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Abstract
The neutron-matter equation of state connects several physical systems over a wide density

range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at

intermediate densities, up to neutron stars which reach supranuclear densities in their core. An

accurate description of the neutron-matter equation of state is therefore crucial to describe these

systems. To calculate the neutron-matter equation of state reliably, precise many-body methods

in combination with a systematic theory for nuclear forces are needed. Chiral effective field the-

ory (EFT) is such a theory. It provides a systematic framework for the description of low-energy

hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral

EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of

Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral

EFT, the description of nuclear forces can be systematically improved by going to higher orders

in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods

are among the most precise many-body methods available to study strongly interacting systems

at finite densities. They treat the Schrödinger equation as a diffusion equation in imaginary time

and project out the ground-state wave function of the system starting from a trial wave function

by propagating the system in imaginary time. To perform this propagation, continuum QMC

methods require as input local interactions. However, chiral EFT, which is naturally formulated

in momentum space, contains several sources of nonlocality.

In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N)

interactions and discuss results of first QMC calculations for pure neutron systems. We have

performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron

matter using local chiral NN interactions. By comparing these results with many-body pertur-

bation theory (MBPT), we can study the perturbative convergence of local chiral interactions.

We have shown that soft, low-cutoff potentials converge well and can be reliably used in MBPT,

while harder potentials are less perturbative and have to be treated within AFDMC. We have

also derived consistent local chiral 3N interactions and study these forces in detail. Our results

show that local regulators lead to less repulsion from 3N forces compared to nonlocal 3N forces.

Finally, we present the neutron-matter equation of state based on local chiral NN and 3N in-

teractions using the AFDMC method as well as results for light nuclei and neutron drops. This

work paves the way for systematic QMC calculations with chiral EFT interactions for nuclei and

nucleonic matter.
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Zusammenfassung
Die Zustandsgleichung für Neutronenmaterie verbindet verschiedene physikalische Systeme

über einen weiten Dichtebereich, von kalten atomaren Gasen im unitären Grenzfall bei gerin-

gen Dichten, über neutronenreiche Kerne bei mittleren Dichten, bis hin zu Neutronensternen, in

deren Innern supranukleare Dichten erreicht werden. Eine akkurate Beschreibung der Zustands-

gleichung für Neutronenmaterie ist daher entscheidend für die Beschreibung dieser Systeme.

Um die Zustandsgleichung für Neutronenmaterie verlässlich zu berechnen, werden präzise Viel-

teilchenmethoden in Verbindung mit einer systematischen Theorie der Kernkräfte benötigt. Die

chirale effektive Feldtheorie (EFT) ist eine solche Theorie. Sie ermöglicht eine systematische

Beschreibung von hadronischen Wechselwirkungen bei kleinen Energien mit kontrollierten the-

oretischen Unsicherheiten. In chiraler EFT wird eine Impulsraumentwicklung der Kernkräfte

benutzt, die auf den Symmetrien der Quantenchromodynamik, der fundamentalen Theorie

der starken Wechselwirkung, basiert. Die Beschreibung der Kernkräfte in chiraler EFT kann

systematisch verbessert werden, indem man höhere Ordnungen in der chiralen Entwicklung

berücksichtigt. Kontinuums-Quanten-Monte-Carlo-Methoden (QMC) gehören zu den präzises-

ten Vielteilchenmethoden, die zur Beschreibung stark wechselwirkender Systeme bei endlichen

Dichten zur Verfügung stehen. Diese Methoden behandeln die Schrödingergleichung als Dif-

fusionsgleichung in imaginärer Zeit. Durch Entwicklung des Systems in imaginärer Zeit wird

die Grundzustandswellenfunktion aus einer Startwellenfunktion heraus projiziert. Für diese

Entwicklung benötigen Kontinuums-QMC-Methoden lokale Wechselwirkungen. Chirale EFT ist

jedoch im Impulsraum formuliert und enthält daher verschiedene Nichtlokalitäten.

In dieser Dissertation wird gezeigt, wie man lokale chirale Zwei- (NN) und Dreiteilchen-

Wechselwirkungen (3N) konstruieren kann. Systematische Auxiliary-Field-Diffusion-Monte-

Carlo-Rechnungen (AFDMC) für reine Neutronenmaterie basierend auf den neuen lokalen chi-

ralen NN-Wechselwirkungen werden durchgeführt und die Ergebnisse dieser QMC-Rechnungen

diskutiert. Durch Vergleich dieser Ergebnisse mit Vielteilchen-Störungstheorie (MBPT) kann die

perturbative Konvergenz der lokalen chiralen Wechselwirkungen untersucht werden. Es wird

gezeigt, dass weiche Potenziale mit kleinen Cutoffs gut konvergieren und verlässlich in MBPT

verwendet werden können, während harte Potentiale weniger perturbativ sind und mit Hilfe

der AFDMC-Methode studiert werden können. Es werden auch konsistente lokale chirale 3N-

Kräfte hergeleitet und detailliert untersucht. Die Ergebnisse zeigen, dass lokale 3N-Regulatoren

zu geringerer Repulsion, verglichen mit nicht-lokalen 3N-Regulatoren, führen. Schließlich wer-

den die Zustandsgleichung für Neutronenmaterie mit chiralen NN- und 3N-Kräften, die mit der

AFDMC-Methode berechnet wurde, sowie Ergebnisse für leichte Kerne und Neutronentropfen

präsentiert. Diese Arbeit schafft die Grundlage für systematische QMC-Rechnungen mit chiralen

Wechselwirkungen für Kerne und Kernmaterie.
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1 Introduction

1.1 Motivation

Neutron stars are astrophysical objects of extremes. They contain the largest reservoirs of degen-

erate fermions, reaching the highest densities we can observe in the cosmos, up to ∼1015 g/cm3

in their core. Neutron stars have typical masses of 1.4 solar masses (M⊙) [1]. However, only

recently the two heaviest 2M⊙ neutron stars have been observed [2, 3] and their masses were

determined with a high precision of ±0.04M⊙. On the other hand, neutron-star radii are so far

not determined due to observational difficulties [4]. They are estimated to be 10-15 km [1, 5].

Moreover, there is no neutron star of which we know both mass and radius simultaneously.

The determination of the relation between neutron-star masses and the corresponding radius

is an open and fascinating problem of nuclear astrophysics. This so-called mass-radius relation

is uniquely fixed by the equation of state (EoS), which links the pressure inside the neutron

star with the density of neutron-star matter. The equation of state of neutron stars is mainly

governed by the strong interaction and includes many physical effects over a wide density range.

Among those are fascinating phenomena like nucleon superfluidity [6], hyperons [7], meson

condensates [8, 9, 10], or even possible quark matter in the core [7].

After their creation, neutron stars cool down by emitting neutrinos. In the later stage of their

life, because of the high densities, or high Fermi momenta, of the nucleons, neutron-star matter

can be assumed as cold T = 0 matter and thermal effects are then only a small correction.

This simplifies modeling the EoS of neutron stars and makes them an ideal and exciting testing

ground for predictions of strongly interacting matter. These predictions have to be tested against

astronomical observations of neutron stars to discriminate between different models for the EoS.

The neutron-star mass-radius relation has been studied in many works, e.g., using the liquid

drop model [11], using relativistic mean-field models [12, 13, 14, 15] or with phenomenolog-

ical potential models [16]. All of these calculations are based on different models for nuclear

interactions that bind neutrons and protons together and lead to a large span in the mass-

radius prediction of neutron stars, ranging for a typical 1.4M⊙ neutron star from 9−15 km, see

Refs. [5, 17, 18] and references therein. In this Thesis, we will present a way of improving the

theoretical predictions for the equation of state of neutron matter, making better predictions of

the neutron-star mass-radius relation possible.

In addition, in certain density regimes, various properties of neutron matter can be tested in the

laboratories on Earth. For example, neutron matter at low densities can be probed in experi-

ments with ultracold atoms [19, 20, 21, 22, 23, 24, 25, 26] while matter at higher densities can

be probed in the heavy ion collisions experiments [27].

At the low-density side, in experiments with ultracold atoms around a Feshbach resonance [20],

the parameters of the atomic interaction can be tuned to resemble neutron-neutron interactions.

The cold atomic system then behaves like neutron matter at very low densities and provides a

possible test for theories of strongly interacting fermions in this regime. A well-known problem

for these ultracold systems is the question of the ground-state properties of this many-body
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system composed of spin-1/2 fermions interacting via a zero-range, infinite scattering length

contact interaction. These properties are all described by universal parameters, such as the

Bertsch parameter for the energy per particle, and a lot of theoretical and experimental effort

has been put into its determination, see Ref. [28] and references therein.

Besides neutron stars, different models for the strong interaction can be tested in experiments

with nuclei. An interesting region are neutron-rich nuclei which are relevant for nucleosynthesis

and the creation of elements heavier than iron [29, 30] as well as for modeling of neutron-star

crusts [31]. These nuclei are unstable on earth but can be experimentally created with much

effort. To explain the solar abundance pattern of elements [32, 33] accurate information on,

e.g., half-lives and binding energies of these nuclei is needed.

Due to the difficulties creating these nuclei on earth, there exists only few experimental data

for many of them, and our knowledge is mostly based on theoretical predictions. In some

cases, these predictions are tested against experiment, see, e.g., the recent work on calcium iso-

topes [34]. Moving away from nuclear stability, the spread of theoretical predictions grows [35].

Improved nuclear Hamiltonians in combination with accurate many-body methods are needed

to obtain controlled theoretical error estimates, which allow for reliable extrapolations into un-

known regions of the nuclear chart. This work will enable accurate calculations of light nuclei

and provides a basis of calculations of heavier neutron-rich nuclei with controlled theoretical

uncertainties.

The key aspect of modern nuclear physics is to gain a better understanding of nuclear forces,

a challenge for both experimental and theoretical physics. As shown above, a very fascinating

and important ingredient of matter are neutrons: Neutron-rich matter makes up neutron stars,

neutron-rich nuclei are key for the creation of all elements in the cosmos, and neutron matter

at low densities can be probed in fascinating experiments with ultracold atoms. Nuclear inter-

actions connect these different physical systems in different density regimes. By increasing our

knowledge of one system, we can improve our understanding of nuclear forces and also increase

our understanding of the other systems.

As mentioned, many different models for nuclear interactions have been suggested. These mod-

els have been fit to reproduce certain physical observables, however, they often have certain

disadvantages: first, they are created ad hoc and cannot be linked to the fundamental theory,

Quantum Chromodynamics (QCD). Second, they do not provide a means of assessing the im-

portance of different contributions and, thus, no systematic way of improvement. As a result,

they do not allow the estimation of reliable theoretical uncertainties.

One possible framework, which does not suffer from these disadvantages, is chiral effective field

theory (EFT), see Refs. [36, 37] for recent review articles. Chiral EFT provides a systematically

improvable way of describing low-energy nuclear interactions and is based on the symmetries

of QCD. Chiral EFT has been extensively and successfully applied in calculations of the structure

and reactions of light nuclei [38, 39, 40, 41, 42], medium-mass nuclei [34, 43, 44, 45, 46, 47,

48, 49, 50, 51], and nucleonic matter [52, 53, 54, 55, 56, 57, 58]. In these calculations, nucleon-

nucleon (NN) potentials at next-to-next-to-next-to-leading order (N3LO) [59, 60] in chiral EFT

have been found to give accurate results. In addition to these NN forces, chiral EFT also predicts

many body forces. These are key for a correct description of physical observables [34, 39, 41,

42, 43, 48, 49, 50, 51, 61].

The theoretical uncertainties of the state-of-the art calculations of neutron-rich systems with

chiral EFT interactions originate from several sources: the many-body Hamiltonian and the

many-body method, which is used to study the system. The dominant uncertainty stemming
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from the many-body Hamiltonian in the theoretical calculations at present are three-nucleon

(3N) forces, see Refs. [38, 62].

Regarding the second point, there is a range of many-body methods available to study nuclear

or neutron-rich systems, one of which is many-body perturbation theory (MBPT). Some of the

state-of-the-art results with chiral EFT interactions are obtained in MBPT, and it has been shown

in neutron matter calculations including all chiral forces up to N3LO [57] that a sizeable contri-

bution to the theoretical uncertainty of the calculation originates from the many-body method.

Furthermore, a validation of the perturbative convergence of MBPT calculations is needed to

assess the quality of those calculations.

A very powerful family of many-body methods are continuum quantum Monte Carlo (QMC)

methods, which are very precise for strongly interacting systems [63, 64, 65], including neutron

matter [16, 23, 66, 67, 68], and have been successfully used to study light nuclei in pioneering

calculations [69, 70]. Furthermore, Quantum Monte Carlo methods have been employed to

study cold atomic gases or electronic systems [64, 71, 72].

The standard QMC approach used in the study of light nuclei properties [69], including scatter-

ing [73], is the nuclear Green’s Function Monte Carlo (GFMC) method. To solve the many-body

Schrödinger equation, the integration over the particle coordinates is performed stochastically

in nuclear GFMC while summations in spin-isospin space [74, 75] are performed explicitly. As

a result, the method is very accurate but computationally very costly and allows one to access

only nuclei with A¶ 12 [70, 76]. Larger particle numbers can be accessed with auxiliary-field

Diffusion Monte Carlo (AFDMC), which in addition to the stochastic approach to the particle

coordinates also stochastically evaluates the summations in spin-isospin space [77]. However,

the cost is that one uses simpler variational wave functions than those used in nuclear GFMC.

The uncertainty of the QMC methods reduces statistically with the number of simulations and,

thus, is smaller than the uncertainty of an MBPT calculation.

QMC methods, however, require as an input local interactions to easily sample the many-body

propagator and, thus, have not been used with chiral EFT interactions due to nonlocalities in

their present implementation in momentum space. The available versions of the chiral poten-

tials are nonlocal because they employ both nonlocal regularizations in momentum space and

nonlocal contact interactions. This makes them not suitable for the QMC family of methods. It

would be a milestone to use chiral interactions in this nonperturbative many-body method to

produce nonperturbative benchmarks for the systems described above. This would allow for a

direct comparison with perturbative methods using the same Hamiltonian to assess the quality

of different methods and previous results.

In this Thesis, we show how to include chiral NN and 3N interactions into QMC calculations.

This will combine the accuracy of QMC methods with the systematic chiral EFT expansion,

and will allow for high-precision calculations of neutron matter for astrophysical applications

and of light nuclei, where the theoretical uncertainty of the many-body method is small. The

results will be compared to current state-of-the-art calculations. Furthermore, this work opens

up nonperturbative benchmarks of nuclear matter and nuclei for astrophysics, including studies

of hyperons, based on chiral EFT, as well as the matching to the underlying theory of QCD

through lattice simulations.

This Thesis is structured as follows: In this Chapter, we will motivate the different physical

systems of interest for this work and explain the foundations of chiral EFT in the next Chapter.

Furthermore, we will present the current results for different systems using chiral EFT interac-

tions. In Chapter 3, we will present the basic principles of the QMC methods used in this work,
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GFMC and AFDMC, and present the recent status of QMC calculations for the physical systems

of interest using phenomenological interactions.

In Chapter 4, we will explain how to remove all sources of nonlocality in chiral EFT NN inter-

actions to next-to-next-to-leading order (N2LO) based on the work of Ref. [78]. We will present

improved local nucleon-nucleon (NN) interactions at leading-order (LO), next-to-leading order

(NLO), and N2LO. We also show results for phase shifts and deuteron properties. In Chap-

ter 5, we will use the developed chiral NN potentials in QMC calculations to study the neutron

matter equation of state up to nuclear densities at different chiral orders with systematic theo-

retical uncertainties, as well as light nuclei. We will compare our AFDMC simulations of neutron

matter to MBPT calculations using the same Hamiltonian, to study the perturbativeness of the

interactions.

In Chapter 6, we will show how to additionally include the leading chiral 3N forces into our

simulations. These forces are key for the correct reproduction of physical observables. We

will show how to fit the low-energy couplings (LECs) accompanying these forces and study

the influence of the regulator function on the results for neutron matter. In Chapter 7, we

will present results for the full chiral N2LO Hamiltonian, including NN and 3N forces, on the

equation of state of neutron matter, light nuclei and neutron drops.

1.2 Neutron-rich systems

As stated before, neutron-rich systems are exciting physical systems because they occur naturally

in a variety of length scales and densities. Neutron-rich matter is the main building block of

neutron stars, which are a final stage of stellar evolution and are born in supernova explosions.

Inside of neutron stars the neutron-rich matter is probed at densities of up to several times

nuclear saturation density, n0 = 0.16 fm−3 ∼ 2.7 · 1014gcm−3. Neutron stars are macroscopic

objects, bound by gravitation. We will describe the main properties of neutron star in Sec. 1.2.1.

At intermediate densities, neutron-rich nuclei are a current frontier in nuclear physics. They

are key for the understanding of the r-process. Currently, many efforts are made to extend the

experimental knowledge of these nuclei, e.g., in the future FAIR facility in Darmstadt, Germany,

as well as at RIBF at RIKEN, Japan, and the future FRIB facility in Michigan, USA. Neutron-rich

nuclei will be subject in Sect. 1.2.2.

At very low densities, pure neutron matter exhibits universality and can be probed in experi-

ments with ultracold atoms. Pioneering experiments have been performed at several institu-

tions worldwide, like Duke, MIT, Rice and more [19, 20, 21, 22, 23, 24, 25]. We will introduce

neutron-matter at low densities and ultracold atoms in Sec. 1.2.3.

Because of its connections to ultracold atoms and its importance for the physics of neutron-rich

nuclei, neutron stars, and supernovae, neutron matter constitutes an exciting system to study.

It furthermore offers an ideal testing ground for many-body methods and nuclear forces and

serves as ab initio input to energy density functionals [16, 23, 56, 79, 80, 81].

1.2.1 Neutron stars

Neutron stars represent one of the final stages in the stellar evolution. Stars with a mass smaller

than approximately 10M⊙ will become white dwarfs at the end of their life. Very heavy stars

with masses larger than 25M⊙ will collapse to Black Holes. Medium mass stars will transform

into neutron stars.
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Figure 1.1: Neutron-star structure taken from Ref. [86].

Stars heavier than white dwarfs were already postulated in 1931 by Lev Landau [82], and

with the discovery of the neutron by Chadwick in 1932 [83], the idea of neutron stars as the

final product of supernova explosions was proposed by Baade and Zwicky [84]. However, until

the 1960s, no observational evidence for their existence was found. In 1967 Hewish und Bell

discovered a pulsed radio signal with a period of 1.337 s [85]. The signal was identified as

being a pulsar, a rapidly rotating neutron star with a strong magnetic field. Since then, many

more neutron stars have been discovered, some of them in very interesting binary star systems.

Neutron stars mainly consist of neutrons, whose β decay is blocked due to very high electron

chemical potential. They are stabilized against the gravitational collapse due to the degeneracy

pressure of neutrons and strong interactions, but are bound by the gravitational force and not

by the strong interaction.

Neutron stars have typical masses of 1 − 2M⊙ with a radius of about 10 − 14 km [4, 17].

They reach very high densities in their interior, up to several times nuclear saturation density

in their core, and are an ideal testing ground for theories of the strong interaction in the cold

high-density regime, which is not accessible in Earth’s laboratories.

Neutron stars can have very large magnetic fields of 1012− 1013G, and can rotate very fast [7].

Since rotating magnetic fields emit radiation along the magnetic field lines, rotating neutron

stars resemble giant light houses emitting radio signals along cones at the magnetic north and

south pole. If these cones touch the Earth, we can observe the very precisely timed signals with

radio telescopes. These neutron stars are pulsars and almost all neutron-star observations have

been made with them.

Neutron stars are structured in several layers, which can be seen in Fig. 1.1. The outermost

layer, the neutron-star atmosphere, is very thin, up to a few centimeters or even less. It is most

likely composed of hydrogen or helium and emits the radiation which can then be observed by

Earth’s telescopes.

1.2 Neutron-rich systems 11



Figure 1.2: Neutron and proton density profiles at several average densities ρ from Ref. [86].

The next layer is the outer crust or envelope, which is several hundred meters thick and contains

neutron-rich nuclei of the iron region. When going deeper into the neutron star, the density and,

as a consequence, the electron chemical potential increases. This induces electron captures by

protons and the nuclei become more and more neutron rich. The outer crust ends, when the

density is high enough for neutrons to drip out of the nuclei (neutron-drip). At this density,

the electron chemical potential is high enough to block neutron β -decay and neutrons can exist

freely in between the nuclei. This neutron-drip density marks the begin of the inner crust.

Deeper in the neutron star, the neutron density in between the nuclei will increase and there

will be less and less nuclei. This is visualized in Fig.1.2, where the proton and neutron density

profiles are shown at several average densities. In total the crust is about 1 km thick.

At roughly n ≈ 0.5n0, all nuclei are dissolved and the matter is in β equilibrium, consisting of

free neutrons with a small admixture of protons, electrons, and possibly muons. This region is

called outer core and extends to densities of ≈ 2n0. Deeper inside the neutron star, in the inner

core, the densities can increase up to 10n0. It is possible, that new phases of matter may appear,

like pion- or kaon-condensates, hyperons, or even quark matter [7, 8, 9, 10].

In the following, we briefly sketch the formation of neutron stars, explain the equation of state

of neutron stars and their mass-radius relation and give details on neutron-star observations.

1.2.1.1 Formation of neutron stars

Neutron stars are mostly made in type-II (core-collapse) supernova explosions of medium mass

stars with masses between approximately 10M⊙ < M < 25M⊙. During the stellar lifetime, all

stars process hydrogen into heavier elements in stellar burning cycles in their cores. The stellar

burning processes stabilize the star against gravitational collapse. During the hydrogen burning,

the largest cycle in the star’s lifetime, helium is created in the core. The further life of a star

after the hydrogen burning is determined, among others, by the star’s total mass.

Stars below 10M⊙ will transform into white dwarfs. Most commonly, these stars undergo an-

other burning cycle in their core, the helium burning, where helium is processed to carbon

and oxygen. In this phase, hydrogen burning will continue in the star’s shell, leading to the

star becoming a red giant. In the end of this process, the star will eject its outer layers, and

a carbon-oxygen white dwarf will remain. For lower mass stars, also helium white dwarfs can

form, if the star’s mass is insufficient to support helium burning. Heavier stars may undergo

additional burning phases, creating neon or magnesium white dwarfs.
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White dwarfs are stabilized against gravitational collapse due to the degeneracy pressure of

the electrons in their interior. This pressure is only sufficient to stabilize stars of a certain

maximum mass, the so-called Chandrasekhar mass [87]. The Chandrasekhar limit depends on

the composition of the star and is typically around 1.4M⊙.

If the stars mass is higher than 10M⊙, the star’s core temperatures will enable many more fusion

processes, like helium burning, then carbon, neon, oxygen, and silicon burning, consequently,

until elements around the iron peak are created. These are the heaviest elements which can be

created in stellar burning, because fusion processes of these elements are no longer energetically

favorable and the Coulomb barriers of these nuclei prevent further fusion processes. These

heaviest elements made in stellar burning are collected in the star’s center. A typical star in

this stage has an iron core, surrounded by several layers in different stellar burning cycles. The

closest layer to the core is the one with silicon burning, where the fusion product will add up to

the mass of the white-dwarf core.

When the core’s mass exceeds the Chandrasekhar limit, the electrons cannot support it against

gravitational collapse. The core then collapses and its density increases very fast. During the

collapse, the proton fraction decreases, with increasing density leading to higher electron chem-

ical potential. Protons will capture electrons to form neutrons. The incompressibility of nuclear

matter stops the collapse and a proto-neutron star is formed.

The infalling matter from the star bounces off the proto-neutron star and creates an outbound

shockwave. This shockwave is very energetic and dissociates the nuclei in the star’s material,

forming optimal conditions for nucleosynthesis processes. The shockwave looses energy and,

according to 1D and 2D supernova simulations, may stall, but is most likely reenergized by

neutrinos [88, 89].

The resulting explosion pushes the stars outer layers into space and a hot proto-neutron star

remains. This whole process is called core-collapse supernova. The neutron star then cools

via neutrino emission. Neutron stars absorb a large part of the angular momentum and the

magnetic field of the initial star and, thus, can have strong magnetic fields and high rotation

frequencies, and can be detected by their emitted radio signals.

Since neutron stars are stabilized by the neutron degeneracy pressure and the strong interaction,

they also have a maximum mass they can support against gravitational collapse, see Sec. 1.2.1.2.

This mass is not known, but it is larger than 2M⊙, see Sec. 1.2.1.3. If the initial star is too

massive, the collapsing core overcomes this maximum neutron-star mass, and the collapse of

the star proceeds until a black hole is formed.

Aside from core-collapse supernovae, neutron stars can also be formed due to a collapse of an

accreting white dwarf in a binary system. This event happens, when the white dwarf’s mass

surpasses the Chandrasekhar limit. However, this mechanism occurs rarely, as white dwarfs

close to the Chandrasekhar limit are undergoing a Type Ia supernovae [86].

1.2.1.2 Neutron-star modeling, equation of state, and mass-radius relation

Neutron-star modeling differs from the description of other stellar objects because effects of

general relativity become very important. A parameter measuring this importance is the com-

pactness parameter RS/R with the Schwarzschild radius RS = 2MG/c2, where M is the stars

mass and G the gravitational constant. While this parameter is only about 4 · 10−6 for the sun,

which makes a general relativistic treatment negligible, the parameter is about 0.2 − 0.4 for
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Figure 1.3: Stellar masses vs. central densities from Ref. [86]. In the picture, two stable regimes

for stellar models can be seen: white dwarfs, which have small central densities, and

neutron stars with larger central densities.

typical neutron stars. Thus, neutron stars are relativistic objects and have to be treated in the

framework of general relativity.

The fundamental equations describing a spherically symmetric, hydrostatic body made of

isotropic material in the framework of general relativity are the Tolman-Oppenheimer-Volkoff

(TOV) equations. The equations relate pressure P, energy density ǫ = ρ + E/V , mass and

the radius and were derived independently by Tolman and Oppenheimer and Volkoff in 1939

[90, 91]. They are given by

dP

dr
= −

Gm(r)ǫ(r)

r2

�
1+

P(r)

ǫ(r)c2

��
1+

4πP(r)r3

m(r)c2

��
1−

2Gm(r)

c2r

�−1

, (1.1)

dm

dr
= 4πr2ǫ(r) . (1.2)

These equations are valid only for static objects and have to be modified for rotating objects.

This effect becomes important for millisecond pulsars. In the following, we will only treat static

objects. This is a good approximation for typical neutron stars with a rotational period of ∼ 1s

or larger. For fast rotating neutron stars, the pressure in the neutron star will be modified as

matter is driven outwards, allowing for heavier stellar objects.

If additionally a relation between P and ǫ is known, these coupled equations can be solved. This

link is the equation of state (EoS) P = P(ǫ, T ). In neutron stars, although T ∼ 108K , matter can

be assumed to be at T = 0, because the thermal energy of ∼ 10 keV is small compared to the

kinetic and interaction energy of the neutrons, which is several MeV. Thus, P = P(ρ).

The equation of state covers several orders of magnitude in density, and has to incorporate

different, and also unknown, physics and particle species as well as different interactions. This

is why the equation of state of neutron star matter is so fascinating, but difficult to obtain. While

the density range of the equation of state for white dwarfs is experimentally accessible, the

neutron-star EoS has large uncertainties. This uncertainty is small for the neutron-star crust,

where densities are relatively low and accessible in experiment. The EoS at higher densities,
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Figure 1.4:Maximum neutron-star masses vs. central densities from Ref. [86] for several equa-

tions of state.

however, has a large theoretical uncertainty because above saturation density extrapolations

are needed. Furthermore, at intermediate densities, the nuclei involved are too neutron-rich to

exist on Earth and are difficult to obtain in experiment. Neutron-star matter at higher densities

can be approximated by using neutron-matter results [56, 92], and is very challenging to be

studied experimentally.

With a known EoS, the TOV equations are a system of coupled differential equations for P(r)

and m(r) and can be solved numerically. For this, one usually employs the following starting

conditions: at the stars surface, for r = R, the pressure vanishes, P(R) = 0, and P(r) = ρ(r) = 0

for r > R. For infinite distances the metric approaches the Minkowski metric. Inside the star,

the pressure stays positive, P(r)> 0, it decreases with radius, dP/dr< 0, and the density in the

center of the star ρC is finite. The equation of state, in addition, has to be causal, meaning the

speed of sound is smaller than the speed of light, vs < c, with vs =
p

dP/dρ.

For every equation of state and for a given central density ρC , one finds the neutron-star mass

M(ρC) and the neutron-star radius R(ρC) as a function of the central density. The mass M(ρC)

is depicted in Fig. 1.3. In this plot from Ref. [86] we show stellar masses vs. central densities

for an equation of state from Ref. [86]. A stellar model is only stable, when dM/dρC > 0, and

otherwise collapses. In the picture, two stable regimes for stellar models can be seen: white

dwarfs, which have small central densities, and neutron stars with larger central densities. For

both regimes, there are maximum masses for the stars. If the maximum mass of a white dwarf

surpasses the Chandrasekhar limit, or the central density is too high, the star collapses and the

central density increases. The collapse stops, when the neutron-star branch is reached. If again,

the neutron-star mass surpasses the maximum mass of the star, the neutron star will collapse to

a black hole.
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Figure 1.5: Different equations of state from Ref. [93]. The allowed region for the EoS is con-

strained left by the stiffest possible EoS, where vs = c and on the lower right by the

non-interacting neutron gas. In the picture, RMFmeans relativistic mean-field model,

DD-RBHF is the density-dependent relativistic Brueckner–Hartree–Fock model, n are

neutrons, p are protons, H are hyperons, K are meson condensates, and Q means u,

d, and s quarks.

The maximum neutron-star mass is unknown and every EoS leads to a different maximum

neutron-star mass, see Fig. 1.4, where we show mass vs. central density for several EoS from

Ref. [86]. The first calculation of the maximum neutron-star mass was made by Oppenheimer

and Volkoff [91]. They assumed an EoS of a free Fermi gas of neutrons at T = 0. This EoS leads

to a maximum mass of Mmax = 0.71M⊙. Interestingly, they deduced that neutron stars, thus,

cannot play an important role in nature, because the maximum mass would be too small for

neutron stars to be formed in collapse scenarios.

In Fig. 1.5 we show different examples for equations of state from Ref. [93]. The Oppenheimer

and Volkoff EoS is depicted as the right boundary line, while the left boundary line is given by

the stiffest possible equation of state, where P = ε with the energy density ε and, thus, the

speed of sound vS = c.

Because we can calculate M(ρC) and R(ρC) for every EoS and a given central density ρC , we

can compute the so-called mass-radius relation M = M(R). Every initial value for the central

density is one point in the mass-radius curve. These mass-radius curves are shown in Fig. 1.6

for the different equations of state from Fig. 1.5 of Ref. [93]. As one can see, in addition to

different predictions of the maximum mass of neutron stars, different EoS also lead to different

neutron-star radii. The reason is that neutron-star radii are correlated with the pressure of the

neutrons inside the neutron star. Nowadays, predictions for maximal neutron-star masses are

2−3M⊙ with radii around 12 km [57]. For every EoS one finds one possible mass-radius curve,

while each mass-radius curve also corresponds explicitly to one EoS.

The difference in the predictions of neutron-star properties reflects the fact, that the equation

of state at high densities is not well constrained. Thus, a refined theory of the equation of
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Figure 1.6: Neutron-star mass-radius relations for the different equation of state of Fig. 1.5.

state would improve neutron-star modeling. At the same time neutron-star observations can

also help to improve the theories of the strong interaction. For example, from the simultaneous

observation of masses and radii of different neutron stars, one would be able to determine the

equation of state of neutron-rich matter, which would have great implications for our under-

standing of nuclear physics. One goal of this work is to improve the predictions of the EoS of

neutron matter.

In the next Section, we will present more details on neutron-star observations and their possible

impact and constraints on the equation of state of neutron-rich matter.

1.2.1.3 Observations of neutron stars

In our galaxy, we expect a total population of 108 − 109 neutron stars, of which about 2000

neutron stars have been observed so far, most of them as pulsars. An optimal observation of a

neutron star would be the determination of its mass and radius simultaneously with small error

bars. Although there are accurate mass determinations of neutron stars with uncertainties of

the order of 10−2 or better, so far no radii could be precisely measured.

Precise neutron-star mass measurements have been made in neutron-star binary systems, based

on timing measurements of orbital periods, signal delays in binary systems due to the com-

panion, and similar. Since pulsars are precise clocks with an almost constant period and our

instruments are accurate enough to determine these times with small uncertainties, masses can

be determined with small error bars. We show this in Fig. 1.7, where observed neutron-star

masses with the corresponding error bars are shown [1]. Especially in double neutron-star

binaries, the mass uncertainty is of the order of 10−4, which is a remarkably precise determina-

tion.

The radii, however, can only be accessed indirectly with small accuracy, especially since neutron

stars are very faint and small. Thus, so far, no neutron-star radius could be measured with a

high accuracy [1]. There is a lot of effort put into the determination of neutron-star radii, and
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Figure 1.7: Observed neutron-star masses from Ref. [1].

recent statistical analysis suggest typical radii to be around 12± 1 km [5]. There are, however,

no radius determinations for neutron stars, whose mass is simultaneously known. Thus, the EoS

cannot be constrained by a single point, or better box, in the mass-radius diagram.

