wasserstein distances,

W cl
C,p(pA, pB) :=

(
min

PAB∈Γcl
(Tr Cp

ρ
AB)
)1/p

=
(
T cl

C,p
)1/p

. (1)

The minimum is taken over the set Γcl(pA, pB) of classical
couplings [3]. If d(xi,x j) = 1− δi j, the space X has the
geometry of an N-point simplex ∆N . In this case, Cp = C
and W cl

C,p = (W cl
C,1)

1/p for any p ≥ 1, so we shall abbreviate
T cl := T cl

C,p and denote the classical cost matrix by Ccl .

Proximity of quantum states.—We now switch to the quan-
tum setting and denote the set of N×N density matrices by
ΩN = {ρ : ρ = ρ†, ρ ≥ 0, Trρ = 1}. To quantify the
closeness of any two quantum states one uses various dis-
tances on ΩN – see [1]. The trace distance, singled out by
the Helstrom theorem on optimal distinguishability [46], reads
DTr(ρ

A,ρB) := 1
2 Tr|ρA−ρB|, where |X | :=

√
XX†. Another

way to characterise the proximity between two density matri-
ces relies on Uhlmann–Jozsa fidelity [43, 44], F(ρA,ρB) :=(
Tr|
√

ρA
√

ρB|
)2. It leads to the following distances: the

root infidelity [49], I :=
√

1−F , the Bures distance [43, 50],

B :=
√

2(1−
√

F), and the Bures angle, A := 2
π

arccos
√

F .
Note that the Bures distance and other distances based on fi-
delity are closely related to statistical distinguishability and
quantum Fisher information [36, 37], so they have a direct in-
terpretation in quantum metrology [38].

We shall now introduce a quantity analogous to fidelity,
which is directly related to the quantum optimal transport
problem and its applications in machine learning [41].

SWAP-fidelity.— Consider two arbitrary states ρA,ρB ∈
ΩN . A composed (bipartite) density matrix ρAB of order N2

is called a coupling matrix [47] between ρA and ρB if both
partial traces agree, TrA ρAB = ρB and TrB ρAB = ρA. The set
of all possible quantum couplings matrices will be denoted by
ΓQ(ρA,ρB)⊂ΩN2 – see Fig.1c. The bipartite quantum states
can be conveniently represented in the Fano form – see Sup-
plemental Material (SM).

FIG. 1: Couplings between probability distributions used for Kan-
torovich distance: a) continuous 1D probabilities pA(x) and pB(y)
coupled by a joint distribution P(x,y); b) two N-point classical states
pA, pB ∈ ∆N coupled by a joint state PAB ∈ Γcl ⊂ ∆N2 with adjusted
marginals; c) two quantum states ρA,ρB ∈ΩN coupled by a bipartite
state ρAB ∈ ΓQ ⊂ΩN2 such that TrA ρAB = ρB and TrB ρAB = ρA.

Let S denote the SWAP operator, S(|x〉⊗ |y〉) := |y〉⊗ |x〉
for any vectors |x〉 and |y〉. For any ρA,ρB ∈ΩN we introduce
the SWAP-fidelity:

FS(ρ
A,ρB) := max

ρAB∈ΓQ

(
Tr Sρ

AB), (2)

where the maximum is taken over the set ΓQ of all admissible
coupling matrices ρAB.

Proposition 1. For any dimension N, the SWAP-fidelity FS
is a symmetric jointly concave function from ΩN ×ΩN to
the unit interval. Furthermore, FS(ρ

A,ρB) = 1 iff ρA = ρB,
FS(ρ

A,ρB) = 0 iff TrρAρB = 0, and

FS
(
ρ

A,ρB)= FS
(
Uρ

AU†,Uρ
BU†), for U ∈ U(N), (3)

F(ρA,ρB)≤ FS(ρ
A,ρB)≤

√
F(ρA,ρB), (4)

FS
(
ρ

A⊗σ
A,ρB⊗σ

B)≥ FS
(
ρ

A,ρB)FS
(
σ

A,σB). (5)

The above result, proven in SM, shows that, in analogy to
the fidelity F , the SWAP-fidelity FS equals unity iff both states
coincide and vanishes iff they are orthogonal. Furthermore, it
interpolates between fidelity and root fidelity – see Ineq. (4) –
with the first inequality saturated if at least one of the states is
pure. Notably, the SWAP-fidelity is super-multiplicative with
respect to tensor product as it satisfies inequality (5) character-
istic to superfidelity [51]. Note also that FS is jointly concave,
as is the root fidelity

√
F , while it has a probabilistic interpre-

tation for pure states, FS(φ ,ψ) = F(φ ,ψ) = |〈φ ,ψ〉|2 – see
[1]. The SWAP-fidelity is shown below to be closely related
to the quantum optimal transport and yields a novel metric on
the Bloch ball.

Quantum cost matrix.— To study the transport problem be-
tween two quantum states of order N we need to specify a
quantum cost matrix CQ of size N2. Let {|i〉}N

i=1 be the com-
putational basis of an N-level quantum system and denote the
maximally entangled singlet states in the subspace spanned by
|i〉 and | j〉 by |ψ−i j 〉=

1√
2
(|i, j〉−| j, i〉). In the case of the sim-

plex geometry, Ei j = 1− δi j, the quantum optimal transport
enjoys several desirable features if one chooses the cost ma-
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trix CQ to be the projector onto the antisymmetric subspace,

CQ =
N

∑
j>i=1

|ψ−i j 〉〈ψ
−
i j |= 1

2 (1N2 −S) = (CQ)2, (6)

as advocated also in [27–29, 41]. In particular, for the sim-
plest, one-qubit problem, N = 2, the cost matrix reads

CQ =
1
2

 0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

= |ψ−〉〈ψ−| (7)

The above quantum cost matrix CQ of size N2 forms a coher-
ification [48] of a classical cost matrix Ccl = diag(CQ) corre-
sponding to the simplex geometry.

We are now going to look for the minimal quantum trans-
port cost, which can be expressed using the SWAP-fidelity:

T Q(ρA,ρB) := min
ρAB∈ΓQ

(
Tr CQ

ρ
AB)= 1−FS(ρ

A,ρB)

2
. (8)

Proposition 1 directly implies that for any two states
ρA,ρB ∈ΩN the optimal quantum transport cost, T Q, is jointly
convex, symmetric, non-negative and vanishes iff ρA = ρB.
Furthermore, for CQ given by (6) one has

T Q(
ρ

A,ρB)= T Q(Uρ
AU†,Uρ

BU†), (9)

for any unitary operator U on CN . Hence, T Q forms a semidis-
tance on ΩN , as shown independently in [41]. In analogy with
the classical definition (1), for any p≥ 0 we introduce a quan-
tum analogue of the p-Wasserstein distance, Wp := (T Q)1/p.
As shown below, W2 plays a distinguished role, so we will
denote it simply by W :=W2.

As an immediate corollary of Ineq. (4), proven in SM with
help of recent results by Yu et al. [28], we arrive at explicit
bounds for the quantum transport cost and its square root W .

Corollary 2. For any two states ρA,ρB ∈ΩN we have

1√
2
B(ρA,ρB)≥ 1√

2
I(ρA,ρB)≥W (ρA,ρB)≥ 1

2 B(ρA,ρB).

(10)
Furthermore, the second inequality is saturated if either ρA or
ρB is pure.

Single qubit transport.—In the simplest case of N = 2 the
quantum cost matrix is given by (7). As shown in SM the full
solution of the quantum transport problem for the one-qubit
case is equivalent to solving a polynomial equation of order
six. The latter yields analytic expressions in several special
cases.

For two diagonal matrices, ρcl
r = diag(r,1− r) and ρcl

s =
diag(s,1− s), we have

W
(
ρ

cl
r , ρ

cl
s
)
= 1√

2
max

{∣∣√r−
√

s
∣∣, ∣∣√1− r−

√
1− s

∣∣}.
(11)

Furthermore, if one of the states is totally mixed we obtain,

W
( 1

21,ρ
)
= 1

2 max
{∣∣1−√2λ

∣∣, ∣∣1−√2(1−λ )
∣∣}, (12)

where λ and 1−λ denote the eigenvalues of ρ . A surprisingly
simple formula is available for two isospectral states,

W
(
ρ, UρU†)=√ 1√

2
−
√

λ (1−λ )
∣∣sin(θ/2)

∣∣, (13)

where {λ ,1− λ} is the common spectrum and θ is the U-
dependent angle between Bloch vectors associated with the
states – see SM. In the case of a single qubit we obtain one of
the key results of this work, proved in SM.

