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QUANTUM MONTE CARLO CALCULATION OF THE SINGLET-TRIPLET SPLITTING IN 
METHYLENE * 

Abstract 

Peter J. Reynolds. Michel Dupuis. t and William A. Lester. Jr. * 
Materials arid Molecular Research Division 

Lawrence Berkeley Laboratory 
University of California 

Berkeley. California 94720 

The fixed-node quantum Monte Carlo (QMC) method is used to calculate the 

total energy of CH
2 

in the ~1 and 1A1 states. For both states. the best QMC 

variationally bounded energies lie more than 15 kcal/mole (0.024 h) below the 

best previous variational calculations. Subtracting these energies to obtain the 

singlet-triplet splitting yields Ta = 9.4 ± 2.2 kcal/mole. Adjusting for zero-point 

energies and relativistic effects. we obtain To =8.9±2.2 kcal/mole. This result is 

in excellent agreement with the recent direct measurements of McKellar et. ai. 

of To =9.05±0.06 kcal/mole. and of Leopold et. ai. of "'9 kcal/mole. as well as 

with recent theoretical investigations which indicate an energy gap of 9-11 

kCal/mole. We summarize the QMC method. discuss a possible scheme for itera-

tively correcting the procedure. and note that the present results were obtained 

using only single determinant functions for both states. in contrast to conven

tional ab initio approaches which must use at'least two configurations to prop

erly describe the singlet state. ' 

• A preliminary account of this work was presented at the 17th Annual Sanibel Sym
pOSium, March 1983. This work was supported in part by the Office of Naval Research; by 
the Director. Office of Energy Research, Office of Basic Energy Sciences, Chemical Sci
ences Division of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098, 
and by the Control Data Corporation under Grant No. 82-CSU-12. 

t Present address: IBM Research Laboratory, Kingston, N. Y. 12401. 

* Also, Department of Chemistry, University of California, Berkeley, CA 94720. 
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I. Introduction 

The methylene molecule has been studied extensively over the past two 

decades, both experimentally and theoretically. It is a highly reactive radical, 

whose chemistry depends significantly on which of two closely spaced, low-lying 

states it is found in. Photochemical reactions, frequently used to produce CH
2

, 

create it in both states. Methylene was first observed by Herzberg l
. He 

detected both the 1A1 and 3B1 states in absorption spectra, and he concluded 

that the triplet is the ground state. Thus it has been of long-standing experimen

tal interest to determine To, the energy difference between these two lowest lev

els. On the other hand, the small size of CH
2 

makes it amenable to thorough 

investigation by theoretical methods. Hence a calculation of the singlet-triplet 

splitting can serve as an excellent test of the reliability of various calculational 

procedures. 

Early calculations, however, disagreed strongly with early experiments. 

Theory2 predicted a splitting of 30 kcal/mole, while experiment3 indicated only 

1-2 kCal/mole. Over the last decade, refinements of theoretical techniques have 

led to a value which has steadily fallen, with numerous ab initio results converg

ing to about 10-11 kcal/mole4
. Experiments of improved sophistication5

, on the 

other hand, gradually obtained increasing values, reaching 8-10 kcal/mole by 

around 1976. Agreement appeared forthcoming. In 1976, however, the first 

direct measurement of the singlet-triplet splitting (one which made no recourse 

to thermodynamic assumptions) obtained 19.5 kcal/mole using photoelectron 

spectroscopY'. This new disagreement spurred more experiments and more 

theory. On the experimental side, careful re-examination? of the earlier direct 

measurement6 reaffirmed the value of 19.5 kcal/mole. However, laser-induced 

fluorescence experimentsB and measurements of fragment velocities in ketene 

photodissociation in a molecular beam9 gave 8.1 and 8.5 ± 0.8 kcal/mole respec

tively. Furthermore, very recent direct laser-magnetic resonance spectroscopy 

.-



'. 

3 

experiments10 have yielded To =9.05±O.06 kcal/mole.Finally, a new experimen

talreinvestigation of this problem by Lineberger and coworkers appeared34 after 

the, present paper was substantially completed. That work identifies their previ-

ous results as due to vibrational hot bands in the photoelectron spectrum, and 

indicates an energy gap of -9 kcal/mole. On the theoretical side, workers were 

unable to find any indication of a splitting as large as 19.5 kcal/mole. Theory 

. ultimately has come to favor values in the range of 9-11 kcal/mole 11, with ab ini

tio values in the 10-11 kcal/mole range4
. Semi-empirical corrections to the 

latter are required to achieve 9 kcal/mole ll
. Thus now it again appears that 

theory and experiment are in good accord, though a possible discrepancy of 1-3 

kcal/mole remains with ab initio calculations . 

. Since all the above-mentioned theoretical calculations have in common the 

familiar ab initio approaches (e.g. SCF, MCSCF, CI), it is of interest to compute 

the level splitting by a totally independent method. To this end. we have 

employed the quantum Monte Carlo (QMC) approach12
-

24
, which has demon

strated high accuracy in trial calculations to date. The essence of the method is 

summarized in Sec. II. Further, in Sec. III we describe an iterative scheme that 

may have potential for improving the method. We present and discuss our 

results on CH
2 

in Sec. IV, and relate our findings to experiment in Sec. V. Our 

best determination for the singlet-triplet splitting, corrected for zero-point and 

relativistic effects is To =B.9±2.2 kcal/mole. The error bars are statistical (due 

to the Monte Carlo approach) and indicate one standard deviation in a normal 

distribution. This result disagrees strongly with the direct measurements of 

Refs. 6,7; however, QMC is in good agreement with the recent experiments9
.
10

.
34 

discussed above. 