Although neutron-star radii observations, so far, do not put constraints on the equation of state,

neutron-star mass measurements do. For every equation of state we find a maximum mass

for neutron stars, as stated before. In Fig. 1.3, for the eight different EoS we find maximum

masses ranging from 1.5 − 2.5M⊙ for example. In the recent years, two neutron stars with

well-constrained masses of 1.97±0.04M⊙ and 2.01±0.04M⊙ have been observed [2, 3]. These

are the heaviest observed neutron stars up to now, and their discovery requires every equation

of state to support a maximum mass larger than 2M⊙. For instance, in Fig. 1.3, the equations

of state 1-4 can be excluded based on this observation. The variation in the maximum mass

reflects the fact that the equation of state is not well constrained above saturation density, where

additional phases of matter may appear. However, the discovery of two-solar-mass neutron stars

rules out many additional phases, as they soften the EoS and lower the theoretical maximum

mass. It is, thus, probable, that neutron stars contain no exotic phases.
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Figure 1.8: Pulsar diagramwith the rotational period and its time derivative for observed pulsars,

from Ref. [94].

As mentioned before, most neutron stars have been observed as pulsars, which emit radio signals

along the magnetic north and south poles. The emitted energy stems from the rotational energy

of the neutron star, so over time an isolated pulsar will slow down.

Furthermore, pulsars can also exist in binary star systems. These systems start with two main-

sequence stars, where the more massive star will undergo a core-collapse supernova and turn

into a neutron star first. If the system is not destroyed in this process, the neutron star will

remain in the binary with the second main-sequence star. At some point, the companion will

begin the red-giant phase and the neutron star will accrete matter from it, gaining angular

momentum and, thus, spinning up [94].

The rotational periods of pulsars can be very different, and the fastest observed pulsar has a

period of only 1.4 ms. The observed pulsar spin periods and their time derivative can be plotted

into the pulsar diagram, see Fig. 1.8 [94].

In the pulsar diagram, one can see two populations of neutron stars. Most neutron stars have

rotational periods around 1s and are isolated. However, there is another population of old

neutron stars with very short rotational periods, in the range of 1 − 10ms. These so called

millisecond pulsars are mostly in binaries and got spun up by accretion.

The measurement of rotational periods puts another constraint on the EoS. A star of a certain

mass and radius can only support a certain rotational frequency before it would be destroyed.
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Figure 1.9:Mass-radius relation for several model EoS from Ref. [86]. The region in the upper

left corner is excluded by causality. The lines labeled by 0.5ms, 1.0ms, and 1.4ms are

the mass-shedding limits for these rotational periods. A stable star with the corre-

sponding rotational period has to lie left of these lines.

This maximal rotation rate is set by the mass-shedding limit. At this limit, the rotational velocity

would equal the escape velocity, and in the framework of general relativity one finds

Pmin = C

�
R

10km

�3/2�M⊙
M

�1/2

ms , (1.3)

where C ∼ 1 is a constant [95], which is only weakly dependent on the EoS. Thus, by observing

smaller rotational periods, one can exclude certain areas of the mass-radius diagram. This is

depicted in Fig. 1.9, where the mass-shedding curves for three rotational periods are depicted.

The measurement of small rotational periods can in principle exclude large parts of the mass-

radius diagram, especially in combination with the corresponding mass measurements.

Neutron-star binaries are not only interesting because orbital parameters and constituent masses

can possibly be determined very precisely, but also for the fact, that neutron-star binaries emit

gravitational waves due to the strong effects of general relativity in these systems. These effects

are stronger, if the binary system contains two neutron stars, which we will assume in the

following.

Gravitational waves are waves in space-time and have been predicted in the framework of gen-

eral relativity theory. The direct detection of gravitational waves has not been possible so far,

but would be a direct proof of the theory of general relativity. The energy of the emitted gravi-

tational waves is higher, the closer the neutron stars are. As the emission of gravitational waves

reduces the systems energy, the neutron star’s orbits will change and the stars slowly approach

each other. When the neutron stars merge, they will emit gravitational waves with a charac-

teristic frequency. The Advanced LIGO experiment [96] is looking for gravitational waves from

such neutron-star mergers and hopefully will detect them in the near future. The characteris-

tic frequency of a merger event can also be used to determine parameters of the neutron-star

equation of state, see Ref. [97, 98, 99].
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Table 1.1: Two double neutron-star systems with corresponding stellar masses and the ratio of

measured and calculated orbital-period time derivative.

System MA[M⊙] MB[M⊙] Ṗmeas
b

/ṖGR
b

Ref.

PSR B1913+16 1.4398(2) 1.3886(2) 0.997(2) [100]

PSR J0737-3039 1.3381(7) 1.2489(7) 1.003(14) [101]

Although gravitational waves from neutron-star binaries have not been detected directly yet,

they can be used to indirectly check general relativity. The change of orbital parameters due

to gravitational wave emission can be calculated from the theory of general relativity while in

certain systems the orbital parameters can be measured with high precision over time. The first

famous example was the Hulse-Taylor pulsar PSR B1913+16 which was discovered in 1974

by Hulse and Taylor. They were awarded with the Nobel prize in physics in 1993 ”for the

discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study

of gravitation”.

The system consists of a pulsar orbited by another neutron star and has a high eccentricity of

e = 0.617 and a short rotational period of 7.75h. For these parameters, general relativity effects

are strong and can be accurately measured. A comparison of the time derivative of the orbital

period Ṗb between the measured value and a general relativistic calculation gives a ratio of

0.997(2) [100], which provides evidence for the validity of general relativity.

Another interesting system is the double pulsar J0737-3039, which is the only known neutron-

star binary with two pulsars and which was discovered in 2003 [102]. It has a very short orbital

period of 2.4h [103] and leads to a ratio of the time derivatives of 1.003(14) [101]. In fact,

this system is ideally suited for testing the effects of general relativity because the mass ratio R

as well as five post-Keplerian parameters can be measured: the relativistic orbit precession ω̇,

the parameter γ combining gravitational redshift and time dilatation, the time derivative of the

orbital period Ṗb, and Shapiro delay parameters s and r, which all depend on the individual

masses. By using the mass ratio and one post-Keplerian parameter to determine the masses,

these parameters allow four independent tests of general relativity. In Fig. 1.10, these parame-

ters are plotted as functions of the two masses. They all intersect in one single point with high

accuracy, which gives evidence of the validity of the theory of general relativity.

There are, of course, more possible constraints on the neutron-star equation of state. As an ex-

ample, quasi-periodic oscillations (QPOs) in magnetars, neutron stars with very strong magnetic

fields, depend on the neutron-star crust thickness and the neutron-star radius. Recently, several

oscillation frequencies have been measured [104, 105, 106, 107] and could be used to put con-

straints on the equation of state [108]. However, it is challenging and presently model depen-

dent to assign oscillation modes to the observed frequencies. A deeper understanding of QPOs

and more information on neutron stars obtained with the future NICER mission [109, 110] can

lead to additional constraints on the EoS.

To summarize, the key to the description of neutron stars is the neutron-star equation of state.

On the other hand, neutron matter is useful as a test case in which different aspects of nuclear

interactions can be probed. The neutron-star equation of state is dominated by the properties

of neutron matter, which makes its study directly relevant for neutron-star modeling.

In this Thesis, we want to give a better description of neutron matter, which, in combination

with improved observational constraints, will allow to determine the neutron star mass-radius
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Figure 1.10: Tests of general relativity for several orbital parameters of the system J0737-3039

from Ref. [101]. Shown are the constraints on the pulsar’s masses for the mass

ratio R, for the relativistic orbit precession ω̇, for γ combining redshift and time

dilatation, for the time derivative of the orbital period Ṗb, and for parameters of

the Shapiro delay s and r. Line pairs indicate the measurement uncertainty. All

parameters intersect in one point which corresponds to the pulsar’s masses. Shaded

regions are excluded by the condition sin(i)≤ 1.

relation with theoretical uncertainties from nuclear physics. The neutron matter results will al-

low to give an improved estimate for neutron-star radii and serve as a systematically improvable

nonperturbative benchmark for model equations of state used in supernova simulations. Addi-

tionally, they will also pave the way for a prediction of the the signal of neutron-star mergers

with nuclear physics uncertainties.

In turn, an accurate simultaneous observation of a neutron star’s mass and radius would enable

us to constrain the neutron matter EoS, and doing this, also the fundamental theories of the

strong interaction.

1.2.2 Neutron-rich nuclei

In the last Section we introduced neutron stars as a possibility to test theories of the strong

interaction in the high-density regime. Since this regime can be probed on Earth only with

tremendous effort, neutron stars are important laboratories to test these theories. To verify

the same theories at intermediate or nuclear densities, we can apply them to the calculation of

properties of nuclei and compare with experimental results.
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Figure 1.11: Nuclear chart of bound even-even nuclei from Fig. [111]. There exist 767 even–even

nuclei which are known experimentally. The stable nuclei are depicted as black

squares. The red lines are the proton and neutron drip lines with their uncertainty

regions for different models, while the blue line is the drip line for one model. The

brown line is the S2n = 2 MeV line with its uncertainty. The inset depicts the behav-

ior of the neutron drip line for high N.

Nuclei can be arranged according to the number of protons and neutrons in the nuclear chart,

see Fig. 1.11 for the nuclear chart of bound even-even nuclei. Roughly 3000 nuclei have been

investigated on Earth [111], which either lie in the valley of stability (black squares in Fig. 1.11)

or which are unstable and radioactive (green squares). The stable nuclei follow roughly the

maximum of the semi-empirical formula for the binding energy, given by [112, 113]

EB = aV · A− aSA2/3− aC

Z(Z − 1)

A1/3
− aA

(N − Z)2

4A
+δ(N , Z) , (1.4)

which is based on the liquid-drop model. This formula describes the binding energies of larger

nuclei quite well. The five terms are the volume term with coefficient aV proportional to the

nucleus’ size, the surface term aS taking into account the surface of the nucleus, the Coulomb

term aC which includes the Coulomb repulsion of the protons, the asymmetry term aA taking

into account the different Fermi seas of protons and neutrons, and a pairing term δ(N , Z) which

includes nucleon pairing. Without the Coulomb term, the valley of stability line would follow

a diagonal with N = Z in the nuclear chart, but the Coulomb term influences the proton Fermi

energy and makes the valley of stability tend to a slight neutron asymmetry for heavier nuclei.

Moving away from the valley of stability, the binding energy decreases due to the Coulomb and

asymmetry terms. The boundaries of nuclear binding are the neutron and proton drip lines.

These are marked in the case of the neutron drip line by the one-neutron separation energy S1n

and, eliminating the effect of pairing, also by the two-neutron separation energy S2n, which are

defined by

S1n = B(Z , N − 1)− B(Z , N) , (1.5)

S2n = B(Z , N − 2)− B(Z , N) , (1.6)
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in terms of the binding energy B(Z , N). When S1n = 0, the nucleus becomes unstable against

neutron emission. That is where the neutron drip line is reached. The same holds in the case of

the proton drip line.

The neutron drip line is due to the asymmetry term in the nuclear binding energy, while the

proton drip line appears additionally due to the Coulomb repulsion. While many proton-rich

nuclei, between the valley of stability and the proton drip line, have been investigated experi-

mentally and the proton drip line has been mapped out, many neutron-rich nuclei as well as the

position of the neutron drip line are still unknown.

Another interesting effect connected to drip lines is the pairing term of Eq. (1.4). This term

increases the binding energy for nuclei with even numbers of protons and neutrons and leads

to odd-even staggering of the neutron and proton drip line. This can be observed, e.g., in the

helium isotopes, where 4He, 6He and 8He are bound while 3He, 5He, and 7He are not.

A lot of experimental effort is put into measuring neutron-rich nuclei and recent highlights

include precision measurements of neutron-rich calcium isotopes, see Refs. [34, 114]. More

studies will be possible in the next-generation ion-beam facilities, like FAIR and FRIB.

Improving the knowledge of these nuclei is especially important because they are key for the

understanding of the r-process, one of the main processes for the nucleosynthesis of the ele-

ments [29, 30]. This process runs through the neutron-rich side of the nuclear chart and will be

explained in Sec. 1.2.2.1 in more detail.

Given the lack of experimental data for neutron-rich nuclei, these nuclei are ideal to test pre-

dictions of theories of the strong interaction. In the following Sections, we will give details on

nucleosynthesis, explain the symmetry energy and its density dependence, and the connection

of the neutron-matter EoS with neutron-rich nuclei.

1.2.2.1 Neutron-rich nuclei and nucleosynthesis

As discussed previously, the understanding of neutron-rich nuclei and the correct position of the

neutron drip line is tightly connected to the understanding of the origin of the elements in the

universe. In the region of these nuclei, along the neutron drip line, works the so-called rapid

neutron capture process or r-process [29, 30]. The astrophysical r-process is one of the two

dominant processes responsible for the creation of elements heavier than iron. The other major

process is the slow neutron-capture process or s-process [29, 30]. The structure and properties

of the very neutron-rich nuclei, thus, directly affect the creation of elements.

A major goal in nuclear astrophysics is to describe nuclear reactions and processes in stellar

environments as well as to explain the abundance pattern of elements in the solar system, see

Fig. 1.12. Different nucleosynthesis processes work in different mass regions. The most abun-

dant element is hydrogen which builds the fuel for the creation of heavier elements. Starting

from hydrogen, elements up to 56Fe are synthesized in different stellar burning processes which

have been explained before. Stellar burning ends at the elements of the iron region, leading to

the iron-peak in the solar abundance patters, see Fig. 1.12. Heavier elements cannot be created

in stellar burning and are made in the s-process, the r-process as well as the p-process [115].

The p-process runs along the proton drip line creating the proton-rich nuclei. However, the s-

and r-processes are predominant in nucleosynthesis and we will only focus on these.

The s-process takes place mostly at relatively low neutron densities and temperatures in Asymp-

totic Giant Branch (AGB) stars, which are low- to medium mass stars in the red-giant phase. This

site was supported by the finding of technetium, which has a half life of only ≈ 4 million years,
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Figure 1.12: Abundances of elements in the solar system from Ref. [32].

in stars which were billion of years old, showing that this element, which cannot be created in

stellar fusion processes, had to be recently created in a different process in the star [116].

In an AGB star, free neutrons from stellar burning reactions can be captured by a stable nucleus
AXZ to produce the daughter nucleus A+1XZ . This process continues until the daughter nucleus

is unstable against β decay. For an unstable daughter, at low neutron densities, the capture time

for an additional neutron is smaller than the β decay half life, and the nucleus will most likely

decay to A+1YZ+1. Then, another neutron will be captured, continuing this process following the

valley of stability up to bismuth. Thus, the s-process is in general a sequence of neutron-captures

and β decays and occurs over timescales of thousands of years. The abundances of the created

elements are highest, when the neutron-capture cross sections are small, which is the case for

closed neutron shells or subshells. The s-process, thus, creates abundance peaks for Sr, Ba, and

Pb, see Fig. 1.12.

In addition to the s-process, there has to be a second nucleosynthesis process acting on the

neutron-rich side to create certain isotopes outside the s-process path. This process is the r-

process, which takes place in explosive scenarios with high temperatures and high neutron

densities on very short timescales of the order of seconds. The r-process site is not identified,

but possible scenarios include supernovae or neutron-star mergers [117].

In this scenario, because of the very high neutron density, neutron capture is a lot faster than β

decay and a stable nucleus can capture many neutrons consecutively, creating very neutron-rich

nuclei close to the neutron drip line. The neutron capture stops, when photo disintegration

and neutron capture are in equilibrium, i.e., for nuclei with neutron separation energies of the

order of 2 MeV. After a β decay of such a nuclei, the rapid neutron capture continues up to

the next stopping point, and so on. Thus, many neutron-rich nuclei along the drip line will be

created in the r-process. After the neutron exposure ends, the created elements will decay back

to the valley of stability. The abundances of nuclei created in the r-process are influenced by

the neutron-capture cross sections. Nuclei with small cross sections will be created in larger
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Figure 1.13: Energy per particle in neutron matter (blue curves) and symmetric matter (red

curve) versus the density from Ref. [118]. The curves are obtained using phe-

nomenological potentials with and without boost corrections for neutron matter.

The symmetric matter results have been fitted to the empirical saturation point.

abundances, as the r-process slows down there. These nuclei are mostly the ones with shell-

or subshell closures like Sr, Ba, and Pb. Because of the β decays to the valley of stability, the

r-process leads to abundance peaks at Ge, Xe, and Pt, see Fig. 1.12.

The s- and r-process can explain a major part of the isotope abundances for elements heavier

than iron, with the r-process contributing to the abundances of most isotopes on the neutron-

rich side except the ones shielded by stable nuclei. To calculate the solar abundances, complex

network calculations are done, which need as an input properties of the involved nuclei, like

masses etc. Thus, calculations of neutron-rich nuclei and their properties are crucial to improve

the understanding of nucleosynthesis and to reproduce the solar abundance pattern.

In this work we will build the basis for improved studies of neutron-rich nuclei with QMC

methods using chiral EFT interactions.
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1.2.2.2 Nuclear matter and symmetry energy

Nuclear matter is an idealized system of infinite extent that uniformly contains neutrons and

protons in arbitrary fractions. The system is characterized by the density n, which is finite, and

the proton fraction

x =
np

np + nn

, (1.7)

where np and nn are the proton and neutron densities, respectively. Electromagnetic interactions

are ignored, and only the strong interaction is taken into account. Thus, pure neutron matter

is one extreme case for nuclear matter with proton fraction x = 0. Another interesting case is

symmetric nuclear matter with the same amount of protons and neutrons, x = 0.5. These two

cases are depicted in Fig. 1.13. Nuclear matter with arbitrary proton fractions is usually called

asymmetric nuclear matter.

While neutron matter is the simplest approximation to neutron-star matter, symmetric nuclear

matter is the simplest approximation to larger nuclei. This can also be seen from the semi-

empirical mass formula of Eq. (1.4). In the case of infinite nuclear matter, we can ignore the

Coulomb and surface terms. We also do not take into account pairing and for symmetric nuclear

matter, also the asymmetry term vanishes. Thus, the only term contributing is the volume term

aV .

This term reflects the binding energy per nucleon at nuclear saturation density n0 and is em-

pirically ∼ 16 MeV. A second property, that a theory of the strong interaction has to reproduce,

is saturation at n0. Saturation means that the pressure of the system has to vanish, which is

equivalent to an energy minimum at n0. In contrast, neutron matter has positive energies per

particle, leading to a positive pressure in neutron matter. This stabilizes neutron stars against

gravitational collapse and has as a result that there are no self-bound systems containing only

neutrons.

An important parameter for nuclear matter is the symmetry energy parameter SV . The symmetry

energy can be defined in two ways: first, via the energy difference S per nucleon between pure

neutron matter and symmetric nuclear matter:

S(n) =
E

A
(n, x = 0)−

E

A
(n, x = 1/2) , (1.8)

where E

A
(n, x) is the energy per particle at the density n with proton fraction x . The symmetry

energy is given as S(n0), and this parameter is of the order of 30 MeV, see Fig. 1.13.

A different definition can be given via an expansion of the energy per particle in the proton

fraction around neutron matter [56, 119, 120]

E

A
(n, x) =

E

A
(n, x = 0)− 4x (1− x)SV (n) + . . . , (1.9)

where higher terms in the expansion can be neglected to a good approximation. Given this

expansion, the parameter SV is defined as

SV (n) =
1

8

∂ 2

∂ x2

E

A
(n, x)

�����
x=1/2

. (1.10)
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Figure 1.14: Neutron and proton density profiles in 208Pb using two mean-field models from

Ref. [122].

and the symmetry energy is SV (n0). Usually, S(n0) ≈ SV (n0) but these two definitions can also

differ due to quartic and higher terms in the expansion (1.9) [121].

Another important parameter is the density dependence of the symmetry energy L(n0) which is

defined as

L(n0) = 3n0

∂

∂ n
SV (n)

����
n0

. (1.11)

The L parameter is proportional to the pressure of neutron matter at saturation density and is,

thus, positive. Both the symmetry energy parameter SV and L are important as they impact

astrophysical calculations. For example the expected neutrino signals of galactic core-collapse

supernovae depend on the symmetry energy, and the radius of neutron stars is connected to the

L parameter [121].

1.2.2.3 Neutron-matter equation of state and neutron skins

In this Thesis, we want to develop nonperturbative benchmarks for neutron matter and the

basis for improved calculations of neutron-rich nuclei. In addition to the explicit calculation of

neutron-rich nuclei and their properties, we can also infer information about them directly from

the neutron-matter equation of state.

As we have stated above, the EoS of neutron matter can be connected to several physical systems

through the important SV and L parameters. The latter is a measure for the pressure of neutron

matter at saturation density, and clearly affects, for instance, the neutron-star radius, because

higher pressure between neutrons will lead to more repulsion and, thus, increase radii.

In a neutron-rich nucleus, the density profiles of protons and neutrons differ, which can be seen

in Fig. 1.14 in the case of 208Pb. Due to the large excess of neutrons and a reduction of the

proton density due to the Coulomb barrier, the neutron density falls off at larger radii, leading

to a larger neutron than proton radius. The difference between neutron and proton rms radius is

called neutron skin, Rskin = Rn−Rp, and is directly influenced by the pressure among neutrons.
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Figure 1.15: Neutron skin of 208Pb vs. L parameter from Ref. [123]. For different models (blue

points) one finds a linear correlation (orange line). Shown are also different experi-

mental constraints [124, 125, 126].

A higher pressure (a larger L parameter) leads to a larger neutron skin of neutron-rich nuclei

because neutrons are pushed out, similar to what happens in a neutron star. This is depicted in

Fig. 1.15, where the neutron skin thickness of 208Pb is plotted vs. the L parameter for different

model EoS. One finds a linear correlation between these two parameters. Every neutron-matter

EoS constrains the value of the L parameter and, thus, also the neutron-skin thickness of lead.

On the other hand, by measuring the neutron skin of lead, one puts constraints also on the

neutron-matter EoS. In the picture, experimental constraints are shown from the PREX exper-

iment [124], from the Osaka polarized proton elastic scattering experiment [125], and from

the Mainz pion-photoproduction experiments [126]. For neutron-skin measurements in other

neutron-rich nuclei see, e.g., Refs. [127, 128].

The experimental constraints on the neutron skins still have large uncertainties. The reason is

that, although the charge radius or proton radius can be accurately measured with uncertainties

of ≈ 1% in electron scattering experiments, the determination of the neutron radius is less

precise. It is usually measured with hadronic probes leading to a model dependency of the

results [123]. A direct determination of the neutron radius is parity-violating electron scattering

which has been done by the PREX collaboration [124], leading to Rskin = 0.33+0.16
−0.18 fm for 208Pb

with a very large uncertainty. However, in the future PREX II experiment the uncertainty is

expected to reduce to ±0.06 fm [129]. Nevertheless, the three experiments overlap for L values

of 30− 50 MeV.

As we have shown, complementary to direct ab initio calculations of nuclei, also the neutron-

matter EoS will give insight into the physics of neutron-rich nuclei and puts constrains on their

modeling.

1.2.3 Ultracold atoms

The last physics case we discuss is neutron matter at very low densities. The strong in-

teraction between neutrons at these densities is characterized by a large scattering length,
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ann = −18.9 fm, which is an order of magnitude larger than the interparticle distance at low

densities. At low densities or small momenta, other parameters like the effective range can be

neglected, and the system is solely described only by one parameter, the density. In this regime

neutron matter shows universality, see Sec. 1.2.3.1.

In experiments with ultracold fermionic atoms, the strength of the atomic interaction can be

tuned using so-called Feshbach resonances [20]. With these resonances, the two-body interac-

tion can be adjusted to an infinite scattering length, which allows to probe pure neutron matter

and study constraints on the equation of state.

In the following Sections, we explain universality and show the connections of neutron matter

with ultracold atom experiments.

1.2.3.1 Universality

For short-range interactions at low densities, the scattering amplitude can be expanded in the

effective-range expansion [130]. If the particles interact only via S-wave interactions, this ex-

pansion is given by

k cot(δ0) = −
1

aS

+
1

2
rek

2− Pr3
e
k4+ · · · , (1.12)

where the S wave scattering length aS, the effective range re, and the shape parameter P are

constants. The scattering is described by the T-matrix given by

T (+) =
4π

m

1
1

a
− 1

2
rek

2− Pr3
e
k4+ · · ·+ ik

. (1.13)

At low energies, like in low-density neutron matter, we can neglect high terms in k and find for

the T-matrix

T (+) =
4π

m

1

ik

1

(1+ 1

ika
)− 1

2i
rek

, (1.14)

where we only include the scattering length and effective-range terms. For neutron matter at

low densities, re ≈ 2.7 fm ≪ k−1
F
≪ aS, which means that the interparticle spacing is much

larger than the effective range of the interaction. The system is therefore fully described by kF

and aS and effectively interacts via contact interactions. This means we can ignore the effective-

range term, finding k cot(δ0) ≈ − 1

aS
. In this case, the T-matrix only includes the first bracket in

the denominator, and the system is solely described by the scattering length aS. Systems with

the same scattering length aS and the same Fermi momentum kF then show the same physics.

If additionally the scattering length is very large, as it is for neutrons, all length scales drop

out, and the system is completely described by the density, given by the Fermi momentum kF .

This regime is called universal regime. Neutron matter at low densities can be approximated

as such a system, which interacts via S-wave, large scattering length contact interactions. Since

the system’s properties only depend on the density, the systems energy has to be a fraction of

the energy of a free Fermi gas,

E(n) = ξEFG(n) . (1.15)
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Figure 1.16: Scattering length vs. magnetic field for 6Li from [133]. At a certain magnetic field

strength, here 834G, the scattering length shows a resonance, the Feshbach res-

onance. By varying the magnetic field, the scattering length can be tuned over a

wide range, and can be used to probe also the universal limit for infinite scattering

lengths.

The parameter ξ is called Bertsch parameter after George Bertsch, who posed the many-body

challenge of determining this parameter in 1999 [131]. Theoretical determinations lead to a

value for ξ of ξ ≈ 0.37 [64], and agree very well with the most precise measurement with
6Li atoms of Ref. [24], obtained with a precise determination of the Feshbach resonance in

Ref. [132].

This system is called unitary Fermi gas, and will arise for any dilute Fermionic system with

a short range interaction with re ≪ k−1
F
≪ a. Since low-density neutron matter is close to

a unitary Fermi gas, it is possible to study the unitary limit in experiments to constrain the

low-density neutron matter EoS.

1.2.3.2 Neutron-matter equation of state and ultracold atoms

In case of nuclear interactions, and especially neutron matter, the scattering length is very large

compared to the effective range of the nuclear interaction, |ann| = 18.9 fm ≫ 2.7 fm ≈ re.

This regime can be accessed in experiments with ultracold atoms using so-called Feshbach res-

onances. These Feshbach resonances occur, when a magnetic field is applied to a system of

ultracold atoms. By varying the magnetic field strength, the scattering length can be tuned over

a wide range, and can be used to probe also the universal limit for infinite scattering lengths. In

Fig. 1.16 we show the scattering length vs. magnetic field strength for 6Li. For these atoms, the

interaction shows a nearly zero effective range, making them ideal for these experiments [23].

For smaller magnetic fields and positive scattering lengths, the interaction is attractive and

atoms are bound together to a molecular state. By increasing the magnetic field, the energy of

this state increases towards the point, were the atoms become free. For these slightly bound

systems, the scattering length is infinitely large. Increasing the magnetic field further, the scat-

tering length changes its sign while the system becomes slightly unbound. A further increase of

the magnetic field leads to unbound atoms.
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In case of fermionic atoms one can probe systems like neutron matter. Left of the Feshbach

resonance, in the molecular phase, fermionic atoms can pair and form bosons, which for low-

enough temperatures will form a Bose-Einstein condensate. Right of the resonance, in the

unbound phase, one can probe pairing of the fermions to Cooper pairs in the BCS phase. By

changing the magnetic field to a value close to the Feshbach resonance, a system of ultracold

fermionic atoms can be used to probe neutron matter in the unitary limit at very low densities.

Thus, properties of the low-density neutron matter EoS can be both probed experimentally and

studied theoretically [23].

32 1 Introduction



2 Chiral effective field theory for nuclear
forces

As outlined in the previous Chapter, neutron matter is a fascinating physical system to study over

a wide range of densities, from low densities which can be probed on Earth, up to very high den-

sities in astronomical objects. To describe neutron matter, an important requirement is a reliable

theory for nuclear forces. Many approaches to nuclear forces have been introduced [134], e.g.,

sophisticated meson exchange models or phenomenological interactions.

With the formulation of quantum chromodynamics (QCD), the fundamental theory of the strong

interactions was found. Nuclear interactions can be described as the residual interaction of the

strong force between the quark and gluon constituents of the nucleons. This is similar to the

Van-der-Waals force between molecules, which is the residual force of the Coulomb interaction

between atoms.

At low densities, which are relevant in nuclear physics, QCD is nonperturbative and nuclear

forces cannot be derived from QCD directly with sufficient precision. A solution is the use of

effective field theories (EFT) of QCD in the low-energy regime [135]. In an EFT, the interactions

in a certain energy regime are expanded in a series of operators which are ordered according to

a power counting scheme.

For very low energies, nuclear forces can be described in pionless EFT. Pionless EFT treats nu-

clear interactions in terms of nucleon contact interactions with momentum- spin-, and isospin-

dependencies.

At higher energies, pion exchanges are explicitly resolved, and by including these, one arrives

at chiral EFT. Chiral EFT is a modern approach to nuclear forces because it provides a systemat-

ically improvable way of describing nuclear interactions and allows to estimate the theoretical

uncertainty of the calculations. Chiral EFT has been very successfully applied to calculations of

few- and many-body systems. In the following Sections, we will give a theoretical basis of chiral

EFT. More details can be found in Refs. [136, 137, 138].

2.1 Quantum chromodynamics

Among the four fundamental interactions in nature, the strong interaction binds nucleons to-

gether to nuclei. It is based on the theory of QCD which describes the interactions between

quarks and gluons, the main building blocks of all hadrons. There are six quark flavors: up

(mu ≈ 2 MeV), down (md ≈ 5 MeV), strange (ms ≈ 100 MeV), charm (mc ≈ 1 GeV), bot-

tom (mb ≈ 4 GeV), and top (mt ≈ 180 GeV) [139]. In addition to mass and electric charge,

QCD introduces an additional property for quarks and gluons which is color charge. There are

three types of color charges namely red (r), green (g) and blue (b). Furthermore, anti-quarks

carry the anti-colors anti-red (r̄), anti-green (ḡ) and anti-blue (b̄). The strong interaction is

mediated by gluons, which are gauge bosons for the strong interaction.

All particles built out of quarks are called hadrons and have to be color neutral. Thus, quarks

cannot exist freely, and are confined to hadrons (confinement). There are two possibilities to

33



form color neutral systems: a pair of a quark and an anti-quark which carry color and the

corresponding anticolor, e.g., urd̄r̄. These bosonic systems are called mesons, e.g., the pion.

Systems consisting of three quarks with different colors, e.g., urdgdb, are called baryons and are

fermionic states, e.g., the neutron.

Another characteristic property of QCD is ”asymptotic freedom”, which describes the fact that

the strong coupling constant αS becomes weaker at high momenta, making the theory per-

turbative at high momenta. At low momenta, however, the strength of the coupling constant

increases and the theory becomes nonperturbative. This low-energy region is of particular in-

terest for nuclear matter calculations, and the nonperturbativeness makes direct calculations of

nuclear interactions from QCD very hard.

For calculations of nuclear matter and nuclei, only the three lightest quarks u, d and s need

to be considered while the other quarks can be treated as heavy and integrated out. The QCD

Lagrangian with only the three lightest quarks is given by [140]

L=

3∑

i=1

�
q̄i iD/qi −mi q̄iqi

�
−

1

2
TrGµνGµν , (2.1)

where the qi are the quark fields, mi are the quark masses, D/ = γµDµ = γ
µ(∂µ + i gAµ) is the

covariant derivative, Aµ are the gluon fields and Gµν is the gluon field strength.

One can draw a phase phase diagram for QCD where different phases of matter for temperature

vs. baryon density are given. At low baryon chemical potentials and temperatures, below

170 MeV [141], matter exists in the hadronic phase, where quarks are confined to hadrons.

Increasing temperature and/or baryon chemical potential, the system undergoes a transition

to quark matter, where quarks and gluons are deconfined. At high temperatures, this phase is

called quark-gluon plasma.

2.1.1 Chiral symmetry

The kinetic term of the QCD Lagrangian can be decomposed into terms for right-handed and

left-handed quarks [140],

3∑

i=1

q̄i iD/qi =

3∑

i=1

�
q̄Li iD/qLi + q̄Ri iD/qRi

�
. (2.2)

Thus, the kinetic term is symmetric under independent rotations of left-handed and right-

handed quarks qLi → Li jqL j and qRi → Ri jqRj. This SU(3)L × SU(3)R symmetry is called

chiral symmetry. Chiral symmetry is broken twofold: it is broken explicitly in the QCD La-

grangian due to the quark mass term. This term can be written as

3∑

i=1

mi q̄iqi =
∑

i, j

q̄Ri Mi jqL j + h.c. , (2.3)

where M = diag(mu, md , ms) is the quark mass matrix. For non-zero quark masses this term

couples left-handed and right-handed quarks and breaks chiral symmetry explicitly.
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Figure 2.1: The neutron-star EoS in several density regions [142]. The EoS at low densities, which

corresponds to low quark chemical potentials, is given by the crust EoS. At nuclear

densities, one can infer the EoS from neutron-matter calculations. The higher density

part cannot be calculated reliably so far. At very high chemical potentials, perturba-

tive QCD can be used to constrain the EoS.