Theorem 3. For N = 2 the function Wp satisfies the triangle
inequality iff p ≥ 2: for any states ρA,ρB,ρC ∈ Ω2 one has
Wp(ρ

A,ρB)+Wp(ρ
B,ρC)≥Wp(ρ

A,ρC). Thus, Wp generates
a distance on the Bloch ball Ω2, analogous to the classical
p-Wasserstein distance (1), provided that p≥ 2.

Numerical studies carried out for the simplex geometry
with N = 3 and 4 allow us to conjecture that Wp is actually
a distance on N-level systems for any N and p ≥ 2. Whereas
the quantum transport cost itself, T Q =W1, is not a distance on
Ω2, its square root, W2, is – see SM. Note that, similarly, while
the infidelity 1−F does not satisfy the triangle inequality, its
square root, I =

√
1−F , does [49]. An analogous property

was recently proved for the quantum Jensen–Shannon diver-
gence, the square root of which satifies the triangle inequality
and leads to the transmission metric [52, 53].

Recall also that the Monge distance between quantum states
defined by the Husimi distribution with respect to spin co-
herent states for N = 2 leads to the Hilbert–Schmidt distance
and the Euclidean geometry on the Bloch ball, while the dis-
crete Monge distance, describing movements of the Majorana
stars corresponding to pure states, gives geodesic distance on
the Bloch sphere [15]. Whereas formula (10) implies that W
is strongly equivalent to the Bures metric B and induces the
same topology on the Bloch ball, the corresponding (curved)
geometries are different. This is illustrated in Fig. 2 for a
fixed mixed state ρA and ρB varying continuously from ρA to
the pure state |+〉. We witness the validity of the bound (10),
with W (ρA, |+〉) = I(ρA, |+〉). Observe also that initially the
transport distance curve closely follows that of the Bures dis-
tance. Using the Pauli matrices, σi, and the Bloch representa-
tion, ρ±(~τ) := 1

2 (1±~τ ·~σ) for ‖~τ‖ ∈ [0,1], we have

W
(
ρ+(~τ),ρ−(~τ

)
= 1√

2
B
(
ρ+(~τ),ρ−(~τ)

)
. (14)

Another insight into the geometry induced by the transport
distance W is gained by the study of geodesics – trajectories
in the space of states – on which the triangle inequality is sat-
urated for every triple of points. Such geodesics do not exist
for either the root infidelity or for the Bures distance. On the
other hand, the geodesics of the Bures angle metric A exist
and have a nice geometrical interpretation [54] as great circles
on the Uhlmann 3-hemisphere 1

2 S3. When projected onto the
equatorial plane they form ellipses within the real (i.e. y = 0)
slice of the Bloch ball. Interestingly, such geodesics also exist
for the transport metric W , though their shape is more com-
plex, as shown in Fig. 3.

Quantization of an arbitrary classical cost matrix.—In a
more general set-up consider an arbitrary distance function
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FIG. 2: Bounds (10) illustrated in the Bloch ball Ω2. The dis-
tances between the state ρA = 9

201+
1
10 |0〉〈0| and ρB = (1− t)ρA +

t(|+〉〈+|) are shown as a function of t ∈ [0,1] varying along the Eu-
clidean line (red line in the inset).

FIG. 3: The y = 0 section of the Bloch ball Ω2. Solid colored curves
represent the geodesics of the transport metric W , while dashed lines
are ellipses corresponding to the geodesics of the Bures angle A.

on the N-point set X , determined by the matrix Ei j. With any
such classical geometry of X we associate the following quan-
tum cost matrix

CQ
E =

N

∑
j>i=1

Ei j|ψ−i j 〉〈ψ
−
i j |. (15)

Accordingly, for any p≥ 1 we define

T Q
E,p(ρ

A,ρB) := min
ρAB∈ΓQ

(
Tr(CQ

E )
p
ρ

AB), WE,p :=
(
T Q

E,p

)1/p

and prove the following result in SM.

Proposition 4. For any N, any p ≥ 1, and any choice of
classical geometry E, the pth root of the corresponding opti-
mal quantum transport cost, WE,p, is a semidistance on ΩN .

The quantum-to-classical transition.—It is instructive to
compare the quantum transport problem with its classical
counterpart. To this end one embeds classical probability vec-
tors in diagonal density matrices. The following result shows
that the quantum transport cost between two classical states is
always cheaper than the corresponding classical cost (see also
[35]).

Proposition 5. Let ~r,~s be two N-dimensional probability
vectors and let ρcl

~r ,ρcl
~s ∈ ΩN be the corresponding quantum

states defined as (ρcl
~r )i j := riδi j. Then,

T Q(
ρ

cl
~r ,ρcl

~s
)
≤ T cl(~r,~s).

This follows from the fact that the quantum optimization is
performed over a strictly larger set of admissible couplings,
Γcl(~r,~s)⊂ ΓQ(ρcl

~r ,ρcl
~s ).

The quantum-to-classical transition of the transport prob-
lem can be interpreted in terms of decoherence caused by the
interaction of the information processing device with its envi-
ronment. As a simple model (cf. [56]) one can assume that
the quantum cost matrix is acted upon by a dephasing chan-
nel Eα(CQ) = αCQ + (1−α)diag(CQ), with the parameter
α ∈ [0,1] proportional to the l1-coherence [55]. One can then
study the function T Q

α := minρAB∈ΓQ
(

Tr Eα(CQ)ρAB
)
. In the

single-qubit case it is easy to check (see SM) that
√

T Q
α is a

distance on the set of commuting density matrices of order
2. Moreover, it is a strictly decreasing function of α , provided
that the two input states are different and none of them is pure.

Applications.—The introduced SWAP-fidelity offers an
original measure of proximity between quantum states and
thus provides a new tool to quantify protocols of quantum
information processing. Its most promising and straightfor-
ward application pertains to quantum generative adversarial
networks (QGANs) [40, 57]. This protocol of quantum ma-
chine learning [39] consists of a generator, which produces
“fake” data, and a discriminator, which aims at distinguishing
between the real and fake input data. The adversarial training
reaches a fixed point when the generator produces data with
true statistics and the discriminator’s efficiency is 50%. Simi-
lar to with classical GANs, the choice of the distance between
real and fake data is critical for the stability and performance
of the training [38, 41, 58]. In [38] it was argued that problems
with efficiency of quantum learning algorithms [59–62] arise
because the employed measure of proximity diminishes expo-
nentially with the number of qubits. Although the introduced
SWAP-fidelity suffers from the same drawback for pure states
(as it equals to fidelity in this case), it might prove superior for
mixed states because of its super-multiplicativity (5).

In fact, in [41] a QGAN based on the semidistance T Q was
shown to exhibit improved performance over other QGANs.
Furthermore, it is noise tolerant and can be successfully used
to approximate complicated quantum circuits with a limited
number of quantum gates. Our results suggest that the choice
W =

√
T Q is superior to T Q, as it forms a genuine distance.
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Outlook and conclusions.— We studied the quantum trans-
port problem for density matrices of dimension N with a cost
matrix CQ taken to be a projector onto the antisymmetric sub-
space. In the case of any two single-qubit states we presented
a constructive procedure to compute the quantum transport
cost. A more detailed mathematical study is presented in the
companion paper [63].

Inspired by the Wasserstein distance of order 2, we proved
that the square root of the optimal transport cost, W2 =

√
T Q,

yields a distance on the Bloch ball, bounded by the rescaled
Bures distance and the root infidelity. In the general prob-
lem of N-level systems and arbitrary classical geometry E we
showed that an analog of the p-Wasserstein distance Wp yields
a semidistance on the full space of quantum states for any
p ≥ 1. Furthermore, numerical results allow us to conjecture
that
√

W1 enjoys the triangle inequality in full generality.
Given the multifarious applications of the classical Wasser-

stein distances, we expect its quantum analogue to play a piv-
otal role in diverse branches of quantum information process-
ing. Furthermore, the SWAP-fidelity – a novel quantity intro-
duced in this work – is likely to offer new advances in charac-
terizing proximity between quantum states.
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Appendix A: Properties of the quantum optimal transport

In this section we provide some details about the general
quantum optimal transport problem, along with the proof of
Proposition 4 from this article. For a complete mathematically
oriented presentation of the problem the reader is invited to
consult the companion-article [63].