4 

II. Quantum :Monte Carlo Approach 

In the past few years. Monte Carlo approaches have seen increased applica-

tion in a number of diverse fields. Recently. quantum mechanical Monte Carlo 

(QMC) methods12- 24 have been successfully used for the treatment of molecular . 

problems 14.16. 19-23. What we mean here by QMC is a Monte Carlo procedure which 

"solves" the Schrodinger equation. (This is to be distinguished from so-called 

variational Monte Carlo. in which one obtains expectation values for a given trial 

wave function.) 

Briefly. the procedure is to simulate the quantum system by allowing it to 

evolve under the time-dependent Schrodinger equation in imaginary time. It is 

easy to show19 that the use of imaginary time causes the system to approach a 

stationary state which is the lowest state of a given symmetry. Properties may 

then be "measured" as averages over the resulting equilibrium .distribution. 

Until now only ground-state properties have been so obtained. 

The various QMC approaches differ somewhat in their details24. The method 

we use here is the fixed-node. diffusion QMC. For a full discussion see Refs. 1B 

and 19. The following overview, however. presents the essence of the method. 

By writing the imaginary-time Schrodinger equation with a shift in the zero 

of energy as 

8v(B.t) 
Bt 

DV2\f!{E,t) + [Er-V{R)]\f!{R.t) . ( 1) 

we immediately see that it may be interpreted as a generalized diffusion equa-

tion. The first term on the right-hand-side is the ordinary diffusion term. while 

the second term is a position-dependent rate (or branching) term. For an elec

tronic system. D =1£ 2/2'1ne. R is the three-N dimensional coordinate vector of 

the N electrons. and V{R) is the Coulomb potential. Since diffusion is the contin

uum limit of a random walk. one may simulate Eq. (1) with the function \f! (note. 

not \f!2) as the density of "walks". The walks undergo an exponential birth and 
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death as given by the rate term. This connection between a quantum system 

and a random walk was first noted by Metropolis; who attributes it to Fermi25. 

The steady-state solution to Eq. (1) is the time-independent Schrodinger 

equation. Thus we have \f!{R ,t )-+rp{R), where rp is an energy eigenstate. The 

value of ET at which the popUlation of walkers is asymptotically constant gives 

the energy eigenvalue. Calculations employing Eq. {l) in this way were done by 

Anderson on a number of one to four electron systems14. 

Unfortunately, in order to treat systems larger than two electrons, the 

Fermi nature of the electrons must be taken into account. The antisymmetry of 

the eigenfunction implies that \f! must change sign; however, a density (e.g. of 

Walkers) cannot be negative. To handle this, Anderson14 made simplifying 

assumptions about the positions of the nodes. This method is ad hoc, and not 

readily generaliza,ble .. Another method which imposes the antisymmetry, and at 

the same time provides more efficient sampling (thereby reducing the statisti

, cal "poise"). is importance samplingl~.lB.19 with an antisymmetric trial function 

\f!T. The zeroes (nodes) of \f!r become absorbing boundaries for the diffusion pro-

cess, which maintains the antisymmetry. The additional boundary condition 

that \f! vanish at the nodes of \f!r is the fixed-node approximation1'1. The magni-

tude of the error thus introduced depends on the quality of the nodes of \f!r(R), 

and vanishes as \f!r approaches the true eigenfunction. To the extent that \f!r is 

a good app~oximation of the wave function, the true eigenfunction is almost cer

ta.inly quite small near the nodes of \f!r. Thus one expects the fixed-node error 

to be small for reasonable choices of \f!r. Previous work on a number of systems 

has borne this out19.20.22. In addition, this error is variationally bounded lB. 19 . 

Algorithmic approac~es also exist which "release" the nodal constraint, though 

at the cost of an unbounded increase in the variance.17.23.24 Since the fixed-node 

approximation has been found to be adequate in most situations19.20.22 (see also 

Sec. V), we use it here. 
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To implement importance sampling and the fixed-node approximation. Eq. 

(1) is multiplied on both sides by iTT, and rewritten in terms of the new probabil

ity density f(E,t)==iTT(Ji.)iT(R,t). The resultant equation for f<B.,t) may be 

written 

(2) 

The local energy EL(R), and the "quantum force" FQ<B.) are simple functions of 

itT given by 

(3a) 

and 

(3b) 

Equati.on (2), like Eq. (1) is a generalized diffusion equation, though now with the 

addition of a drift term due to the presence of FQ. 

In order to perform the random walk implied by Eq. (2) We use a short-time 

approximation to the Green's function which is used to evolve 

f (E.,l )4/ (R',t +T). This process is iterated19 to large t. Such an approach 

becomes exact in the limit of vanishing time-step size, T. We discuss the time-

steps used and the error so introduced in Sec. V. There is also an exact Green's 

function approach21.23.24. 

In earlier QMC work19
.
20 it was demonstrated for a number of 2-10 electron 

molecules that one could obtain exceptionally accurate ground-state total ener-

gies. These energies were more accurate than the best values obtained from a.b 

initio CI procedures in every case. However, one also needs to be able to calcu-

late accurate energy d:ifferences, such as binding energies, barriers to chemical 

reacUon, and level splittings. This is a far more difficult task for Monte Carlo, 

since a statistical uncertainty of as little as 0.1% in the total energy can mask 

the sought-after energy difference. To reduce the statistical error to the level 

needed by "brute force" is costly in computer time, as the standard deviation 
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decreases only as (CPU time ):-1i. Algorithmic development.s, such as t.he 

differential QMC26, hold promise for reductions in variance t.hrough correlat.ed 

sampling techniques. Another approach is based on noting that. the variance 

decreases as'1'T bet.t.er approximat.es the true eigenfunction. Thus an it.erative 

procedure for improving '1'T could be helpful. If t.his also result.ed in an improve

ment. in; t.he nodal positions, one would minimize t.he fixed-node error as well. We 

describe an approach along t.his direction in t.he next section. 

m. Iterating v T 'lbrough Wave Function Scaling 

What. is a "good" choice of ~T? In practice one want.s a trial funct.ion which 

is as simple as possible, sinoe it. will require repeat.ed evaluation at. each step of 

t.he random walk. Yet. one want.s a function which provides accurate result.s. 