Chiral symmetry is furthermore also spontaneously broken. If this would not be the case, par-

ticles whose quantum numbers only differ in parity would appear in parity doublets. However,

these particles differ in mass. The spontaneous chiral symmetry breaking leads to the formation

of the chiral condensate 〈q̄q〉, which is an order parameter for the chiral symmetry-breaking

transition. The chiral condensate is the expectation value of a quark-antiquark pair in a sys-

tem and is non-zero when chiral symmetry is spontaneously broken in the hadronic phase. It

vanishes in the quark-gluon plasma, where quarks and gluons are deconfined.

Furthermore, according to Goldstone’s theorem, spontaneous symmetry breaking leads to Gold-

stone bosons, which are massless excitations of the vacuum. The Goldstone bosons of sponta-

neously broken chiral symmetry are the pions. Due to the explicit breaking of chiral symmetry,

pions acquire small masses, and are called Pseudo-Goldstone bosons.

The Pseudo-Goldstone bosons of spontaneously broken chiral symmetry play an important role

for nuclear forces because the long-range parts of the nuclear interaction are described by pion-

exchange interactions.

2.1.2 QCD calculations for neutron matter

It is not possible at the moment to infer properties of neutron matter from QCD directly due

to the nonperturbativeness and complexity of QCD at the relevant low energies of interest.

However, there are possibilities to obtain information directly from QCD at very high densities.

Due to asymptotic freedom, at high energy scales, the strong coupling constant αS becomes

small and QCD can be solved perturbatively. Perturbative QCD can be used to constrain the high-

density, high energy part of the equation of state [144, 145]. This has been used together with
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Figure 2.2: The spectrum of light hadrons calculated in LQCD [143]. The horizontal bars cor-

respond to the experimental values with their width, the red crosses correspond to

the LQCD results and their uncertainties. The blue dots are input parameters. See

Ref. [143] for more details.

neutron-matter calculations at nuclear densities [57] to constrain the neutron-star EoS [142],

as depicted in Fig. 2.1.

The only method available at the moment to obtain low-energy properties of nuclear systems

directly from QCD is Lattice QCD (LQCD) [146]. In LQCD, quark and gluon fields are defined

in hypercubic space-time lattice with a discretized space-time grid. Path integrals are evaluated

numerically. The results of LQCD calculations are, among other values, characterized by the

lattice size L, defining the volume, and the lattice spacing a, characterizing the coarseness

of the grid. Although the results deviate from QCD results, these effects can be studied and

systematically eliminated by extrapolating a → 0 to the continuum and L → ∞ to infinite

volume.

A remarkable example of LQCD calculations is given in Ref. [143] and depicted in Fig. 2.2,

where the light-hadron spectrum was calculated directly from LQCD at the physical pion mass.

Many interesting results have been obtained in lattice QCD and nuclear physics observables

become accessible in LQCD [147]. As examples we mention the calculation of nuclei and hyper-

nuclei with A≤ 4 from Ref. [148], nucleon-nucleon scattering parameters [149], and magnetic

moments of light nuclei [150]. There are many more interesting results in the given references

and references therein.

However, LQCD is computationally very costly and LQCD results für A ≥ 2 at the moment are

only obtained at non-physical quark or, respectively, pion masses. The A≥ 2 results above were

obtained at quark masses of mπ ≈ 800 MeV. To obtain valid results at physical quark masses,

controlled extrapolations both to physical quark masses as well as to the continuum are needed.

Furthermore, finite-lattice-size effects have to be eliminated. In order to do so one requires

computationally expensive calculations as input.

It is to be expected, that light A ≤ 4 nuclei at physical quark masses will become available in

lattice QCD in the future. For heavier nuclei, however, many-body approaches based on lattice

QCD input will be needed.
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2.2 Chiral effective field theory for QCD at low energies

As stated before, at the energy region of interest for nuclear physics, QCD is non-perturbative,

and, at the moment, only accessible in lattice QCD calculations, which are computationally very

challenging. However, at low energies one can make use of effective field theories for QCD.

These will be explained in the following Sections.

2.2.1 Basic principles

Effective field theories employ the idea of choosing the relevant degrees of freedom of the

physical system of interest while leaving the symmetry properties of the system unchanged. In

the theory of strong interactions, the basic degrees of freedom are quarks. However, at low

energies and low momenta, which means large resolution scales, these are not resolved, and

the degrees of freedom of interest are low-energy or low-momenta (long-distance) degrees of

freedom, like external nucleon momenta. Only at higher energies, substructures can be resolved

and new degrees of freedom will start to contribute. This is called separation of scales. At these

high-energy scales, the effective field theory will break down. The dividing scale between these

two energy regimes is called breakdown scale ΛB and is characteristic for the EFT.

The effective field theory employs an expansion of the most general Lagrangian of the system,

which is consistent with all the system’s symmetries, in the typical low-momentum scale of the

system q with respect to this breakdown scale q/ΛB:

L=
∑

ν

�
q

ΛB

�ν
Fν(q, gi) . (2.4)

Here, Fν is a function of order 1 and the gi are low-energy constants (LECs) which have to

be determined. This expansion works better for lower energies of the system and for higher

breakdown scales.

The different terms in the effective expansion are ordered according to the power ν of q/ΛB,

using a power-counting scheme, which measures the importance of different expansion terms.

There is a lowest order, or leading order (LO), ν = 0, which includes the most important con-

tributions and infinitely many higher orders, starting from next-to-leading order (NLO), ν = 2,

N2LO, ν = 3, etc., including contributions with decreasing importance. Due to the existence of

a lowest order, only a limited number of interaction terms contribute at every order. For chiral

effective field theory, which we will use in this work, precise results can be obtained already at

N2LO. Going to higher-order involves the determination of more LECs which limits the predic-

tive power of the theory. However, the inclusion of higher-order terms decreases the theoretical

uncertainty of the calculations, leading to a systematic improveability of the theory.

High-momentum degrees of freedom can only exist for short times or short distances, respec-

tively. These length scales are not resolved in a low-energy EFT. As a consequence these degrees

of freedom can be treated as heavy and can be integrated out. Interactions involving these

high-momentum degrees of freedom are treated as contact interactions which are accompanied

by low-energy couplings (LECs), gi in Eq. (2.4). The LECs absorb high-momentum degrees of

freedom, which is depicted in Fig. 2.3. For a natural EFT expansion, these LECs are of order

∼ 1 and will not enlarge or diminish individual terms, which could lead to a delay in the EFT

convergence. For NN interactions, the LECs are fitted to experimental data of the two-body
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ρ ∼const. Δ

Figure 2.3: High-momentum degrees of freedom are treated as heavy and get absorbed into

low-energy constants. Left: a rho-meson exchange between two nucleons is un-

resolved in pionless or chiral EFT and absorbed into a two-nucleon contact interac-

tion accompanied by an LEC which includes the ρ meson. Right: in ∆-less EFT a

∆-excitation is not resolved explicitly and absorbed into a higher order vertex.

system, which contains information of all physics for all momentum scales. In principle, LECs

can be calculated from QCD [151, 152].

Effective field theories of QCD incorporate not only nucleon-nucleon (NN) interactions but also

many-body interactions such as three-nucleon (3N) and four-nucleon (4N) forces. These many-

body interactions and their operator structure arise naturally in the EFT Lagrangian and are a

result of the fact, that nucleons are composite particles and have a substructure of quarks and

gluons, which is unresolved.

In EFTs for QCD, NN and many-body interactions are consistent and the same vertices in the

two-body and many-body sectors are accompanied by the same LECs. Additional new LECs,

which accompany only many-body interactions, may also appear and have to be fitted in few-

body systems. Many-body forces involving four or more nucleons, however, seem to be less

important and the main focus in nuclear physics at the moment lies on the better description of

3N interactions. It was shown that 3N forces have an important contributions to several physical

systems, e.g., neutron matter [56, 57], neutron-rich nuclei [43, 153], and light nuclei [154].

The dominant uncertainties of these calculations are caused by the 3N forces.

2.2.2 Pionless effective field theory

As an example, we want to briefly introduce pionless effective field theory. For more details

on this topic, see Ref. [135]. Pions, as the pseudo-Goldstone bosons of spontaneously broken

chiral symmetry, are very light. However, at very low momenta, well below the pion mass

of only mπ ≈ 140 MeV, the only relevant degrees of freedom are the nucleon momenta. The

corresponding EFT is called pionless EFT. The breakdown scale of this theory is of the order of

the pion mass.

In this regime, nuclear interactions are given by a set of different contact interactions with

different momentum dependencies or derivatives, respectively. For example, the most general

Lagrangian at lowest order has two independent interactions, because nucleons with L=0 can

exist in an S = 0 and S = 1 state. It is given by

L= N †

�
i∂0+

∇2

2m
+ · · ·

�
N − C0t(N

†Pt N)
2− C0s(N

†PsN)
2+ · · · , (2.5)

where Ps and Pt are projectors on the S = 0 and S = 1 states, respectively.
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Calculating the scattering T-matrix in one of these channels, we find that the intermediate state

integrals in the scattering series are linearly divergent and have to be regularized introducing

a regularization scheme with a certain cutoff Λ. This leads to a renormalization of the contact

LECs to keep observables Λ-independent. It can be shown, that the renormalized contact LECs

at LO are given by

C0(Λ) =
4π

m

1
1

a0
− cΛ

, (2.6)

where C0(Λ) by construction gives cutoff independent results. The constant c depends on the

regularization scheme. For a sharp cutoff, it is c = 2/π. Thus, the two momentum-independent

LO contact interactions can reproduce the scattering lengths for the two possible L = 0 NN states

in the effective-range expansion. Including also higher-order terms leads to the reproduction of

the effective range and the shape parameters, and improves the predictions at higher energies.

However, more LECs are needed to be fixed. In pionless EFT, in addition to NN forces, also 3N

forces start contributing at LO. They are also given by a set of 3N contact interactions. Pionless

EFT has been used to calculate low-energy systems, e.g., the deuteron [155].

2.2.3 Chiral effective field theory

Typical nucleon momenta in nuclei and in nuclear matter are of the order of the pion mass,

which makes this momentum regime the regime of interest. At these momenta, pion interactions

are explicitly resolved and pionless EFT will break down. To get an reliable description of

nuclear systems, pions have to be included as degrees of freedom into the EFT. This EFT is

called chiral EFT and makes use of the separation of scales between pion mass and the ρ meson

mass, where new physics will enter. The Lagrangian is then expanded in terms of pion and

nucleon degrees of freedom (Chiral perturbation theory, ChPT). The breakdown scale for chiral

EFT is of the order of the ρ meson mass, ΛB ≈ 500 MeV. Chiral EFT is founded in the seminal

work of Weinberg [156, 157, 158, 159].

Chiral EFT includes short-range contact interactions similar to the ones in pionless EFT, but

additionally explicitly includes also long-range pion exchange interactions. In chiral EFT, the

expansion parameter is roughly

q

ΛB

≈
mπ

ΛB

≈
140 MeV

500 MeV
≃

1

3
. (2.7)

The power counting scheme in this work is Weinberg power counting, which is based on dimen-

sional analysis, see Refs. [36, 37] and references therein for more details. In Weinberg power

counting, every interaction term is characterized by the number of nucleon fields ni, the number

of pion fields pi and the number of derivatives or insertions of the pion mass di. Derivatives con-

tribute one power of q, meson fields −1/2 powers of q and each intermediate state contributes

−1 power of q. Every loop adds 3 powers of q due to the integral over the loop momentum. For

each interaction term the resulting power of q/ΛB is then given by [157]

ν =
∑

i

Vi

�
di −

1

2
pi

�
− D+ 3L . (2.8)
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Figure 2.4: Hierarchy of nuclear forces in chiral EFT up to N3LO. 3N forces start to contribute at

N2LO and 4N forces at N3LO.

Here, D is the number of intermediate states, L is the number of pion loops and Vi is the number

of vertices of type i. Using the topological identities [157]

D =
∑

i

Vi − 1, I = L + D, 2I + 2N =
∑

i

Vi(pi + ni), (2.9)

with the number of nucleons N and the number of internal lines I , and a modification to ac-

count for the proper normalization of N-nucleon states [151], one arrives at the power ν of the

expansion in Weinberg power counting [136, 158]

ν = −4+ 2N+ 2L+
∑

i

Vi∆i, ∆i = di +
1

2
ni − 2 . (2.10)

From this equation one sees that diagrams with loops or vertices with a larger number of deriva-

tives or pion mass insertions are suppressed by powers of q/ΛB. Furthermore, this equation es-

tablishes a natural hierarchy of nuclear forces. Two-body interactions start at LO and dominate

over many-body forces. At NLO, 3N interactions start to contribute, and at next-to-next-to-next-

to-leading order (N3LO), 4N interactions have to be considered. The hierarchy of nuclear forces

and different interaction topologies are depicted in Fig. 2.4 up to N3LO. The 3N forces vanish at

NLO [136, 160], and the first non-vanishing 3N contribution appears at N2LO. An improved un-

derstanding of these leading 3N forces, which means an improved determination of their LECs,

is a current frontier in nuclear physics and essential to produce reliable theoretical results.
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Furthermore, the excitation of the ∆ isobar can be included as an explicit degree of freedom

because the∆-nucleon mass difference is about 300 MeV and, thus, of the order of the pion mass

and below the breakdown scale of chiral EFT. Intermediate ∆-baryon states can be excited in

pion-nucleon and nucleon-nucleon vertices. Their contribution is absorbed in the higher-order

vertices for the TPE, enhancing the corresponding LECs. This is depicted in the right part of

Fig. 2.3. Chiral EFT with explicit ∆ excitations is called ∆-full chiral EFT and research along

these lines is in progress [161].

In this work we use ∆-less chiral EFT in QMC simulations, but in principle also ∆-full EFT can

be included in QMC. In the following, we introduce the NN and 3N contributions to the ∆-less

chiral interactions up to N3LO. We will ignore the 4N interactions as they have been found to be

only small corrections [17, 57, 162].

2.2.4 Two-nucleon interactions up to N3LO

In chiral EFT, employing Weinberg power counting, the NN potential up to N3LO is given as a

series of terms

Vchiral = V (0)+ V (2)+ V (3)+ V (4)+ . . . , (2.11)

where the superscript denotes the power in the expansion parameter q/ΛB. Two-nucleon inter-

actions start at LO and are the dominant contributions to nuclear interactions.

In general, there are long- and intermediate-range contributions due to the exchange of one or

more pions as well as short-range contact interactions parametrizing the short-range, or high-

momentum, physics. As stated above, the latter are characterized by a set of LECs which have

to be fit to experiment, while the first are completely determined by the chiral symmetry of QCD

and low-energy experimental data for the pion-nucleon system.

The Weinberg counting scheme has been used in the derivation of nuclear forces [59, 163,

161, 164] and electromagnetic currents [165, 166] and has as a consequence that the leading

relativistic corrections to the one-pion-exchange (OPE) potential enter at N3LO.

In the following, we discuss the chiral NN interactions up to N3LO, which are the current state-

of-the-art chiral NN potentials. We will follow Ref. [59]. At LO, the NN interaction has no loops

and only lowest-dimension vertices, ∆i = 0. There are two topologies: a two-nucleon-contact

interaction and a one-pion exchange interaction. The contact interaction is parametrized as a

set of operator structures, which in general contain momentum operators of the two particles,

spin as well as isospin operators. The NN interactions depend on two momentum scales, usually

chosen as the momentum transfer q= p′−p with the incoming and outgoing relative momenta

p= (p1−p2)/2 and p′ = (p′
1
−p′

2
)/2, respectively, and the momentum transfer in the exchange

channel k = 1

2

�
p′+ p

�
. Here, the pi and p′

i
correspond to incoming and outgoing momenta of

the nucleon i.

At LO, the NN forces are momentum independent, and the most general set of contact interac-

tions is given by the operators ✶, σ1 ·σ2, τ1 ·τ2, and σ1 ·σ2τ1 ·τ2, leading to

V
(0)

cont = α1+α2σ1 ·σ2+α3τ1 ·τ2+α4σ1 ·σ2τ1 ·τ2 . (2.12)

Out of these four terms only two are linearly independent. As nucleons are fermions, they obey

the Pauli principle, and after antisymmetrization the potential Vas is given by:

Vas =
1

2
(V −A[V ]) , (2.13)
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with the antisymmetrizer A defined via

A[V (q,k)] =
1

4
(1+σ1 ·σ2)(1+τ1 ·τ2)

× V

�
q→−2k,k→−

1

2
q

�
. (2.14)

The momentum part of the antisymmetrizer can be easily derived for q= p′−p= p′
2
−p′

1
−p2+p1

and k= 1

2

�
p+ p′

�
= 1

2

�
p′

2
− p′

1
+ p2− p1

�
with the momentum-exchange operator P12:



1′2′

��P12V (q,k) |12 〉=



2′1′
��V (q,k) |12 〉 (2.15)

= V

�
p′

1
− p′

2
− p2+ p1,

1

2

�
p′

1
− p′

2
+ p2− p1

��

= V

�
−2k,−

1

2
q

�
.

For the LO contact potential, we have

V
(0)

cont,as =
1

2

�
1−

1

4
(1+σ1 ·σ2)(1+τ1 ·τ2)

�
V
(0)

cont

=

�
3

8
α1−

3

8
α2−

3

8
α3−

9

8
α4

�

+

�
−

1

8
α1+

5

8
α2−

3

8
α3+

3

8
α4

�
σ1 ·σ2

+

�
−

1

8
α1−

3

8
α2+

5

8
α3+

3

8
α4

�
τ1 ·τ2

+

�
−

1

8
α1+

1

8
α2+

1

8
α3+

3

8
α4

�
σ1 ·σ2τ1 ·τ2

= C̃S + C̃Tσ1 ·σ2+

�
−

2

3
C̃S − C̃T

�
τ1 ·τ2

+

�
−

1

3
C̃S

�
σ1 ·σ2τ1 ·τ2 . (2.16)

Obviously, there are only two independent couplings at leading order after antisymmetriza-

tion. This is similar to pionless EFT, and these two couplings describe the two possible S wave

channels. Following Weinberg [167], the two commonly chosen LO contact operators are

V
(0)

cont = CS + CTσ1 ·σ2 , (2.17)

but in principle any different two of the four contact interactions can be chosen, and all operator

structures are obtained after antisymmetrization. This is analogous to Fierz ambiguities. The

chosen contact operators depend on the spin-independent contact coupling CS and the spin-

dependent contact coupling CT , where CS usually has to be large and negative while CT is much

smaller [157]. This can be inferred from the nuclear S wave phase shifts.
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In addition to contact operators, the one-pion-exchange (OPE) interaction appears at LO, given

by

V
(0)

OPE = −
g2

A

4 f 2
π

σ1 · qσ2 · q
q2+m2

π

τ1 ·τ2 (2.18)

in momentum space. Here, gA, fπ, and mπ denote the axial-vector coupling constant of the

nucleon, the pion decay constant, and the pion mass, respectively. In general, we can write all

pion-exchange contributions in the form

Vπ = VC +τ1 ·τ2WC (2.19)

+
�
VS +τ1 ·τ2WS

�
σ1 ·σ2

+
�
VT +τ1 ·τ2WT

�
σ1 · qσ2 · q

+
�
VLS +τ1 ·τ2WLS

�
i(σ1+σ2) · q× k

+
�
VσL +τ1 ·τ2WσL

�
σ1 · q× k σ2 · q× k ,

with central, spin, tensor, spin-orbit and quadratic spin-orbit components, respectively. The OPE

interaction adds to the 0isospin-dependent tensor channel, WT . It describes the longest-range

contributions to nuclear forces.

At NLO (ν = 2), 14 different contact interactions are allowed by symmetries:

V
(2)

cont = γ1 q2+ γ2 q2
σ1 ·σ2+ γ3 q2

τ1 ·τ2

+ γ4 q2
σ1 ·σ2τ1 ·τ2

+ γ5 k2+ γ6 k2
σ1 ·σ2+ γ7 k2

τ1 ·τ2

+ γ8 k2
σ1 ·σ2τ1 ·τ2

+ γ9 (σ1+σ2)(q× k)

+ γ10 (σ1+σ2)(q× k)τ1 ·τ2

+ γ11(σ1 · q)(σ2 · q)
+ γ12(σ1 · q)(σ2 · q)τ1 ·τ2

+ γ13(σ1 · k)(σ2 · k)
+ γ14(σ1 · k)(σ2 · k)τ1 ·τ2 . (2.20)

In analogy to the LO case, only seven couplings are independent and one has the freedom to

choose an appropriate basis. Many currently available versions of chiral potentials [59, 60] use

the 7 isospin-independent operators

V
(2)

cont = C̄1 q2+ C̄2 q2
σ1 ·σ2+ C̄3 k2+ C̄4 k2

σ1 ·σ2 (2.21)

+ C̄5 (σ1+σ2)(q× k) + C̄6(σ1 · q)(σ2 · q) + C̄7(σ1 · k)(σ2 · k) .

Later we will make use of the possibility to choose different 7 out of these 14 operators.

Furthermore, the strength of the OPE potential is slightly shifted due to the Goldberger-Treiman

discrepancy (GTD) [168],

gπN =
gAmN

Fπ

�
1−

2M2
π d̄18

gA

�
, (2.22)
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where gπN is the pion-nucleon coupling constant and d̄18 is a LEC from the third-order pion-

nucleon effective Lagrangian, which is of the same order in the chiral expansion as V
(2)
NN . This

leads to a replacement of gA by gA−2d18M2
π in the OPE potential. For further corrections which

lead to a renormalization of the LECs gA, fπ, and Mπ see Ref. [169].

In addition, at NLO two-pion-exchange (TPE) interactions appear, which include pion loops that

have to be regularized. We use the spectral-function-regularization (SFR). In the framework of

the SFR, the loop integrals in the spectral representation of the TPE potential go from 2Mπ to

the ultraviolet cutoff Λ̃ rather than to ∞ corresponding to the case of dimensional regulariza-

tion [170]. Taking Λ̃ of the order of Λb ensures that no unnaturally large short-range terms are

induced by the subleading TPE potential [171]. The momentum-space expressions for the NLO

TPE potential in the spectral-function representation with spectral function cutoff Λ̃ are given

by

W NLO
C
(q) = −

1

384π2 f 2
π

LΛ̃(q)

�
4m2

π(5g4
A
− 4g2

A
− 1) + q2(23g4

A
− 10g2

A
− 1) +

48g4
A
m4
π

4m2
π+ q2

�
,

(2.23)

V NLO
T
(q) = −

1

q2
V NLO

S
(q) = −

3g4
A

64π2 f 4
π

LΛ̃(q) , (2.24)

where the loop function LΛ̃(q) is given by

LΛ̃(q) = Θ(Λ̃− 2mπ)
ω

2q
ln
Λ̃2ω2+ q2s2+ 2Λ̃qωs

4m2
π(Λ̃

2+ q2)
, (2.25)

with

ω =
p

q2+ 4m2
π , s =

Æ
Λ̃2− 4m2

π . (2.26)

At N2LO there are no additional contact interactions but corrections to the lower-order pion ex-

changes. Corrections to the OPE potential lead to a renormalization of gA. Additional subleading

TPE contributions appear. They are given by

V N2LO
C

(q) = −
3g2

A

16π f 4
π

�
2m2

π(2c1− c3)− c3q2
�
(2m2

π+ q2)AΛ̃(q) , (2.27)

W N2LO
T

(q) = −
1

q2
W N2LO

S
(q) = −

g2
A

32π f 4
π

c4(4m2
π+ q2)AΛ̃(q) , (2.28)

where ci denote the LECs of the subleading pion-nucleon vertices [172]. These LECs absorb ∆

excitation effects in the TPE interaction and, hence, are enlarged. The loop function AΛ̃(q) is

defined via

AΛ̃(q) = Θ(Λ̃− 2mπ)
1

2q
arctan

q(Λ̃− 2mπ)

q2+ 2Λ̃mπ

. (2.29)
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At N3LO additional contact operators ∼ q4 add to the potential. There are in total 30 different

operator structures

V
(4)

cont = δ1q4+δ2q4
τ1 ·τ2+δ3k4+δ4k4

τ1 ·τ2

+δ5q2k2+δ6q2k2
τ1 ·τ2+δ7(q × k)2

+δ8(q × k)2τ1 ·τ2

+δ9q4
σ1 ·σ2+δ10q4

σ1 ·σ2τ1 ·τ2

+δ11k4
σ1 ·σ2+δ12k4

σ1 ·σ2τ1 ·τ2

+δ13q2k2
σ1 ·σ2+δ14q2k2

σ1 ·σ2τ1 ·τ2

+δ15(q × k)2σ1 ·σ2+δ16(q × k)2σ1 ·σ2τ1 ·τ2

+ i
1

2
δ17q2(σ1+σ2) · (q × k)

+ i
1

2
δ18q2(σ1+σ2) · (q × k)τ1 ·τ2

+ i
1

2
δ19k2(σ1+σ2) · (q × k)

+ i
1

2
δ20k2(σ1+σ2) · (q × k)τ1 ·τ2

+δ21q2
σ1 · qσ2 · q +δ22q2

σ1 · qσ2 · q τ1 ·τ2

+δ23k2
σ1 · qσ2 · q +δ24k2

σ1 · qσ2 · q τ1 ·τ2

+δ25q2
σ1 · kσ2 · k +δ26q2

σ1 · kσ2 · k τ1 ·τ2

+δ27k2
σ1 · kσ2 · k +δ28k2

σ1 · kσ2 · k τ1 ·τ2

+δ29

�
(σ1+σ2) · (q × k)

�2

+δ30

�
(σ1+σ2) · (q × k)

�2
τ1 ·τ2 , (2.30)

from which usually the 15 isospin-independent operators are chosen [59, 60].

Additionally, at N3LO, further corrections to the OPE potential arise leading to a renormalization

of the OPE potential as well as the contact interactions [59]. Additionally, relativistic 1/m2

corrections will appear at this order and the OPE potential then takes the form

VOPE(q) = −
�

gA

2 fπ

�2
�

1−
p2+ p′2

2m2

�
τ1 ·τ2

σ · qσ2 · q
q2+m2

π

. (2.31)

For the N3LO loop corrections to the TPE potential, no closed expressions can be given and we

refer to Ref. [59] for the corresponding expressions. Also, relativistic 1/m corrections to the TPE

arise, introducing spin-orbit interactions into the TPE potential.

At N3LO additional three-pion-exchange interactions appear. The three-pion-exchange is much

weaker than the TPE potentials [59] at long distances and only enhances the total potential at

small r, where chiral EFT is anyways unreliable.

In addition to these forces, isospin-breaking corrections have to be included in chiral potentials.

They are due to the difference in charged and neutral pion masses in pion exchanges in the nn,

np, and pp systems and due to electromagnetic forces between nucleons. We will not give these

expressions here and refer the reader to Ref. [59] for more details.
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The above potential introduces ultraviolet divergences into the scattering equation because the

potential grows with q. To overcome this problem, the potentials are regularized with typical

momentum space regulators of the form fΛ(p) = exp(−(p/Λ)2n) with a positive number n and

f (p′). With this regulator function, the potential in the Lippmann-Schwinger equation becomes

V (p,p′)→ fΛ(p)V (p,p′) fΛ(p
′).

2.2.5 Three-nucleon interactions up to N3LO

Figure 2.5: 3N force topologies at N2LO. The long-range two-pion-exchange depends on the

LECs c1, c3 and c4, the intermediate-range one-pion-exchange–contact part on cD

and the short-range three-nucleon-contact interaction on cE .

The leading 3N forces start to contribute at N2LO [160, 173] and consist of three topologies: a

two-pion-exchange part VC , a one-pion-exchange–contact part VD and a three-nucleon-contact

interaction VE, see Fig. 2.5.

The two-pion exchange part VC depends on the LECs c1, c3 and c4 and is given by

VC =
1

2

�
gA

2 fπ

�2 ∑

i 6= j 6=k

(σi · qi)(σ j · q j)

(q2
i
+m2

π)(q
2
j
+m2

π)
F
αβ

i jk
τα

i
τ
β

j
. (2.32)

The function F
αβ

i jk
is defined as

F
αβ

i jk
= δαβ

�
−

4c1m2
π

f 2
π

+
2c3

f 2
π

qi · q j

�
+
∑

γ

c4

f 2
π

εαβγτ
γ

k
σk · (qi × q j) , (2.33)

and contains different two-pion exchange structures, whose strength is determined by the

LECs ci, which already appear in the NN sector in the subleading TPE interactions at N2LO,

see Eqs. (2.27) and (2.28).

The one-pion-exchange contact interaction VD is given by

VD = −
gA

8 f 2
π

cD

f 2
πΛχ

∑

i 6= j 6=k

σ j · q j

q2
j
+m2

π

(τi ·τ j)(σi · q j) , (2.34)

where cD is the corresponding LEC and Λχ = 700 MeV.

The third contribution is the three-nucleon-contact interaction VE which is given by

VE =
1

2

cE

f 4
πΛχ

∑

j 6=k

(τ j ·τk). (2.35)
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Figure 2.6: Sample of different diagrams for the 3N force topologies at N3LO introduced in

Refs. [174] and [175]. There are five topologies: a) two-pion-exchange topology, b)

two-pion-one-pion-exchange topology, c) pion-ring topology, d) one-pion-exchange-

contact topology, e) two-pion-exchange-contact topology. In addition, there are

contributions due to relativistic corrections. All of these contributions are completely

predicted from the NN sector and no new LECs appear.

It is determined by the LEC cE.

The LECs cD and cE are new many-body parameters appearing in the leading 3N forces and

have to be adjusted to reproduce few-body observables, commonly chosen among the 3H and
4He binding energies or radii. We will go into detail about the fitting of these constants in

Sec. 6.3.

The 3N forces at N3LO have been derived in Refs. [174, 175]. They contain no new parameters

and are completely predicted from the LO NN sector. They depend only on CS and CT and

consist of five topologies with diagrams with one loop or tree diagrams with dimension-two

vertices. Additionally, there appear relativistic 1/m corrections to the NLO 3N forces:

V3N = V2π+ V2π-1π+ Vring+ V1π-cont+ V2π-cont+ V1/m .

Here, V2π, V2π-1π and Vring are the long-range two-pion exchange, the two-pion-one-pion ex-

change and the pion-ring contributions, respectively [174], and V1π-cont, V2π-cont and V1/m are

the the short-range one-pion-exchange-contact, the two-pion-exchange-contact contributions,

and the relativistic corrections [175]. The topologies are depicted in Fig. 2.6.

The two-pion-exchange topology is show in Fig. 2.6 and only leads to shifts in the values of the

LECs c1, c3 and c4 [174],

c1→ c̄1 = c1−
g2

A
mπ

64π f 2
π

, c3→ c̄3 = c3+
g4

A
mπ

16π f 2
π

, c4→ c̄4 = c4−
g4

A
mπ

16π f 2
π

. (2.36)
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Furthermore, the N3LO TPE topology has another contribution,

V
(4)

2π =
g4

A

256π f 6
π

∑

i 6= j 6=k

(σi · qi)(σ j · q j)

(q2
i
+m2

π)(q
2
j
+m2

π)

h
τi ·τ j

�
mπ(m

2
π+ 3q2

i
+ 3q2

j
+ 4qi · q j)

+(2m2
π+ q2

i
+ q2

j
+ 2qi · q j)(3m2

π+ 3q2
i
+ 3q2

j
+ 4qi · q j)A(qk)

�

−(τi ×τ j) ·τk (qi × q j) ·σk

�
mπ+ (4m2

π+ q2
i
+ q2

j
+ 2qi · q j)A(qk)

�i
, (2.37)

with the loop function A(q)

A(q) =
1

2q
arctan

�
q

2mπ

�
. (2.38)

The two-pion-one-pion-exchange topology can be written as

V2π-1π =
∑

i 6= j 6=k

σ j · q j

q2
j
+m2

π

�
τi ·τ j

�
σk · qi qi · q j F1(qi) +σk · qi F2(qi) +σk · q j F3(q1)

�

+τk ·τ j

�
σi · qi qi · q j F4(qi) +σi · q j F5(qi) +σk · qi F6(qi) +σk · q j F7(qi)

�

+ (τi ×τk) ·τ j (σi ×σk) · qi F8(qi)
�

, (2.39)

with the structure functions F1(q) to F8(q) defined as

F1(q) = −
g6

A

256π f 6
π

�
mπ

4m2
π+ q2

+
2mπ

q2
−

8m2
π+ q2

q2
A(q)

�
(2.40)

+
g4

A

256π f 6
π

�
mπ

q2
+

q2− 4m2
π

q2
A(q)

�
,

F2(q) =
1

2
F6(q) = F7(q) = −4F8(q) =

g4
A

128π f 6
π

�
mπ+ (q

2+ 2m2
π)A(q)

�
, (2.41)

F3(q) = −
g6

A

256π f 6
π

�
3mπ+ (8m2

π+ 3q2)A(q)
�
+

g4
A

256π f 6
π

�
mπ+ (q

2+ 4m2
π)A(q)

�
, (2.42)

F4(q) = −
1

q2
F5(q) = −

g6
A

128π f 6
π

A(q) . (2.43)

The pion-ring topology at N3LO contains very involved structure functions and is given by

Vring =
∑

i 6= j 6=k

σi ·σk τk ·τ jR1+σi · qi σk · qi τk ·τ jR2+σi · qi σk · q j τk ·τ jR3 (2.44)

+σi · q j σk · qi τk ·τ jR4+σi · q j σk · q j τk ·τ jR5+τi ·τ jR6+σi · qi σ j · qiR7

+σi · qi σ j · q jR8+σi · q j σ j · qiR9+σi ·σ jR10+ qi · (q j ×σk) τi · (τk ×τ j)R11

+τi ·τkS1+σi · qi σ j · qi τi ·τkS2+σi · q j σ j · qi τi ·τkS3+σi · qi σ j · q j τi ·τkS4

+σi · q j σ j · q j τi ·τkS5+σi ·σ j τi ·τkS6+ qi · (q j ×σi) τi · (τk ×τ j)S7 .
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The structure functions Ri and Si defined in Eqs. (A2) and (A7) of Ref. [174]. Note that there

is a factor of 1/2 missing in the structure functions R6, R8, R9, R10, and R11 [17, 57].