Let H = CN ⊗CN for some N ≥ 2. The SWAP operator
S is a linear operator on H , which acts on product states as
S(|x〉⊗|y〉) = |y〉⊗|x〉=: |y,x〉. Since S2 = 1N2 and S = S† its
eigenvalues are ±1. The Hilbert space H thus admits an or-
thogonal decomposition H = HS⊕HA into symmetric and
antisymmetric subspaces HS and HA, respectively. The for-
mer can be identified with the symmetric complex matrices of
order N2, while the latter with the skew-symmetric ones.

Definition A1. A N2×N2 complex matrix C is called a
quantum cost matrix if it is positive semidefinite, and C X = 0
if and only if the support of X equals to HS.

Explicit examples of quantum cost matrices are provided
by formula (15) in the main body of the article. Note also that
if C is a quantum cost matrix, then so is Cp for any p > 0.

Definition A2. Let C be a quantum cost matrix of dimen-
sion N2. The associated quantum transport cost is a map

T Q
C : ΩN×ΩN → R defined as

T Q
C (ρA,ρB) := min

ρAB∈ΓQ(ρA,ρB)

(
Tr C ρ

AB), (A1)

with the set of quantum couplings

Γ
Q(ρA,ρB) = {ρAB ∈ΩN2 | TrA ρ

AB = ρ
B,TrB ρ

AB = ρ
A}.

Proposition A3. For any quantum cost matrix C, T Q
C is a

convex function on ΩN×ΩN .

Proof. Let ρA,ρB,σA,σB ∈ ΩN and let a ∈ [0,1]. Assume
that ρAB ∈ ΓQ(ρA,ρB) and σAB ∈ ΓQ(σA,σB) are the optimal
quantum couplings, i.e.

T Q
C (ρA,ρB) = Tr C ρ

AB, T Q
C (σA,σB) = Tr C σ

AB.

Define, for any a ∈ [0,1], τAB := aρAB +(1− a)σAB. Then,
τAB ∈ ΓQ

(
aρA +(1−a)σA,aρB +(1−a)σB

)
and

T Q
C (aρ

A +(1−a)σA,aρ
B +(1−a)σB)

≤ Tr C τ
AB = aT Q

C (ρA,ρB)+(1−a)T Q
C (σA,σB). �

The following central result implies Proposition 4 from the
main text, because CQ

E are quantum cost matrices, and if T Q
C is

a semidistance then so is (T Q
C )1/p for any p≥ 0.

Theorem A4. Let C be a N2×N2 quantum cost matrix.
Then T Q

C is a semidistance on the space of N-level quantum
systems ΩN .

Proof. We need to show that, for any ρA,ρB ∈ΩN ,

(i) T Q
C (ρA,ρB)≥ 0,

(ii) T Q
C (ρA,ρB) = 0 if and only iff ρB = ρA,

(iii) T Q
C (ρA,ρB) = T Q

C (ρB,ρA).

(i) Note that because C is positive semidefinite and any
ρAB ∈ ΓQ is a state in ΩN2 , we have Tr C ρAB ≥ 0. Hence,
T Q

C (ρA,ρB)≥ 0 for any ρA,ρB ∈ΩN .
(ii) Suppose first that ρA = ρB = ρ . Given its spectral de-

composition ρ = ∑
N
i=1
√

λi|i〉〈i| we take the purification of ρ:

ρ
pur :=

N

∑
i, j=1

√
λiλ j|i〉|i〉〈 j|〈 j|.

Clearly, ρpur ∈ΓQ(ρ,ρ). Since |i〉|i〉 ∈HS we have, by defini-
tion of the quantum cost matrix, C

(
|i〉|i〉

)
= 0. Consequently,

TrCρpur = 0 and T Q
C (ρ,ρ) = 0.

Suppose now, conversely, that T Q
C (ρA,ρB) = 0. This im-

plies that TrCρAB = 0 for some ρAB ∈ ΓA(ρA,ρB). Consider
its spectral decomposition ρAB = ∑

N2

i=1 µi|Xi〉〈Xi|, where |Xi〉
are vectors in H . We have 〈Xi|C|Xi〉 = 0 for any i, which
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means that |Xi〉 ∈HS. But this implies that TrA ρAB =TrB ρAB,
and hence ρA = ρB.

(iii) A general state in ΓQ(ρA,ρB) ⊂ ΩN2 can be decom-
posed in an orthonormal basis as follows

ρ
AB = ∑

i, j,k,`
ci jk`|i〉| j〉〈k|〈`|. (A2)

Consequently, we have

ρ
A = TrB ρ

AB = ∑
i, j,k

ci jk j|i〉〈k|,

ρ
B = TrA ρ

AB = ∑
j,k,`

ck jk`| j〉〈`|.

Now, the SWAP operator extends to the space ΩN2 and acts
on the basis vector as follows:

S
(
|i〉| j〉〈k|〈`|

)
= S
(
|i〉| j〉

)
〈k|〈`|= | j〉|i〉〈k|〈`|.

Hence, we have

Sρ
ABS† = ∑

i, j,k,`
ci jk`| j〉|i〉〈`|〈k|.

Consequently,

TrB Sρ
ABS† = ∑

j,k,`
ck jk`| j〉〈`|= ρ

B,

TrA Sρ
ABS† = ∑

i, j,k
ci jk j|i〉〈k| = ρ

A.

Hence, SρABS† =: ρBA ∈ ΓQ(ρB,ρA) = SΓQ(ρA,ρB)S†. Re-
call that HS,HA are invariant subspaces of S correspond-
ing to the eigenvalues 1 and −1, respectively. As CHS = 0
and CHA ⊂ HA, it follows that SC = CS = −C, and thus
SCS† =C. Finally, we have

T Q
C (ρA,ρB) = min

ρAB∈ΓQ(ρA,ρB)

(
Tr C ρ

AB)
= min

ρAB∈ΓQ(ρA,ρB)

(
Tr SC S† Sρ

ABS†)
= min

ρBA∈ΓQ(ρB,ρA)

(
Tr C ρ

BA)= T Q
C (ρB,ρA). �

Proposition A5. Let U,V ∈ U(N) be unitary transfor-
mations and let C′ := (U ⊗V )C(U† ⊗V †). Then, for any
ρA,ρB ∈ΩN ,

T Q
C

(
ρ

A,ρB)= T Q
C′
(
Uρ

AU†,V ρ
BV †). (A3)

Proof. Using the representation (A2) of ρAB we quickly de-
duce that

(U⊗V )ρAB(U†⊗V †)

= ∑
i, j,k,`

ci jk`(U |i〉)(V | j〉)(〈k|U†)(〈`|V †).

This implies that

TrA (U⊗V )ρAB(U†⊗V †) =V ρ
BV †,

TrB (U⊗V )ρAB(U†⊗V †) =Uρ
AU†,

which proves

(U⊗V )Γ
Q(ρA,ρB)(U†⊗V †)⊂ Γ

Q(Uρ
AU†,V ρ

BV †).

Similarly, one shows

(U†⊗V †)Γ
Q(Uρ

AU†,V ρ
BV †)(U⊗V )⊂ Γ

Q(ρA,ρB).

Hence,

(U⊗V )ΓQ(ρA,ρB)(U†⊗V †) = Γ
Q(Uρ

AU†,V ρ
BV †).

Now, because

Tr C ρ
AB = Tr(U⊗V )C(U†⊗V †)(U⊗V )ρAB(U†⊗V †)

we obtain

T Q
C (ρA,ρB) = min

ρAB∈ΓQ(ρB,ρA)

(
Tr C ρ

AB)
= min

ρAB∈ΓQ(ρA,ρB)

(
Tr C′ (U⊗V )ρAB(U†⊗V †)

)
= min

σAB∈ΓQ(UρAU†,V ρBV †)

(
Tr C′σAB)

= T Q
C′ (Uρ

AU†,V ρ
BV †). �

Formula (9) announced in the article is a simple conse-
quence of Proposition A4.

Corollary A6. The optimal quantum transport cost with the
cost matrix CQ = 1

2

(
1N2 −S

)
is unitarily invariant:

T Q(
ρ

A,ρB)= T Q(Uρ
AU†,Uρ

BU†), (A4)

for any U ∈ U(N).