Anderson's early work14 had no import.ance sampling. This corresponds t.o 

choosing ~T = 1! Accurat.e results were nevert.heless forthcoming, since QMC 

solves t.he Schrodinger equat.ion regardless of t.he choice of ~T. However as we 

not.ed in Sec. II, for Fermi syst.ems inaccurat.e nodes in ~T will lead t.o a small 

error ·when the fixed-node approximation is used. Furt.hermore, the st.atistical 

"noise" will be large for a poor choice of ~T. 

We have found in previous work19
.
22 t.hat. a single determinant ~T wit.h only a 

double-zeta basis set places t.he nodes extremely well as determined by t.he 

qualit.y of t.he comput.ed t.obu energies. Increasing t.he basis set. beyond double 

zet.a appears t.o offer insignificant. gain in eit.her accuracy (Le. t.he fixed-node 

error does not. noticeably decrease) or precision (t.he statistical uncert.aint.y. for 

equal computing time, remains essentially unchanged)22. In pract.ice we have 

included an elect.ron-electron Jast.row factor27 in our functions ~T in order t.o 

reduce statistical ftuct.uations 19• In some cases19
•
22 we have also included an 

elect.ron-nuclear factor (cf. Sec IV). Neither factor affects t.he positioning of the 

nodes, and hence t.he fixed-node energies. 
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Since the fixed-node QMC approach involves an approximation in the place-

ment of the nodes. and. in addition. in many applications the statistical uncer-

tainty needs to be further reduced. it is of interest to seek a. procedure for 

correcting ~T. We present here an iterative approach for globally {rather than 

locally} performing this correction. 

Note first that the additional boundary condition that the eigenfunction 

vanish at the nodes of ~T will generally give a solution which fails to satisfy the 

virial theorem. Thus the fixed-node expectation value of V is not exactly -2T. 

{Here we assume an equilibrium geometry.} We may therefore consider the 

fixed-node eigenfunction. which we shall denote ~Ori n. as a variational function 

which may be further optimized by scaling28. In our notation; the caret indi

cates that ~ carries the fixed-node constraint. and ~ri ~ indicates the set of all 

coordinates. 

Let us define 

Vel) == <~Ord)! V! ~Ord}> . 

T(1) == <~Ord)! Tj ~Ord» . 

(4a) 

(4b) 

and the ,scaled quantities V(ry} and T{f]) analogously in terms of the scaled func

tion ~(f]~rd). The expressions in Eq. (4) must of course be divided by 

<~Ord) I ~Ord}> if ~ is not normalized. It is readily established28 that 

V(f])=f]V{l) since the Coulomb potential scales as lIr. Similarly. T{f]}=f]2T{l} 

since 172 scales as l/r2. Combining these expressions one obtains 

E(f]) =f] V{ 1) +f]2 T(1) (5) 

Varying Eq. (5) with respect to'rJ minimizes E(-'l) at 

'1']=- V{l}/ 2T(1) (6a) 

and 

(6b) 
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Thus the function ~(T}frd) has a lower variational energy than ~Ord), and in 

addition satisfies the virial theorem since - V(T})/ 2T(T}) = -1]-1 V(l)/ 2T(l) = 1. 

Note that the global scaling has uniformly expanded or contracted the nodal 

surfaces originally present in +r. As we demonstrate below; these new nodes are 

better than the original nodes of +r. However, ~(T}frd) is no longer an eigen

fu,nction of the Schrodinger equation (see Appendix). Thus we may iterate the 

above procedure starting with the new nodes-i.e. using29 a +r whose nodes are 

those of ~(77frd) (see Fig. 1.). Such a function, +P), may be obtained by replac

ing all coordinates frd in +r by 77frd. (Essentially this involves scaling all the 

orhJtal exponents and the inter-atomic separations.) Now starting with +V) the 

QMC method converges to an eigenstate ~(I)(77frd). Because ~(I)(77fr.d) has the 

s~e nodes as ~(77frd), ~(1) must have the lower energy since it is the exact 

solution for these nodes. Again, due to thefixed.;.node boundary condition with 

,the new, nodes, the Virial theorem, may, not be' satisfied" resulting in 

77' = - V / 2T ~ 1 (for ~(1»). Thus we rescale by 77' to obtain ~(l)(17'17frd), which has 

a lower variational energy and again satisfies the virial theorem. The expanded 

or ,~ontracted nodes may then be fed back into a +~) and the process repeated. 

It is expected that the sequence 77, 17', 17", ... rapidly converges to unity, so that 

no appreciable gains will be obtained beyond the first few iterations. Figure 1 

gives a schematic illustration of this iterative procedure. Since the fixed-node 

energie~ for the sequence of functions ~Ord), ~(l)(17frd), ~(2)(17'17!riD... is of 

decreasing energy, the nodes improve upon scaling. 

In order to carry out the s,teps described above, we need to evaluate, V(l) 

and T(l) as given by Eq. (4), rather than the usual QMC "mixed averages" such 

as <+rl H 1 ~>/ <+r 1 ~>. For V(l), a simple weighting procedure3o enables one 

to compute the necessary average from the distribution 1 ~ 12. The mixed aver

age, on the 'other'hand; suffices for calculating E(l) since ~ is an eigenfunction 

of H. From E(l) and V(l) one readily obtains T(l). 
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IV. Results and Discussion 

We have performed Monte Carlo calculations for both the 3B1 and lAl states 

of methylene using a number of different, functions for \fT. The geometries have 

been taken from ab initio calculations.4
!l In particular, for the 3B1 state we take 

the C-H bond length to be 2.045 bohr and the H-C-H angle to be 132.4°. For the 

lAl state the values are 2.110 bohr and 102.4° respectively. Our Monte Carlo 

results obtained at these geometries are summarized in Table I, and compared 

with other work in Table II. All choices -of \fT have in common a single deter

minantform multiplied by a Jastrow factor. The \fT'S differ only in the basis sets 

used and in the explicit form of the Jastrow function. The reader is reminded 

that the role of \fT is as an importance function for variance reduction and as a 

trial function for placing the nodes. This function is but a starting point from 

which one converges to the fixed-node solution to the Schrodinger equation 

~Ori O. Thus the form of \fT is far less crucial here than, e.g. in a variational cal-

culation. 