The one-pion-exchange-contact topology vanishes at N3LO [175]. The two-pion-exchange-

contact topology is given by

V2π-cont =
g4

A
CT

48π f 4
π

∑

i 6= j 6=k

�
2τi ·τk σk ·σ j

�
3mπ−

m3
π

4m2
π+ q2

i

+ 2(2m2
π+ q2

i
)A(qi)

�
+ 9
�
qi ·σi qi ·σk

−q2
i
σi ·σk

�
A(qi)

�
−

g2
A
CT

24π f 4
π

∑

i 6= j 6=k

τi ·τk σk ·σ j

�
mπ+ (2m2

π+ q2
i
)A(qi)

�
. (2.45)

The interaction depends on the spin-dependent two-body LO contact coupling CT .

The last contribution to the 3N forces at N3LO stems from relativistic corrections to the NLO 3N

TPE and OPE-contact topologies, and is given by

V1/m =
g2

A

32mN f 4
π

∑

i 6= j 6=k

1

(q2
i
+m2

π)(q
2
j
+m2

π)

�
τi ·τ j

�
σi · qi σ j · q jaik j +σi · qi σ j · k jcik j

�

+ (τi ×τk) ·τ j

�
σi · qi σ j · q j bik j +σi · qi σ j · k jdik j

��

+
g2

A

8mN f 2
π

∑

i 6= j 6=k

1

q2
i
+m2

π

τi ·τk

�
σi · qi fik j +σi · ki gik j

�
. (2.46)

Here, aik j, bik j, cik j, dik j, fik j, and gik j are functions defined in Eqs. (4.11) and (4.13) of

Ref. [175]. In addition to CT , they depend on the spin-independent LO two-body contact cou-

pling CS and on the constants β̄8 and β̄9 [175].

For the regularization of the 3N forces, several regulators can be chosen. In our infinite matter

calculations, we usually employ a regulator of the form

fR(p, q) = exp[−((k2
1
+ k2

2
+ k2

3
− k1 · k2− k1 · k3− k2 · k3)/(3Λ

2
3N))

nexp] , (2.47)

with the single-particle momenta ki and nexp = 4. In contrast, also regulators on the momentum

exchanges can be chosen, like in Ref. [176]. We will give more details on 3N regularization in

Sec. 6.5.

2.3 Results with chiral EFT interactions

The systematics of chiral EFT makes it a powerful tool for nuclear physics and enables calcu-

lations with controlled theoretical uncertainties. Especially the consistent description of many-

body forces, and in particular 3N forces, leads to remarkable results for neutron-rich nuclei and

the evolution of shell structure for these, as well as for the neutron-matter EoS. It was shown,

that the 3N forces are a necessary ingredient for the correct reproduction and prediction of

nuclear observables and that they constitute the dominant uncertainty in current chiral EFT

calculations.

In the following, we present current state-of-the art calculations employing chiral EFT Hamilto-

nians for nuclei and nuclear matter.
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Figure 2.7: Diagrams up to second order in many-body perturbation theory. The diagrams in

the first row contribute to the Hartree-Fock energy. These are the kinetic energy Ekin

and the first order NN, 3N, and 4N interaction energies E
(1)

NN, E
(1)

3N , and E
(1)

4N . The other

diagrams are second-order contributions to the energy due to NN-NN interactions

(E
(2)

1 ), NN-3N interactions (E
(2)

2 and E
(2)

3 ), and 3N-3N interactions (E
(2)
4 and E

(2)
5 ). We

left out diagrams for 2nd-order contributions involving 4N forces.

2.3.1 Many-body perturbation theory

Many-body perturbation theory (MBPT) is a systematically improvable many-body method and

was used to calculate current state-of-the-art theoretical results for nuclear matter and neutron-

rich nuclei using chiral EFT. In the following we will focus on MBPT calculations for nuclear

matter because we will use these calculations later in this work.

In general, a system’s Hamiltonian has contributions of NN and many-body forces and is given

by

H = T + VNN + V3N + V4N + ... (2.48)

with the kinetic energy T , the NN interactions VNN , 3N interactions V3N , and 4N interactions

V4N . In MBPT, the interaction is treated as a perturbation, thus, giving the kinetic energy as the

zeroth-order contribution to the energy. The first-order corrections due to NN (E
(1)

NN), 3N (E
(1)

3N),

and 4N (E
(1)

4N) interactions are given by

E(1) =
∑

α

〈α |V |α 〉 (2.49)

=
∑

αNN



αNN

��VNN

��αNN

�
+
∑

α3N



α3N

��V3N

��α3N

�
+
∑

α4N



α4N

��V4N

��α4N

�

= E
(1)

NN+ E
(1)

3N + E
(1)

4N ,

where we sum over different states α of the system, in detail NN, 3N and 4N states. These

different contributions, together with the kinetic energy, are depicted in the first row of Fig. 2.7.
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For infinite nuclear matter, the Hartree-Fock (HF) states of the system can be labeled by the

momenta, spins and isospins of the particles. Summing over all these quantum numbers, for an

a-particle HF contribution to the energy per particle E/A one finds

E(1)

A
=

1

a! · n

 
a∏

i=1

trτi
trσ i

∫
d3ki

(2π)3
nki

!
f 2
R
(p, q) 〈1 · · · a |A1···aVa |1 · · · a 〉 , (2.50)

with the spin and isospin Pauli matrices of the i-th particle σi and τi, the particle momen-

tum distribution nki
, the regulator function fR(p, q), the a-body antisymmetrizer A1···a, and the

momentum states |1 · · · a 〉 for the a particles.

The second-order energy contribution to the energy in MBPT is given by

E(2) =
∑

α 6=β

〈α |V
��β
�

β
��V |α 〉

E
(0)
α − E

(0)

β

, (2.51)

with the many-body states α and β . Since 4N forces are small, we will ignore all higher-

order contributions including them. The 3N forces usually enter as antisymmetrized density-

dependent two-body interactions, which are constructed by summing the third particle over

occupied states in the Fermi sea [54]

V̄3N = trτ3
trσ3

∫
d3k3

(2π)3
nk3

A123V3N . (2.52)

We obtain then for the second-order energy contributions

E(2) =
∑

αNN 6=βNN
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(2.53)
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�
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αNN
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�
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�� V̄3N
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�
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αNN
− E

(0)

βNN

+
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α3N 6=β3N



α3N

��V3N

��β3N

�

β3N

��V3N

��α3N

�

E
(0)
α3N
− E

(0)

β3N

= E
(2)

1 + E
(2)

2 + E
(2)

3 + E
(2)
4 + E

(2)
5 .

These five contributions are NN-NN correlations (E
(2)

1 ), NN-3N correlations (E
(2)

2 and E
(2)

3 ) and

3N-3N correlations (E
(2)
4 and E

(2)
5 ). These contributions are depicted in the middle and bottom

row of Fig. 2.7.
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In infinite homogeneous matter, we can again integrate over all states and find for the 2nd order

correction terms E
(2)

1 − E
(2)
4

E
(2)

1−4 =
1

4

 
4∏

i=1

trτi
trσ i

∫
d3ki

(2π)3

!
��〈12 |VNN/3N |34 〉

��2 nk1
nk2
(1− nk3

)(1− nk4
)

εk1
+ εk2

− εk3
− εk4

(2.54)

× (2π)3δ(k1+ k2− k3− k4) ,

with VNN/3N being the antisymmetrized NN or density-dependent 3N interaction and εki
the

single-particle energies. The term E
(2)
5 is given by

E
(2)
5 =

1

36
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i=1

trτi
trσ i

∫
d3ki

(2π)3

!
��〈123 |A123V3N |456 〉

��2 nk1
nk2
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)(1− nk5
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)

εk1
+ εk2

+ εk3
− εk4

− εk5
− εk6

× (2π)3δ(k1+ k2+ k3− k4− k5− k6) . (2.55)

We will not discuss corrections beyond second order here, although we also include particle-

particle contributions from third order in our calculations, see Ref. [55]. Their size provides an

estimate of the convergence of the MBPT calculation.

In addition to nuclear matter, MBPT is also used in the framework of the nuclear shell model

to derive Hamiltonians for the valence space [177]. It is used in a diagrammatic approach

to calculate the single-particle energies and two-body matrix elements necessary for the shell

model calculations and includes further corrections, e.g., contributions from outside the valence

space, perturbatively. In state-of-the-art calculations, NN and 3N interactions are included up to

third order.

Pioneering MBPT results of neutron matter with chiral NN and many-body forces at N3LO have

been obtained, where the subleading 3N forces have been included in first order [17, 57]. We

show these results in Fig. 2.8. The results include uncertainties in the many-body forces, in

the many-body calculation, as well as due to cutoff variation. We show bands for different NN

potentials, and for each band the uncertainty is dominated by the many-body forces and in

particular by the uncertainties in the 3N LECs ci. However, the many-body method also adds

a sizeable contribution to the uncertainty. The final result at n0, including all uncertainties,

is 14.1 − 21.0 MeV per particle. The neutron-matter energy of Fig. 2.8 agrees very well with

NLO lattice results [53] and QMC simulations [178] at very low densities, and with variational

calculations [118] and AFDMC calculations (GCR) [16] based on phenomenological potentials,

where the latter is adjusted to an energy difference of 32 MeV between neutron matter and the

empirical saturation point.

In Fig. 2.8 we also show newer N3LO neutron-matter results, which in addition to the previous

results also include second-order corrections to the N3LO 3N forces [179]. The two bands show

excellent agreement and the inclusion of the second-order contributions reduces the theoretical

uncertainty of the calculation by ∼ 1 MeV at n0.

For infinite-matter results with finite proton fraction, current state-of-the-art calculations with

arbitrary proton fractions are presented in Ref. [120]. However, these results do not yet include

N3LO many-body forces.

Remarkable results using MBPT in shell model calculations have been obtained for neutron-rich

oxygen [153] and calcium isotopes [34, 180, 181]. The calcium chain is optimally suited for

computations of the shell evolution in neutron-rich nuclei because it contains two doubly magic
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Figure 2.8: Left: Neutron-matter energy per particle as a function of density including NN, and

first-order 3N and 4N forces at N3LO [57, 17]. The three overlapping bands are la-

beled by the different NN potentials and include uncertainty estimates due to the

many-body calculation, the low-energy ci constants and by varying the 3N/4N cut-

offs. For comparison, results are shown at low densities (see also the inset) from

NLO lattice [53] and Quantum Monte Carlo (QMC) simulations [178], and at nuclear

densities from variational (APR) [118] and AFDMC calculations (GCR) [16] based on

adjusted nuclear force models. Right: Neutron matter energy per particle when also

including 2nd-order corrections for the N3LO 3N forces [179] (blue) in comparison

with the calculation without these corrections from the left panel (green).

nuclei (40Ca, 48Ca). Furthermore, there is a lot of experimental data in the calcium chain and

recent high-precision experiments found new shell closures in 52Ca and 54Ca [34, 114]. MBPT

calculations are in very good agreement with experimental findings [34, 181], see also Fig. 2.9.

In oxygen, the neutron drip line is anomalously close to the valley of stability. This so-called

oxygen anomaly cannot be explained by only considering NN forces in the nuclear Hamiltonian

and is only described when 3N forces are considered. This has been shown in MBPT shell-model

calculations with chiral interactions [43] and was confirmed using different ab initio methods,

which we will describe in the next Section.

2.3.2 Ab initio results

To derive properties of nuclear systems from first principles, two ingredients are needed: 1)

a reliable Hamiltonian derived within a systematic theory bases on QCD and 2) an ab initio

many-body method without further approximations. Chiral EFT Hamiltonians are connected to

QCD by construction and have been successfully used in several ab initio many-body methods.

In the following we briefly want to present these methods. For more details, we refer the reader

to Ref. [35].
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In the coupled-cluster (CC) method [61], one starts from a closed-shell reference state and

similarity transforms a normal-ordered Hamiltonian H, H̄ = e−T HeT , where T is the so-called

cluster operator. The cluster operator includes particle-hole excitations for up to A particles,

T = T1 + T2 + · · · TA, to all orders. Usually, only single and double excitations are included

(CCSD), T = T1 + T2. The operators T1 and T2 are obtained by solving the coupled-cluster

equations. CC methods are limited in the regard that they can only access nuclei which are one

or two particles away from closed shells.

Another method is the self-consistent Green’s function (SCGF) approach [182, 183], where

the single-particle Green’s function is calculated to infer information about the propagation of

single-particle and single-hole excitations in the system to find the system’s ground state. In

Gorkov SCGF [184, 185], also open-shell nuclei can be accessed.

Another method is the in-medium similarity renormalization group (IM-SRG) approach [186,

187], where the system’s Hamiltonian is unitarily transformed to a band- or block-diagonal

form. This leads to a decoupling of the ground and excited states. Recent progress allows to

access open-shell nuclei (MR-IM-SRG) [188].

In the no-core shell model (NCSM) [39] the Hamiltonian is exactly diagonalized to solve the

many-body problem. Using importance truncation (IT-NCSM) [189, 40], larger model spaces

can be accessed.

Further methods include nuclear lattice EFT [41, 42], which defines the nuclear many-body

problem on a space-time lattice similar to lattice QCD, and the hyperspherical harmonics (HH)

approach [190], using hyperspherical harmonic basis functions.
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Figure 2.9: Left: Ground state energies of the oxygen isotopes for different many-body methods

using chiral NN and 3N forces compared to experiment. Right: Two-neutron separa-

tion energies S2n in the neutron-rich side of the Calcium chain for different methods

compared to experiment. The pictures are taken from Ref. [35].

These methods have been used to calculate both nuclei and infinite nuclear matter. In Fig. 2.9

we show the ground state energies of the neutron-rich oxygen isotopes for different many-body

methods using chiral NN and 3N forces as well as two-neutron separation energies S2n in the

neutron-rich side of the Calcium chain for different methods, compared to experimental values,

see Ref. [35] and references therein. In the oxygen chain, the different many-body methods

show remarkable agreement and all predict the neutron drip line at 24O.
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For the calcium chain, different methods lead to a spread in the predictions of the S2n energies

but the MBPT results agree with the experimental results [34, 114]. Furthermore, for larger

neutron numbers, different methods predict different trends and it will be interesting to obtain

more experimental data on these nuclei.

The CC approach as well as the SCGF method have also been used to calculate infinite nuclear

matter [191, 192, 193, 194]. We will compare with these results later in this thesis.

2.3.3 Motivation for nonperturbative benchmarks

Remarkable results have been obtained with chiral interactions in a multitude of different many-

body methods for both nuclear matter and nuclei. The current state-of-the-art results for infinite

matter up to N3LO are obtained in the framework of MBPT. These calculations suffer from

several problems.

The successful MBPT method can only be used for interactions which converge sufficiently fast.

For these perturbative interactions, reliable results can already be obtained at second order in

perturbation theory. However, chiral EFT has a freedom to choose a regularization scheme and

cutoffs over a certain range in momentum-space, leading to different possible potential proper-

ties. For low-momentum cutoffs, one obtains soft interactions, which are usually perturbative.

For higher cutoffs, the potentials become less perturbative, which makes them unsuitable for

MBPT and several other many-body methods. Thus, all these harder interactions cannot be

explored.

Second, in MBPT calculations, no definite answer can be given on the question if results are

already converged or not. As the calculation of higher orders is very cumbersome, many cal-

culations stop at second or third order in MBPT. It is not clear if the results at this orders are

already converged. In addition to the uncertainty of nuclear Hamiltonians this introduces ad-

ditional uncertainties due to the many-body method, as stated in Ref. [57]. For MBPT in shell

model, the estimation of uncertainties is work in progress.

It would be desirable to minimize the theoretical uncertainties due to the many-body method

to reduce the overall uncertainty. Furthermore, it would be worthwile to being able to clearly

investigate different chiral interactions. To achieve this, one needs a nonperturbative and precise

ab initio method, to calculate nonperturbative benchmarks for neutron matter for, e.g., neutron

stars, for ultracold atoms, and for nuclei based on chiral EFT interactions. While some of the ab

initio methods presented above provide the possibility of nonperturbative benchmarks in certain

regions of the nuclear chart and for infinite matter, the very powerful family of quantum Monte

Carlo (QMC) methods has so far not been used with chiral EFT interactions due to nonlocalities

in the momentum-space formulation of chiral interactions.

QMC simulations provide the possibility of solving the many-body Schrödinger equation stochas-

tically, using Monte Carlo integration methods. The accuracy of these simulations is mainly

determined by the number of Monte Carlo runs and, thus, can be improved to a certain level

with increasing number of computations. QMC methods have been found to be one of the

most reliable many-body methods and have been used to obtain high-precision results of light

nuclei [195] and nuclear matter [16] with phenomenological interactions. We introduce the

family of these methods in Chap. 3.

In this work, we develop QMC calculations with chiral EFT interactions to combine systematic

nuclear interactions with a reliable many-body method. This will allow us to provide nonper-

turbative benchmarks for all the systems discussed above, to test the perturbativeness of chiral
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interactions, to benchmark current state-of-the-art results, and also to provide the possibility to

match chiral EFT to lattice QCD simulations, for example for few-neutron systems in a box, and

also varying the pion mass in chiral EFT.
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3 Quantum Monte Carlo
A very powerful family of ab initio many-body methods are Quantum Monte Carlo methods. In

this Chapter, we explain the basic ideas of QMC approaches and present the two QMC meth-

ods we will use throughout this work: Green’s function Monte Carlo (GFMC) [196, 74] and

auxiliary-field diffusion Monte Carlo (AFDMC) [77]. These methods have been used in the past

with phenomenological interactions of the Argonne type [197, 198] and 3N interactions of the

Urbana [199] and Illinois [200] form to calculate light nuclei and neutron-matter properties

with high precision. We will present some of these results at the end of this Chapter.

3.1 Basic principles

The QMC family of methods is an ab initio method aimed at solving the many-body Schrödinger

equation exactly using stochastical algorithms. The GFMC method as well as the AFDMC method

are very close to Diffusion Monte Carlo (DMC) where the Schrödinger equation is regarded as a

diffusion equation in imaginary time, acting on a trial wave function
��ψT

�
. By evolving the trial

wave function to large imaginary times, the true ground state of the system can be projected

out, if trial wave function and ground state wave function overlap. Otherwise, the lowest energy

eigenstate which has an overlap with the trial wave function will be obtained.

Starting from the trial wave function
��ψT

�
, which can be developed in the eigenfunctions

��φi

�

of the system’s Hamiltonian,
��ψT

�
=
∑

i ai

��φ
�

i
, we find for the system’s wave function

��ψ(t)
�

at time t
��ψ(t)

�
= e−

iĤ t
ħh

��ψT

�
= e−

Ĥτ
ħh

��ψT

�
=
∑

i

e−
Eiτ

ħh ai

��φ
�

i
(3.1)

= e−
E0τ

ħh a0

��φ
�

0
+ e−

E1τ

ħh a1

��φ
�

1
+ e−

E2τ

ħh a2

��φ
�

3
+ . . .

τ→∞→ a0

��φ
�

0
,

where we assume E0 = 0 for better illustration. Thus, for large τ, only the ground state has a

nonvanishing contribution.

We start from the many-body Schrödinger equation in imaginary time τ= i · t for N particles,

H |Ψ(R,τ) 〉= −
∂

∂ τ
|Ψ(R,τ) 〉 , (3.2)

where R= {r1, . . . , rN , s1, . . . sN} contains the configurations of all N particles with all degrees of

freedom. While the ri are the Cartesian coordinates of the particles, the si contain all spin and

isospin coordinates of the system and are four-spinors with complex amplitudes for the base�� p ↑
�

,
�� p ↓

�
, |n ↑ 〉, and |n ↓ 〉.

From this follows that the wave function at imaginary time τ, |Ψ(R,τ) 〉, is obtained from a

wave function at a starting time τ0 due to time evolution,

|Ψ(R,τ) 〉= e−
Ĥ
ħh
(τ−τ0)

��Ψ(R,τ0)
�

. (3.3)
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In the following we set ħh= 1 and use the general solution for the Schrödinger equation,

Ψ(R,τ) =

∫
d3R′ G(R,R′,τ)Ψ(R′,τ0) , (3.4)

with the Green’s function or propagator

G(R,R′,τ) = 〈R | e−H(τ−τ0)
��R′
�

. (3.5)

We set the starting time τ0 = 0 to simplify the expressions and compute the propagator for a

small time step ∆τ:

e−Ĥ∆τ = e−(T̂+V̂ )∆τ = e
−
�

T̂+ V̂
2
+ V̂

2

�
∆τ
= e−

V̂
2
∆τe−T̂∆τe−

V̂
2
∆τ+O(∆τ3) , (3.6)

using the Trotter-Suzuki formula [201]. The smaller the imaginary time step, the smaller is the

error of this approximation. Thus, to propagate the initial wave function to very large imaginary

times, we separate the propagator into n small time steps ∆τ and apply it consecutively:

G(R,R′,τ) = 〈R | e−Hτ
��R′
�
= 〈R | e−H n∆τ

��R′
�
= 〈R |

�
e−H∆τ

�n ��R′
�

(3.7)

=

∫
d3R′′

∫
d3R′′′ . . .

∫
d3R(N) G(R,R′′,∆τ)G(R′′,R′′′,∆τ) · · ·G(R(N),R′,∆τ) .

We first study the propagator of the free system, so V (R) = 0. The free propagator G0(R,R′,∆τ)
is given by a Gaussian integral and can be solved analytically:

G0(R,R′,∆τ) = 〈R | e−T̂∆τ
��R′
�

(3.8)

= 〈R | e−
∑ p2

i
2m
∆τ
��R′
�

=

�
m

2π∆τ

� 3N
2

e−
m

2∆τ

∑N
i (ri−r′

i
)2 . (3.9)

If we calculate the propagator with interaction, it is necessary, that the interaction is local. Lo-

cality means



r ′
�� V̂ | r 〉 = V (r)δ(r − r ′), and thus, the potential is only a function of particle

separations. The difficulty of handling nonlocal interactions in QMC methods results from how

interactions enter, see also Ref. [202]. The implementation of continuum QMC methods relies

on being able to separate all momentum dependencies as a quadratic
∑N

i=1
p2

i
term like above.

This is the case for local interactions, but not for general momentum-dependent, nonlocal inter-

actions. In the local case, the momentum-dependent part is the free propagator, and the effects

of interactions concern only the separations of the particles. In this case,

G(R,R′,∆τ) = 〈R | e−
V̂
2
∆τe−T̂∆τe−

V̂
2
∆τ
��R′
�

(3.10)

= G0(R,R′,∆τ)e−
V (R)+V (R′)

2
∆τ .

For nonlocal potentials, the evaluation of the propagator would involve the numerical calcula-

tion of derivatives, which is computationally too expensive. Thus, the QMC methods which we

will use in this work need local interactions as input.
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The Green’s function is then inserted into Eq. (3.4) and we find for one time step

Ψ(R,τ+∆τ) =

∫
d3R′ G0(R,R′,∆τ)e−

V (R)+V (R′)
2

∆τΨ(R′,τ0) . (3.11)

This integral is solved by means of stochastic Monte Carlo integration by propagating the particle

coordinates using a path sampled according to the Gaussian factor in the integral for many

different initial configurations, or walkers. The final result will be averaged over the different

walkers. In addition, this efficiency of this algorithm can be improved by importance sampling

methods [203].

The QMC methods we use in this work need the trial wave function to have a definite sign.

For Fermions this is not true due to the antisymmetry of the wave function. To circumvent

this sign problem, the space is split into regions of positive and negative wave functions. This

defines the nodal surface, where the trial wave function is zero, and walkers which cross this

surface will be dropped. This is called fixed-node approximation [204, 205]. A generalization

of this approximation to complex wave functions, which we use her, is the constrained-path

method [206, 207, 208]. It constrains the path of walkers to regions of space where the overlap

of walker and the trial wave function has a positive real part.

The trial wave function in QMC methods is usually chosen of the form

ψT (R) =



∏

i< j

fJ(ri j)


ΦA(R) , (3.12)

where the first part is the Jastrow factor which includes inter-particle correlations into the trial

wave function. For a nodeless Jastrow term, most QMC methods are independent of the choice

one makes for f (r): the Jastrow function impacts the statistical error by emphasizing the “ap-

propriate” regions of phase space, but not the value itself. The part ΦA is usually given by the

ground state of non-interacting particles. It has to be chosen individually for each system, e.g.,

it can be chosen as a Slater determinant,

ΦA(R) =A



∏

i

φα(ri, si)


 , (3.13)

where the α labels the single-particle states which depend on the system studied.

Summarizing, the basic QMC strategy is to choose a trial wave function
��ψT

�
which is not

orthogonal to the ground state, construct the propagator for the system and a small imaginary

time step, and evolve the trial wave function. This is repeated consecutively for a large number

of times, until the system’s wave function will converge to the ground state wave function of the

system.

3.1.1 Green’s function Monte Carlo

During this work we will use two different QMC methods: GFMC and AFDMC. The starting

wave function for a GFMC simulation is usually obtained in a Variational Monte Carlo (VMC)
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calculation. In VMC, starting from a variational trial wave function, which is a good approxima-

tion to the true ground-state wave function, one calculates an upper bound to the true ground

state energy E0 of a system:

EVMC =

∫
dRψT (R)HψT (R)∫

dR|ψT (R)|2
≥ E0 . (3.14)

This integral is sampled NS times according to the probability density

W (R) =
|ψT (R)|2∫
dR|ψT (R)|2

(3.15)

using the Metropolis algorithm [209]. For each configuration Rn, we calculate the local energy

EL(R) =
HψT (R)

ψT (R)
. (3.16)

The VMC energy is then given by

EVMC ≈
1

NS

NS∑

n=1

EL(Rn) . (3.17)

The parameters in the VMC wave function are then varied to find the lowest energy. The result

of a VMC simulation is very much dependent on the choice of the initial wave function.

The final output configuration of the VMC simulation is then used as starting configuration for

a GFMC simulation. GFMC works as described in the previous Section by projecting out the

lowest-energy state from the trial wave function ψT . If this wave function overlaps with the

ground state wave function of the system GFMC will project out this state.

GFMC performs, in addition to a stochastic integration over the particle coordinates as described

above, explicit summations in spin-isospin space. Since nuclear forces contain quadratic spin,

isospin, and tensor operators (of the form σα
i

A
αβ

i j
σ
β

j
), the many-body wave function cannot

be expressed as a product of single-particle spin-isospin states. As an example, to evaluate the

quadratic spin operator σi · σ j, the wave function has to contain the singlet and triplet com-

ponents for each particle pair. All possible spin-isospin nucleon-pair states need to be explicitly

accounted for. The number of states grows exponentially with particle number, and as a result,

limits the particle number in GFMC simulations. Green’s Function Monte Carlo calculations are

computationally very costly and presently limited to 12 nucleons or 16 neutrons [70].

The computational effort can be reduced if a good trial wave function is chosen which converges

faster to the ground state. Furthermore, the trial wave function influences the importance

sampling, and a good wave function will improve the efficiency of the GFMC simulation.

3.1.2 Auxiliary-field diffusion Monte Carlo

In contrast to GFMC, the second method, AFDMC [77], also stochastically evaluates summations

in spin-isospin space, and shows a better scaling behavior at the cost of less accuracy. To achieve
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this, AFDMC rewrites the Green’s function by applying a Hubbard-Stratonovich transformation

using auxiliary-fields to change the quadratic spin-isospin operator dependencies to linear at the

cost of with additional integrations over auxiliary-fields.

To explain this, we follow Ref. [203]. Considering only quadratic spin, isospin and tensor oper-

ators, we can rewrite the potential in the form

V = VSI +
1

2

∑

iα, jβ

σiαA
(σ)

iα, jβ
σ jβ +

1

2

∑

iα, jβ

σiαA
(στ)

iα, jβ
σ jβτi ·τ j +

1

2

∑

i, j

A
(τ)
i, j
τi ·τ j , (3.18)

where the first term absorbs spin-isospin-independent parts of the interaction, the second term

absorbs the isospin-independent but spin-dependent parts, the third term absorbs spin-isospin-

dependent parts, and the last term the spin-independent but isospin-dependent parts. Here,

Latin indices label nucleons and Greek indices label Cartesian components.

These matrices have real eigenvectors and eigenvalues

∑

jβ

A
(σ)

iα, jβ
ψ
(σ)

n, jβ
= λ(σ)

n
ψ
(σ)
n,iα , (3.19)

∑

jβ

A
(στ)

iα, jβ
ψ
(στ)

n, jβ
= λ(στ)

n
ψ
(στ)
n,iα , (3.20)

∑

j

A
(τ)
i, j
ψ
(τ)
n, j
= λ(τ)

n
ψ
(τ)
n,i

. (3.21)

Using these eigenvectors, one can use the eigendecomposition of the A matrices and rewrite the

potential as

V = VSI +
1

2

∑

n

O(σ)2
n
λ(σ)

n
+

1

2

∑

nα

O(στ)2
nα λ(στ)

n
+

1

2

∑

nα

O(τ)2
nα λ

(τ)
n

, (3.22)

with the operators

O(σ)
n
=
∑

jβ

σ jβψ
(σ)

n, jβ
, (3.23)

O(στ)
nα =

∑

jβ

τ jασ jβψ
(στ)

n, jβ
, (3.24)

O(τ)
nα =

∑

j

τ jαψ
(τ)
n, j

. (3.25)

The spin-dependent A matrices have each 3N eigenvalues and eigenvectors while the spin-

independent matrix A
(τ)
i, j

has N eigenvalues and eigenvectors. This results in 3N O(σ)
n

matrices,

9N O(στ)
nα matrices, and 3N O(τ)

nα matrices, leading to a total of 15N O matrices.

We can now use a Hubbard-Stratonovich transformation for an operator O,

e−
1
2
λÔ2
=

1
p

2π

∫
dx e−

x2

2
+
p
−λxÔ , (3.26)
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and use this to rewrite the Green’s function

G(R,R’,∆τ) = G0(R,R′,∆τ)e−
VSI (R)+VSI (R

′)
2

∆τ
15N∏

i=1

1
p

2π

∫
dx i e−

x2
i
2
+
p
−λi∆τxiÔi . (3.27)

With this transformation the dependence on spin-isospin operators changes from quadratic to

linear, with 15N additional integrations over the variables x i. The x i are called auxiliary-fields

and give this QMC method its name. Using this transformation it is possible to write the wave

function as a product of single-particle spin-isospin states. As a result, the new propagator

independently rotates the spin of every single nucleon.

The reduction of the operator dependence from quadratic to linear reduces the number of states

in the trial wave function from exponential to linear at the cost of 15N additional Monte Carlo

integrations over the auxiliary-fields and the necessary computation of the O matrices.

In addition to the operators described above, in the case of neutrons it has also been possible

to include fully in AFDMC spin-orbit interactions and three-body forces [210, 211]. Following

Ref. [203], we can write the spin-orbit potential as

vLS,i j = vLS(ri j)Li j · Si j , (3.28)

where Li j =
1

2i
ri j ×∇i j is the angular momentum operator, and S = 1

2
(σi +σ j) is the total spin

operator. This contribution is non-local and complicates the evaluation of the Green’s function.

To implement this term, the exponential term will be expanded in ∆τ to first order,

e−
1
2

vLS(ri j)Li j ·Si j∆τ = 1−
1

2
vLS(ri j)Li j · Si j∆τ+O(∆τ2) . (3.29)

The dominant contribution stems from Li j · Si j acting on the free propagator G0,

Li j · Si jG0(R,R′,∆τ) = −
1

4i

m

∆τ
ri j ×

�
ri j − r′

i j

�
· (σi +σ j)G0(R,R′,∆τ) (3.30)

=
1

4i

m

∆τ
ri j × r′

i j
· (σi +σ j)G0(R,R′,∆τ) ,

and one arrives at

e−
1
2

vLS(ri j)Li j ·Si j∆τG0(R,R′,∆τ)≈
�

1−
m

8i
vLS(ri j)ri j × r′

i j
· (σi +σ j)

�
G0(R,R′,∆τ) . (3.31)

Although the explicit ∆τ dependence drops out of the spin-orbit propagator since ri j × r′
i j
=

ri j × (ri j +∆ri j) = ri j ×∆ri j ∼
p
∆τ due to the sampling of ∆ri j from the Green’s function.

This propagator has to be corrected for counter terms from the first-order expansion of the

original exponential, see Ref. [203] for more details. In the case of neutron matter, the isospin

operator τi ·τ j evaluates to a constant. For isospin-dependent spin-orbit interactions in neutron

matter the above scheme can be applied. In general, however, the inclusion of isospin-dependent

spin-orbit interactions is very difficult and the counter terms become cubic in the spin-isospin

operator structure. This makes them very difficult to include into AFDMC simulations.

Additionally, the inclusion of protons into AFDMC calculations lead to small accuracy of the re-

sults [212]. The used trial wave functions include no tensor or other spin- or isospin-dependent

62 3 Quantum Monte Carlo



correlations. Due to the fixed-node or constrained-path approximations the correlations in the

trial wave function are important to finding the true ground state energy of a system with both

protons and neutrons, because the tensor component in the np system is significant. However,

the expectation value of the NN tensor component almost vanishes if the tensor correlations are

neglected in the trial wave function [212]. Furthermore, there are numerical issues arising from

time-step errors. These issues have been recently tackled, and AFDMC calculations with both

neutrons and protons become possible [212].