Proof. Observe that the cost matrix CQ is unitarily invariant,
(U ⊗U)CQ(U† ⊗U†) = C. Hence the result follows from
Proposition A4 with V =U .

Appendix B: Bounds for the optimal quantum cost

In this Section we prove the inequalities (10) in the main
body of the article based on the results of [28].

Let ρA, ρB be any two states in ΩN . Theorem 10 in [28]
yields

1+F(ρA,ρB)
2 ≤ max

ρAB∈ΓQ
Tr
( 1

2 (1N2 +S)ρAB)≤ 1+
√

F(ρA,ρB)
2 ,

(B1)

where S is the SWAP operator. Because CQ = 1
2

(
1N2 −S

)
we

have

2T Q(ρA,ρB) = 2 min
ρAB∈ΓQ

(
Tr CQ

ρ
AB)= 1− max

ρAB∈ΓQ

(
Tr Sρ

AB).
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Hence, from formula (B1) we deduce that

1−
√

F(ρA,ρB)

2
≤ T Q(ρA,ρB)≤ 1−F(ρA,ρB)

2
.

Furthermore,

1−F(ρA,ρB) =

(
1−
√

F(ρA,ρB)

)(
1+
√

F(ρA,ρB)

)
≤ 2

(
1−
√

F(ρA,ρB)

)
.

After taking the square root of the above inequalities we ob-
tain the desired bounds (10).

We now prove yet another inequality and the last statement
of Corollary 2.

Proposition B1. For any two states ρA,ρB ∈ΩN we have,

T Q(ρA,ρB)≤ 1
2

(
1−Trρ

A
ρ

B). (B2)

Moreover, if either ρA or ρB is pure then

W (ρA,ρB) = 1√
2
I(ρA,ρB) = 1√

2

√
1−TrρAρB. (B3)

Proof. First observe that ρA ⊗ ρB ∈ ΓQ(ρA,ρB), which im-
plies T Q(ρA,ρB) ≤ TrCQ(ρA ⊗ ρB). Now, the well-known
identity TrS(ρA⊗ρB) = TrρAρB (see [51, 64]) yields

Tr(1N2 −S)(ρA⊗ρ
B) = 1−Trρ

A
ρ

B,

and formula (B2) follows.
To prove the second formula we use the fact that if one of

the states ρA, ρB is pure, then ΓQ(ρA,ρB) = {ρA⊗ ρB} (as
explained in [24] and [63]). In such a case the inequality (B2)
is hence saturated.

The middle part of (B3) follows from the known property
of the fidelity, F(|ψ〉〈ψ|,σ) = Tr |ψ〉〈ψ|σ = 〈ψ|σ |ψ〉.

For the sake of completeness, let us also recall the Fuchs–
van de Graaf inequality [65], which relates the quantum fi-
delity to the trace distance, D. For any ρA,ρB ∈ΩN ,

1−
√

F(ρA,ρB)≤ D(ρA,ρB)≤
√

1−F(ρA,ρB). (B4)

This inequality, combined with Ineq. (10) from the main text,
implies that, for any ρA,ρB ∈ΩN ,

W (ρA,ρB)≤
√

D(ρA,ρB).

Appendix C: SWAP-fidelity

In this section we provide the complete proof of Proposition
1, which is based on the general results included in Section A.

For any N the SWAP-fidelity, FS, is a function on ΩN×ΩN
defined as follows:

FS(ρ
A,ρB) := max

ρAB∈ΓQ(ρA,ρB)

(
Tr Sρ

AB).

Proposition C1. For any two states ρA,ρB ∈ΩN we have

a) FS(ρ
A,ρB) = FS(ρ

B,ρA),

b) 0≤ Trρ
A

ρ
B ≤ FS(ρ

A,ρB)≤ 1,

c) FS(ρ
A,ρB) = 1 iff ρ

A = ρ
B,

d) FS(ρ
A,ρB) = 0 iff Trρ

A
ρ

B = 0,

e) FS
(
aρ

A +(1−a)σA,aρ
B +(1−a)σB)≥

≥ aFS
(
ρ

A,ρB)+(1−a)FS
(
σ

A,σB), for a ∈ [0,1],

f ) FS
(
ρ

A,ρB)= FS
(
Uρ

AU†,Uρ
BU†), for U ∈ U(N),

g) F(ρA,ρB)≤ FS(ρ
A,ρB)≤

√
F(ρA,ρB),

h) FS
(
ρ

A⊗σ
A,ρB⊗σ

B)≥ FS
(
ρ

A,ρB)FS
(
σ

A,σB).
Proof. By definition (A1) we have, after setting C = CQ,
FS = 1− 2T Q. Consequently, points a) and c) follow from
Theorem A4, points (iii) and (ii), respectively. Similarly,
point f ) is an immediate consequence of Corollary A6, while
e) follows from Proposition A3, since if T Q is convex, then
2T Q is convex and FS = 1−2T Q is concave. Point b) follows
from Theorem A4 point (i) and inequality (B2). Now, point
g) is a straightforward implication of Ineqs. (B1) proven in
[28]. Then, point d) follows from an analogous property of
the quantum fidelity [44].

Finally, let us address point h). As previously, we set
ρAB ∈ ΓQ(ρA,ρB), σAB ∈ ΓQ(σA,σB) to be the optimal quan-
tum couplings

FS(ρ
A,ρB) = Tr Sρ

AB, FS(σ
A,σB) = Tr Sσ

AB.

Now, define the following bipartite state

τ
AB =U(ρAB⊗σ

AB)U†,

with U : H A⊗H B⊗H A⊗H B→H A⊗H A⊗H B⊗H B

being a reshuffling operator, which acts as U = id⊗ S⊗ id.
Having chosen an orthonormal basis of H A⊗H B we write

ρ
AB = ∑rabcd |a〉|b〉〈c|〈d|,

σ
AB = ∑sefgh |e〉| f 〉〈g|〈h|,

where the summation is over all relevant indices. Then,

τ
AB = ∑rabcd sefgh |a〉|e〉|b〉| f 〉〈c|〈g|〈d|〈h|.

Tracing over the subsystem A yields

TrA τ
AB = ∑rabcd sefgh δac δeg |b〉| f 〉〈d|〈h|

= ∑rabad sefeh |b〉| f 〉〈d|〈h|= ρ
B⊗σ

B.

Analogously, one shows that TrB τAB = ρA⊗σA, hence τAB ∈
ΓQ(ρA⊗σA,ρB⊗σB). For such a coupling we have

TrSτ
AB = Tr ∑rabcd sefgh |b〉| f 〉|a〉|e〉〈c|〈g|〈d|〈h|

= ∑rabba sef fe =
(

TrSρ
AB)(TrSσ

AB)
= FS

(
ρ

A,ρB)FS
(
σ

A,σB).
Since TrSτAB ≤ FS

(
ρA⊗σA,ρB⊗σB

)
, point h) follows.
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Appendix D: Single-qubit transport problem: general case

The key result in the single-qubit transport problem with
cost matrix CQ = 1

2

(
14−S

)
is the following:

Theorem D1. For any ρA,ρB ∈Ω2 we have

T Q(ρA,ρB) = max
U∈U(2)

1
2

(√
(U†ρAU)11−

√
(U†ρBU)11

)2

,

(D1)
where ρ11 denotes the upper-left entry of a 2×2 matrix ρ .

The complete proof presented in [63] relies on the fact that
rank of an extreme point ρAB ∈ΓQ(ρA,ρB) is always at most 2
for ρA,ρB ∈ Ω2 and the equivalence of the original quantum
transport problem to the so-called “dual problem” (see also
[41]):

Proposition D2. Let ρA,ρB ∈ΩN and let C be any quantum
cost matrix. Then,

T Q
C (ρA,ρB) = sup

{
Tr
(
σ

A
ρ

A +σ
B

ρ
B) ∣∣∣ σ

A,σB ∈ HN ,

C−σ
A⊗1N−1N⊗σ

B ≥ 0
}
,

where HN denotes the set of Hermitian N×N matrices. If ρA

and ρB are positive definite then the supremum is achieved.

We now introduce a convenient notation for qubits in the
y = 0 section of the Bloch ball. Let O denote the rotation
matrix

O(θ) =

[
cos(θ/2) −sin(θ/2)
sin(θ/2) cos(θ/2)

]
, for θ ∈ [0,2π),

and using the Pauli matrices σi define, for r ∈ [0,1],

ρ(r,θ) := O(θ)

[
r 0
0 1− r

]
O(θ)>

= (2r−1)
(

sinθσ1 + cosθσ3
)
.