With a single-zeta quality basis set we find that the statistical error is about 

a factor of two larger than that obtained with a double-zeta quality basis set, for 

equal computing time. In addition the calculated energy is higher by about 

0.02 h, although this difference is only at the borderline of statistical 

significance. For these reasons we did not put very much effort into the single

zeta \fT. In other QMC work22 we have also found that a single-zeta basis is 

inadequate; however, as discussed in Sec. III, a double-zeta basis has generally 

proven quite good. In fact, further improvement in basis set has led to no visible 

improvement in the fixed-node energy--even at the kcal/mole level!22 In the 

present study we have augmented the double-zeta basis by including an optim-

ized is function placed along each of the C-H bonds. Although this lowered the 

SCF energy by 0.016 h for the triplet state and 0.022 h for the singlet, no statist-

ically significant lowering was achieved in the QMC energy of either state (see 

I, ... 

.. 
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Table I). This confirms our earlier experience with basis sets. Since no improve-

ment 'was achieved with the bond functions, we used the simpler and less expen-

sive atom-centered double-zeta basis for most of the calculations. The large 

error bars in Table I for the DZ + B function (especiallynoticable in the energy 

difference) are just the result of the significantly smaller amount of computing' 

done'with this function. 

Since basis set enhancement appears of little help, and since we still seek 

an improved Yr, we next investigate the iterative scaling procedure described in 

Sec. iII' and depicted in Fig. 1. As an approximation, 'we bave computed V(1) and 

T(1)as '''mixed'' averages: Thus, Eqs (4) become 

(7a) 

and 

(7b) 

The derivation leading to Eq. (6) still follows as before, however now E{",), though 

still a minimum, need no longer be variationally bounded. This is because 'in the 

mixed average approximation 

(8) 

and neither the scaled Yr nor the scaled ~ is an eigenfunction ofR. Thus one is 

not assured of finding a function rp such that E(",)=<rpIRlrp>. Iri Fig. 1, as we 

read across' any line the energy still decreases Jrom left to right. Following the 

downward arrow, however, no longer must give a decrease in energy, since the 

mixed average E(",), obtained from the functions in the first and third columns, 

need not be greater than the true energy. The results presented in Table III 

show that this is indeed the case. In fact, the energy gets progressively worse' as 

we iterate the scaling with the approximate ",'s. Clearly the mixed averageesti-

mate for", must be poor, and the nodes are being scaled incorrectly. As we will 

argue later, the true '" (Eq. 6a) is probably very close to unity for our starting 

nodes. 
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Use of the mixed average to minimize E{'YJ). with an electron-electron Jas

trow factor in i'r. results in an over-contraction of the nodes. This can be 

understood as follows. The J astrow factor causes the electron density to spread 

out in space as the electrons seek to avoid each other. Scaling i'r. as one does 

in the mixed average, thus leads to an 'YJ which attempts to pull the overall elec

tronic distribution back in. This is clearly useful in lowering the va.riationai, 

energy. However. this same scaling also pulls the nodal surfaces in by the same 

factor. The correct 'YJ, on the other hand (cf. Eqs. 4.6). is independent of the Jas

trow factor. and depends only on the original nodes of i'r (since ~Ord) depends 

only on the nodes of i'r). Thus it is clearly incorrect that the presence of a Jas

trow factor. which has no effect on the original nodes. should result in the nodes 

being pulled in on scaling. In fact. the original nodes are entirely those of the 

determinant obtained by the self-consistent-field approximation. Though these 

nodes are not exact. they are correct in an average way. Thus the actual nodal 

adjustment should be more subtle. 

These considerations lead one to be suspicious of scaling based on the 

mixed averages. ,The correct averages of Eq. (4) appear to lead to an 'YJ very 

close to unity when the nodes are as good as those obtained here by SCF. Thus 

only a minor improvement in energy and/or variance is expected. Nevertheless. 

i'r may be greatly improved by pulling the electron distribution back in some

what. without moving the nodes. A simple way to accomplish this is through the 

use of an electron-nuclear Jastrow factor. Although this function leaves the 

nodes unchanged. the improved quality of i'r results in a smoother EL{R) and 

thus reduces the variance in a QMC calculation. 

Inclusion of the electron-nuclear Jastrow factor reduces the mixed average 

value of'YJ from about 1.014 to 0.998 for the triplet state. and from 1.014 to 0.991 

for the singlet state. Because the triplet i'r including the electron-nuclear Jas

trow factor is a very good approximation to the true wave function {which can be 
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well described by a single determinant}, the mixed "1 now provides a far better 

estimate of the true "1 than above. Thus we estimate that the true "1 differs from' 

unity by less than 0.2%. For the singlet state, however, the electron-nuclear Jas-

trow appears to overcompensate for the electron-electron term. Also, since the 

singlet. which has two importarit configurations, can not be described properly 

by a single deternlinant, the mixed average "1 in this case is still not a goodesti

mate of the true "1. The best procedure to follow in evaluating "1 would be to 

compute < V> from, Eq. (4a) by properly'reweighting the local energies3o
• How-

ever, unless the nodes of the singlet are considerably worse than the nodes of 

the triplet (contrary to the numerical evidence of Table I), the true "1 for the 

singlet should also be close to unity. 