The inclusion of 3N forces of the Urbana and Illinois form is shown in Ref. [203]. For pure

neutron matter it is possible to rewrite these interactions as two-body terms which simplifies

their inclusion. We will follow this strategy and show how to include 3N forces in Sec. 6.2 for

chiral 3N interactions.

In our AFDMC simulations we use trial wave functions of the Jastrow-Slater form, see Eq. (3.12).

Although the Jastrow factor should not influence the results, due to the complicated spin-

dependence of nuclear interactions, it has been found that AFDMC has a small dependence

on the Jastrow function as reported in Ref. [213]. This has to be studied in our simulations.

For nuclear matter calculations, we simulate N particles in a cubic box with size L. The particle

number has to be chosen large enough to probe the thermodynamic limit. The ΦA is given by

the ground state of a free Fermi gas in this box, constructed from plane waves with momenta

kα =
2π

L
(nx , ny , nz). The numbers nx , ny , and nz are integer numbers and the single-particle

states are given by

Φα(R) = eikα·riχs,ms
(si) , (3.32)

with the spin functions χs,ms
(si). Using these wave functions, the system acquires a shell struc-

ture, with the shell number I = n2
x
+n2

y
+n2

z
. For a homogenic and isotropic system, these shells

must be closed. For I = 0, there is one combination, for I = 1 there are six, for I = 2 there are

12, and so on. This leads to shell closures at 1, 7, 19, 27, 33, etc. particles in a certain spin-

isospin configuration. Thus, in spin-symmetric neutron matter, the shell closures are at particle

numbers 2, 14, 38, 54, 66, etc. Using AFDMC, we can treat O(100) nucleons. In our neutron

matter simulation, we typically simulate 66 fermions to access the thermodynamic limit.

3.2 Quantum Monte Carlo results with phenomenological interactions

3.2.1 Phenomenological interactions

Up to now, nuclear QMC calculations have used phenomenological NN interactions as input, typ-

ically of the Argonne type [197, 198]. These potentials are accurate for NN scattering, but are

not connected to QCD, and the two-pion-exchange interaction is modeled purely phenomeno-

logically, which makes it difficult to construct consistent 3N forces. The generic non-relativistic

nuclear Hamiltonian is given by

H = −
ħh2

2m

∑

i

∇2
i
+
∑

i< j

v i j +
∑

i< j<k

Vi jk + . . . (3.33)

where the first term is the kinetic term, the term v i j the NN force and Vi jk the 3N interaction.

The basic idea of phenomenological interactions is to choose a general operator basis, which is

dependent on spin, isospin and momentum operators. The radial functions and couplings for

each operator are then adjusted to reproduce experimental data.
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3.2.1.1 Two-nucleon interactions

The typical phenomenological NN interactions used in QMC simulations are of the Argonne type.

They consist of several parts: the long-range part is given by the one-pion-exchange interaction,

v
π
i j
=

f 2
πNN

4π

mπ

3
X i j(ri j)τi ·τ j , (3.34)

with the pion-nucleon coupling constant fπNN/4π= 0.075(2) [214], and the function

X i j(ri j) = Y (mπri j)σi ·σ j + T (mπri j)Si j(ri j) , (3.35)

which contains the tensor operator Si j and radial functions Y (x) ad T (x) given by

Si j(r) = 3σi · r̂σ j · r̂−σi ·σ j , (3.36)

Y (x) =
e−x

x
ξY (x) , (3.37)

T (x) =

�
1+

3

x
+

3

x2

�
Y (x)ξT (x) . (3.38)

The ξ functions are the cutoff functions, which are usually of the form 1− e−cx2
.

The intermediate- and short-range parts of the interaction are modeled in a general operator

basis. The current state-of-the-art potential is AV18 which uses 18 general structures. The AV18

interaction can be written as

v i j =

18∑

k=1

vk(ri j)O
k
i j

, (3.39)

where the vk(ri j) are the radial functions for the operators Ok
i j

. The first eight terms are the spin-

independent, spin, tensor, and spin-orbit operators. Each of these can be isospin-dependent or

independent. They are given by

O
k=1,8
i j

= {✶,σi ·σ j, Si j, Li j · Si j} × {✶,τi ·τ j} . (3.40)

These operators are also appearing in the NLO chiral interactions. The other operators are given

by

O
k=9,14
i j

= {L2
i j

, L2
i j
σi ·σ j,

�
Li j · Si j

�2} × {✶,τi ·τ j} , (3.41)

O
k=15,18
i j

= {Ti j, Ti jσi ·σ j, Si j Ti j,τ
z
i
+τz

j
} , (3.42)

where Ti j = 3τz
i
τz

j
− τi · τ j is the isotensor operator. The first set of these operators improves

the description of different partial-wave phase shifts. The latter four operators are charge-

independence breaking (CIB) corrections, which describe the difference between protons and

neutrons. The potential is fitted to the Nijmegen scattering database.
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3.2.1.2 Three-nucleon interactions

The 3N interactions most commonly used with Argonne NN forces are the Illinois [200] and

Urbana [199] form, given by

Vi jk = APW
2π O

2π,PW

i jk
+ ASW

2π O
2π,SW

i jk
+ A∆R

3πO
3π,∆R

i jk
+ APW

R
OR

i jk
, (3.43)

where the first to structures are the P- and S-wave part of the TPE interaction, the third term

is a three-pion-exchange term and the last term is a spin and isospin-independent term. These

operators are all contained in the Illinois 3N forces, while the Urbana 3N forces only include the

first and the last term.

The first term is given by

APW
2π O

2π,PW

i jk
= APW

2π

∑

cyc

�
{X i j, X jk}{τi ·τ j,τ j ·τk}+

1

4

�
X i j, X jk

��
τi ·τ j,τ j ·τk

��
, (3.44)

where the brackets denote the anticommutator and commutator of X i j and X jk. The Urbana

and Illinois TPE interaction models the process, where nucleons exchange two pions with an

intermediate ∆ resonance.

The S-wave part of the TPE is given by

ASW
2π O

2π,SW

i jk
= ASW

2π

∑

cyc

Z(mπri j)Z(mπr jk)σi · r̂ i jσk · r̂ k jτi ·τk , (3.45)

with the function Z(x) = x

3
(Y (x)− T (x)). These first two terms are also included in the leading

3N interaction in the chiral forces at N2LO, which will be shown later in Chap. 6.

The third interaction term stems from pion-ring diagrams with one or two ∆ excitations. They

are included in chiral EFT interactions beyond N3LO and are, thus, not important for this work.

Their expressions are rather complicated, see Ref. [200] for more details.

The last term of the 3N forces was empirically introduced to compensate the overbinding by

other parts of the Urbana and Illinois 3N forces. It is given by

AROR
i jk
= AR

∑

cyc

T 2(mπri j)T
2(mπr jk) . (3.46)

This spin- and isospin-independent term is not included in chiral EFT 3N forces up to N3LO and

is purely phenomenological.

The interaction strengths for the various 3N contributions are fitted to reproduce the ground

states of light nuclei.

3.2.1.3 Problems of phenomenological interactions

Although calculations with the phenomenological AV18 NN and Urbana and Illinois 3N forces

give very good results for nuclei and nuclear matter, see below, there are several conceptional

disadvantages in using these interactions.
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First, these interactions are not connected to the fundamental theory of QCD. Indeed in the

NN sector, operators of one-boson-exchange (OBE) potentials are used and have a theoretical

motivation. This is reflected in the fact that the first eight operators of AV18 are also appearing

in the NLO chiral EFT interactions. However, there are other operators which are introduced

purely phenomenological. This arbitrary choice of operators is especially clear in the 3N sector.

Although the TPE is theoretically motivated by the Weinberg-Tomozawa interaction, which also

appears in the leading chiral 3N forces, the other leading 3N force contributions VD and VE are

missing, while additional higher-order contributions appear. There is no strategy of systemat-

ically writing down the many-body operator structures due to their more complicated nature.

Additionally, the NN and many-body sectors are not consistent with each other. Similar vertices,

which appear in NN and 3N forces, have different coupling constants.

The second disadvantage is that there is no way to estimate the importance of individual con-

tributions. This can especially be seen in the 3N sector, which includes terms similar to chiral

interactions at N2LO and from higher orders, leaving out other important contributions. Thus,

phenomenological interactions cannot be constructed in a systematic way with a power counting

scheme, and it is not possible to estimate the theoretical uncertainties of the interactions.

3.2.2 Light nuclei

The current state-of-the art GFMC calculations and benchmarks for light nuclei are presented in

Fig. 3.1. It shows a calculation of the ground states and first exited states of nuclei up to 12C

from Ref. [195], which was updated in 2012. The results were obtained using the AV18 NN

interaction, and with the additional inclusion of the Illinois-7 3N forces, and are compared to

experiment. For all the light nuclei, the GFMC calculations with phenomenological interactions

show remarkable agreement with experimental results after 3N forces are included, which are,

however, fit to nuclear binding energies. The results suffer from the disadvantages mentioned

above: they lack reliable error estimates and a way of systematical improveability.

In addition to the energy states of light nuclei, other properties of light nuclei have been

computed using QMC methods, like charge form factors [76] or electromagnetic matrix ele-

ments [215].

3.2.3 Neutron matter and neutron stars

QMC methods with phenomenological interactions have also been used to calculate neutron

matter. It has been found that 3N interactions provide a sizable contribution to the neutron

matter energy [211]. In Fig. 3.2, we show a calculation of the neutron-matter energy per

particle as a function of density using the AFDMC algorithm [16]. Results with different colors

are tuned to reproduce different symmetry energies.

The red line shows the results for NN forces only, and the 3N forces add sizable contributions.

The green and blue band are obtained by varying the range of AR, see Eq. (3.43). This shows

that different choices for the phenomenological 3N forces have sizable effects. However, there

is no possibility of estimating a reliable theoretical uncertainty using phenomenological 3N

interactions because both operator structure and radial functions can be varied.

We also show the neutron star mass-radius relation for these neutron matter calculations. Only

the inclusion of 3N forces adds enough repulsion to reproduce the observed two-solar-mass

neutron stars in this model.
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Figure 3.1: Ground-state energies and energies of excited states for light nuclei up to 12C us-

ing GFMC with the Argonne AV18 NN interaction and the Illinois-7 3N forces from

Ref. [195]. The results are compared to experimental data.

3.2.4 Ultracold atoms

The T = 0 equation of state for cold atoms and low density neutron matter has been calculated

using QMC methods with Jastrow-BCS wave functions in Ref. [23]. The interaction between

cold atoms was chosen to be of the Poeschl-Teller form,

v (r) = −v0

2ħh2

m

µ2

cosh2(µr)
(3.47)

where µ = 24/r0 and r0 is defined via 1/ρ = 4/3πr3
0
. The neutron-neutron interaction was

chosen as the S wave part of AV18.

The result for the EoS is shown in Fig. 3.3. Depicted is the energy relative to the energy of a

free Fermi gas at the same density vs. −kF a, which is the product of Fermi momentum and

scattering length. For neutron matter, a is fixed and a variation of kF represents a variation of

the density. For cold atoms, kF a is varied in a Feshbach resonance by varying a. At very high

a the cold atom result at unitarity is shown. The curve at low densities shows the analytical

expansion for a normal Fermi gas [23]. The results show that cold atom and neutron matter

EoS behave similar at low densities and that one can probe neutron matter in experiments with

cold atoms. This can be also useful to probe the pairing gap, see Ref. [23, 216] for more details.
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Figure 3.2: Left: Energy per particle of neutron matter from AFDMC simulations [16]. Dif-

ferent colors correspond to different symmetry energies. For the blue and green

bands, 3N forces are included. The bands show the effect of different 3N structures.

Right: Mass-radius relation of neutron stars corresponding to these neutron-matter

EoS [16].

3.3 Motivation for Quantum Monte Carlo with chiral EFT interactions

QMC methods have been used to obtain precise results for strongly interacting systems. How-

ever, the current state-of-the-art calculations suffer from the above mentioned disadvantages

of phenomenological interactions. Using chiral EFT interactions as input for QMC algorithms

would combine these precise ab initio many-body methods with systematic nuclear Hamilto-

nians. This would allow the computation of nonperturbative benchmarks for nuclear matter

for astrophysics, nuclei, and neutron drops, which are rooted in QCD, include all contributions

consistently, and with controlled theoretical uncertainty estimates.

Regarding nuclear matter, a perturbative approach has been able to predict realistic saturation

properties using parameters fit only to few-body systems [55]. QMC calculations with chiral

interactions would be key to validating this. QMC calculations of systems in external potentials

with local chiral N2LO NN and 3N forces would also provide ab initio constraints for nuclear

density functionals.

Furthermore, due to the precision of QMC methods, especially in light systems, QMC with chiral

EFT interactions will allow direct matching to lattice QCD results [148]. For example, for few-

nucleon systems in a box, lattice QCD results can be compared to QMC simulations with chiral

interactions, which can also vary the pion mass to unphysical values accessible in lattice QCD

methods. As a final goal, this could be used to match the LECs in the chiral potentials to lattice

QCD computations, and would enable predictions from first principles.
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Figure 3.3: Equation of state for neutron matter and cold atoms at T = 0 from Ref. [23]. Shown

is the energy normalized to the Fermi energy of the system vs. the product of Fermi

momentum kF and scattering length a for QMC simulations of cold atoms and neu-

tron matter. The systems are very similar, even for higher Fermi momenta.
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4 Local chiral NN interactions
Chiral EFT interactions are based on a momentum expansion and are therefore naturally for-

mulated in momentum space [36, 37]. In their current formulation, they are nonlocal and

therefore not suitable for Quantum Monte Carlo simulations. There have been several attempts

to solve this problem, e.g., finding ways of treating nonlocal interactions in QMC simulations

directly [202, 217] or using local projections of chiral EFT potentials [218] with non-local resid-

ual interactions. These strategies, however, require soft interactions as input and are not very

much developed.

In this work, we use a different idea first outlined in Ref. [78] and show, how to to create local

chiral NN potentials up to N2LO in coordinate space, based on Ref. [213, 219]. These local inter-

actions enable us to combine accurate chiral interactions with precise QMC many-body methods

and, thus, enable QMC simulations with improvable Hamiltonians rooted in QCD, where we do

not constrain the interactions further. In this Chapter we present details of the construction of

local chiral NN potentials. In the next Chapter, we show results of QMC simulations for pure neu-

tron matter with these local chiral NN potentials, study the order-by-order convergence of chiral

interactions, and test the perturbativness of chiral potentials to benchmark MBPT calculations

with the same interactions.

4.1 Nonlocalities in chiral interactions and strategies for their removal

There are two sources of nonlocalities in chiral EFT interactions: one usually employs regulator

functions of the form f (p) = e−(p/Λ)
2n

and f (p′), as stated in Sec. 2.2.4. Upon Fourier transfor-

mation, this leads to nonlocal interactions V (r, r′) already due to the choice of the regulator.

Further sources of nonlocality in chiral EFT are due to contact interactions that depend on the

momentum transfer in the exchange channel k = (p′ + p)/2 and to k-dependent parts in pion-

exchange contributions beyond N2LO. In contrast, dependencies on the momentum transfer

q= p′− p are local, and lead to nonlocalities only because of the regulator functions used. The

k-dependent contact interactions start to appear at NLO, see Sec. 2.2.4.

To avoid regulator-generated nonlocalities for the long-range pion-exchange parts of chiral EFT

interactions, we will use local coordinate-space expressions for the LO one-pion-exchange and

NLO and N2LO two-pion-exchange interactions [170, 171] and regulate them directly in coor-

dinate space using the function flong(r) = 1− e−(r/R0)
4
, which smoothly cuts off interactions at

short distances r < R0 while leaving the long-range parts unchanged. Thus, R0 takes over the

role of the cutoff Λ in momentum space. To regularize the pion loop integrals of the two-pion-

exchange contributions, we use a spectral-function regularization [171].

Local regulators have also been used in a new version of semi-local chiral potentials up to fifth

order (N4LO), where contact interactions are regularized in a non-local way while long-range

pion physics is regularized locally [220, 221]. The advantage of local regulators for long-range

interactions is that short-range singularities ∼ r−3n from tensor forces are cut more effectively

while keeping nonlocal short-range interactions has advantages for the fitting of the couplings.

This will be discussed later throughout this work.
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To remove the k-dependent contact interactions to N2LO, we make use of the freedom to choose

a basis of short-range operators in chiral EFT interactions, as described in Sec. 2.2.4. Our

approach follows Weinberg’s power counting with typical cutoffs of order the breakdown scale

∼ 500 MeV [36, 222], but the same local rearrangement can be applied to modified power

counting [223, 224], to pionless EFT [225], to power counting that includes kF as an explicit

scale [226], and when making use of off-shell ambiguities [227].

4.2 Derivation of local chiral NN interaction

4.2.1 Leading order

At LO, as stated in Sec. 2.2.4, there appear the leading momentum-independent NN con-

tact interactions as well as the OPE interaction. One usually considers the two momentum-

independent contact interactions CS+CT σ1 ·σ2. However, it is equivalent to choose any two of

the four operators ✶, σ1 ·σ2, τ1 ·τ2, and σ1 ·σ2τ1 ·τ2, with spin and isospin operators σi,τi, be-

cause there are only two S-wave channels due to the Pauli principle. It is a convention in present

chiral EFT interactions to neglect the isospin dependence, which is then generated from the ex-

change terms, as shown in Sec. 2.2.4. As this contact interaction is momentum-independent, it

is local and we can directly use it in the local chiral potentials. Fourier transformation of the LO

contact interaction leads to a simple δ function interaction

V
(0)

cont(r) = (CS + CTσ1 ·σ2)δ(r) , (4.1)

see App. A for details.

In addition to the short-range contact interactions, at LO there appears the long-range OPE.

Given that the long-range potentials in chiral EFT depend only on the momentum transfer, the

corresponding coordinate-space potentials are local. Analogue as in Sec. 2.2.4, we employ the

decomposition for the long- and intermediate-range pion-exchange potentials up to N2LO in

coordinate space as

Vlong(r) = VC(r) +WC(r) τ1 ·τ2

+
�
VS(r) +WS(r) τ1 ·τ2

�
σ1 ·σ2

+
�
VT (r) +WT (r) τ1 ·τ2

�
S12 , (4.2)

where r= r1−r2 denotes the separation between the nucleons and S12 = (3σ1 · r̂ σ2 · r̂−σ1 ·σ2)

is the tensor operator. The expression for the OPE potential at LO takes the well-known form

W
(0)
S (r) =

M3
π

12π

�
gA

2Fπ

�2 e−Mπr

Mπr
, (4.3)

W
(0)
T (r) =

M3
π

12π

�
gA

2Fπ

�2 e−Mπr

Mπr

�
1+

3

Mπr
+

3

(Mπr)2

�
. (4.4)

In addition to these long-range contributions, the OPE potential also involves a short-range piece

proportional to a δ function. This short-range δ piece is important to maintain the Goldstone

boson nature of the pion and is absorbed into the leading contact interaction.
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In addition to the isospin-symmetric contributions to the potential, there also appear isospin-

symmetry-breaking corrections [228] in chiral interactions. We take into account isospin-

symmetry-breaking corrections in the pion exchanges as well as the leading momentum-

independent CIB and charge-symmetry-breaking (CSB) contact terms at all orders and include

these corrections already in the LO local chiral interactions to be able to reproduce the correct

scattering lengths in the nn, np and pp channel already at LO. Furthermore, already at LO we

account for the Goldberger-Treiman discrepancy which slightly shifts the strength of the OPE

potential.

The main corrections are from long-range CIB terms due to the pion mass splitting in the OPE

potential,

VOPE, full = VOPE(Mπ±)τ1 ·τ2+ 4
h

VOPE(Mπ0)− VOPE(Mπ±)
i
τ3

1
τ3

2
, (4.5)

where VOPE is the isospin independent part of the OPE interaction

VOPE(M) =
M3

12π

�
gA

2Fπ

�2 e−M r

M r

�
σ1 ·σ2+

�
1+

3

M r
+

3

(M r)2

�
S12

�
. (4.6)

For the contact interactions, the leading momentum-independent CIB and CSB terms have the

form

Vcont, CIB(r) = CCIB

1+ 4τ3
1
τ3

2

2

1−σ1 ·σ2

4
, (4.7)

Vcont, CSB(r) = CCSB(τ
3
1
+τ3

2
)
1−σ1 ·σ2

4
. (4.8)

These contact interactions are defined in such a way that they do not affect neutron-proton

observables and only appear in the nn or pp channel. Furthermore, in coordinate space, due to

regularization, we need to ensure that spin-triplet partial waves are not affected by the above

terms and have to take into account a factor (1−σ1 ·σ2)/4, which is a projection operator on

spin-0 states. This factor is redundant for non-regularized expressions.

4.2.2 Next-to-leading order

At NLO, there are 14 different momentum-dependent contact interactions as well as two-pion-

exchange interactions. We have the freedom to choose 7 linearly independent contact inter-

actions. Since we want to construct a local chiral potential, we have to eliminate contact

interactions that depend on the momentum transfer in the exchange channel k. We use this

freedom to choose the contact operators to keep isospin-dependent q2 contact interactions and

an isospin-dependent (σ1 ·q)(σ2 ·q) tensor part in favor of nonlocal k2 contact interactions and

a nonlocal (σ1 · k)(σ2 · k) tensor part.

This leads to the following seven linearly independent contact interactions at NLO that are local,

V
(2)

cont = C1 q2+ C2 q2
τ1 ·τ2

+
�
C3 q2+ C4 q2

τ1 ·τ2

�
σ1 ·σ2

+ i
C5

2
(σ1+σ2) · (q× k)

+ C6 (σ1 · q)(σ2 · q)
+ C7 (σ1 · q)(σ2 · q)τ1 ·τ2 , (4.9)
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except for the k-dependent spin-orbit interaction (C5), which can, however, be treated in QMC as

discussed before. Without regulators, the expressions for the contact interactions in coordinate

space are of the form

V
(2)

cont(r) = −(C1+ C2τ1 ·τ2)∆δ(r)

− (C3+ C4τ1 ·τ2)σ1 ·σ2∆δ(r)

+
C5

2

∂rδ(r)

r
L · S+ (C6+ C7τ1 ·τ2)

×
�
(σ1 · r̂)(σ2 · r̂)

�
∂rδ(r)

r
− ∂ 2

r
δ(r)

�

− σ1 ·σ2

∂rδ(r)

r

�
. (4.10)

The derivation of these expressions is given in Appendix A. Since at NLO the only two possible

momentum operators allowed by symmetries are q2 and k2 (or equivalently p2+ p′2 and p ·p′),
and similarly for the tensor parts, it is thus possible to remove all sources of nonlocality in chiral

EFT in the NLO contact interactions.

We now turn to the long-range contributions at NLO. For the two-pion exchange (TPE) we use

the SFR expressions as detailed in Ref. [171]. The coordinate-space expressions for the TPE

potential can be most easily obtained utilizing the spectral-function representation with spectral

functions ρi and ηi:

VC(r) =
1

2π2r

∫ Λ̃

2Mπ

dµµ e−µr ρC(µ) , (4.11)

VS(r) = −
1

6π2r

∫ Λ̃

2Mπ

dµµ e−µr
�
µ2ρT (µ)− 3ρS(µ)

�
, (4.12)

VT (r) = −
1

6π2r3

∫ Λ̃

2Mπ

dµµ e−µr ρT (µ) (3+ 3µr +µ2r2) , (4.13)

and similarly for WC , WS, and WT in terms of ηC , ηS, and ηT (instead of ρC , ρS, and ρT ). The

TPE spectral functions at NLO are given by [170]

ρ
(2)
T (µ) =

1

µ2
ρ
(2)
S (µ) =

3g4
A

128πF4
π

p
µ2− 4M2

π

µ
, (4.14)

η
(2)
C (µ) =

1

768πF4
π

p
µ2− 4M2

π

µ

�
4M2

π(5g4
A
− 4g2

A
− 1)

−µ2(23g4
A
− 10g2

A
− 1) +

48g4
A
M4
π

4M2
π−µ2

�
. (4.15)
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4.2.3 Next-to-next-to-leading order

At N2LO, there are no additional contact interactions but the subleading TPE interactions appear.

The spectral functions for these at N2LO read

ρ
(3)
C (µ) = −

3g2
A

64µF4
π

(2M2
π−µ

2)
�

2M2
π(2c1− c3) + c3µ

2
�

, (4.16)

η
(3)
T (µ) =

1

µ2
η
(3)
S (µ) = −

g2
A

128µF4
π

c4(4M2
π−µ

2) , (4.17)

where the ci denote the LECs of the subleading pion-nucleon vertices [172]. For the subleading

TPE potential, the integrals in Eqs. (4.11)–(4.13) can be carried out analytically leading to

V
(3)
C (r) =

3g2
A

32π2F4
π

e−2x

r6

�
2c1 x2(1+ x)2+ c3(6+ 12x + 10x2+ 4x3+ x4)

�

−
3g2

A

128π2F4
π

e−y

r6

�
4c1x2

�
2+ y(2+ y)− 2x2

�
+ c3

�
24+ y(24+ 12y + 4y2+ y3)

− 4x2(2+ 2y + y2) + 4x4
��

, (4.18)

W
(3)
S (r) =

g2
A

48π2F4
π

e−2x

r6
c4 (1+ x)(3+ 3x + 2x2)

−
g2

A

384π2F4
π

e−y

r6
c4

�
24+ 24y + 12y2+ 4y3+ y4− 4x2(2+ 2y + y2)

�
, (4.19)

W
(3)
T (r) = −

g2
A

48π2F4
π

e−2x

r6
c4 (1+ x)(3+ 3x + x2)

+
g2

A

768π2F4
π

e−y

r6
c4

�
48+ 48y + 24y2+ 7y3+ y4− 4x2(8+ 5y + y2)

�
, (4.20)

where we have introduced dimensionless variables x ≡ Mπr and y ≡ Λ̃r. Analytic expressions

for the leading TPE potentials for the case of Λ̃ =∞ are given in Ref. [170].

4.2.4 Next-to-next-to-next-to-leading order

At N3LO, additional contact operators as well as TPE diagramms and also three-pion exchange

diagrams contribute. In addition, relativistic corrections have to be included.

The N3LO chiral interaction cannot be written down in a local way. To highlight this, we remind

the reader of the N3LO contact interactions defined in Eq. (2.30). There are 30 different opera-

tors, 15 of which are linearly independent. However, they are ∼ Q4 with momentum operators

like q4, k4 and q2k2 and only 8 operators at this order are local. Additional nonlocalities arise in

the relativistic corrections to the OPE potential, see Ref. [59] for more details.
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Possible solutions to this problem are the definition of a ”maximally local” N3LO potential, where

as many local contact operators as possible are chosen. From the remaining operators, a suitable

set of operators is chosen which can be treated perturbatively, like it is done for the nonlocal

parts of the Argonne V18 potential [69]. For ∆-full chiral EFT, work along those lines has been

done [229]. We plan to investigate these ”maximally local” ∆-less chiral N3LO potentials in our

future work.

4.2.5 Regularization and fits of low-energy couplings

We are now in the position to specify the regularization scheme for the NN potential. We mul-

tiply the coordinate-space expressions for the long-range potential in Eqs. (4.3), (4.4), (4.11)–

(4.13), and (4.18)–(4.20) with the regulator function

Vlong(r) → Vlong(r)
�

1− e−(r/R0)
4
�

. (4.21)

This ensures that short-distance parts ∼ r−n of the long-range potentials at r smaller than R0

are smoothly cut off while the long-distance physics stays unchanged.

Upon Fourier transformation, the LO and NLO contact interactions lead to local δ functions. The

regularization is achieved by employing a local regulator flocal(q
2), leading to the replacement of

the δ function by a smeared one with the same exponential smearing factor as for the long-range

regulator,

δ(r) → δR0
(r) = αe−(r/R0)

4
, (4.22)

where the normalization constant,

α=
1

πΓ
�
3/4
�
R3

0

, (4.23)

ensures that ∫
d3r δR0

(r) = 1 . (4.24)

We, thus, have for the LO contact interactions in coordinate space

∫
dq

(2π)3
CS,T flocal(q

2) eiq·r = CS,T

e−(r/R0)
4

πΓ
�3

4

�
R3

0

. (4.25)

The analogous local expressions involving the NLO contact interactions are obtained by replac-

ing CS,T with the seven different operators of Eq. (4.9) and are given in App. A. We use the same

scale R0 similarly in the short- and long-range parts.

The choice of the coordinate-space cutoff R0 is dictated by the following considerations. On the

one hand, one would like to take R0 as small as possible to ensure that one keeps most of the

long-range physics associated with the pion-exchange potentials. On the other hand, it is shown

in Ref. [230] that at least for the particular class of pion-exchange diagrams corresponding to the

multiple-scattering series, the chiral expansion for the NN potential breaks down at distances of

the order of r ∼ 0.8 fm but converges fast for r ¦ 1 fm. This suggests that a useful choice of the
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cutoff R0 is R0 ∼ 1 fm, which corresponds to momentum-space cutoffs of the order of∼ 500 MeV.

This follows from Fourier transforming the regulator function, integrating it from 0 to infinity,

and comparing to a sharp cutoff. This value is similar to the ones adopted in the already existing,

nonlocal implementations of the chiral potential [59, 60], see also Ref. [231, 232] for a related

discussion.

In view of the arguments provided in Refs. [222, 233, 234], we will not use significantly lower

values of R0 in applications. In Ref. [213], we varied the cutoff from R0 = 0.8 fm to R0 = 1.2 fm,

based on the work of Ref. [78]. We found an error in the tensor channel of the pion-exchange

interactions which, however, only has a small effect on pure neutron matter. We corrected this

error, refitted the local chiral potentials and were able to obtain fits to NN phase shifts using the

lowest cutoff R0 = 0.9 fm. However, the LECs start to become unnatural for this cutoff.

On the other hand, choosing considerably larger values of R0 results in cutting off the long-range

physics we want to preserve and, thus, introduces an unnecessary limitation in the breakdown

momentum of the approach. Therefore, here and in the following, we will allow for a variation

of the cutoff R0 in the range of R0 = 1.0− 1.2 fm.

Since the local regulator eliminates a considerable part of short-distance components of the

TPE potential, we are much less sensitive to the choice of the SFR cutoff Λ̃ as compared to

Refs. [59, 235] and can safely increase it up to Λ̃ = 1.4 GeV without producing spurious deeply

bound states. In this work, we will vary Λ̃ in the range Λ̃ = 1.0− 1.4 GeV. In future work, we

will explore removing the SFR cutoff Λ̃→∞.

We would like to underline that there is no conceptual difference between the local regular-

ization and the nonlocal regularization currently used in widely employed versions of chiral

interactions in momentum space. The local chiral potentials include the same physics as the

momentum-space versions. This is especially clear when antisymmetrizing. The local regulator

by construction preserves the long-range parts of the interaction. When Fourier transformed,

it generates higher-order q2-dependent terms when applied to short-range operators, like those

already present at NLO and N2LO. Note that antisymmetrization and local regularization do not

commute, but the commutator is given by higher-order terms. At NLO and N2LO, the 2 + 7

contact interactions provide a most general representation consistent with all symmetries.

It remains to specify the values of the LECs and masses that enter the NN potentials at N2LO.

In the following, we use mp = 938.272 MeV, mn = 939.565 MeV, the average pion mass mπ =

138.03 MeV, the neutral pion mass m0
π = 134.98 MeV, the charged pion mass m±π = 139.57 MeV,

the pion decay constant Fπ = 92.4 MeV, and the axial coupling gA = 1.267. For the pion-nucleon

coupling, we adopt the value of g2
πN
/(4π) = 13.54 which is consistent with Ref. [236], which

also agrees with the recent determination in Ref. [237] based on the Goldberger-Miyazawa-

Oehme sum rule and utilizing the most accurate available data on the pion-nucleon scattering

lengths. In order to account for the GTD as described above, we use the value gA = 1.29 in the

expressions for the OPE potential. For the LECs ci in the N2LO TPE potential, we use the same

values as in Ref. [59], namely c1 = −0.81 GeV−1, c3 = −3.4 GeV−1, and c4 = 3.4 GeV−1.

We emphasize that we use the same expression for the OPE potential that includes isospin-

symmetry-breaking corrections and accounts for the GTD as well as the same isospin-symmetry-

breaking contact interactions at all orders in the chiral expansion to allow for a more meaningful

comparison between LO, NLO and N2LO.

With the NN potential specified as above, we have performed χ2-fits to neutron-proton phase

shifts from the Nijmegen PWA [238] for R0 = 0.9, 1.0, 1.1 and 1.2 fm and Λ̃ = 0.8, 1.0, 1.2

and 1.4 GeV. We used the separation of spin-singlet and spin-triplet channels, and, at LO,
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Figure 4.1: Local chiral NN potentials V (r) at N2LO for an SFR cutoff Λ̃ = 1000 MeV, decomposed

into the central, central-isospin, spin, spin-isospin, spin-orbit, tensor, and tensor-

isospin components, for cutoffs R0 = 0.9− 1.2 fm. For all components, we observe a

softening of the potential going from a cutoff R0 = 0.9 fm to R0 = 1.2 fm. We include

the R0 = 0.9 fm potential for illustration, but as discussed in the text, will not use it

in many-body calculations.

fit the 1S0 and 3S1 partial waves separately while at NLO and N2LO we fit the {1S0,1 P1} and

{3S1,ε1,3 P0,3 P1,3 P2} partial waves. The partial-wave-decomposed matrix elements of the con-

tact interactions can be found in App. B.