Because of unitary invariance (A4), the quantum transport
problem between two arbitrary qubits ρA,ρB ∈ Ω2 can be re-
duced to the case ρA = ρ(s,0) and ρB = ρ(r,θ), with three
parameters, s,r ∈ [0,1] and θ ∈ [0,2π). The parameter θ is
the angle between the Bloch vectors associated with ρA and
ρB. With such a parametrization we can further simplify the
single-qubit transport problem.

Observe first that if s ∈ {0,1} then ρA is pure, and if r ∈
{0,1} then ρB is pure. In any such case an explicit solution of
the qubit transport problem is given by formula (B3).

Theorem D3. Let ρA = ρ(s,0),ρB = ρ(r,θ) and assume
that 0 < r,s < 1. Then

T Q(ρA,ρB) = (D2)

max
φ∈Φ(s,r,θ)

1
4

(√
1+(2s−1)cosφ −

√
1+(2r−1)cos(θ +φ)

)2
,

where Φ(s,r,θ) is the set of all φ satisfying the equation

(2s−1)2 sin2
φ

1+(2s−1)cosφ
=

(2r−1)2 sin2(θ +φ)

1+(2r−1)cos(θ +φ)
. (D3)

Furthermore, the set Φ(s,r,θ) has at most 6 elements.

Proof. A unitary 2×2 matrix U can be parametrized, up to a
global phase, with three angles α,β ,φ ∈ [0,2π),

U =

[
eiα 0
0 e−iα

]
O(φ)

[
eiβ 0
0 e−iβ

]
.

We thus have

(U†
ρ(r,θ)U)11 =: f (r,θ ;α,φ) =

1
2

(
1+(2r−1)

(
cos(θ)cos(φ)+ cos(2α)sin(θ)sin(φ)

))
.

This quantity does not depend on the parameter β , so we can
set β = 0. Note also that f (s,0;α,φ) does not depend on α .
With ρA = ρ(s,0),ρB = ρ(r,θ), Theorem D1 yields

T Q(ρA,ρB) = max
α,φ∈[0,2π)

(√
f (s,0;0,φ)−

√
f (r,θ ;α,φ)

)2
.

Now, note that the equation ∂α f (r,θ ;α,φ) = 0 yields the ex-
treme points α0 = kπ/2, with k ∈ Z. Since f (r,θ ;α +π,φ) =
f (r,θ ;α,φ) we can take just α0 ∈ {0,π/2}. Consequently,

T Q(ρA,ρB) = max
φ∈[0,2π)

{g−(s,r,θ ;φ),g+(s,r,θ ;φ)},

where we introduce the auxilliary functions

g±(s,r,θ ;φ) := (D4)

1
4

(√
1+(2s−1)cosφ −

√
1+(2r−1)cos(θ ±φ)

)2
.

But since g−(s,r,θ ;2π − φ) = g+(s,r,θ ;φ) we can actually
drop the± index in the above formula. In conclusion, we have
shown that it is sufficient to take U = O(φ) for φ ∈ [0,2π) in
formula (D1).

Finally, it is straightforward to show that the equation
∂φ g(s,r,θ ;φ) = 0 is equivalent to (D3). Hence, Φ(s,r,θ) is
the set of extreme points, and (D2) follows.

It remains to show that the set Φ(s,r,θ) can have at most 6
elements. To this end set z = eiφ ,ζ = eiθ . Then (D3) reads

(1−2r)2 [(2s−1)
(
z2 +1

)
+2z

](
ζ

2z2−1
)2

(D5)

−ζ (1−2s)2 (z2−1
)2 [

(2r−1)
(
ζ

2z2 +1
)
+2ζ z

]
= 0.

This a 6th order polynomial equation in the variable z. Clearly,
since we must have |z| = 1, not every complex root of (D5)
will yield a real solution to the original (D3). Nevertheless, it
can be shown that there exist open sets in the parameter space
s,r ∈ (0,1), θ ∈ [0,2π) on which (D3) does have 6 distinct
solutions [63].

We have thus shown that the general solution of the quan-
tum transport problem of a single qubit with cost matrix
CQ = 1

2

(
14− S

)
is equivalent to solving a 6th degree poly-

nomial equation with certain parameters. For some specific
values of these parameters an explicit analytic solution can be
given. This is discussed in the next two sections of this Sup-
plemental Material.
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Appendix E: Single-qubit transport problem:
commuting density matrices

A closed formula for the single-qubit optimal transport cost
is available when both states are classical, i.e. represented by
diagonal density matrices.

Proposition E1. Let ρcl
r = diag(r,1 − r) and ρcl

s =
diag(s,1− s), for r,s ∈ [0,1]. Then,

T Q(
ρ

cl
r , ρ

cl
s
)
= 1

2 max
{(√

r−
√

s
)2
,
(√

1− r−
√

1− s
)2
}
.

Proof. Clearly, if s = r then the states coincide and the trans-
port cost vanishes. Assume then that s 6= r. (D3) yields

(2s−1)2 sin2
φ

1+(2s−1)cosφ
=

(2r−1)2 sin2
φ

1+(2r−1)cosφ
. (E1)

This shows that 0,π ∈ Φ(r,s,0), and both are double roots of
(E1). Then (D4) then immediately yields

g(r,s,0;0) = 1
2

(√
r−
√

s
)2
,

g(r,s,0;π) = 1
2

(√
1− r−

√
1− s

)2
.

There is yet another solution to (E1), which reads

cosφ0 =
2(1− r− s)

(2r−1)(2s−1)
. (E2)

Note, however, that the absolute value of the RHS of (E2) can
become larger than 1 when s or r is close to 1/2. In either
case, one can quickly convince oneself that if φ0 ∈ [0,2π),
then actually g(r,s,0;φ0) ≤ g(r,s,0;0) and g(r,s,0;φ0) ≤
g(r,s,0;π).

An alternative proof based on the classical transport prob-
lem is provided in [63].

Assume now that one of the states is maximally mixed,
say ρA = 1

212, and let U ∈ U(2) be such that UρBU† =
diag(λ ,1−λ ). Then

T Q(ρA,ρB) = T Q(ρA,Uρ
BU†) = T Q(ρcl

1/2,ρ
cl
λ
)

= 1
4 max

{(
1−
√

2λ
)2
,
(
1−
√

2(1−λ )
)2}

.

This fact implies Eq. (12) in the main body of the article.

Formula (14) presented in the article is a simple conse-
quence of Proposition E1. For a vector ~τ ∈ R3 with ‖~τ‖ ∈
[0,1] define ρ±(~τ) := 1

2 (1±~τ ·~σ)∈Ω2, with the Pauli matri-
ces σi.

Corollary E2. We have

W
(
ρ+(~τ),ρ−(~τ

)
= 1√

2
B
(
ρ+(~τ),ρ−(~τ)

)
=

√
1−
√

1−‖~τ‖2.

Proof. For any ~τ the density matrices ρ±(~τ) commute and
hence can be simultaneously diagonalized. Let us denote by
r := 1

2

(
1+‖~τ‖

)
. Then, by unitary invariance of T Q, we have

T Q(
ρ+(~τ),ρ−(~τ

)
= T Q(

ρ
cl
r ,ρcl

1−r
)
.

Proposition E1 yields

T Q(
ρ

cl
r ,ρcl

1−r
)
= 1−2

√
r(1− r) = 1−

√
1−‖~τ‖2.

On the other hand, exploiting the fact that quantum fidelity is
also unitary invariant, we obtain

F
(
ρ+(~τ),ρ−(~τ

)
= F

(
ρ

cl
r ,ρcl

1−r
)
=
√

1−‖~τ‖2.

Since B(ρA,ρB) =
√

2(1−
√

F(ρA,ρB), the assertion fol-
lows.

Appendix F: Single-qubit transport problem:
two isospectral density matrices

In this section we prove, using Theorem D3, formula (13)
announced in the main text. Assume that the spectra of
ρA,ρB ∈ Ω2 are equal. Because of unitary invariance (A4)
and using the parametrization introduced in Sec. D, without
loss of generality we can set ρA = ρ(s,0) and ρB = ρ(s,θ)
for some s ∈ [0,1] and θ ∈ [0,2π). Then the following result
implies (13).