To conclude this section, we address the issue of computing. Our computa

tions were performed in part on a Digital VAX 11/780, and in part on a CDC Cyber 

205. The total bomputation time, for all our trial functions at all the time ,steps 

used,' came to the equivalent of 4 hours of Cyber 205 time per state, running our 

fuial, fully vectorized code. Actual runs, however, were performed with a con-

tinually evolving vector code on the Cyber.and a scalar code on the VAX, and 

thus took considerably longer. No appreciable amount of memory was required 

for these runs~ 

v. Comparison with Experiment 

As sho,wn in Table II, the QMC total energies for both the singlet and the tri-
. . . -

plet states of methylene compare favorably with CI calculations .. For the best 

trial function, the total energy is correct to better than 0.008 h (5 kcal/mole) of 

experiment, or to 1 part in 5000. The statistical uncertainty is roughly half this 

value (2-2.5 kcal/mole). The remaining error may be attributed to the fixed-

node and the shor~ .. :time approximations. 
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We have examined our data closely for a systematic time-step-size effect. 

One can in principle obtain an unbiased estimate for the fixed-node energy by 

extrapolation to T-+O. However. for the work reported here the time-step error 

is smaller than the statistical noise. and is thus masked by it. For this reason 

we do not attempt to extrapolate. and instead the results we quote are averages 

over the four time-step sizes used. ranging from T=O.Ol down to T=O.00125h-1
. 

Thus our energy has a small time-step bias. On the other hand. an extrapolation 

based on four points would have a considerably larger statistical uncertainty. 

Comparing our results with the line marked "expt" in Table II. we conclude 

that the combined fixed-node and time-step error is roughly 5 kcal/mole for 

both the singlet and the triplet states. This translates to a Monte Carlo accu-

.. racy of 99.98% of the total energy and 96-98% of the correlation energy. There

fore in the present application. where the time-step error is negligible. the 

fixed-node error is seen to be manageably small. Furthermore. this error is 

roughly the same--to the order of 1 kcal/mole--for the two states. This means 

not only that the absolute error is small. but that there is also a large degree of 

cancellation of this error in evaluating the energy gap. In fact. for the energy 

gap the error is considerably less than the statistical uncertainty. 

To obtain our best estimate for To. we calculated a weighted average31 of 

the energy differences for our various trial functions. The final result is 

To =9.4±2.2 kcal/mole. This result is in excellent agreement with the recent 

experimental results of McKellar et al. Tofcompare with their results we must 

first correct To for zero-point motion and relativistic effects. McKellar at al 

assume that only the bending motion is of importance in determining the zero

point correction; however. Osamura at al 32 have calculated all three normal 

modes. and find that the stretching motion leads to a correction that is at least 

comparable to the bending motion. The net result is to increase the triplet 

state energy relative to the singlet state. and thus to reduce To relative to To by 
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0.45 kcal/mole. The relatiyistic correction33 amounts toa further decrease of 

To by 0.04 kcal/mole. Thus, our best estimate for To based on our QMC value for .. 

Te is To =B.9±2.2 kcal/mole. This agrees well with To =9.05±0.06 kcal/mole of 

McKellar et al, and would appear to rule out the results of ~efs. 6 and 7. In fact, 

Lineberger's new results34 agree well with the present work. Furthermore, our 

expectation value (B.9 kCal/mole) is in clo·ser agreement with experiment than 

the majority of ab initio calculations, though the error bars do encompass the 

ab initio values. 

Note added. After this work was completed we have learned of a new review 

by Shavitt of the history of work on the singlet-triplet energy gap in 

methylene35• In it is discussed a recent singles and doubles CI calculation with 

an exceptionally large basis set (9s6p3d2f;5s2p), using two reference 

configurations for the singlet, .and a. single reference configuration for the tri-
. , • >, • 

plet36• In this work a value of Te =9.4 kcal/mole is obtained, in substantial 

agreement with the QMC result reported here. A somewhat smaller, though still 

large, basis set (9s7p2d1f;5s2p) gave Te =9.9 kcal/mole4h
• We emphasize here 

; 

the relative insensitivity of QMC energies to the choice of basis set, and further 

point out that our calculations were reliably performed with a single deter

minant for both the triplet and the singlet states. 
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Appendix 

In Sect. III we discuss iteratively scaling the fixed-node wave function. If 

~Ori n is a solution to the Schrodinger equation with the fixed-node boundary 

conditions, the question arises, is the scaled function ~(1Jtrd) a solution to the 
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Schrodinger equation with scaled boundary conditions? If it is. the iterativ~pro-
.. 

cess illustrated in Fig. 1 ends with, the first line. Here we demonstrate that in 

general this is not the case. 

Let us define the following quantities for an operator 0: 

OCt}) == '<~(1]~rd) 10 I ~(1]~ri 0>1 <~(1]~ri l) I ~(1]~rd» (A1) 

and 

O(l}) == <~T(1]~r·d) I 0 I ~(1]~rd»1 <~T(1]~rd) I ~(1]~rd» . (A2) 

By the usual scaling arguments. 

V(1]) =1] V(l) (A3) 

V(1]) =1] V(l) (A4) 

T(1])=1]2T(1) (A5) 

T(1])=1]2T(l) . (AB) 

where V and T are the potential and kinetic energy operators. 

Now. E(1]) and E(1]) are given by Eqs. (A1) and (A2) respectively. with 0 . 

replaced by H. Thus. 

E(1])= V(1]) + T(1] )=1] V( 1)+1]2 T( 1) . 

and 

., 
E(1])= V(1]) + T(1]) =1] V(1)+1]2T(1) . 

(A7) 

(AB) 

Let us assume that ~(1]~rd) is indeed a solution to the Schrodinger equation 

with scaled boundary conditions. Then 

H~(1]~rd) = E'7/~(1]~rd). (A9) 

In that case. Eqs. (A1) and (A2) both give E'7/ for O=H. That is E(1])=E(1]) . . By 

Eqs. (A7) and (AB). this can only hold for arbitrary 1] if V(l)= V(1) and T(l)= T(l). 