At NLO and N2LO, we used the same energies of Elab = 1, 5, 10, 25, 50, 100 and 150 MeV for

R0 = 1.0 and R0 = 1.1 fm as in the Nijmegen PWA and the errors in the phase shifts provided

in Ref. [238]. For R0 = 1.2 fm, the fits are performed up to Elab = 100 MeV. At LO, the fits are

performed up to Elab = 50 MeV. Finally, the values of the LECs CCIB and CCSB are adjusted to

reproduce the proton-proton 1S0 scattering length app = −7.81 fm and the recommended value

of the neutron-neutron scattering length ann = −18.9 fm. Note that we only take into account

the point-like Coulomb force for the electromagnetic interaction as appropriate to N2LO, see

Ref. [59] for more details. The resulting LECs for R0 = 1.0, 1.1, 1.2 fm and Λ̃ = 1000 MeV are

shown in Table 4.1 and for Λ̃ = 1400 MeV in Table 4.2.

It would be useful to have a quantitative comparison of different fits, e.g., comparing the local

chiral potentials presented here with the nonlocal optimized N2LO potentials of Refs. [239, 240]

or with the analyses of Refs. [241, 242]. One possibility would be to calculate the χ2/datum,

but unfortunately we presently do not have the machinery to do this. We also emphasize that

our fitting strategy is different to the nonlocal optimized N2LO potentials. As discussed, we only

fit at low energies and take the ci ’s from pion-nucleon scattering, whereas the optimized N2LO

potentials fit these over the full energy range considered.
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Figure 4.2: Local chiral NN potentials V (r) at N2LO for an SFR cutoff Λ̃ = 1000 MeV in the 1S0

partial wave in the neutron-neutron system for various cutoffs R0.

In Fig. 4.1, we show the local chiral potentials V (r) at N2LO for a SFR cutoff Λ̃ = 1000 MeV,

decomposed into the central, central-isospin, spin, spin-isospin, spin-orbit, tensor, and tensor-

isospin components

V (r) = V central(r) + V central-isospin(r) τ1 ·τ2

+
�

V spin(r) + V spin-isospin(r) τ1 ·τ2

�
σ1 ·σ2

+ V LS(r) L · S
+
�

V tensor(r) + V tensor-isospin(r)τ1 ·τ2

�
S12(r) , (4.26)

for cutoffs R0 = 0.9− 1.2 fm. We include the 0.9 fm potential for illustration, but we do not rec-

ommend it for many-body calculations and therefore do not include it in our own calculations

or in the tables. For all components we see a softening of the potential going from R0 = 0.9 fm

to R0 = 1.2 fm, as expected, because short-range parts of the potentials are strongly scheme de-

pendent. The structures in the individual channels are due to adding up different contributions

with different r-dependencies to those channels.

In addition, we show the local chiral potentials V (r) at N2LO for a SFR cutoff Λ̃ = 1000 MeV in

the 1S0 channel in Fig. 4.2 in the neutron-neutron system. Again, we observe a softening of the

potential when increasing the coordinate space cutoff from R0 = 0.9 fm to R0 = 1.2 fm.

4.2.6 Phase shifts

Next, we present the neutron-proton phase shifts in partial waves up to J = 4 for the local chiral

potentials at LO, NLO, and N2LO for laboratory energies up to 250 MeV in comparison with the
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Figure 4.3: Phase shifts for the 1S0 and
3S1−3 D1 partial waves at LO, NLO, and N2LO in compar-

ison with the Nijmegen partial wave analysis (PWA) [238]. The bands at each order

correspond to the cutoff variation of R0 = 1.0− 1.2 fm. At NLO and N2LO, we also

vary the SFR cutoff from Λ̃ = 1.0− 1.4 GeV.

Nijmegen PWA [238]. We vary the cutoff between R0 = 1.0−1.2 fm and, at NLO and N2LO, the

SFR cutoff between Λ̃ = 1.0− 1.4 GeV.

In Fig. 4.3, we show the 1S0 phase shifts as well as the 3S1−3D1 coupled channel. The description

of the 1S0 channel at LO is only good at very low energies and improves when going to NLO

and the effective range physics is included. When going from NLO to N2LO, the cutoff bands

overlap. In the 3S1 channel the situation is similar but the cutoff bands are narrower. In both

S-wave channels the width of the bands at NLO and N2LO are of similar size. This is due to the

truncation of the short-range contact interactions and the large ci couplings entering at N2LO,

and is visible in all phase shifts.

In the 3D1 channel the description worsens when going from LO to NLO and improves only

slightly from NLO to N2LO. At N2LO the description of the 3D1 channel is poor for energies

larger than 50 MeV. In addition, also the description of the J = 1 mixing angle is poor at all

orders, a fact which is clearly reflected in the size of the cutoff bands.

In Fig. 4.4 we show the phase shifts for the P waves and the J = 2 coupled channel. In the 1P1

channel the LO band starts to deviate from the data already at low energies. Including additional

spin-orbit and tensor contributions at NLO improves the description of the 1P1 channel only

little. However, the situation highly improves when going to N2LO.

In the 3P waves the phase shifts improve considerably going from LO to higher orders and

the description of the 3P waves at N2LO is substantially better than in our previous fits [213].

Furthermore, the description of the J = 2 coupled channel is considerably better than for the

J = 1 coupled channel and improves when going from LO to N2LO.

In Fig. 4.5 we show the phase shifts for the remaining uncoupled partial waves up to J = 4.

The description of the individual channels is good even at high energies except for the D waves.

This can also be seen in Fig. 4.6 where we show the J = 3 and J = 4 coupled channels.

In general, the description of all D wave channels is poor up to N2LO and does not improve

when going from NLO to N2LO. This is due to the truncation of the contact interactions at

N2LO because in partial waves with orbital angular momentum L > 1 no contact interactions

contribute at this order except for regulator effects. Thus, the D wave phase shifts are described

almost solely by pion-exchange interactions and are parameter free. This can be improved by

going to N3LO. The higher L > 2 partial waves instead are mostly described by long-range
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Figure 4.4: Phase shifts for the 1P1,
3P0,

3P1 and 3P2−3F2 partial waves at LO, NLO, and N2LO in

comparison with the Nijmegen PWA [238]. The bands are obtained as in Fig. 4.3.

pion-exchange interactions and already the OPE interaction at LO describes the data well at low

energies. Thus, the higher partial waves can be well described already at N2LO.

Comparing our phase shift results to the results obtained with the nonlocal N2LO momentum

space potential of Ref. [59], we find that the local potentials describe all partial waves up to

J = 4 better except for the D waves. In addition, the cutoff variation is smaller for the local

chiral potentials.

We want to mention that the effect of the spin projection operator in the CIB and CSB contacts

on the NN phase shifts is very small, typically between 1−2%. This is smaller than the deviation

from the phase shifts of the Nijmegen partial wave analysis (PWA) and smaller than the theo-

retical uncertainty of the results. Thus, in the following we will neglect the spin-0 projection

factor.

4.2.7 Deuteron properties

In this Section, we calculate deuteron properties using the local chiral potentials presented in

the previous Sections at LO, NLO, and N2LO. We calculate the deuteron binding energy Ed , the

quadrupole moment Qd , the magnetic moment µd , the asymptotic D/S ratio η, the root-mean-

square (rms) radius rd , the asymptotic S-wave factor As, and the D-state probability PD. We

vary the cutoff R0 = 1.0− 1.2 fm and, at NLO and N2LO, the SFR cutoff Λ̃ = 1.0− 1.4 GeV. The

deuteron properties are calculated as described in Ref. [59]. The results are shown in Table 4.3

and are compared with experimental results of Refs. [243, 244, 245, 246, 247, 248] and the

N2LO Epelbaum, Glöckle, and Meißner (EGM) results of Ref. [59], where the cutoff variation is

Λ = 450− 650 MeV and Λ̃ = 500− 700 MeV.
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Figure 4.5: Phase shifts for the 1D2,
3D2,

1F3,
3F3,

1G4, and
3G4 partial waves at LO, NLO, and

N2LO in comparison with the Nijmegen PWA [238]. The bands are obtained as in

Fig. 4.3.

At N2LO we find a deuteron binding energy of −2.208± 0.010 MeV, which has to be compared

with the experimental value of−2.225 MeV. Thus, the N2LO result deviates from the experimen-

tal result by less than 1%, which is better than 2.196±0.007 for the nonlocal, momentum-space

N2LO EGM potentials of Ref. [59]. However, for those potentials the range of the cutoff variation

is different, which affects the results and theoretical error estimates.

The description of the deuteron quadrupole moment is surprisingly good for the local chiral

potentials and the experimental result lies within the N2LO uncertainty band. Note that elec-

tromagnetic two-body currents are not included. The results for the N2LO momentum space

potentials instead deviate by 4−5%. Also for the other observables the result of the local N2LO

potentials deviates less than 1% from the experimental values.
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Figure 4.6: Phase shifts for the 3D3−3G3 and 3F4−3H4 partial waves at LO, NLO, and N2LO in

comparison with the Nijmegen PWA [238]. The bands are obtained in the same way

as in Fig. 4.3.
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5 Quantum Monte Carlo calculations with
chiral EFT NN interactions

In this Chapter we present results of QMC simulations of neutron matter and light nuclei using

the chiral NN interactions derived in the previous Chapter. Results also including chiral 3N

forces are discussed in the next Chapters.

5.1 Neutron matter

We apply the developed local LO, NLO, and N2LO chiral EFT interactions in systematic QMC

calculations for neutron matter, see also Refs. [213, 219]. To simulate O(100) neutrons in order

to access the thermodynamic limit in neutron matter we turn to the AFDMC method, which is

capable of efficiently handling spin-dependent Hamiltonians. For pure neutron matter, either in

the homogeneous case or in a confining potential, the AFDMC method has been carefully bench-

marked with nuclear GFMC, which can handle beyond-central correlations as well as release the

nodal or phase constraint after convergence to the ground state. Both have been found to have

minimal effects on the equation of state of neutrons [79, 211, 249].

First, we studied finite-size effects and the dependence on the Jastrow correlations in the trial

Jastrow-Slater wave function (in continuum QMC calculations there are no discretization ef-

fects). By comparing AFDMC results for 14 particles using the Argonne family of potentials with

a GFMC calculation for the same potentials and neutron number (the largest neutron number

for which GFMC results exist), we found that the Jastrow dependence disappears in AFDMC

when using a softened Jastrow function.

Since no GFMC results exist for 66 particles, we have carried out separate computations at

n= 0.16 fm−3. We studied Jastrow terms from solving the Schrödinger equation for the Argonne

v
′
8

potential, a typical QMC potential of reference, and from the consistent local chiral potentials.

In addition, we have examined the effect of artificially softening the Jastrow term by multiplying

the input potential (only when producing the Jastrow function) by a fixed coefficient, in order to

see the effect of removing the Jastrow. The highest energies always result from using a largely

unmodified Argonne v
′
8

potential, as this is the potential that is most different from the new

chiral interactions. In the case of R0 = 1.0 fm the different Jastrow terms lead to an energy per

particle that varies by at most 0.1 MeV at 0.16 fm−3, while for the R0 = 1.2 fm potentials the

variation is 0.15 MeV. Both these results are much smaller than the 0.6 MeV quoted in Ref. [213]

for the R0 = 0.8 fm potential. This is a reflection of the softer local potentials used here.

Furthermore, we have probed in detail the finite-size effects for the local chiral potentials. As

we are interested in describing the thermodynamic limit of neutron matter, it is important that

we use sufficiently many particles in our AFDMC simulations. In order to avoid issues related

to preferred directions in momentum-space, we have performed calculations for closed shells

N = 14, 38, 54, 66, 114, see Sec. 3.1.2. We chose the SFR cutoff Λ̃ = 1000 MeV and performed

simulations at N2LO for both the R0 = 1.0 fm and R0 = 1.2 fm potentials at the highest density

n = 0.16 fm−3. The results are shown in Fig. 5.1. We observe that the two potentials exhibit
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Figure 5.1: Finite-size effects for the ground-state energy of neutron matter for a SFR cutoff Λ̃ =

1000 MeV at N2LO. Results are shown for different particle numbers for the R0 =

1.0 fm and the R0 = 1.2 fm potentials. We also show the kinetic energy, shifted

down by 19 MeV. The finite-size effects for the local chiral potentials follow the shell

effects of the kinetic energy operator.

essentially identical shell structure, as was expected because the ranges involved in the two

potentials are basically the same. These results show a dependence on N that is very similar to

that in Table III of Ref. [211] for the values of N used in that reference, namely 14, 38, and 66.

The shell structure is very similar to that of the free Fermi gas in a periodic box, which we also

show in Fig. 5.1. From the free Fermi gas we expect that the thermodynamic limit value is below

the N = 114 result and very close to the N = 66 value. This explains our choice of using 66

particles to simulate the thermodynamic limit. The only qualitative difference between the free

Fermi-gas shell structure and our AFDMC results appears at N = 14. For the free gas N = 14

leads to an energy that is higher than that at N = 66. This results from the very small periodic

box needed to produce the same density for N = 14. In that case the interaction length scales

also start to be important. In contrast, for larger N , shell effects come almost completely from

the kinetic energy behavior. Therefore, we have performed calculations for an optimal number

of 66 particles, while also including contributions from the 26 cells, neighboring the primary

simulation box.

We have also explored the dependence of the results on different values of the SFR cutoff. As

discussed, the effect of the SFR cutoff Λ̃ is expected to be smaller than that of R0. We show the

results of varying the SFR cutoff from Λ̃ = 1000 MeV to Λ̃ = 1400 MeV for R0 = 1.0 fm and

R0 = 1.2 fm in Fig. 5.2. There is essentially no effect at low densities, while at higher densities

88 5 Quantum Monte Carlo calculations with chiral EFT NN interactions



0 0.05 0.1 0.15

n [fm-3]

5

10

15

E
/N

 [
M

e
V

]

SFR cutoff = 1000 MeV
SFR cutoff = 1400 MeV

Figure 5.2: Ground-state energy of 66 neutrons at N2LO. Shown are results for two SFR cutoffs,

Λ̃ = 1000 MeV and Λ̃ = 1400 MeV, and two different cutoffs R0 = 1.0 fm (upper

lines) and R0 = 1.2 fm (lower lines). The results exhibit a very weak Λ̃ dependence.

the difference for R0 = 1.0 fm never exceeds 0.1 MeV and for R0 = 1.2 fm it is always less than

0.15 MeV. This shows that the SFR cutoff has a negligible impact on the many-body results.

In Fig. 5.3 we present first AFDMC calculations for the neutron matter energy with chiral EFT NN

interactions at LO, NLO, and N2LO. Our results represent nonperturbative energies for neutron

matter based on chiral EFT beyond low densities.

At each chiral order, the full interaction is used both in the propagator and when evaluating

observables. The bands in Fig. 5.3 give the range of the energy obtained by varying R0 between

1.0−1.2 fm, where the softer R0 = 1.2 fm interactions yield the lower energies. At low densities,

or low Fermi momenta, as expected, the energy is well constrained at LO. The LO results at

higher densities lead to a broad band, the lower part of which (R0 = 1.2 fm) even changes slope

as the density is increased. This reflects the fact that the LO potential does not describe the

phase shifts at the relevant energies as there are only two LECs at this order.

The overlap of the bands at different orders in Fig. 5.3 is excellent. In addition, the comparable

size of the NLO and N2LO bands is expected due to the large ci entering at N2LO and the same

truncation of the contact interactions at both orders. The width of these bands is similar to that

of the phase shifts discussed in Sec. 4.2.6. At the highest density studied, the size of the N2LO

band is approximately 10% of the potential energy, which may be improved by including 3N

forces [54] or going to N3LO.

These QMC results for neutron matter exhibit a systematic order-by-order convergence in chiral

EFT. Although we present results up to saturation density, we emphasize that the contributions

of 3N forces will become important for densities n ¦ 0.05 fm−3 [54]. Our results present a
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Figure 5.3: Neutron matter energy per particle E/N as a function of density n using AFDMC

with the local chiral NN potentials at LO, NLO, and N2LO. The bands are obtained by

varying the cutoff R0 = 1.0− 1.2 fm and the SFR cutoff Λ̃ = 1000− 1400 MeV.

nonperturbative benchmark that can lead to further predictions at higher density, when 3N

forces are consistently included. They will be discussed in the following Chapters.

Finally, in the low-density regime, the results in Fig. 5.3 match the QMC calculations of Ref. [68,

178] based on central interactions that reproduce the large neutron-neutron scattering length

and the effective range physics.

In Fig. 5.4 we compare our AFDMC N2LO results for neutron matter with the MBPT N2LO

calculation of Ref. [57] based on the momentum-space potentials of Ref. [59], the coupled-

cluster results of Ref. [192] using the optimized N2LO potential of Ref. [239], the MBPT results

of Ref. [250], and the configuration-interaction Monte Carlo (CIMC) calculation of Ref. [217],

both using the same optimized N2LO potential. The bands for the MBPT results are obtained as

described in Ref. [57].

The different many-body results for the optimized N2LO potential are in very good agreement.

These results are also consistent with recent self-consistent Green’s function results [194]. In

addition, the optimized N2LO results agree very well with the N2LO band of Ref. [57] which

includes also a NN cutoff variation and is therefore rather broad. Comparing with the AFDMC

results of this work, we find that at saturation density the resulting energies per particle agree

very well. However, the general density dependence of the AFDMC results is more flat, leading

to higher energies at intermediate densities and a different density dependence at saturation

density. These differences could be due to the differences in the phase shift predictions, and we

expect both results to come closer when going to N3LO.
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Figure 5.4: Neutron matter energy per particle E/N as a function of density n. We compare

the AFDMC N2LO results of this work with the MBPT N2LO results of Ref. [57] using

the momentum-space potentials of Ref. [59], the coupled-cluster results of Ref. [192]

using the optimized N2LO potential of Ref. [239], the MBPT results of Ref. [250], and

the QMC results of Ref. [217], both using the same optimized N2LO potential.

5.2 Nonperturbative validation of MBPT calculations for soft chiral interactions

Our AFDMC results provide first nonperturbative benchmarks for chiral EFT interactions at

nuclear densities. We have performed neutron matter calculations using MBPT following

Refs. [17, 54, 55, 57] for the same local chiral potentials and the same regulators as in the

previous Sections. Details on the derivation of the NN matrix elements necessary for the MBPT

calculation are given in Appendix C. We show the results in Fig. 5.5 together with the AFDMC re-

sults at LO, NLO, and N2LO for the three different cutoffs R0 = 1.0, 1.1, and 1.2 fm, and varying

the SFR cutoff Λ̃ = 1000− 1400 MeV.

At every order in the chiral expansion and for every cutoff we show the results at the Hartree-

Fock level as a dashed line, including second-order contributions as a shaded band, and includ-

ing also third-order particle-particle and hole-hole corrections as solid bands. The bands are

obtained by employing a free or Hartree-Fock single-particle spectrum and by varying the SFR

cutoff as stated above. Again, we observe that the R0 = 1.1 fm results at all three chiral orders

lie between the R0 = 1.0 fm and R0 = 1.2 fm ones.

At LO, the local chiral potentials, in general, follow the trend of the AFDMC results for all

three cutoffs. The width of the individual bands is very small and the energy changes from

first to second and from second to third order are small. As discussed in Ref. [17], this energy

difference, combined with the weak dependence on the different single-particle spectra, is a
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Figure 5.5: Results for MBPT and AFDMC calculations at LO, NLO, and N2LO for R0 = 1.0−1.2 fm.

For the MBPT results, we show the Hartree-Fock energies as well as the energy at

second order and including third-order particle-particle and hole-hole corrections.

The width of the bands includes a variation of the single-particle spectrum from a

free to a Hartree-Fock spectrum. In addition, for both the MBPT and AFDMC results

we also vary the SFR cutoff Λ̃ = 1000 − 1400 MeV. For the LO 1.1 fm results, the

lower band corresponds to the second-order results.
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measure of the perturbative convergence for the individual potentials. All potentials at this

chiral order seem to be perturbative. We find a good agreement between the AFDMC and the

MBPT results, especially at lower densities, although at higher densities the trend is that the

second-order results compare better with AFDMC than third-order results.

At NLO, we find the R0 = 1.0 fm potential to have the slowest, if any, perturbative convergence.

The second-order band is very broad and the third-order contributions are large: at saturation

density they are 6− 10 MeV. Going to higher coordinate-space cutoffs, meaning lower momen-

tum cutoffs, we find that the potential becomes more perturbative. At R0 = 1.2 fm both the

second- and third-order bands are narrow and the third-order contributions are ≈ 1.5 MeV.

At N2LO the results are very similar to NLO. We find that the R0 = 1.0 fm potential shows the

slowest perturbative convergence, with an energy difference from second to third order of about

3 MeV at saturation density. However, the perturbativeness for this cutoff at N2LO is better than

at NLO. Going to higher coordinate-space cutoffs again improves the perturbativeness and for

R0 = 1.2 fm the energy difference is ≈ 1.0 MeV at this density. This behavior is similar to the

nonlocal potentials used in Ref. [17] where it was shown that soft (low momentum cutoff)

potentials have a better convergence.

For the perturbative R0 = 1.2 fm potentials, the agreement between the third-order perturbative

results and the AFDMC results is excellent. For R0 = 1.2 fm, at N2LO, the perturbative results lie

almost on top of the AFDMC values. The difference between the third-order result with Hartree-

Fock single-particle spectrum and the AFDMC results is 0.2 MeV at 0.16 fm−3 for Λ̃ = 1400 MeV

and only 20 keV for Λ̃ = 1000 MeV. In comparison, at NLO the difference is 0.2 MeV at 0.16 fm−3

for Λ̃ = 1400 MeV and 0.1 MeV for Λ̃ = 1000 MeV, while at LO it is 1.6 MeV.

These results constitute the first direct validation of MBPT for neutron matter based on low

momentum potentials, in this case R0 = 1.1 fm and R0 = 1.2 fm, and highlight the need for

nonperturbative benchmarks for infinite matter calculations to assess the quality of different

many-body methods.

5.3 Light nuclei

In Ref. [251] the local chiral NN potentials at LO, NLO and N2LO have been used in GFMC

calculations of light nuclei for the first time. Binding energies and radii of the A= 3,4 systems

were calculated. The authors varied the cutoff in the range R0 = 1.0− 1.2 fm. The results for

the 4He binding energies at different chiral orders are shown in Fig. 5.6, and the results for the

A= 3 systems are qualitatively similar.

It was shown that at LO the nuclei are overbound and the corresponding radii are too small.

Going to NLO, the binding energy decreases and the nuclei are underbound with radii that

are larger than the experimental result. At N2LO the binding energies are still too small but

improve compared to NLO. However, at N2LO, the leading 3N forces start to contribute and

give important contributions necessary to reproduce correct binding energies and radii. With

increasing chiral order, the theoretical uncertainty of the results due to the cutoff variation

reduces from ∼ 4 MeV at LO to ∼ 1 MeV at N2LO. A negligible dependence on the SFR cutoff

has been found as well.

The result with the phenomenological AV8’ potential is shown compared to the results at differ-

ent chiral orders. This potential is a truncated version of the AV18 potential with similar contact

operators as in the chiral interactions. The results in Fig. 5.6 highlight the deficiencies in the
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Figure 5.6: Binding energies of 4He using local chiral NN forces at LO, NLO and N2LO in compar-

ison with the experimental result and the result for the Argonne V8’ potential from

Ref. [251]. Furthermore, the results for the N2LO binding energy with the NLO wave

function are shown. The statistical errors are smaller than the points.

phenomenological interactions and the improvement due to chiral interactions. Chiral poten-

tials allow for systematic improvement by increasing the chiral order, they provide theoretical

uncertainties, and they allow for consistent many-body interactions, see the next Chapters. The

GFMC calculations with chiral EFT interactions, thus, are the initial step towards GFMC and

AFDMC calculations of heavier nuclei.

5.4 Summary of main results

In summary, we have presented QMC calculations with chiral NN interactions. This was

achieved by using a freedom in chiral EFT to remove all sources of nonlocality to N2LO. We

have presented details of the derivation of local chiral EFT potentials at LO, NLO, and N2LO. We

performed improved fits of the LECs to low-energy NN phase shifts. The reproduction of the NN

phase shifts is very good compared to the momentum-space N2LO NN potentials of Ref. [59].

We have applied the new local chiral potentials to neutron matter using AFDMC and MBPT and

obtained first nonperturbative benchmarks for the neutron-matter equation of state at nuclear

densities. Our results show systematic order-by-order convergence with theoretical uncertain-

ties and validate perturbative calculations for the softer local NN interactions. The excellent

agreement of the results for the softer R0 = 1.1 fm and R0 = 1.2 fm potentials within the two

many-body frameworks represents a direct validation of MBPT for neutron matter.

In particular, we have investigated the sensitivity of the results to the local regulator and to the

SFR cutoff, to the influence of the Jastrow term, and also to finite size effects in AFDMC.

Since for densities higher than 0.5 n0 3N forces become important, we have to include these into

the AFDMC calculations to obtain ab initio constraints for nuclear density functionals and for

dense matter in astrophysics. In the next Chapters we will show how to include the 3N forces

into our calculations and present first results.
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6 Chiral three-body forces for Quantum
Monte Carlo calculations

The leading 3N forces in chiral EFT enter at N2LO in the chiral expansion and contain three

contributions: a two-pion-exchange interaction VC , which consists of three parts proportional to

the low-energy constants c1, c3, and c4 with different momentum, spin and isospin structures.

Furthermore, they contain a one-pion-exchange–contact interaction VD given by cD, and a 3N

contact interaction VE given by cE, see Sec. 2.2.5. We show the N2LO 3N contributions diagram-

matically in Fig. 2.5. The couplings ci already appear in the subleading NN two-pion exchange

while the couplings cD and cE are free parameters and have to be fitted to properties of A ≥ 3

systems. Since we want to include the N2LO 3N forces in an AFDMC calculation in coordinate

space we have to find local coordinate space expressions for these leading 3N forces, as similarly

done in Ref. [176, 252].

6.1 Derivation of local chiral 3N forces

We perform the Fourier transformation of the momentum-space expressions of the N2LO 3N

forces. In momentum space, the N2LO 3N interactions are given by [173], see Sec. 2.2.5,

VC =
1

2

�
gA

2 fπ

�2 ∑

π(i jk)

σi · qiσk · qk

(q2
i
+m2

π)(q
2
k
+m2

π)
F
αβ

i jk
τα

i
τ
β

k
, (6.1)

VD = −
gA

8 f 2
π

cD

f 2
πΛχ

∑

π(i jk)

σk · qk

q2
k
+m2

π

σi · qk τi ·τk , (6.2)

VE =
cE

2 f 4
πΛχ

∑

π(i jk)

τi ·τk , (6.3)

where F
αβ

i jk
includes the different contributions from the ci ’s

F
αβ

i jk
= δαβ

�
−

4c1m2
π

f 2
π

+
2c3

f 2
π

qi · qk

�
+
∑

γ

c4

f 2
π

ǫαβγτ
γ

j
σ j · (qi × qk) . (6.4)

Similarly to the NN sector, 3N pion exchanges are local and generate nonlocalities only due

to nonlocal regulator functions chosen. Furthermore, the leading 3N contact interactions are

momentum-independent and, thus, local. Because of this, the N2LO 3N forces can be con-

structed in a local way, if local regulators are chosen.

We Fourier transform the 3N interactions with respect to the momentum transfers of particle

i and k, which yields the coordinate-space expression V i jk as a function of ri j and rk j. These

expressions will then be regularized directly in coordinate space, as done in the NN sector.

Because the 3N interactions include a sum over all permutations, taking a different choice for
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the momentum transfers would lead to the same result. However, this will not be the case when

a regulator in momentum space is included before Fourier transforming.

In the following, we show how to do the Fourier transformation of the three 3N topologies. We

give the definitions of some general functions in coordinate space:

Y (r) =
exp(−mπ · r)

r
, (6.5)

U(r) = 1+
1

mπr
, (6.6)

T (r) = 1+
3

mπr
+

3

(mπr)2
, (6.7)

Si j(r) = 3σi · r̂σ j · r̂−σi ·σ j , (6.8)

X i j(r) =
�

Si j(r)T (r) +σi ·σ j

�
Y (r) . (6.9)

Here, Y (r) is the well-known Yukawa function, U(r) and T (r) are scalar functions depending

on the radius r, Si j(r) is the tensor force operator and X i j(r) denotes the one-pion-exchange

interaction in coordinate space.

More details on the Fourier transformations are given in Appendix D.

6.1.1 Two-pion-exchange interaction VC

We first turn to the two-pion-exchange contribution VC in neutron matter:

V
i jk

C ,c1
= −

c1m2
πg2

A

2 f 4
π

∑

π(i jk)

τi ·τk

∫
d3qi

(2π)3
σi · qi

q2
i
+m2

π

eiqi ·ri j

∫
d3qk

(2π)3
σk · qk

q2
k
+m2

π

eiqk·rk j . (6.10)

The integrals are readily evaluated using

∫
d3qi

(2π)3
σi · qi

q2
i
+m2

π

eiqi ·ri j = −iσα
i
∂ α

e−mπri j

4πri j

= i
mπ

4π
σα

i
r̂α

i j
U(ri j)Y (ri j) . (6.11)

This leads to

V
i jk

C ,c1
=

c1m4
πg2

A

2 f 4
π (4π)

2

∑

π(i jk)

τi ·τkσi · r̂i jσk · r̂k j U(ri j)Y (ri j)U(rk j)Y (rk j) . (6.12)

This contribution is similar to the long-range (LR) S wave TPE part of the phenomenological

Illinois or Urbana forces [200]. Its implementation into quantum Monte Carlo codes, thus, is

straightforward.

For the Fourier transformation of the more complicated c3 part of the 3N two-pion-exchange

interaction, we find

V
i jk

C ,c3
=

c3g2
A

4 f 4
π

∑

π(i jk)

τi ·τk

∫
d3qi

(2π)3
σi · qi

q2
i
+m2

π

qα
i

eiqi·rij

∫
d3qk

(2π)3
σk · qk

q2
k
+m2

π

qα
k

eiqk·rkj . (6.13)
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Similar to the Fourier transformation for the one-pion exchange in Eq. (6.17) one gets

∫
d3qi

(2π)3
σi · qi

q2
i
+m2

π

qα
i

eiqi·rij

= −
m2
π

4π
σ
β

i

��
r̂α

i j
r̂
β

i j
−

1

3
δαβ
�

T (ri j)Y (ri j) +
1

3
δαβ Y (ri j)−

1

3

4π

m2
π

δαβ δ(ri j)

�
. (6.14)

Thus, the Fourier transformation is given by

V
i jk

C ,c3
=
∑

π(i jk)

1

2

�
gA

2 fπ

�2
�

2c3

f 2
π

�
τi ·τk

�
m2
π

4π

�2
1

9



�

4π

m2
π

�2

σi ·σkδ(ri j)δ(rk j)

−
4π

m2
π

X ik(ri j)δ(rk j)−
4π

m2
π

X ik(rk j)δ(ri j) + X i j(ri j)Xk j(rk j)
�

.

In coordinate space, for the two-pion exchange there are four terms that are proportional to c3,

due to a long-range and short-range spin-dependent piece in every pion exchange, indicated by

Xab(ri j) and the δ function after Fourier transformation. The first term ∼ X i j(ri j)Xk j(rk j) is a

long-range two-pion-exchange contribution similar to the anticommutator part of the P wave

two-pion-exchange interaction of Ref. [200]. In addition, there is also a short-range (SR) spin-

dependent three-nucleon contact term ∼ δ(ri j)δ(rk j) and two intermediate-range (IR) terms

∼ X ik(ri j)δ(rk j) + X ik(rk j)δ(ri j) similar to a one-pion-exchange–contact interaction. We note

that, although the spin/isospin structure is similar to the Urbana IX force and in general to the

two pion-exchange of the Illinois forces, the spatial functions are quite different, as shorter-

range terms emerge.

Finally, we transform the c4 part of the two-pion-exchange interaction VC . We find the final

result

V
i jk

C ,c4
=

c4g2
A

72 f 4
π

∑

π(i jk)

τi · (τk ×τ j)

�
m4
π

2i(4π)2
[X i j(ri j), Xk j(rk j)]

−
m2
π

4π
σi · (σk ×σ j)(1− T (ri j))Y (ri j)δ(rk j)

−
m2
π

4π
σi · (σk ×σ j)

�
1− T (rk j)

�
Y (rk j)δ(ri j)

�

−
3m2

π

4π
σi · r̂i j r̂i j · (σk ×σ j)T (ri j)Y (ri j)δ(rk j)

−
3m2

π

4π
σk · r̂k j r̂k j · (σ j ×σi)T (rk j)Y (rk j)δ(ri j)

+σi · (σk ×σ j)δ(ri j)δ(rk j)

�
. (6.15)

The c4 part of the two-pion exchange also consists of several terms: a long-range term

∼ [X i j(ri j), Xk j(rk j)], which is similar to the commutator part of the P wave two-pion exchange

of the Urbana and Illinois 3N forces, see Ref. [200]. In addition, there is a three-nucleon contact

part ∼ δ(ri j)δ(rk j) and medium-range mixed terms ∼ Y (ri j)δ(rk j).
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6.1.2 One-pion-exchange–contact interaction VD

For the Fourier transformation of the VD contribution we start from

V
i jk

D =

∫
d3qi

(2π)3
d3qk

(2π)3
eiqi ·ri j eiqk·rk j VD ,

= −
gA

8 f 2
π

cD

f 2
πΛχ

∑

π(i jk)

τi ·τk

∫
d3qi

(2π)3
eiqi ·ri j

∫
d3qk

(2π)3
σk · qkσi · qk

q2
k
+m2

π

eiqk·rk j . (6.16)

The second integral gives an expression similar to the one-pion exchange:
∫

d3qk

(2π)3
σk · qkσi · qk

q2
k
+m2

π

eiqk·rk j = −
m2
π

12π
X ik(rk j) +

1

3
σi ·σk δ(rk j) . (6.17)

As a result, in addition to the one-pion-exchange–contact part, the Fourier transformation also

leads to a 3N contact contribution in V
i jk

D :

V
i jk

D =
gA

24 f 2
π

cD

f 2
πΛχ

∑

π(i jk)

τi ·τk

�
m2
π

4π
δ(ri j)X ik(rk j)−σi ·σk δ(ri j)δ(rk j)

�
. (6.18)

There is no similar interaction in the phenomenological Argonne or Urbana three-nucleon mod-

els.