Theorem F1. For any s ∈ [0,1] and θ ∈ [0,2π) we have

T Q(
ρ(s,0),ρ(s,θ)

)
=
(

1
2 −
√

s(1− s)
)

sin2(θ/2). (F1)

Proof. Note first that if the states ρA,ρB are pure, i.e. s = 0 or
s = 1, formula (F1) gives T Q

(
ρ(s,0),ρ(s,θ)

)
= 1

2 sin2(θ/2),
which agrees with (B3).

From now on we assume that that ρA,ρB are not pure.
When r = s, (D5) simplifies to the following:

(ζ −1)(1−2s)2 (
ζ z2−1

)
× (F2)

×
[
4s(ζ +1)

(
ζ z2 +1

)
z+(2s−1)(z−1)2(ζ z−1)2]= 0.

Eq. (F2) is satisfied when z = ±ζ−1/2. This corresponds
to φ0 = −θ/2 or φ ′0 = π − θ/2. Observe, however, that we
have g(s,s,θ ;φ0) = g(s,s,θ ;φ ′0) = 0, so we can safely ignore
φ0,φ

′
0 ∈Φ(s,s,θ) in the maximum in (D2).

Hence, we are left with a 4th order equation

4s(ζ +1)
(
ζ z2 +1

)
z+(2s−1)(z−1)2(ζ z−1)2 = 0, (F3)

which, converting back to the variables θ ,φ , reads

(2s−1)
[
2+ cos(θ +2φ)+ cos(θ)

]
+

+2
[

cos(θ +φ)+ cos(φ)
]
= 0. (F4)

Now, observe that if φ satisfies (F4), then so does φ ′ =−φ −
θ . This translates to the fact that if z satisfies (F3), then so
does (zζ )−1. Furthermore, g(s,s,θ ;φ) = g(s,s,θ ;φ ′). Hence,
in the isospectral case we are effectively taking the maximum
over just two values of φ .
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Let us now seek an angle φ1 ∈ [0,2π) such that g(s,s,θ ;φ1)
equals the RHS of (F1). The latter equation reads{
(2s−1)

[
cos(θ +φ1)+ cos(φ1)

]
−
(
2
√

s(1− s)−1
)(

cos(θ)−1
)
+2
}2

= 4
[
(2s−1)cos(φ1)+1

][
(2s−1)cos(θ +φ1)+1

]
.

In terms of z and ζ , the above is equivalent to a 4th order
polynomial equation in z, which can be recast in the following
form:[

ζ (1−2s)z2 +(ζ +1)
(
2
√

s(1− s)−1
)
z−2s+1

]2
= 0.

(F5)

Hence, (F5) has two double roots:

z±1 =
[
2ζ (1−2s)

]−1
{
(ζ +1)

(
1−2

√
s(1− s)

)
±
√
(ζ +1)2

(
1−2

√
s(1− s)

)2−4ζ (1−2s)2

}
.

Furthermore, one can check that z−1 = (ζ z+1 )
−1. Now, it turns

out that z±1 are also solutions to (F3). We thus conclude that
φ1,φ

′
1 ∈Φ(s,s,θ).

We now divide the polynomial in (F3) by (z− z+1 )(z− z−1 ).
We are left with the following quadratic equation

ζ

[
(2s−1)

(
ζ z2 +1

)
+(ζ +1)

(
2
√
(1− s)s+1

)
z
]
= 0.

Its solutions are

z±2 =
[
2ζ (1−2s)

]−1
{
(ζ +1)

(
1+2

√
s(1− s)

)
±
√
(ζ +1)2

(
1+2

√
s(1− s)

)2−4ζ (1−2s)2

}
.

Again, we have z−2 = (ζ z+2 )
−1, in agreement with the sym-

metry argument. Setting z+2 =: eiφ2 and z−2 =: eiφ ′2 we have
φ2,φ

′
2 ∈Φ(s,s,θ). Then we deduce

g(s,s,θ ;φ2) = g(s,s,θ ;φ
′
2)

= 1
4

[
(1−6

√
(1− s)s−

(
1+2

√
(1− s)s

)
cos(θ)

]
.

Finally, we observe that

g(s,s,θ ;φ1)−g(s,s,θ ;φ2) =
√
(1− s)s

(
1+ cos(θ)

)
≥ 0.

This shows that, for any s ∈ (0,1), θ ∈ [0,2π),

T Q(
ρ(s,0),ρ(s,θ)

)
= g(s,s,θ ;φ1),

and (F1) follows.

Note that g(s,s,θ ;φ2) can become negative for certain val-
ues of s and θ . This means that for such values Φ(s,s,θ) =
{φ0,φ

′
0,φ1,φ

′
1}.

Appendix G: The triangle inequality for the transport distance

Given Theorem D1, the triangle inequality for W =
√

T Q

comes as an immediate corollary.
Indeed, let ρA,ρB,ρC ∈ Ω2, and let U0 ∈ U(2) denote the

unitary matrix which gives the maximum of T Q(ρA,ρC) in
(D1). Then we have

W (ρA,ρC) = 1√
2

∣∣∣√(U†
0 ρAU0)11−

√
(U†

0 ρBU0)11

∣∣∣
≤ 1√

2

∣∣∣√(U†
0 ρAU0)11−

√
(U†

0 ρBU0)11

∣∣∣
+ 1√

2

∣∣∣√(U†
0 ρBU0)11−

√
(U†

0 ρCU0)11

∣∣∣
≤W (ρA,ρB)+W (ρB,ρC).

Recall also that if W is a metric, then so is h(W ) for any
concave function h. Since Wp = (T Q)1/p = W 2/p and x2/p is
a concave function on R+ for p≥ 2, we conclude that Wp is a
distance on Ω2 for any p≥ 2.

On the other hand, we stress that W1 = T Q does not satisfy
the triangle inequality, and thus it is not a distance on qubits,
but only a semidistance. Furthermore, it is possible to show
[63] that the triangle inequality also fails for p ∈ (1,2).

Appendix H: Quantum-to-classical transition of the optimal
transport problem

In this section we study the quantum-to-classical transition
of the transport problem. We assume that decoherence occurs
through a dephasing channel (cf. [56, 66]). The latter is a
superoperator Eα , parametrized by α ∈ [0,1], which acts as

Eα(A) = αA+(1−α)diag(A),

for any matrix A ∈B(CN) ' CN×N . For α = 1, the channel
E1 is the identity, while for α = 0 it gives a diagonal matrix.
For a state ρ ∈ ΩN , the parameter α is proportional to the l1-
coherence [55] of the state ρα := Eα(ρ). In terms of physical
models, the decoherence parameter is time dependent: α =
e−Γt , where Γ characterizes the interaction of the system with
an environment, e.g. through scattering processes.

Suppose first that the input states ρA,ρB ∈ ΩN suffer from
decoherence, while the cost matrix CQ is fixed. Then,

Proposition H1 The optimal quantum transport cost be-
tween two density matrices ρA

α 6= ρB
α ∈ΩN decreases with the

parameter α ,

T Q(ρA
α ,ρ

B
α )≤ T Q(ρA

β
,ρB

β
), for 0≤ α ≤ β ≤ 1.

Proof. We first show that

T Q(diag(ρA),diag(ρB)
)
≤ T Q(ρA,ρB). (H1)

To this end let DN ⊂ U(N) be the subgroup of diagonal
matrices with diagonal entries ±1. Proposition A5 yields
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T Q(ρA,ρB) = T Q(DρAD†,DρBD†) for any D ∈ DN . Recall
also that |DN |= 2N . Now note that

diag(ρ) = 2−N
∑

D∈DN

DρD†,

for any ρ ∈ΩN . Then the convexity of T Q (recall Proposition
A3) implies

T Q(diag(ρA),diag(ρB)
)
≤ 2−N

∑
D∈DN

T Q(Dρ
AD†,Dρ

BD†)

= T Q(ρA,ρB).

Now assume that 0≤ α ≤ β ≤ 1. We can then write

ρα := αρ +(1−α)diag(ρ)

= α
[
β
−1

ρβ +(1−β
−1)diag(ρ)

]
+(1−α)diag(ρ)

= αβ
−1

ρβ +(1−αβ
−1)diag(ρ).

Because αβ−1 ∈ [0,1] we can again invoke the convexity of
T Q to conclude that

T Q(ρA
α ,ρ

B
α )≤ αβ

−1T Q(ρA
β
,ρB

β
)

+(1−αβ
−1)T Q(diag(ρA),diag(ρB)

)
≤ T Q(ρA

β
,ρB

β
).