Since this is false [cf. Eqs. (A1) and (AZ) for 1]=1]. the assumption must be 

incorrect. 

I, .. 



17 

References 

.,-" . 

1. G. Herzberg and J. Shoosmith. Nature (London) ~ 1801 (1959). 

2. J. F. Harrison and L. C. Allen. J. Amer. Chern. Soc . .al. 807 (1969); 

3. M. 1. Halberstadt and J. R McNe~by. J. Amer. Chern. Soc. 1m.. 3417(1967); 

R. W. Carr. Jr .. T. W. Ede. M. G. Topor. J. Chern.Phys. a,4716 (1970). 

4. (a) P. J. Hay. W. J. Hunt. and W. A. Goddard III. Chern. Phys. Lett . .l,;1. 30 

(1972); (b) L. B. Harding and W. A. Goddard III. J. Chern. Phys. 67. 1777 

(1977); (c) S. K. Shih. S. D. Peyerimhoff. R. J. Buenker. M. Peric. Chern. Phys. 

Lett. ~ 206 (1978); (d) C. W. Bauschlicher. Jr. and 1. Shavitt. J. Am. Chern. 

Soc. 100. 739 (1978); (e) C. W. Bauschlicher. Jr .. Chern. Phys. Lett. 74. 273 
T, .~ . . 

(1980); (f) E. R. Davidson. L. E. McMurchie. and S. Day. J. Chern. Phys. 74. 

5491 (1981); (g) P. Saxe, H. F. Schaefer III. and N. C. Handy. J. Phys. Chern. 

illh 745 (1981); (h) H.~J. Werner and E.-A. Reinsch. J. Che.m. Phys. 76. 3144 

(1982); (i) D. Feller. L. E. McMurchie. W. T. Borden. and E. R. Davidson, J. 

Chern. Phys. IL. 6134 (1982). 

5. H. M. Frey and G. J. Kennedy. J. Chern. Soc. Chern. Cornrnun. 1975. 233 

(1975); J. Chern. Soc. Faraday Trans. I.u.. 164 (1977). 

6. P. F. Zittel. G. B. Ellison. S. V. O·Neil. E. Herbst. W. C. Lineberger. and 

W. P. Reinhardt. J. Am. Chern. Soc. 98. 3731 (1976). 

7. P. C. Engelking. R. R. Corderrnan. J. J. Wendoloski. G. B. Ellison. S. V. O·Neil. 

and W. C. Lineberger. J. Chern. Phys.1i., 5460 (1981). 

8. R. K. Lengel and R. N. Zare. J. Am. Chern. Soc. 100. 7495 (1978). 

9. C. C. Hayden. D. M. Neurnark. K. Shobatake. R. K. Sparks. and Y. T. Lee. 

J. Chern. Phys.lQ., 3607 (1982). 

10. A. R. W. McKellar. P. R. Bunker. T. J. Sears, K. M. Evenson. R. J. Saykally. 

and S. R. Langhoff. J. Chern. Phys. ~ 5251 (1983). 

11. L. B. Harding and W. A. Goddard III. Chern. Phys. Lett. 55. 217 (1978). and 



18 

Ref.4d. 

12. M. H. Kalos. Phys. Rev. 128. 1791 (1962); J. Cornp. Phys.1.. 257 (1967). 

13. M. H. Kalos. D. Levesque. and L. Verlet. Phys. Rev. A~ 2178 (1974). 

14. J. B. Anderson. J. Chern. Phys . .Q.a.. 1499 (1975); 65. 4121 (1976). 

15. D. M. Ceperley and M. H. Kalos. in Monte Carlo Methods in Statistical 

Physics, edited by K. Binder (Springer-Verlag. Berlin. 1979). 

16. J. B. Anderson. J. Chern. Phys. 73. 3897 (1980); F. Mentch and J.B. 

Anderson. J. Chern. Phys.11.. 6307 (1981). 

17. D. M. Ceperley and B. J. Alder. Phys. Rev. Lett. 45. 566 (1980). 

18. D. M. Ceperley in Recent Progress in Many -Body Theo~s, edited by 

J. G. Zabolitzky. M. de Llano. M. Fortes. and J. W. Clark (Springer~ Verlag. 

Berlin, 1981). 

19. P. J. Reynolds. D. M. Ceperley, B. J. Alder. and W. A. Lester. Jr .• J. Chern. 

Phys. 77. 5593 (1982). 

20. J. W. Moskowitz. K. E. Schmidt. M. A. Lee. and M. H. Kalos. J. Chern. Phys. 

L 349 (1982). 

21. D. M. Ceperley. J. Cornp. Phys. a 404 {1983}. 

22. P. J. Reynolds. R. N. Barnett, and W. A. Lester. Jr .• Int. J. Quant. Chern. 

Symp. 18. xxx (1984); F. Mentch and J. Anderson. J. Chern. Phys . .00.. 2675 

(1984); R. N. Barnett. P. J. Reynolds. and W. A. Lester. Jr .. J. Chern. Phys .. 

submitted. 

23. D. M. Ceperley and B. J. Alder. J. Chern. Phys .• in press. 

24. K. E. Schmidt and M. H. Kalos. in Monte Carlo Methods in Statistical Physics 

II, edited by K. Binder. to be published. 

25. N. Metropolis and S. M. Ulam. J. Am. Stat. Assoc. 44.335 {1949}. 

26. B. Holmer and D. M. Ceperley. private communication; B. Wells. P. J. 

Reynolds. and W. A. Lester. Jr .• unpublished. 

27. R. B. Dingle. Philos. Mag. 40. 57.3 (1949); R. Jastrow. Phys. Rev. 98. 1479 



19 

(1955). 