We want to emphasize that there is an ambiguity in performing the Fourier transformation for

the VD term, depending on the choice of the initial spin-isospin structure. This leads either to

terms δ(ri j)X ik(rk j) or δ(ri j)X ik(rik) with different spin indices in the X function. The two ex-

pressions are analogous due to the δ functions but lead to different results after regularization.

Thus, the differences from choosing different structures are only a regulator effect and higher-

order corrections, as mentioned in Ref. [176]. They will vanish in the limit of infinite cutoff. In

the following, we will distinguish between the two versions:

V
i jk

D,1 =
gA

24 f 2
π

cD

f 2
πΛχ

∑

π(i jk)

τi ·τk

�
m2
π

4π
δ(ri j)X ik(rk j)−σi ·σk δ(ri j)δ(rk j)

�
, (6.19)

V
i jk

D,2 =
gA

24 f 2
π
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f 2
πΛχ

∑
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τi ·τk

�
m2
π

4π
δ(ri j)X ik(rik)−σi ·σk δ(ri j)δ(rik)

�
.

6.1.3 Three-body contact interaction VE

As the three-nucleon contact interaction is momentum-independent, the Fourier transformation

is simply given by

VE(ri j, rk j) =

∫
d3qi

(2π)3
d3qk

(2π)3
exp (iqi · ri j)exp (iqk · rk j)VE(qi,qk) (6.20)

=
cE

2 f 4
πΛχ

τi ·τk

∫
d3qi

(2π)3
exp (iqi · ri j)

∫
d3qk

(2π)3
exp (iqk · rk j)

=
cE

2 f 4
πΛχ

τi ·τkδ(ri j)δ(rk j) .
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This contribution is a product of two δ functions. It is similar to the spin-independent in-

teraction V R of the Urbana and Illinois three-nucleon potentials [200] and, thus, can easily

be implemented in existing quantum Monte Carlo codes using Urbana and Illinois three-body

forces.

6.1.4 Regularization of coordinate space 3N interactions

We regularize the local 3N forces after the Fourier transformation in a consistent way compared

to the NN force and replace δ functions by smeared ones of the form

δ(r) → δR3N
(r) =

1

πΓ
�
3/4
�
R3

3N

e−(r/R3N)
4

, (6.21)

where R3N is the three-body cutoff. To regularize the long-range pion contributions, we multiply

all the appearing Yukawa functions with the long-range regulator flong, given by

Y (r) → Y (r)
�

1− e−(r/R3N)
4
�

. (6.22)

To be consistent with the NN cutoff R0 = 1.0− 1.2 fm, which was used before, we will in the

following also vary the 3N cutoff in this range, R3N = 1.0− 1.2 fm. This will be justified later.

Furthermore, we adopt the same ci values as in the NN sector.

The one-pion-exchange–contact interactions vanish in momentum space for neutron matter due

to the spin-isospin structure if a regulator which is symmetric in the particle labels is used, see

Ref. [54]. The same is true for the 3N contact contributions. They vanish in momentum-space

in neutron matter due to the Pauli principle. Because a local regulator does not fulfill this

requirement and the δ functions acquire a finite range, these terms will contribute to neutron

matter if a local regulator is employed.

We want to stress that the contributions of the IR and SR parts of the two-pion exchange as well

as VE and VD in neutron matter are solely regulator effects and vanish for R3N→ 0, i.e., infinite

momentum cutoffs.

6.2 Implementation in Quantum Monte Carlo

In the following we show how to include the local 3N forces into quantum Monte Carlo sim-

ulations. We begin with the inclusion into AFDMC, which we use to calculate pure neutron

matter, and follow the strategy of Ref. [203] to rewrite the 3N interactions in form of two-body

operators.

In AFDMC, the NN potential can be recast into the following form, when the spin-orbit part is

neglected:

V = VSpin-indep.+
1

2

∑

iα, jβ

σiαA
(σ)

iα, jβ
σ jβ +

1

2

∑

iα, jβ

σiαA
(στ)

iα, jβ
σ jβτi ·τ j +

1

2

∑

i, j

A
(τ)
i, j
τi ·τ j . (6.23)

Here, i and j are particle indices and α and β are Cartesian coordinates.
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As we use AFDMC only to calculate pure neutron matter, the isospin structure can be evaluated

explicitly, with all τi ·τ j = 1 and the c4 part vanishes due to τi ×τk ·τ j = 0 [54], leading to

V = VSpin-indep.+
1

2

∑

iα, jβ

σiαA
(σ)

iα, jβ
σ jβ . (6.24)

Our goal is it to recast the three-body interaction into a similar form and to find a matrix A
(σ)

iα, jβ

for the 3N forces, which is then added to the NN matrix.

In the AFDMC code, the three-body forces are included as a sum V3 =
∑

i< j<k V i jk, with the

particles i, j and k. The 3N forces between these particles, V i jk, contain a cyclic summation

V i jk =
∑

cyc V (i, j, k) = V (i, j, k) + V ( j, k, i) + V (k, i, j). As chiral 3N forces in their original

form contain a sum over all permutations of the particle indices,
∑
π(i jk) V (i, j, k), we have to

carefully rewrite the chiral 3N interactions using sums over cyclic permutations.

For neutron matter, the two-pion exchange VC contributes and has several terms, which have

been derived before:

V
i jk

C ,c1
= −

∑

π(i jk)

1
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2 fπ

�2�mπ
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−
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V
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=
∑
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−
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π

9
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(4π)2

9
σi ·σkδ(ri j)δ(rk j)

�
.

We will start with the c3 part, in particular with the long-range two-pion-exchange:

V
i jk

C ,c3,LR =
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π(i jk)

1
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�2� 1
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=
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aTPE
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{X i j(ri j), Xk j(rk j)} ,

with the prefactor

aTPE
c3
=
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�
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2 fπ

�2� 1

4π

�2
�

2c3

f 2
π

�
m4
π

9
. (6.28)
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This is analogue to the P wave Illinois TPE interaction, which is already implemented in the

AFDMC code. For reasons of completeness, we give the strategy for the implementation of this

part into AFDMC. To begin, we rewrite X i j(ri j):

Xab(ri j) =
��

3σa · r̂i jσb · r̂i j −σa ·σb

�
T (ri j) +σa ·σb

�
Y (ri j) (6.29)

=
��

3σα
a
r̂α

i j
σ
β

b
r̂
β

i j
−σα

a
σ
β

b
δαβ
�

T (ri j) +σ
α
a
σ
β

b
δαβ
�

Y (ri j)

= σα
a

h
3r̂α

i j
r̂
β

i j
Y (ri j)T (ri j) +δ

αβ
�

Y (ri j)− T (ri j)Y (ri j)
�i
σ
β

b

= σα
a
X iα, jβσ

β

b
.

The matrix X iα, jβ is symmetric under transposition in i↔ j and α↔ β . The diagonal elements

X iα,iβ = 0 due to the regulator. Using this, we can rewrite Eq. (6.27) and find

VC ,c3,LR =
∑

i< j<k

∑

cyc

aTPE
c3
{X i j(ri j), Xk j(rk j)}

=
∑
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i
X iα, jβσ

β

j
σ
γ

k
Xkγ, jδσ

δ
j
+σ

γ

k
Xkγ, jδσ

δ
j
σα

i
X iα, jβσ

β

j

i

=
∑

i< j<k

∑

cyc

aTPE
c3

h
σα

i
X iα, jβσ

γ

k
Xkγ, jδ(δ

βδ + iεβδκσκ
j
) +σ

γ

k
Xkγ, jδσ

α
i
X iα, jβ(δ

βδ + iεδβκσκ
j
)
i

=
∑

i< j<k

∑

cyc

2aTPE
c3
σα

i
X iα, jβX jβ ,kγσ

γ

k
.

We can replace the summation
∑

i< j<k

∑
cyc with

∑
i<k

∑
j 6=i,k. Both sums lead to the same

number of terms, but the latter expression also includes non-cyclic permutations of i and k. As

the forces are, however, symmetric under transposition of particles i and k, these non-cyclic

permutations are similar to the corresponding cyclic ones, and we get finally

VC ,c3,LR =
∑

i< j<k

∑

cyc

2aTPE
c3
σi,αX iα, jβX jβ ,kγσk,γ

=
∑

i<k

∑

j 6=i,k

2aTPE
c3
σi,αX iα, jβX jβ ,kγσk,γ

=
∑

i<k



∑

j

2aTPE
c3
σi,αX iα, jβX jβ ,kγσk,γ− 2aTPE

c3
σi,αX iα,iβX iβ ,kγσk,γ− 2aTPE

c3
σi,αX iα,kβXkβ ,kγσk,γ




=
∑

i<k

∑

j

2aTPE
c3
σi,αX iα, jβX jβ ,kγσk,γ

=
∑

i<k

2aTPE
c3
σi,αX 2

iα,kγσk,γ .

This form is similar to a two-body interaction and can be easily added to the corresponding NN

matrix Aiα,kγ.
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Now we turn to the VE-like structure of the TPE interaction:

V
i jk

C ,c3,VE
=
∑

π(i jk)

1

2

�
gA

2 fπ

�2� 1

4π

�2
�

2c3

f 2
π

�
(4π)2

9
σi ·σkδ(ri j)δ(rk j) (6.30)

=
∑

cyc

1

9

�
gA

2 fπ

�2
�

2c3

f 2
π

�
σi ·σkδ(ri j)δ(rk j)

=
∑

cyc

aVE
c3
σi ·σkδ(ri j)δ(rk j) .

We want to recast this contribution into a matrix form like before. For this, we will use the

matrix X δ
i, j
= δ(ri j). The diagonal elements of this matrix correspond to the normalization of

the smeared-out δ function. We get

V3N ,c3,VE
= aVE

c3

∑

i< j<k

∑

cyc

σα
i
δαγδ(ri j)δ(rk j)σ

γ

k
(6.31)

= aVE
c3

∑

i<k

∑

j 6=i,k

σα
i
δαγX δ

i, j
X δ

k, j
σ
γ

k

= aVE
c3

∑

i<k

∑

j

σα
i
δαγX δ

i, j
X δ

k, j
σ
γ

k
− aVE

c3

∑

i<k

σα
i
δαγX δ

i,i
X δ

k,i
σ
γ

k
− aVE

c3

∑

i<k

σα
i
δαγX δ

i,k
X δ

k,k
σ
γ

k

= aVE
c3

∑

i<k

σα
i
δαγ



∑

j

X δ
i, j

X δ
k, j
− X δ

i,i
X δ

k,i
− X δ

i,k
X δ

k,k


σγ

k
.

All contributions containing diagonal elements cancel each other, and we can simply define the

diagonal elements of the matrix as 0. This leads to the same result in an easier notation:

V3N ,c3,VE
= aVE

c3

∑

i<k

σα
i
δαγ
∑

j

X δ
i, j

X δ
k, j
σ
γ

k
(6.32)

= aVE
c3

∑

i<k

σα
i

∑

j

X δ
iα,kασ

α
k

.

For the last c3 contribution, which looks similar to VD, we find

V
i jk

C ,c3,VD
=
∑

π(i jk)

1

2

�
gA

2 fπ

�2� 1

4π

�2
�

2c3

f 2
π

��
−

4πm2
π

9
X ik(ri j)δ(rk j)−

4πm2
π

9
X ik(rk j)δ(ri j)

�

(6.33)

=2
∑

cyc

a
VD

ind

�
X ik(ri j)δ(rk j) + X ik(rk j)δ(ri j)

�

=2
∑

cyc

a
VD

ind

��
3σi · r̂i jσk · r̂i j T (ri j)Y (ri j) +σi ·σk

�
Y (ri j)− T (ri j)Y (ri j)

��
δ(rk j)

+
�

3σi · r̂k jσk · r̂k j T (rk j)Y (rk j) +σi ·σk

�
Y (rk j)− T (rk j)Y (rk j)

��
δ(ri j)

�

=2
∑

cyc

a
VD

ind

�
σi ·σk

�
Y (ri j)− T (ri j)Y (ri j)

�
δ(rk j) +σi ·σk

�
Y (rk j)− T (rk j)Y (rk j)

�
δ(ri j)

+ 3σi · r̂i jσk · r̂i j T (ri j)Y (ri j)δ(rk j) + 3σi · r̂k jσk · r̂k j T (rk j)Y (rk j)δ(ri j)
�

=2
∑

cyc

a
VD

ind

h
σα

i
δαβ

�
X

VD,Y

i, j
X δ

k, j
+ X

VD,Y

k, j
X δ

i, j

�
σ
β

k
+σα

i

�
X

VD,T

iα, jβ
X δ

k, j
+ X

VD,T

kα, jβ
X δ

i, j

�
σ
β

k

i
.
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where we have used

X
VD,Y

i, j
= Y (ri j)

�
1− T (ri j)

�
, (6.34)

X
VD,T

iα, jβ
= 3r̂α

i j
r̂
β

i j
T (ri j)Y (ri j) . (6.35)

For the total contribution of this 3N interaction, we find

VC ,c3,VD
=
∑

i< j<k

V
i jk

C ,c3,VD
(6.36)

= 2
∑

i< j<k

∑

cyc

a
VD

ind

h
σα

i
δαβ

�
X

VD,Y

i, j
X δ

k, j
+ X

VD,Y

k, j
X δ

i, j

�
σ
β

k
+σα

i

�
X

VD,T

iα, jβ
X δ

k, j
+ X

VD,T

kα, jβ
X δ

i, j

�
σ
β

k

i

= 2
∑

i<k

a
VD

ind
σα

i


δαβ



∑

j

X
VD,Y

i, j
X δ

k, j
+
∑

j

X
VD,Y

k, j
X δ

i, j


+



∑

j

X
VD,T

iα, jβ
X δ

k, j
+
∑

j

X
VD,T

kα, jβ
X δ

i, j




σβ

k
,

which again can be added to the two-body matrix Aiα,kγ.

We turn finally to the last contribution ∼ c1,

V
i jk

C ,c1
=−

∑

π(i jk)

1

2

�
gA

2 fπ

�2�mπ

4π

�2
�
−

4c1m2
π

f 2
π

�
σi · ri j

ri j

σk · rk j

rk j

U(ri j)Y (ri j)U(rk j)Y (rk j) (6.37)

=2
∑

cyc

aTPE
c1

σi · ri j

ri j

σk · rk j

rk j

U(ri j)Y (ri j)U(rk j)Y (rk j) .

For the total c1 contribution we obtain

VC ,c1
=2

∑

i< j<k

∑

cyc

aTPE
c1
σα

i
σ
γ

k
r̂α

i j
r̂
γ

k j
U(ri j)Y (ri j)U(rk j)Y (rk j) (6.38)

=2
∑

i<k

∑

j 6=i,k

aTPE
c1
σα

i
v

c1
α (ri j)v

c1
γ (rk j)σ

γ

k

=2
∑

i<k



∑

j

aTPE
c1
σα

i
v

c1
α (ri j)v

c1
γ (rk j)σ

γ

k
− aTPE

c1
σα

i
v

c1
α (rii)v

c1
γ (rki)σ

γ

k
− aTPE

c1
σα

i
v

c1
α (rik)v

c1
γ (rkk)σ

γ

k




=2
∑

i<k

aTPE
c1
σα

i

∑

j

v
c1
α (ri j)v

c1
γ (rk j)σ

γ

k
,

where we have defined v
c1
α (ri j) = r̂α

i j
U(ri j)Y (ri j) .

The term VD consists of two contributions after Fourier transformation:

V
i jk

D,1 =
∑

π(i jk)

m2
π

12π

gA

8 f 2
π

cD

f 2
πΛχ

δ(ri j)X ik(rk j) , (6.39)

V
i jk

D,2 = −
∑

π(i jk)

1

3

gA

8 f 2
π

cD

f 2
πΛχ

(σi ·σk)δ(ri j)δ(rk j) . (6.40)
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The first term can be brought into a different form:

V
i jk

D,1 =
∑

π(i jk)

m2
π

12π

gA

8 f 2
π

cD

f 2
πΛχ

δ(ri j)X ik(rk j) (6.41)

=
∑

cyc

m2
π

12π

gA

8 f 2
π

cD

f 2
πΛχ

�
X ik(rk j)δ(ri j) + X ik(ri j)δ(rk j)

�
(6.42)

= 2
∑

cyc

1

2

m2
π

12π

gA

8 f 2
π

cD

f 2
πΛχ

�
X ik(rk j)δ(ri j) + X ik(ri j)δ(rk j)

�
(6.43)

= 2
∑

cyc

aVD

�
X ik(rk j)δ(ri j) + X ik(ri j)δ(rk j)

�
. (6.44)

This form is similar to the VD-like IR part of VC of Eq. (6.33) and can be easily included into the

code by adding the factor aVD
to a

VD

ind
. For the second contribution we find

V
i jk

D,2 = −
∑

π(i jk)

1

3

gA

8 f 2
π

cD

f 2
πΛχ

(σi ·σk)δ(ri j)δ(rk j) (6.45)

= −2
∑

cyc

1

3

gA

8 f 2
π

cD

f 2
πΛχ

σi,αδ
αγδ(ri j)δ(rk j)σk,γ

= aVD,2

∑

cyc

σi,αδ
αγδ(ri j)δ(rk j)σk,γ . (6.46)

This VE-like part of VD is similar to the VE-like part of VC and, thus, easy to include into the code

by adding aVD,2 to aVE
c3

.

We now turn to the last piece of the N2LO 3N forces. The 3N contact interaction VE is spin-

independent and similar to the R-part of the Illinois three-nucleon forces:

V
i jk

E =
cE

2 f 4
πΛχ

∑

π(i jk)

δ(ri j)δ(rk j) =
cE

f 4
πΛχ

∑

cyc

δ(ri j)δ(rk j) . (6.47)

For the total contribution we find

VE =
∑

i< j<k

∑

cyc

cE

f 4
πΛχ

δ(ri j)δ(rk j) (6.48)

=
∑

i<k

∑

j 6=i,k

aVE
δ(ri j)δ(rk j)

=
∑

i<k

aVE

∑

j

δ(ri j)δ(rk j)

=
1

2

∑

i 6=k

aVE

∑

j

δ(ri j)δ(rk j) ,

where we again set the diagonal matrix elements to 0 as their contribution cancels each other.
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To implement the chiral forces in GFMC we use operator structures which are already im-

plemented in the code. To achieve this we rewrite the spin and isospin operators in form of

commutators and anticommutators, using the following expressions:

{τi ·τ j,τ j ·τk}= 2τi ·τk, (6.49)�
τi ·τ j,τ j ·τk

�
= 2iτi ·τk ×τ j , (6.50)

and similarly for the spin operators. Arbitrary products of these operators with arbitrary radial

functions can be directly implemented in the GFMC algorithm. Furthermore, we have to rewrite

the sums in the 3N interaction as cyclic sums as before. With this, it is straightforward to

implement the chiral 3N contributions.

Furthermore, some contributions can be recast into terms similar to the Urbana or Illinois 3N

interactions, which are already implemented in GFMC algorithms. As an example we show the

LR two-pion exchange c3 and c4 parts with two X operators:

V
i jk

C ,LR,c3
=
∑

π(i jk)

1

2

�
gA

2 fπ

�2� 1

4π

�2
�

2c3

f 2
π

�
τi ·τk

m4
π

9
X i j(ri j)Xk j(rk j) (6.51)

=aPW
TPEc3

∑

cyc

{τi ·τ j,τ j ·τk}{X i j(ri j)Xk j(rk j)} ,

V
i jk

C ,LR,c4
=
∑

π(i jk)

1

9

1

2

�
gA

2 fπ

�2 c4

f 2
π

τi ·
�
τk ×τ j

��m2
π

4π

�2
1

2i
[X i j(ri j), Xk j(rk j)] (6.52)

=− aPW
TPE

c4

2

∑

cyc

�
τi ·τ j,τ j ·τk

�
[X i j(ri j), Xk j(rk j)] .

For the sum we find

V
i jk

C ,LR,c3
+ V

i jk

C ,LR,c4
(6.53)

= aPW
TPEc3

∑

cyc

�
{τi ·τ j,τ j ·τk}{X i j(ri j)Xk j(rk j)} −

c4

2c3

�
τi ·τ j,τ j ·τk

�
[X i j(ri j), Xk j(rk j)]

�
.

These forces are similar to the phenomenological Urbana and Illinois P wave TPE interaction.

In chiral EFT, if only considering the ∆ excitation absorbed into the ci, c3 = −2c4, and we find

exactly the Urbana 3N expression.

For more details on the inclusion of the local chiral 3N forces into the GFMC algorithm, we refer

the reader to Ref. [253].

6.3 Fits of cD and cE

To determine the couplings cD and cE in the N2LO 3N forces, we use the GFMC method to

fit these couplings to properties in the A ≥ 3 systems. More specifically, we choose to fit the

two couplings to the 4He binding energy and, to probe spin-orbit physics, neutron-α P wave

scattering phase shifts, see Ref. [253] for more details.

In Fig. 6.1 we show the couplings cE vs. cD obtained by fitting the 4He binding energy, where

blue (red) lines correspond to R0 = 1.0 fm (1.2 fm), while open (closed) symbols represent
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Figure 6.1: The couplings cE vs. cD obtained by fitting the 4He binding energy. Blue (red) lines

correspond to R0 = 1.0 fm (1.2 fm), while open (closed) symbols represent VD,1(VD,2).

The stars represent the values which also fit the n-α P wave phase shifts.

0 1 2 3 4 5

Ecm(MeV)

0

20

40

60

80

100

120

140

160

180

δ
(d
eg
.)

3

2

−

1

2

−

R0 = 1.0 fm
R0 = 1.2 fm

R−matrix

Figure 6.2: The P wave n-α elastic scattering phase shifts for VD,2 and the couplings from Fig. 6.1.

The points are compared to an R-matrix analysis of experimental data, see Ref. [253]

for more details.

VD,1(VD,2). The 3N cutoff R3N is chosen similar to R0. The stars represent the values which

also fit the n-α P wave phase shifts, see Fig. 6.2, where the choice is made to use the operator

structure of VD,2.
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Figure 6.3: Contributions to the neutron-matter energy per particle E/N as a function of density

n at the Hartree-Fock level. The black band shows the energy obtained using a nonlo-

cal regulator, as in Ref. [17], with a cutoff 2.0−2.5 fm−1. The blue band corresponds

to the LR part of the two-pion-exchange interaction VC with the local regulator used

here, the red band to the SR part of VC , and the green band to the IR of VC . For

these bands, the cutoff in the local regulator is varied between R3N = 1.0− 1.2 fm.

The dashed-dotted line corresponds to the results for VC using the local momentum-

space regulator of Ref. [176] with a cutoff Λ3N = 500 MeV. This shows that local 3N

forces provide less repulsion at the Hartree-Fock level than with nonlocal regulators.

The dashed lines show the results for VC with the local regulator and R3N = 0.5 fm.

For the R0 = 1.0 fm NN potential, we find cE = −0.63 and cD = 0.0. The different operator

structures for VD, thus, have no effect for this potential. For R0 = 1.2 fm we find cE = 0.085 and

cD = 3.5 for VD,2, while for VD,1 no good fit could so far be obtained.

These are the first cD and cE fits and they have only been calculated very recently. It is necessary

to obtain improved fits as well as the dependence of the couplings cE and cD on the two different

VD structures. In the following AFDMC calculations of neutron matter we will, therefore, only

consider the LR two-pion-exchange term VC and neglect the contributions of VD and VE.

6.4 Local chiral 3N forces in neutron matter

In this Section we discuss the results of the local N2LO 3N forces in neutron matter at the

Hartree-Fock (HF) level and using AFDMC. We begin with HF calculations similarly to Refs. [17,

57], using our MBPT machinery. Details on the Fourier transformation of the regularized local

3N forces from coordinate space to momentum space are given in Appendix E.
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In Fig. 6.3 we show the contributions to the neutron-matter energy per particle E/N as a func-

tion of density n for all terms of the two-pion exchange VC at the Hartree-Fock level. The

black band shows the energy obtained using a nonlocal regulator, as in Ref. [17], with a cutoff

2.0− 2.5 fm−1. In momentum space, this is the only contribution to pure neutron matter stem-

ming from the N2LO 3N forces, if the nonlocal regulator of Ref. [17] is used. The blue band

corresponds to the LR part of the two-pion-exchange interaction VC with the local regulator used

here, the red band to the SR part of VC , and the green band to the IR of VC . For these bands,

the cutoff in the local regulator is varied between R3N = 1.0− 1.2 fm. The dashed-dotted line

corresponds to the results for VC using the local momentum-space regulator of Ref. [176] with

a cutoff Λ3N = 500 MeV. The dashed lines show the results for VC with the local regulator and

R3N = 0.5 fm.

The HF energies in neutron matter for the local VC of this work are in total≈ 3 MeV at saturation

density n0 = 0.16 fm−3 for our cutoff range 1.0− 1.2 fm, which is only half the magnitude of

VC using a non-local regulator for the cutoff range 400− 500 MeV. The shorter-range contribu-

tions, which are pure regulator effects, are very small and with opposite sign. If we lower the

coordinate-space cutoff, R3N = 0.5 fm (dashed lines), we find that the IR and SR parts almost

vanish, as expected, and that the total HF energy is 5.5 MeV for the local VC , which agrees very

well with the momentum-space determination. Thus, the smaller 3N energies for the local 3N

forces seem to be due to the locality of these regulator functions and our chosen cutoff range.

To check this assumption, we performed a HF calculation of VC using the local momentum-space

regulator of Ref. [176] with a cutoff of Λ3N = 500 MeV. At saturation density, we find an energy

per particle of 3.8 MeV, which is comparable to the result of the local 3N forces of this paper.

This supports the above conclusion, that the smaller 3N energies are due to local regulators

and that local 3N forces provide less repulsion at the Hartree-Fock level than with nonlocal

regulators. We will study local regulators in more detail in the next Section.

In Ref. [54] it was shown that the three-nucleon contact interaction VE vanishes in pure neu-

tron matter due to the Pauli principle and that the one-pion-exchange–contact interacting VD

vanishes due to the spin-isospin structure, if non-local Jacobi-momentum regulators are chosen.

This statement is true as long as the regulator is symmetric under exchange of all particle la-

bels. For the local 3N forces, however, this does not hold, and these two contributions also add

to pure neutron matter. Although these contributions are pure regulator effects and vanish for

R3N→ 0, they add sizeable contributions to pure neutron matter, which we show in Fig. 6.4. The

couplings cE and cD are chosen as the maximal values from the fitting procedure, so cE = −0.63

and cD = 3.5, and the plot, thus, shows only the maximal HF results.

The term VD, where the IR and SR part have different sign and almost cancel each other, has

a magnitude of only several hundred keV. For other cutoffs, the value of the coupling cD de-

creases, and the contribution becomes even smaller. Thus, VD can easily be neglected in a

neutron matter calculation. The VE contribution, however, can be sizeable, and for cE = −0.63

for the hard NN potential with R0 = 1.0 fm we find a HF energy of ≈ −(3− 4)MeV. This con-

tribution is larger than the energy of VC and has the opposite sign. For the softer potential with

R0 = 1.2 fm, the HF energy is ≈ 0.5 MeV.

Preliminary results show, that by chosing the ✶ operator instead of the τi ·τk operator for the VE

contact interaction, similar to what has been done in the NN sector, VE takes the opposite sign

but with a similar magnitude. The local regulator, thus, does not preserve the freedom to choose

the contact operator in the 3N system. Furthermore, these results indicate that the local SR 3N
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Figure 6.4: Contributions to the neutron-matter energy per particle E/N as a function of density

n at the Hartree-Fock level for the local VE (red band), the local IR part of VD (blue

band) and the local SR part of VD (blue dotted band). The couplings cE and cD are

chosen as cE = −0.63 and cD = 3.5.

contact interaction VE adds a sizeable uncertainty to the neutron-matter equation of state. This

has to be investigated further.

In Fig. 6.5, we show the contributions to the energy per particle E/N at saturation density as a

function of the cutoff R3N. The lines show the LR, SR, and IR parts of the two-pion-exchange

interaction VC with the local regulator used here, calculated at the Hartree-Fock level. For all

3N cutoffs, the SR and IR parts are very small and of opposite sign while the major contribution

to the many-body forces comes from the long-range parts. The SR and IR parts vanish for small

coordinate-space (high momentum-space) cutoffs, as expected. The LR part increases up to the

infinite-momentum-cutoff limit. For our cutoff range, R3N = 1.0−1.2 fm, the total magnitude of

VC is about 3.0 MeV. Reducing the cutoff to 0.5 fm leads to an energy of ∼ 5.5 MeV per neutron

at the HF level. This is what we found before.

We also investigated the N2LO 3N forces VC in neutron matter employing the AFDMC method.

In Fig. 6.5, in addition to the HF results, we show the contributions of the LR, IR and SR parts

of VC to the AFDMC energy for a variation of the NN cutoff R0 = 1.0− 1.2 fm as bands. These

results are also shown in Fig. 6.6, where we plot the variation of the AFDMC energy per particle

at saturation density as a function of the 3N cutoff R3N for an NN cutoff 1.0 fm (black lines in

the upper part) and 1.2 fm (red lines in the lower part). The horizontal lines correspond to the

NN-only energy. The squares are obtained by including the LR c1 and c3 part of VC , the crosses

include also the SR c3 part of VC , and the circles include all parts of VC .
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Figure 6.5: Contributions to the energy per particle E/N at saturation density as a function of

the cutoff R3N. The lines show the LR, SR, and IR parts of the two-pion-exchange in-

teraction VC with the local regulator used here, calculated at the Hartree-Fock level.

The bands are the contributions of the corresponding 3N parts to the AFDMC ener-

gies for a variation of the NN cutoff R0 = 1.0− 1.2 fm, see also Fig. 6.6.

In Fig. 6.5, for the SR part, the AFDMC energies agree very well with the HF energies so HF is

a very good approximation for its magnitude. For the IR range part, for high coordinate-space

cutoffs, the agreement between HF and AFDMC results is good but worsens for lower cutoffs.

The uncertainty grows and the energies increase by an order of magnitude compared to the

HF result. For the LR parts, the AFDMC energies are about 70− 80% of the HF energies for

high cutoffs, which suggests that for the N2LO 3N forces contributions beyond Hartree-Fock are

important. Lowering the 3N cutoff, the energy increases to a plateau structure and then rapidly

decreases for smaller cutoffs due to a collapse of the system. In addition, also the uncertainty

increases.

These collapses in the LR and IR parts of VC can also be seen in Fig. 6.6. Although they do

not appear in the HF calculation, they are not an artifact of the AFDMC method. The collapses

are due to the function X i j(r), which includes terms ∼ 1/r3. If three particles are in a small

volume then this function diverges, unless it gets regulated with a large enough R3N. These

cutoff values correspond to the position of the plateaus. In the HF formalism we do not see this

collapse because it is encoded in higher-order contributions at higher momenta.

For the soft NN potential, R0 = 1.2 fm, we find the plateau to be at R3N = 1.2 − 1.4 fm. If

the cutoff is lowered, the energy drops fast and for R3N = 0.6 fm we find an attractive 3N

contribution. For the harder NN potential, R0 = 1.0 fm, the plateau is found for smaller 3N

cutoffs, R3N = 1.0 − 1.2 fm. In general, the plateau is reached when R3N ∼ R0.
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Figure 6.6: Variation of the AFDMC energy per particle at saturation density as a function of the

3N cutoff R3N for an NN cutoff 1.0 fm (black lines in the upper part) and 1.2 fm (red

lines in the lower part). The horizontal lines correspond to the NN-only energy. The

squares are for the c1 and LR c3 part of VC , the crosses include also the SR c3 part of

VC , and the circles include all parts of VC .

This can be understood because harder NN potentials do not favor particles to be close and

smaller 3N cutoffs are needed to overcome this repulsion. We find that the collapse happens for

R3N < R0, i.e., when R3N is significantly smaller than R0. If we want to decrease R3N, we also

have to decrease R0, which will lead to a harder core in the NN potential. Thus, R3N has to be

chosen consistently with R0 which justifies the 3N cutoff range we chose: too high cutoffs cannot

be chosen as important physics would be cut away, while too low cutoffs lead to a collapse in

neutron matter. Because the NN cutoff R0 cannot be decreased below 1.0 fm, we also cannot

decrease the 3N cutoff below that limit.

This behavior is qualitatively similar to the overbinding given by the Illinois 3N forces in pure

neutron systems [210]. It would be interesting to see if using a similar cutoff would avoid the

overbinding of neutron matter using Illinois forces.