The last inequality follows from (H1) because diag(ρβ ) =
diag(ρ).

Suppose now that decoherence affects the quantum cost
matrix C. Note, however, that Cα = Eα(C) is not a quan-
tum cost matrix (recall Def. A1) for α < 1. On the other
hand, C0 is a diagonal matrix which can be identified with
the cost matrix of the corresponding classical problem. The
transition between the quantum and classical optimal trans-
port problem can be studied with the help of the function
T Q

C,α := minρAB∈ΓQ
(

Tr Eα(C)ρAB
)
.

We now focus on the case N = 2, C = CQ = 1
2

(
14− S

)
and denote T Q

α := T Q
CQ,α

For more general results, the reader
is invited to consult [63].

Let us denote by Ωcl
2 the subset of all commuting density

matrices of order 2. We have the following result:

Theorem H2. For any r,s ∈ [0,1] let s0,r0 be defined by

(
√

r0−
√

s0)
2 := max

{(√
r−
√

s
)2
,
(√

1− r−
√

1− s
)2
}
.

Then for any ρcl
r ,ρcl

s ∈Ωcl
2 ,

T Q
α (ρcl

r ,ρcl
s ) = (H2){

1
2

√
1−α2 |r0− s0|, for 0≤ α <

2
√

r0s0
r0+s0

,
1
2 (
√

r0−
√

s0)
2 +(1−α)

√
r0s0, for 2

√
r0s0

r0+s0
≤ α ≤ 1.

This result can be derived as a variant of the classical trans-
port problem [63].

From (H2) it is obvious that T Q
α is positive, symmetric and

vanishes if and only if r = s. One can also quickly check

that W α =

√
T Q

α obeys the triangle inequality. Hence, W α is
actually a distance on Ωcl

2 for any α ∈ [0,1].
Observe also that if either of the states, say ρcl

r , is pure, then
r0 = 0 and the transport cost T Q

α (ρcl
r ,ρcl

s ) does not depend on
α . In particular, for ρcl

r pure we have

T Q(ρcl
r ,ρcl

s ) = T cl(ρcl
r ,ρcl

s ).

Formula (H2) also implies that if neither of the classical
states is pure and r 6= s, then T Q

α is a strictly decreasing func-
tion of α:

α < β ⇒ T Q
α (ρcl

r ,ρcl
s )> T Q

β
(ρcl

r ,ρcl
s ).

This shows that decoherence always increases the cost of the
optimal transport.

For α = 0 we have W 0(diag(r,1 − r),diag(s,1 − s)) =√
|r− s|/2, which is the classical 2-Wasserstein distance [67]

between probability vectors pA = (r,1−r) and pB = (s,1−s).
Hence, W α interpolates continuously between W 0 =W cl and
its quantum analogue W 1 = W . Furthermore, for two classi-
cal mixed states ρA 6= ρB, the distance W α(ρA,ρB) is a strictly
decreasing function of α . The full pattern of decoherence of
the quantum optimal transport, illustrated in Fig. 4, is rather
involved.
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α  0.98

α  1

0.2 0.4 0.6 0.8 1.0
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0.6
W

α

t

FIG. 4: An illustration of quantum-to-classical transition of
the transport problem. The plot shows how the distance
W α (diag(0.3,0.7),diag(t,1− t)) increases with the coherence pa-
rameter decreasing from α = 1 (quantum) to α = 0 (classical) case.

Appendix I: Cost matrices for larger dimensions

Let us discuss here the transport distance between two
mixed states of size N > 2. In the case of a qutrit (N = 3)
the quantum cost matrix (Eq. (6) in the main body of the ar-
ticle) for the configuration of the equilateral triangle, E12 =



12

E13 = E23 = 1, takes the form

CQ :=
1
2



0 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0
0 0 1 0 0 0 −1 0 0
0−1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0
0 0 0 0 0−1 0 1 0
0 0 0 0 0 0 0 0 0


. (I1)

Observe that the above matrix can be taken to block-
diagonal form by a suitable permutation. Note that the corre-
sponding classical cost function, Ccl = diag(CQ), in two-index
notation, reads Ccl

i j,i j = 1 if i 6= j and Ccl
ii,ii = 0.

Numerical results suggest that, as in the qubit case, the
root transport cost for qutrits, W =

√
T Q, satisfies the tri-

angle inequality, while the latter fails for W1 = T Q. We
have also checked that this extends to ququarts (N = 4), with
CQ = 1

2

(
116−S

)
.

It is also natural to consider a set of three ordered points
on a line equipped with the Euclidean distance, E12 =
E23 = 1,E13 = 2. The corresponding classical cost matrix
is defined as

(Ccl
E )i j,i j = |i− j|, i, j = 1, . . . ,N. (I2)

The quantization (Eq. (15) in the main body of the article) of
such Ccl

E reads

CQ
E :=

1
2



0 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0
0 0 2 0 0 0 −2 0 0
0−1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −1 0
0 0 −2 0 0 0 2 0 0
0 0 0 0 0−1 0 1 0
0 0 0 0 0 0 0 0 0


, (I3)

so that CQ
E ≥ 0 and diag(CQ

E ) =Ccl
E .

Under such a choice the quantum Kantorovich–Wasserstein
distance is no longer unitarily invariant, as the distance from
|1〉 to |3〉 is larger than from |1〉 to |2〉, but such a property is
desirable to get the correct classical limit [14, 15].

To generalize this expression for an arbitrary dimension N
we can use the notion of maximally entangled states |ψ−i j 〉
which act on a two dimensional subspace. The correspond-
ing cost matrix for the transport problem is then given by a
weighted combination of projections onto antisymmetric sub-
spaces,

CQ
E =

N

∑
j>i=1

|i− j| |ψ−i j 〉〈ψ
−
i j |. (I4)

Observe that, in contrast to the simplex case, such CQ
E is no

longer a projection, and the quantum transport cost T Q
E,p does

depend on the choice of parameter p ≥ 1. We have checked

numerically that while
√

T Q
E,1 seems to enjoy the triangle in-

equality, this is not the case for either
√

T Q
E,2 or T Q

E,1.
Based on numerical results we are tempted to conjecture

that for any classical geometry E on the N-point space and
any three quantum states ρA,ρB,ρC ∈ΩN one has√

T Q
E,1(ρ

A,ρB)+
√

T Q
E,1(ρ

A,ρB)≥
√

T Q
E,1(ρ

A,ρB).

Moreover, the two quantities
√

T Q
E,2 and T Q

E,1 give distances
between basis states |i〉 and | j〉 consistent with the classical
distance matrix Ei j.

Appendix J: Coupling matrices in the Fano form

When analyzing density matrices of order N = 2 it is con-
venient to use the set of three Pauli matrices, which gener-
ate the group SU(2). These traceless matrices, often denoted
as σ1,σ2 and σ3, together with the identity matrix, σ0 := 12,
form an orthogonal basis in the Hilbert-Schmidt space of Her-
mitian matrices of dimension 2. Hence, any 2× 2 Hermitian
matrix ρ can be expanded in this basis,

ρ =
1
2

σ0 +
1
2

3

∑
i=1

τiσi, (J1)

where the expansion coefficients are given by τi = Trρσi.
Since the state ρ is Hermitian these three numbers are real.
The vector τ of length three is called the Bloch vector of ρ ,
and if its length satisfies condition ‖τ‖2 ≤ 1 , then the matrix
ρ is positive semidefinite and represents a legitimate quantum
state [1].

In the general case of a state ρ of dimension N the general-
ized Bloch vector τ consists of N2−1 components, and the set
of three Pauli matrices is replaced by the collection of N2−1
traceless Hermitian matrices Λi which satisfy the orthogonal-
ity relation TrΛiΛ j = 2δi j and generate the group SU(N). This
yields the expansion

ρ =
1
N
1N +

1
N

N2−1

∑
i=1

τiΛi. (J2)

Usually the order of the generators is not relevant, but for
our purposes it is convenient to select first N−1 generators Λi
as diagonal ones. Then any classical probability vector p of
size N from the probability simplex, ∆N , can be expressed in
its Bloch form, which can be considered as a special case of
formula (J2) above,

p =
1
N

diag(1N)+
1
N

N−1

∑
i=1

τi diag(Λi). (J3)

Here the first N − 1 generators {Λi}N−1
i=1 are represented by

diagonal traceless matrices of dimension N. The first term
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simply represents the flat vector, p∗ = (1, . . . ,1)/N, while the
second one describes the translation vector τ̃ inside the sim-
plex, which consists of the first N−1 components of the Bloch
vector τ of length N2−1.