28. P-O. Law-din, in Advances in Chemical Physics, Vol. II, edited by I. Prigogine 

(Interscience, New York f 1959);,E.A. Hylleraas,Z. Physik 54.347 (1929). 

29. In principle we would continue the iteration with ~(1]frd) directly, except. 

thal we have no analytic expression for this function. 

30.D. M. Ceperley; privatecoIDmunication. 

31. The standiird weighting for data with different uncertainties (j is by 1/ (j2. 
" " 

Thi"s is what is reported. A straight averagewo:uld lead to Ts =9.1 kcal/mole. 

but"is inappropriate in this context. 

32. Y. Osamura, Y. Yamaguchi, and H. F. Schaefer III, J. Chern. Phys.75. 2919 

(1981). 
" " 

33. E. R. Davidson, D. Feller, and P. Phillips, Chern. Phys. LeU. 76. 416 (1980). 
" . . 

34. :0,. G. Leopold. K. K. Murray, and W. C. Lineberger. J. Chern. Phys. 81. 1048 

(1984) 

35. 1. Shavitt. Tetrahedron ("Symposium in Print") in press. 

36. H.-J. Werner, Habilitationsschrift. Univ. of Frankfurt. 1982. unpublishea . 

. (as cited in Ref. 35.) 



20 

Table Captions 

Table I. Monte Carlo energies for the 3B 1 and 1 Al states of CHZ' and the 

corresponding energy differences, obtained for three different trial wave func-

tions 'liT. All three functions consist of a single determinant. The explicit forms 

for these functions are given in Tables IV and V. DZ denotes a double-zeta basis 

set; the DZ+ B basis also includes an optimized 1s function on each C-H bond. 

The symbols eeJ and enJ denote electron-electron and electron-nuclear Jastrow 

factors respectively. The numbers in parenthesis give the statistical uncer-

tainty in the corresponding result. 

Table II. Comparison of QMC results with SCF, CI. and experimental values. The 

results indicated as "expt" are corrected for zero-point motion and relativistic 

effects to make the comparison direct. The lowest variance QMC result for Tg is 

not the d.ifference of the QMC values given for the two states. Instead Tg is 

obtained by averaging the results of all the 'liT'S (cf. Table I). 

Table III. Fixed-node energies obtained by iteratively scaling the lA1 state 

starting with the DZ+eeJ trial function. The eigenfunctions shown correspond to 

the functions in the middle column of Fig. 1. Here 1]=1.013 and 1]'=1.011. 

Table IV. Trial functions 'liT for the 3B1 state of CH
Z

' Molecular orbitals {MO's} 

1/I1-1/IS are doubly occupied. The parameters a ,b, and A, 1/ refer to the electron-

electron and electron-:-nuclear Jastrow factors, which are of the form 

exp L;aTij / (1 +bTi;) and exp ~ATiCX/ (1 +vricx) respectively. Functions ir¥) and 
~ icx 

'lIW) use the same double-zeta basis set, but differ in that ir¥) lacks the 

electron-nuclear Jastrow factor. 'lIWI) also lacks the electron-nuclear Jastrow 

factor, but uses a larger basis set, which includes 1s functions centered along 

the C-H bonds. The latter were optimized for ( as well as for the position of the 
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center in the plane of the molecule. The geometry of the molecule has been 

taken from Bauschlicher48
. Lengths are in bohr. The MO coetl'icients are 

rounded here to four places. 

Table V. T~ial functions VT for the 1 Al state of CH2. All MO's are doubly occu

pied. See Table IV for a complete discussion of the symbols used. 
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Figure Captions 

Ji'igure 1. Schematic illustration of process for globally optimizing itT, The origi

nal trial function is itTOr.d). while the subsequent trial functions are itV). it~). 

etc. The functions in the middle column are the solutions of the fixed-node 

Schrodinger equation. with the nodes of the itT to the left. The tinal functions on 

the right are the scaled fixed-node functions, but are no longer solutions to the 

Schrodinger equation. Along the path indicated by arrows. each function has a 

lower variational energy than that preceding it. 
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Table I. 

~T 
Energy {hartrees} .... , -'I:!.S-T c"" 

3B 1A {Kcal/ mole} 1 1 

DZ+eeJ -39.1317(40) -39. 1134{35} 11.48{3.34) 

, 
DZ+eeJ+enJ -39. 1401{39} -39. 1276(28) 7.84(3.01} 

DZ+B+eeJ -39. 1294(90} -39.1167(100) 7. 97{8.44} 



Table D. 

Method * 
Energy (hartrees) 

3B lA 
1 1 

SCF -38.934811 -3B.B944b 

2C-SCF --- -38.9177c 

2R~CI-SD -39.1160' -39.10038 

CI-SD(Q) -39. 122c -39.105c 

QMC -39.140(4) -39.128(3) 

"expt" -39.14a' -39.1339' 

* Glossary of Methods 

SCF = self-consistent field 

2C-SCF ::;: two-configuration SCF 
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T8 

(Kcal/mole) 

25.4 

10.71J 

9.98 

10.7c 

9.4(2.2) 

9.5511. 

2R-CI-SD ::;: two-reference configuration. single and double excitations CI for 

the singlet; one reference configuration CI-SD for the triplet. 

CI-SD(Q) ::;: singles and doubles CI. quadruples estimated. 

QMC::;: quantum Monte Carlo (this work). 

II Ref. 4i and J. H. Meadows and H. F. Schaefer III. J. Am. Chern. Soc. llli.. 4383 

(1976). 

b Ref. 4g. 

c Ref. 4i. 

IJ using 1C-SCF for the 3B1 state. 

8 Ref. 4h. 

f Ref. 4f. 

g obtained by subtracting T8 from the "expt" energy of 3B1 CH2. 

II. obtained from To of McKellar at. al. (Ref. 10). corrected for zero-point motion 

(Ref. 32) and relativistic effects (Ref. 33). 