Now consider an arbitrary state ρAB of a bipartite N ×N
system. In full analogy with the Bloch representation (J2),
one can expand it in the product basis, Λi ⊗Λ j with i, j =
0, . . .N2−1. In this way one arrives at the Fano representation
[68] of a bipartite state,

ρ
AB =

1
N2

N2−1

∑
i, j=0

Mi jΛi⊗Λ j, (J4)

where Mi j =
N2

4 TrρABΛi⊗Λ j. Since we have selected Λ0 =
1N2 , the matrix of coefficients Mi j takes the form

M =

[
1 aT

b R

]
, (J5)

where R is a real correlation matrix of order N2 − 1, while
the vectors a and b of length N2−1 determine the Bloch vec-
tors of both partial traces, a = τA, ρA = TrBρAB, and b = τB,
ρB = TrAρAB, respectively. This representation is useful to
determine the maximal fidelity of a given two-qubit state with
respect to maximally entangled states [69], and to formulate
separability criteria for bipartite systems [70]. The matrix (J5)
allows us to represent any bipartite state by specifying both lo-
cal states and their correlations, ρAB = ρAB(τA,τB,R).

In the special case of a diagonal state ρAB, any bipar-
tite probability vector pAB ∈ ∆N2 can be written as pAB =
pAB(τ̃A, τ̃B, R̃). Here τ̃A and τ̃B denote vectors formed from
the first N−1 components of the Bloch vectors τA and τB, re-
spectively, which, according to (J3), determine both marginal
probability vectors, pA and pB. The classical correlation ma-
trix R̃ of order N − 1 forms the upper left corner of the full
correlation matrix R of order N2−1 in (J5).

In the one-qubit case, N = 2, the real matrix R of order
three can be taken to diagonal form via real singular value
decomposition, R→ R′ = O1RO2 where O1,O2 ∈ SO(3), so
that R′ is diagonal and its entries v1,v2,v3, are real and can be
negative. If both partial traces of ρAB are maximally mixed,
ρA = ρB = 1/2, so that both Bloch vectors vanish, τA = τB =
0, the correlation matrix R represents a positive density matrix
ρAB if the vector ~v of three real singular values of R belongs
to the regular tetrahedron inscribed in the cube [−1,1]3 – see
[69]. In the general case of larger dimensions and non-zero
Bloch vectors the conditions for the correlation matrix R to
assure positivity of the state ρAB are not easy to provide in an
analytical form, so one has to rely on numerical techniques.

The Fano form (J4) of a bipartite state is useful to describe
the set ΓQ of couplings in the quantum transport problem. As
the vectors a and b of length N2− 1 appearing in the matrix
(J5) represent both partial traces, we need to fix them by the
Bloch vectors τA and τB of the analyzed states ρA and ρB.
Thus, the minimization in Eq. (8) in the main body of the
article is taken over the set of correlation matrices R for which

the density matrix ρAB determined by matrix (J5) is positive
semidefinite,

Γ
Q(ρA,ρB) = {ρAB(τA,τB,R) : ρ

AB ≥ 0}. (J6)

We recall here some properties of the set of couplings and
the extremal points of this set analyzed in [71–73]:

For any two states ρA and ρB of dimension N the set
Γq(ρA,ρB) of admissible couplings:

a) includes the product state, ρA⊗ρB ∈ Γq(ρA,ρB).
b) forms a convex subset of the set ΩN2 of all bipar-

tite states. If ρAB(τA,τB,R1) ∈ Γq and ρAB(τA,τB,R2) ∈ Γq,
then any convex combination thereof forms a density matrix,
xρAB(τA,τB,R1)+(1−x)ρAB(τA,τB,R2)∈ Γq for x∈ [0,1], as
any convex combination of two positive matrices is positive.

c) contains a state of rank one (a projector onto a pure
state) iff both arguments have the same spectrum: |ψ〉〈ψ| ∈
Γq(ρA,ρB)⇔ Eig(ρA) = Eig(ρB). This statement holds as
for any pure state in a bipartite system both reduced density
matrices (obtained by partial traces) have the same spectrum,
so that they are unitarily similar, ρB =UρAU†. The spectrum
of reduced states determines the Schmidt vector [1] of the bi-
partite pure state |ψ〉.

As a minimum of a linear function over a convex set is at-
tained at its boundary, due to item c) above the extreme of
the quantum transport problem in the case of two states with
different spectra can be achieved for a bipartite state ρAB of
rank 2,3, . . . ,N2 − 1. The question concerning the relation
between the spectrum of a bipartite state ρAB and the spec-
tra of its partial traces, ρA and ρB, is known as the quantum
marginal problem. In the simplest case of two states of size
N = 2 this problem was solved by Bravyi [74], while a gen-
eral theory providing the solution for larger dimensions was
developed by Klyachko [75].

Appendix K: Transport problem and quantum operations

A completely positive, trace preserving linear map Φ acting
on the set ΩN of quantum states is called a quantum operation
or quantum channel. Its action on a given state ρ can be con-
veniently written in Kraus form, ρ ′ = Φ(ρ) = ∑

r
j=1 K jρK†

j .
The number r of Kraus operators K j is arbitrary, but to ensure
the trace preserving condition they must satisfy the identity
resolution ∑

r
j=1 K†

j K j = 1 – see [1].
Making use of the Bloch representation (J2), let us repre-

sent the initial state ρ by the Bloch vector τ and its image ρ ′

by the transformed vector τ ′. In this way one can rewrite any
quantum operation as a linear action on Bloch vectors,

τ
′ = Qτ +κ, (K1)

where the real distortion matrix Q has dimension N2−1, and
κ is a translation vector of the same length, which vanishes for
unital maps. Hence, the superoperator Φ can be represented
by an asymmetric real matrix of order N2,

Φ =

[
1 0
~κ Q

]
. (K2)
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The above form, also called the Liouville representation of
a map [76, 77], is convenient for spectral analysis: the spec-
trum of the superoperator Φ consists of the leading Frobenius–
Perron eigenvalue, λ1 = 1, and the N2− 1 eigenvalues of the
real matrix Q, which can be complex.

Apparent similarity between the form (K2) of an arbitrary
operation Φ and the matrix (J5) is not accidential, as it is
a consequence of representing the Jamiołkowski–Choi state
J = (Φ⊗1)|φ+〉〈φ+| belonging to the extended space of size
N×N in Fano form. Here |φ+〉 = 1√

N ∑
N
j=1 | j, j〉 denotes the

maximally entangled Bell state [1]. Note that the vector a in
(J5) vanishes due to the trace-preserving condition.

Returning now to the transport problem and the set
ΓQ(ρA,ρB) of admissible couplings (J6), we see that in gen-
eral the Fano form (J5) does not describe quantum operations
which send the initial state ρA to the final state ρB. In fact, for
an arbitrary initial Bloch vector a = τA 6= 0, the correspond-
ing transformation Φ is not trace preserving. However, in the
particular case of an initial state which is maximally mixed,
ρA = 1/N, the corresponding Bloch vector vanishes, τA = 0,
and the final Bloch vector, τB =QτA+b, indeed represents the
final state ρB with the Bloch vector τB = b. In such a case op-

timization over the set of all admissible couplings ΓQ can be
considered as optimization over the set of quantum operations,
parametrized by the distortion matrix Q, which transforms the
initial maximally mixed state, ρA = 1/N, into the final state
ρB, as expected in the transport problem.

The dual condition, b = 0, corresponds to unital maps
which preserve identity, so bistochastic operations, a = b = 0,
are represented by Choi matrices with both states maximally
mixed. Extremal points of the set of these tracial states were
analyzed by Ohno [78].

Note that the cost matrix CQ of order 4, defined in Eq. (7)
in the main body of the article, forms the Choi matrix corre-
sponding to the rotation Φy with respect to the y axis,

CQ = (Φy⊗1)|φ+〉〈φ+|= (σ2⊗1)|φ+〉〈φ+|(σ2⊗1), (K3)

equivalent to the projector onto the singlet state |ψ−〉.

The problem of quantum optimal transport was recently re-
lated to the question of determining the distinguished quantum
channel that, for a given input state, produces a prescribed out-
put state [32, 79].
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