, 
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Tablem. 

Fixed-node eigenfunction Energy (hartrees) 

~OriD . -39.113(4) 

~(l)(?1~ri n 
'¢(2)(?1'?1~rd) 

,~ " 

-39.110(9) 

-39.094(9) .. 



Table IV. 

(a. b) Center (x. y. z) {A. v) (() 
MO Coefficients 

Trial Function STO 
'1/11 '1/12 '1/13 '1/14 '1/15 

yy>. yyn (0.5,2.5) C (0, 0, 0) (0.2,0.3) lsm (7.52) -0.2331 -0.0137 0 -0.0007 0 

lsb (5.12) -0.7767 0.2369 0 0.0999 0 

2sm (1.83) 0.0010 -0.6341 0 -0.3472 0 

2sb (1.15) -0.0017 -0.0676 0 -0.2363 0 

2pz: (2.73) 0 0 -0.1985 0 0 
II 

2pz" (1.25) 0 0 -0.4519 0 0 

2Pll11 (2.73) 0 0 0 0 0.2323 

2Pll11 (1.25) 0 0 0 0 0.8256 

2pz (2.73) -0.0007 -0.0646 0 0.2165 0 
II 

2PzII (1.25) -0.0006 -0.1377 0 0.6855 0 

H (-1.87110, 0, 0.82525) (0.1,0.5) lsm (1.64) -0.0014 -0.1204 0.1438 -0.0211 0 

lsb ( 1.12) 0.0009 -0.1497 0.2217 0.2030 {j N 

H ( 1.87110,0,0.82525) (0.1,0.5) lsm (1.64) -0.0014 -0.1204 -0.1438 -0.0211 0 
0"1 

lsb (1.12) 0.0009 -0.1497 -0.2217 0.2030 0 

yyzD (0.5,2.5) C (0,0,0) lsm (7.52) 0.2331 -0.0119 0 -0.0005 0 

lsb (5.12) 0.7766 0.2381 0 0.0965 0 

2sm (1.83) -0.0025 -0.5491 0 -0.3665 0 

2sb (1.15) 0.0009 -0.0148 0 -0.2728 0 

2PZca (2.73) 0 0 -0.2047 0 0 

2PzII (1.25) 0 0 -0.3465 0 0 

2PlI11 (2.73) 0 0 0 0 0.2282 

2PlI11 (1.25) 0 0 0 0 0.8289 

2pz (2.73) 0.0003 -0.0623 0 0.2157 0 
II 

2PzII (1.25) 0.0003 -0.1011 0 0.6715 0 

H (-1.87110,0,0.82525) lsm (1.64) 0.0014 -0.1260 0.1343 -0.0213 0 

lsb (1.12) -0.0018 -0.0960 0.1912 0.1946 0 

H ( 1.87110,0,0.82525) lsm (1.64) 0.0014 -0.1260 -0.1343 -0.0213 0 

lsb (1.12) -0.0018 -0.0960 -0.1912 0.1946 0 

bond (-1.13036, 0, 0.52710) ls (1.07) 0.0020 -0.1192 0.1447 0.0427 0 

bond ( 1.13036,0,0.52710) ls (1.07) 0.0020 -0.1192 -0.1447 0.0427 0 

.- , ~ 
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TableV. 

(a, b) Center (x, y , z) (~,v) (() 
MO Coefficients 

Trial Function STO 
'1/11 '1/12 '1/13 '1/14 

vy>· vyz> (0.5,2.5) C (0, 0, 0) (0.2,0.3) 1s" (7.52) .. -0.2335 0.0116 0 -0.0034 

1sb (5.12) -0.7763 -0.2335 0 -0.1020 

2s" (1.83) 0.0010 0.6421 0 0.3428 

2sb (1.15) 0.0002 0.1267 0 0.3255 

2pZg (2.73) . 0 0 0.2050 0 

2Pzb (1.25) 0 0 0.4121 0 

2PzII (2.73) -0.0044 0.0693 0 -0.2018 

2Pzb ,,( 1.25) 0.0028 0.1544 0 -0.6053 

H (-1.64440, 0,1.32213) (0.1,0.5) 1s" (1.64) O.OOOL 0.1557 ·0.0702 0.0115 

1sb ( 1.12) -0.0016 0.0672 -0.3639 -0,2388 

H ( 1.64440, 0, 1.32213) (0.l,O.5) 1s" (1.64) 0.0001 0.1557 0.0702 0.0115 

lsb ( 1.12) -0.0016 0.0672 0.3639 -0.2388 

vyzD (0.5,2.5) C (0, 0, 0) 1s" (7.52) 0.2335 
N 

-0.0113 0 0.0039 -....J 

1sb (5.12) 0.7762 0.2384 0 0.0968 

2s" (1.83)· -0.0023 -0.5549 0 -0.3643 

2sb ( 1.15) -0.0008 -0.0255 0 -0.3776 

2pZg (2.73) 0 0 -0.2061 0 

2PZb (1.25) 0 0 -0.3272 Q 

2pz (2.73) 0.0037 -0.0700 0 0.2028 II 

2Pzb (1.25) -0.0031 -0.0738 0 0.5754 

H (-1.64440, 0, 1.32213) 1s" (1.64) 0.0001 -0.1488 0.0826 ·0.0147 

1sb (1.12) 0.0009 -0.0452 0.2882 0.2351 

H ( 1.64440, 0, 1.32213) 1s" (1.64) 0.0001 -0.i488 -0.0826 -0.0147 

1sb {1.12}" 0.0009 -0.0452 -0.2882 0.2351 

bond (-0.90580, 0, 0.81559) 1s (1.04) 0.0015 -0.1320 0.1768 0.0523 

bond ( 0.90580, 0, 0.81559) 1s (1.04) 0.0015 -0.1320 -0.1768 0.0523 
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