6.5 Local regulators

In the previous Section we found that local regulators in the 3N sector seem to systematically

lead to less repulsion from 3N forces, already at the Hartree-Fock level. In the following, we

present first explorations of the dependence of the local chiral 3N forces on the local long-range

regulator to gain a better understanding of the energy difference between local vs. nonlocal

forces and possible deficiencies of local regulators. This is necessary for the development of
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Figure 6.7: Left: N2LO 3N contribution VC in momentum space at saturation density obtained

with the nonlocal regulator of Ref. [17] compared to a calculation obtained with the

local regulator of Ref. [176] in the HF approximation in neutron matter as a function

of the 3N cutoff Λ3N. Right: Translation from the local regulator scale R3N to the

momentum space cutoff Λ3N in the momentum space regulator of Ref. [17] for the

LR part of VC for nexp = 2, 4.

improved local regulators. In this Section, we only consider the LR VC contribution in neutron

matter to 1) eliminate the influence of the SR VE contribution and 2) to have a better comparison

with nonlocal chiral 3N forces.

In the left panel of Fig. 6.7 we compare the N2LO 3N contribution VC to neutron matter in

momentum space at saturation density obtained at the HF level with the nonlocal regulator of

Ref. [17] compared to a calculation obtained with the local regulator of Ref. [176] as a function

of the 3N cutoff Λ3N. For a typical cutoff of 2.5 fm−1, for nonlocal regulators the result is ≈ 97%

of the infinite cutoff result, while the local result is around 60 % of the infinite cutoff result.

These results elaborate on the results in Fig. 6.3.

We determined the translation from the coordinate-space cutoff R3N to the momentum-space

cutoff Λ3N in nonlocal regulators by matching the HF contribution of the LR part of VC . We

show this in the right panel of Fig. 6.7 for nexp = 2, 4 in the momentum space regulator of

Ref. [17]. For the usual choice nexp = 4, the cutoff in the local regulator has to be reduced to

values R3N≪ 0.5 fm to reproduce the momentum space results.

In momentum space, we can try to understand this behavior at the HF level from the following

discussion [254]. Consider NN interactions, where the momentum transfer q is given as p− p′.
As we use anti-symmetric wave functions, we have two terms for the Hartree-Fock energy: a

direct and an exchange term. For the direct term, p = p′ and we find a vanishing momentum

transfer q. Local regulators of the form exp[−(q/Λ)2n] evaluate to 1 for the direct term. For the

exchange term, p = −p′ and we find q = 2p. Thus, for local regulators, the direct term to the
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Figure 6.8: The 3N contact interaction VE in pure neutron matter at saturation density on the

Hartree-Fock level as a function of the 3N cutoff R3N. The function approaches a

constant value for R3N→∞.

HF energy is unregulated while the exchange term is regulated with a momentum transfer of

2p. For n= 2, we find for the regulator in the exchange term exp[−16p4/Λ4].

For nonlocal regulators instead one usually regularizes with regulators of the form exp[−(p/Λ)2n]

and exp[−(p′/Λ)2n]. Both for the direct as well as the exchange term, this leads to

exp[−(p/Λ)2n]2, and for n= 2, we find exp[−2p4/Λ4].

From this we can conclude two differences for local vs. nonlocal regulators: first, local regu-

lators affect direct and exchange term differently, while nonlocal regulators affect both terms

similarly. Second, in the exchange terms, for a certain cutoff, local regulators cut away more

contributions compared to nonlocal regulators. This can be understood from the above exam-

ple by the fact, that in the exchange term the regulator is exp[−2p4/Λ4] vs. exp[−16p4/Λ4]

for nonlocal vs. local regulators, meaning, that for the same Λ, in the local case the cutoff is

effectively smaller.

We want to illustrate these effects using two examples. In the Hartree-Fock approximation,

for spin-dependent interactions, the direct term vanishes, because we sum over all possible

spin states which effectively equals tracing over Pauli matrices. Thus, only the exchange terms

survive. As they are regulated locally at a certain cutoff, the result will be smaller than for a

nonlocal regulator with the same cutoff, see the previous discussion and Fig. 6.7. Thus, local

regulators do not only regularize UV divergencies, but also cut away more IR physics compared

to nonlocal regulators.

For spin-independent interactions, like VE, the direct term contributes to the Hartree-Fock en-

ergy. For nonlocal regulators, direct and exchange terms are regulated in the same way. Because
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Figure 6.9: Dependence of the AFDMC energy per particle at saturation density as a function

of the 3N cutoff R3N on different long-range regulators. Results are shown for an

NN cutoff R0 = 1.2 fm. The long-range regulator is given by
�

1− e−(r/R3N)
n1�n2 with

different parameters n1 and n2.

in the case of VE the interaction is momentum-independent, all terms add up to 0. For the local

VE of this work

VE(qi,q j) =
cE

2 f 4
πΛχ

∫
dri je

iqi ·ri jδ(ri j)

∫
drk je

iqk·rk jδ(rk j) , (6.54)

with normalized smeared-out δ functions, qi = 0 for the direct term, leading to a constant

independent of cutoff and momenta, while the exchange terms are cutoff dependent. When

lowering the coordinate-space cutoff R3N → 0 all terms vanish, but when increasing the cutoff

in coordinate space, the direct term is constant while the exchange terms vanish. VE, thus, adds

a sizeable contribution to neutron matter for high R3N and already in the cutoff range of this

work, see Fig. 6.8.

We investigated different forms for the local long-range regulators when choosing different

parameters in the long-range regulator function. In Fig. 6.9 we show the dependence of the

AFDMC energy per particle for VC at saturation density as a function of the 3N cutoff R3N on

different long-range regulators. Results are shown for an NN cutoff R0 = 1.2 fm. The long-

range regulator is given by
�

1− e−(r/R3N)
n1
�n2

with different parameters n1 and n2. We find

that the general picture is independent of the choice of the exponents in the regulator function.

A consistent change of the short-range regulator has only a negligible effect on the energy.

For different functions, the position of the plateau varies between 0.8− 1.2 fm but the overall

energies at the plateau are comparable, ranging between 12.3− 12.5 MeV.
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Figure 6.10: Dependence of the energy per particle of the LR VC part ∼ c3 at saturation density

as a function of the 3N cutoff R3N on different long-range regulators. We show the

HF as well as the AFDMC result for the original regulator of this work (R0 = 1.2 fm)

in comparison to a regulator of the form
�

1− e−(ri j ·rk j/R
2
3N)
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(Dot product) and a

regulator of the form
�

1− e
−(r2

i j
+r2

k j
−r2

ik
)4/R3N)
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(Hyperradius) (both for R0 = 1.0−

1.2 fm).

We furthermore investigated local regulators on the scalar product of the two radial vectors

involved,
�

1 − e−(ri j ·rk j/R
2
3N
)4
�

, and a regulator on the ”hyperradius” r2
i j
+ r2

k j
− r2

ik
, given by

�
1− e

−(r2
i j
+r2

k j
−r2

ik
)4/R3N)

8�
and show the energy per particle of the 3N VC contribution ∼ c3 at

saturation density as a function of the 3N cutoff R3N for these regulators in Fig 6.10. Depicted

are the HF results as well as the results obtained in the AFDMC method, where the bands are

defined as before. As a comparison, we show the HF and the AFDMC result for R0 = 1.2 fm for

the original regulator of this work.

The particular definition of the ”hyperradius” regulator is obtained by ensuring that the 3N

contribution is suppressed if one radial vector vanishes. We find that the results vary strongly

for the different regulator functions. Using the scalar product or the hyperradius in the regulator

leads to HF results closer to the infinite cutoff limit for the cutoff range of this work. Especially

the hyperradius regulator leads to 86% of the infinite cutoff result at R3N = 1.0 fm.

Furthermore, these two regulators lead to ≈ 1.0− 1.2 MeV more repulsion from the LR VC part

in an AFDMC calculation within the regulator range of this work. This is highlighted also in

Fig. 6.11, where we show the variation of the AFDMC energy per particle for the c1 and LR c3

part of VC at saturation density as a function of the 3N cutoff R3N for an NN cutoff 1.0 fm (black

lines in the upper part) and 1.2 fm (red lines in the lower part) for the original regulator of this
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Figure 6.11: Variation of the AFDMC energy per particle for the c1 and LR c3 part of VC at satu-

ration density as a function of the 3N cutoff R3N for an NN cutoff 1.0 fm (black lines

in the upper part) and 1.2 fm (red lines in the lower part) for the original regulator

of this work (squares) and the scalar product regulator (circles). The horizontal lines

correspond to the NN-only energy.

work (squares) and the scalar product regulator (circles). The final energy range at saturation

density changes from 12.3−15.6 MeV for the original regulator of this work to 13.8−16.7 MeV

for the scalar-product regulator.

Both the scalar product as well as the hyperradius regulator also lead to a collapse in neutron

matter and we find plateaus similar as before also for these regulators. Although the energies

obtained on the plateau are comparable for both regulators, the position of the plateau varies

from 0.8− 1.0 fm for the scalar product regulator to 1.2− 1.4 fm for the hyperradius regulator.

Local vs. nonlocal regulators have to be further investigated to better understand the sources

of the differences discussed above. In addition, it is necessary to find a possibility of assessing

the quality of local regulators to be able to rule out certain forms of local regulators and design

improved local regulators which do not suffer from the problems discussed above. Work in these

directions is in progress.

116 6 Chiral three-body forces for Quantum Monte Carlo calculations



7 Results at N2LO with local chiral NN and
3N interactions

In this Chapter we present our results for the equation of state of neutron matter and for neutron

drops based on local chiral NN and 3N interactions. We will include all terms of VC and adopt

the ci values of Refs. [213, 219]. Results including the shorter-range contributions VD and VE

will be studied in future [253]. Finally, we will also present results including the shorter-range

contributions VD and VE for light nuclei with all N2LO 3N contributions.

7.1 Equation of state of neutron matter using AFDMC

In Fig. 7.1 we present the final result of our AFDMC simulations for the equation of state in

neutron matter. We show the energy per particle as a function of density including NN and the

3N VC interactions for a variation of the two-body cutoff R0 = 1.0−1.2 fm and a variation of the

three-body cutoff R3N in the same range. For the softer NN potential with R0 = 1.2 fm (lower

lines) we find the energy per particle to be 12.3− 12.5 MeV at saturation density. The NN-only
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Figure 7.1: Energy per particle as a function of density for pure neutron matter at N2LO, in-

cluding NN forces and the 3N VC interaction in AFDMC. We vary the NN cutoff

R0 = 1.0− 1.2 fm and the 3N cutoff R3N in the same range.
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Figure 7.2: Comparison of the neutron matter energy at N2LO based on the local chiral NN+3N

potentials in AFDMC (this work) with the N2LO calculation of Ref. [57] based on the

EGM N2LO potentials and using many-body perturbation theory (MBPT), with the

particle-particle (pp) ladder results of Ref. [255] based on the EM N2LO potential,

andwith results based on the N2LOopt potential using self-consistent Green’s function

(SCGF) methods [194] and using coupled-cluster (CC) theory [192].

energy is 11.4 MeV and the 3N VC has an impact of ≈ 1 MeV. For the harder NN potential

with R0 = 1.0 fm (upper lines) we find an energy per particle of 15.5− 15.6 MeV compared to

14.1 MeV for an NN-only calculation. Here, the impact of the 3N VC is ≈ 1.5 MeV. Our total

N2LO band is 12.3− 15.6 MeV at n= 0.16 fm−3.

The variation of the total energy with the 3N cutoff is ∼ 0.2 MeV in our cutoff range and consid-

erably smaller than the variation with the NN cutoff because R3N lies on the plateau described

in Section 6.4.

We find the magnitude of the local 3N two-pion-exchange VC forces to be at most about 1.5 MeV

at saturation density which is is smaller than a typical contribution of 4 MeV [54] in momentum

space with non-local regulators, including 2nd and 3rd order corrections. As we have shown

before, this difference can already be seen on the HF level and is most likely due to using

these local regulators. A similar behavior was also seen in the coupled-cluster calculations of

Ref. [192] where a difference of 2 MeV was found for the neutron matter energy per particle

when choosing local vs. non-local regulators with a similar cutoff value of 500 MeV. For a local

regulator on the scalar product of the radial vectors, the situation improves by ≈ 1 MeV, but

these findings show clearly that local vs. nonlocal regulators need to be further investigated.

In Fig. 7.2 we compare the neutron matter energy at N2LO based on the local chiral NN+3N

potentials in AFDMC with the N2LO calculation of Ref. [57] based on the EGM N2LO potentials
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of Ref. [59] and using many-body perturbation theory, with the particle-particle (pp) ladder

results of Ref. [255] based on the EM N2LO potential of Ref. [232], and with results based on

the N2LOopt potential of Ref. [239] using self-consistent Green’s function (SCGF) methods [194]

and using coupled-cluster (CC) theory [192]. At saturation density, the AFDMC energies are in

general smaller than the other results, mainly due to the smaller contribution of the 3N forces

for the local chiral potential. Furthermore, the density dependence of the AFDMC band is flatter

than for the other calculations, which may be explained by differences in the NN phase shift

predictions and which has also been seen on the NN level. We would expect the results to come

closer when including chiral forces at N3LO. A comparison of AFDMC with MBPT results using

the same local potential to benchmark MBPT with NN and 3N interactions, as in Sec. 5.2, is

work in progress.

7.2 Variation of the ci couplings

In the previous Section we found for the neutron matter equation of state at n = 0.16 fm−3 an

energy range of 12.3−15.6 MeV. In our calculation of Ref. [17] using MBPT we found an energy

range of 14.9− 20.5 MeV, which is approximately two times as broad. In the MBPT calculation

there are three major sources of uncertainty: the many-body method, the cutoff variation and

the uncertainty of the ci. It is difficult to clearly separate the sources of uncertainty but at

saturation density ≈ 1− 2 MeV of the uncertainty stems from a variation of the couplings ci in

the two-pion exchange VC , while a large part, ≈ 3− 4 MeV, stems from the cutoff variation and

≈ 1 MeV from the many-body method.

In the AFDMC calculation, we so far only include the uncertainty of the many-body method and

the cutoff variation. The first is usually smaller than the points we plot and, thus negligible,

while the latter accounts for all our uncertainty. This cutoff uncertainty is similar to the one

in the MBPT calculation but we want to stress that the two cutoff ranges are not comparable.

While in the AFDMC calculation the cutoff R0 = 1.0 − 1.2 fm (400 − 500 MeV) and the SFR

cutoff has almost no effect, in momentum space we can only choose the perturbative low-cutoff

EGM potentials with Λ3N = 450 MeV and the uncertainty originates in the SFR cutoff variation

500− 700 MeV.

We now study the uncertainty in the couplings ci for AFDMC and choose the range defined in

Ref. [17] with c1 = −(0.37− 0.81)GeV−1 and c3 = −(2.71− 3.4)GeV−1. To be consistent with

the NN sector it would be necessary to vary the ci simultaneously in the NN two-pion exchange

as well as in the 3N sector. We will only vary the ci in the latter as in Ref. [17].

We calculated the ci dependence for different combinations of the cutoffs R0 and R3N at satura-

tion density and give the results in Tab. 7.2. While in the MBPT calculation we found a sizeable

dependence of the result on the couplings ci of ≈ 1 MeV, in AFDMC the ci dependence is at

most of the order of 0.3 MeV at saturation density and, thus, negligible compared to the cutoff

variation.

This difference can be understood by the fact that local vs. nonlocal regulators lead to energies

which are smaller by approximately a factor of two, which also decreases the variation with the

ci couplings.

Furthermore in MBPT, the energies were calculated at third order in perturbation theory and

the inclusion of higher orders could also decrease the energy change in the ci variation. To

investigate this further, it would be interesting to study the perturbativeness of local chiral
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Table 7.1: Variation of the neutron matter energy per particle at saturation density for different

NN and 3N cutoffs and different values for the couplings ci. All couplings are given in

GeV−1 and all energies are given in MeV.

R3N = 1.0 fm R3N = 1.2 fm

c3/c1 -0.37 -0.81 c3/c1 -0.37 -0.81

R0 = 1.0 fm -2.71 15.31 15.43 -2.71 15.31 15.42

-3.40 15.42 15.54 -3.40 15.51 15.61

c3/c1 -0.37 -0.81 c3/c1 -0.37 -0.81

R0 = 1.2 fm -2.71 12.22 12.32 -2.71 12.30 12.39

-3.40 12.24 12.33 -3.40 12.41 12.48

Hamiltonians with NN and 3N forces, similar to Sec. 5.2, for different cutoff combinations and

ci.

7.3 Light nuclei
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Figure 7.3: Ground-state energies and point-proton radii of light nuclei with A = 3,4 calculated

with the local chiral NN and 3N interactions in GFMC compared with experiment

from Ref. [253].

In Ref. [253] the local chiral NN and 3N interactions presented in this work have been used to

calculate the ground-state energies and point-proton radii of 3H, 3He, and 4He. The results are

presented in Fig. 7.3.

After inclusion of consistent 3N forces, both the experimental ground-state energies and radii

are well reproduced. The underbinding in the A= 3 system is ≈ 1% and the agreement for the
4He binding energy is perfect because the 3N forces were fitted to this data point. The radius of
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3He is well described For 3H and 4He the radii are somewhat too small but still agree with the

experimental result within the larger statistical error of the GFMC results.

7.4 Neutron drops
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Figure 7.4: Neutron-drop energies and radii for neutron numbers of N = 8 or 20 in a harmonic

oscillator well with oscillator parameter ħhω = 10 MeV using AFDMC. We used the

same cutoff in the two- and three-nucleon sector, R0 = R3N. We give the results at

different orders in the chiral expansion and, at N2LO, for NN forces only, including

only the LR c1 and c3 parts of VC , and including also the SR and IR parts of VC . The

band is given by a cutoff variation of R0 = R3N = 1.0 − 1.2 fm. At LO with the

softer cutoff and 20 neutrons, the system is collapsing. We compare our results with

the calculations of Ref. [256], which use coupled-cluster theory at the ΛCCSD level,

where the band is given by two different SRG evolution scales (for a fixed initial

Hamiltonian).

Neutron drops in external potentials are an interesting system to constrain the properties of

neutron-rich nuclei and energy-density functionals.

We have calculated neutron drops for neutron numbers of 8, 20, 40, and 70 in a harmonic

oscillator well with with oscillator parameter ħhω = 10 MeV. For these calculations we used

the same cutoff in the two- and three-nucleon sector, R0 = R3N, with a cutoff variation of

R0 = R3N = 1.0 − 1.2 fm. The results for the energy and the radius of the neutron drops

are tabulated in Tab. 7.2 and shown in Fig. 7.4. We give the results at different orders in the

chiral expansion and, at N2LO, for NN forces only, including only the LR c1 and c3 parts of VC ,

and including also the SR and IR parts of VC .

In systems with larger neutron numbers, the relative band of our calculations increases, at the

level of N2LO+VC it is 1% for N = 8, 2% at N = 20, 5% a N = 40, and 7% at N = 70.

Furthermore, for larger systems and at low chiral orders, our calculations do not converge and

collapses occur, due to the higher densities inside the larger neutron drops.
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We have compared our results at N2LO with the calculations of Ref. [256], which use coupled-

cluster theory at the ΛCCSD level, an SRG-evolved chiral Hamiltonian with the N3LO potential

by Entem and Machleidt of Ref. [60] with a cutoff of 500 MeV, and N2LO 3N forces with the

same cutoff, including also the VD and VE parts. The band is given by two different SRG evolution

scales for a fixed initial Hamiltonian. We find very good agreement between the two approaches

after inclusion of N2LO 3N forces whose contribution is small.
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Table 7.2: Neutron-drop energies and radii for neutron numbers of 8, 20, 40, and 70 in a har-

monic oscillator well with oscillator parameter ħhω = 10 MeV. We used the same cutoff

in the two- and three-nucleon sector, R0 = R3N. We give the results at different or-

ders in the chiral expansion and, at N2LO, for NN forces only, including only the LR

c1 and c3 parts of VC , and including also the SR and IR parts of VC . In systems with

larger neutron numbers, collapses occur at low chiral-orders and the energies cannot

be calculated.

#N Hamiltonian E rms-radius

8 LO(1.0) 132.95(2) 2.571(1)

8 NLO(1.0) 133.07(3) 2.633(1)

8 N2LO(1.0) NN-only 134.53(2) 2.656(1)

8 N2LO(1.0)+VC ,LR 135.31(2) 2.673(1)

8 N2LO(1.0)+VC 135.34(1) 2.677(1)

8 LO(1.2) 123.08(5) 2.365(1)

8 NLO(1.2) 132.82(2) 2.607(1)

8 N2LO(1.2) NN-only 133.53(1) 2.616(1)

8 N2LO(1.2)+VC ,LR 134.40(1) 2.638(1)

8 N2LO(1.2)+VC 134.45(1) 2.637(1)

20 LO(1.0) 432.29(7) 2.966(1)

20 NLO(1.0) 427.90(9) 3.062(1)

20 N2LO(1.0) NN-only 434.04(8) 3.089(1)

20 N2LO(1.0)+VC ,LR 440.04(14) 3.137(1)

20 N2LO(1.0)+VC 439.90(7) 3.138(2)

20 NLO(1.2) 420.92(4) 2.987(1)

20 N2LO(1.2) NN-only 423.38(3) 2.989(1)

20 N2LO(1.2)+VC ,LR 430.45(6) 3.041(1)

20 N2LO(1.2)+VC 430.05(5) 3.036(1)

40 NLO(1.0) 1053.10(36) 3.459(1)

40 N2LO(1.0) NN-only 1068.31(13) 3.481(1)

40 N2LO(1.0)+VC ,LR 1091.97(23) 3.557(1)

40 N2LO(1.0)+VC 1090.28(14) 3.556(1)

40 NLO(1.2) 1015.09(15) 3.318(1)

40 N2LO(1.2) NN-only 1015.35(17) 3.293(1)

40 N2LO(1.2)+VC ,LR 1045.77(12) 3.385(1)

40 N2LO(1.2)+VC 1042.31(16) 3.377(1)

70 N2LO(1.0) NN-only 2230.26(26) 3.877(1)

70 N2LO(1.0)+VC ,LR 2296.42(64) 3.987(1)

70 N2LO(1.0)+VC 2290.60(25) 3.991(1)

70 N2LO(1.2) NN-only 2062.93(59) 3.593(1)

70 N2LO(1.2)+VC ,LR 2155.56(48) 3.730(2)

70 N2LO(1.2)+VC 2139.78(54) 3.711(2)
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8 Summary and outlook
In this Thesis we have presented QMC calculations with local chiral EFT interactions. We fol-

lowed Ref. [78] to construct improved local chiral NN potentials by using a freedom in chiral

EFT to remove all sources of nonlocality to N2LO. We have constructed new local LO, NLO,

and N2LO NN interactions with improved fits for the low-energy couplings, which show a very

good reproduction of the NN phase shifts as well as of deuteron properties compared to the

momentum-space N2LO NN potentials of Ref. [59].

We then applied these local chiral NN interactions in AFDMC calculations of neutron matter.

The results show a systematic order-by-order convergence. We have investigated the sensitivity

of the results to the local regulator and to the SFR cutoff, to the influence of the Jastrow term,

and also to finite size effects in AFDMC.

We studied the same potentials in MBPT calculations of neutron matter. Comparing MBPT

and AFDMC results, we found excellent agreement of the results for the softer R0 = 1.1 fm

and R0 = 1.2 fm potentials within the two many-body frameworks, which represents a direct

validation of MBPT for neutron matter for soft interactions. These nonperturbative benchmarks

for the neutron-matter equation of state at nuclear densities are one of the main conclusions of

this Thesis.

Since for densities higher than 0.5n0 3N forces become important, we presented the derivation

of consistent local chiral 3N interactions at N2LO and included these forces into the QMC calcu-

lations. We investigated the individual contributions to neutron matter both at the Hartree-Fock

level as well as in AFDMC and found that local regulators for 3N interactions lead to less repul-

sion from the 3N two-pion-exchange contribution, already at the Hartree-Fock level. We have

investigated the influence of the cutoff on the results and found that the energy change for a

cutoff variation R3N = 1.0− 1.2 fm is very small compared to the NN cutoff variation.

We further found that the shorter-range contributions VD and VE can add sizeable contributions

to neutron matter if local regulators are used.

We found that other forms of local regulators can lead to large differences in the result, leading

to the conclusion, that local vs. nonlocal regulators have to be studied in more detail. It will be

crucial to develop a method of assessing the quality of local regulators to find improved versions

for these regulators.

We then presented the neutron-matter equation of state for local chiral NN and 3N interactions

which is another major result of this Thesis. This calculation is consistent with previous de-

terminations of the neutron-matter equation of state and has smaller theoretical uncertainties

compared to previous determinations. However, we find smaller energies due to less repulsion

from 3N interactions. We also simulated neutron drops and light nuclei with these local chiral

Hamiltonians.

Future work will include further studies of local regulators to construct improved local 3N in-

teractions. With improved regulators, AFDMC calculations with local N2LO NN+3N forces will

provide nonperturbative benchmarks for nuclei, and nuclear matter. This will allow to study

the perturbativeness of local chiral Hamiltonians with NN and 3N interactions and presents ab

initio constraints for nuclear density functionals and for dense matter in astrophysics.
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Furthermore, we plan to develop maximally-local chiral N3LO Hamiltonians to improve the

theoretical uncertainty of our results. Because only eight out of the 15 new contact operators

are local, we have to find a suitable set of seven nonlocal operators which can be treated per-

turbatively. In addition, the long-range pion exchange interactions at N3LO include nonlocal

relativistic corrections, which also have to be treated perturbatively.

With these maximally local chiral N3LO potentials we will carry out precision studies of neutron

and nuclear matter and of nuclei which can be expected to reduce the theoretical uncertainties,

e.g., in the equation of state of pure neutron matter and the neutron-star mass-radius relation,

by a factor of two compared to the determination in Ref. [17]. Additional astrophysics con-

straints, e.g., from future observations of heavier neutron stars or by the NICER mission, will

help to constrain the equation of state even further. These calculations will serve as precise non-

perturbative benchmarks for astrophysics. For instance, model equations of state for supernova

simulations can be benchmarked and waveforms with an uncertainty band for the gravitational

wave signal can be obtained.

Because the couplings in chiral EFT are fit to experiment, chiral EFT so far is not able to make

predictions from first principles. By direct matching to lattice QCD results, for example for few-

neutron systems in a box, and also varying the pion mass in chiral EFT, the approach presented

here will be able to connect nuclear physics to the underlying theory of QCD. By determining

the couplings in lattice QCD, chiral EFT predictions from first principles will be made available.

The approach outlined in this Thesis will also help to study in detail the influence of the ∆

isobar as an additional degree of freedom in chiral EFT. Due to the precision of continuum QMC

methods, we can examine the perturbativeness of different chiral orders and investigate the

order-by-order convergence in ∆-less and ∆-full chiral EFT. This will allow us to compare the

convergence of chiral EFT in these two approaches, leading to insights into the employed power

counting scheme.
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A Fourier transformation of contact
interactions

In the following we give the Fourier transformation of the contact contributions. The LO contacts

are momentum independent and their Fourier transformation is given by
∫

d3q

(2π)3
V LO

cont flocal(q
2)eiq·r = V LO

cont

∫
d3q

(2π)3
flocal(q

2)eiq·r = V LO
contδR0

(r) , (A.1)

where flocal(q
2) is a local momentum space regulator.

The first four NLO contact interactions are proportional to q2 and contain spin and isospin

operators which are not dotted into momentum operators. Writing the q2 dependence explicitly,

the Fourier transformation is given by
∫

d3q

(2π)3
V NLO

cont q2 flocal(q
2)eiq·r = −V NLO

cont ∆

∫
d3q

(2π)3
flocal(q

2)eiq·r = −V NLO
cont ∆δR0

(r) . (A.2)

To Fourier transform the spin-orbit interaction we employ the test function ψ:

〈 r | bOLS

��ψ
�

(A.3)

=

∫
d3p

(2π)3
d3p′

(2π)3
d3r ′



r|p′
�


p′
�� bOLS

��p
�


p|r′
�


r′|ψ
�

=

∫
d3p

(2π)3
d3p′

(2π)3
d3r ′eip′·re−ip·r′ 
p′

�� bOLS

��p
�
ψ(r′)

=
C5

2

∫
d3q

(2π)3
d3k

(2π)3
d3r ′i(σ1+σ2) · (q× k)ei

q
2
·(r+r′)eik·(r−r′)ψ(r′)flocal(q

2)

=
C5

2

∫
d3q

(2π)3
d3k

(2π)3
d3r ′iεαβγ(σ1+σ2)αqβ ei

q
2
·(r+r′)(i∂ ′γeik·(r−r′))ψ(r′) flocal(q

2)

= −
C5

2

∫
d3q

(2π)3
d3k

(2π)3
d3r ′iεαβγ(σ1+σ2)αqβ(i∂

′
γei

q
2
·r′ψ(r′))eik·(r−r′) flocal(q

2)ei
q
2
·r

=
C5

4

∫
d3q

(2π)3
iεαβγ(σ1+σ2)αqβqγψ(r) flocal(q

2)eiq·r

−
C5

2

∫
d3q

(2π)3
iεαβγ(σ1+σ2)αqβ(i∂γψ(r)) flocal(q

2)eiq·r

= −
C5

2
εαβγ(σ1+σ2)α∂β

�∫
d3q

(2π)3
flocal(q

2)eiq·r
�
(i∂γψ(r))

= −
C5

2

∂rδR0

r
εαβγ(σ1+σ2)αrβ(i∂γψ(r))

= −
C5

2

∂rδR0

r
S · ir×∇ψ(r) =

C5

2

∂rδR0

r
L · Sψ(r) .
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Here we used partial integration and the antisymmetry of εαβγ in line 5 and 6, respectively, and

L= −ir×∇ in the last line.

The Fourier transformation of the tensorial contact operators is given by

∫
d3q

(2π)3
V tens

cont flocal(q
2)σ1 · qσ2 · q eiq·r (A.4)

= −V tens
contσ

i
1
σ

j

2∂
i∂ j

∫
d3q

(2π)3
flocal(q

2) eiq·r

= −V tens
contσ

i
1
σ

j

2∂
i∂ jδR0

(r)

= −V tens
contσ

i
1
σ

j

2∂
i

�
x j

r
∂rδR0

(r)

�

= V tens
cont

�
σ1 · r̂σ2 · r̂

�
∂rδR0

(r)

r
− ∂ 2

r
δR0
(r)

�
−σ1 ·σ2

∂rδR0
(r)

r

�
.
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B Partial-wave-decomposed contact
interactions

In Refs. [213, 219], we fit the LECs CS, CT , and C1−7 to NN phase shifts. In every partial wave

only certain LECs contribute. In the following we give the partial wave decomposition for all

relevant channels. We use spectroscopic LECs given in terms of CS, CT , and C1−7 as follows:

d11 = CS + CT ,

d22 = CS − 3CT ,

d1 = C1− 3C2+ C3− 3C4 ,

d2 = C6− 3C7 ,

d3 = C1+ C2− 3C3− 3C4 ,

d4 = C1+ C2+ C3+ C4 ,

d5 = C1− 3C2− 3C3+ 9C4 ,

d6 =
1

2
C5 ,

d7 = C6+ C7 .

For the partial-wave-decomposed matrix elements we find

¬
1S0

��Vcont

�� 1S0

¶
= d22δR0

+ (d3− d7)20
r2

R4
0

δR0
− (d3− d7)16

r6

R8
0

δR0
, (B.1)

¬
3S1

��Vcont

�� 3S1

¶
= d11δR0

+ (d1+
1

3
d2)20

r2

R4
0

δR0
− (d1+

1

3
d2)16

r6

R8
0

δR0
, (B.2)

¬
3S1

��Vcont

�� 3D1

¶
=
¬

3D1

��Vcont

�� 3S1

¶
(B.3)

= d2

p
8

3
8

r2

R4
0

δR0
− d2

p
8

3
16

r6

R8
0

δR0
,

¬
3D1

��Vcont

�� 3D1

¶
= d11δR0

− (d1−
1

3
d2)16

r6

R8
0

δR0
+ (d1+

3

5
d6+

1

15
d2)20

r2

R4
0

δR0
, (B.4)

¬
1P1

��Vcont

�� 1P1

¶
= d22δR0

+ (d5− d2)20
r2

R4
0

δR0
− (d5− d2)16

r6

R8
0

δR0
, (B.5)

¬
3P0

��Vcont

�� 3P0

¶
= d11δR0

− (d4− d7)16
r6

R8
0

δR0
+ (d4+

2

5
d6−

1

5
d7)20

r2

R4
0

δR0
, (B.6)

¬
3P1

��Vcont

�� 3P1

¶
= d11δR0

− (d4+ d7)16
r6

R8
0

δR0
+ (d4+

1

5
d6+

3

5
d7)20

r2

R4
0

δR0
, (B.7)
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¬
3P2

��Vcont

�� 3P2

¶
= d11δR0

− (d4+
1

5
d7)16

r6

R8
0

δR0
+ (d4−

1

5
d6+

7

25
d7)20

r2

R4
0

δR0
, (B.8)

¬
3P2

��Vcont

�� 3F2

¶
=
¬

3F2

��Vcont

�� 3P2

¶
(B.9)

= d7

p
6

16

5

r2

R4
0

δR0
− d7

p
6

32

5

r6

R8
0

δR0
,

¬
3F2

��Vcont

�� 3F2

¶
= d11δR0

− (d4−
1

5
d7)16

r6

R8
0

δR0
+ (d4+

4

5
d6+

3

25
d7)20

r2

R4
0

δR0
. (B.10)
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C Two-body matrix elements for MBPT
calculations in pure neutron matter

We want to calculate the energy per particle E/N perturbatively in pure neutron matter, using

the local coordinate space NN potential. In neutron matter, the antisymmetrized potential is

given by

Vas = (1−P12)V = V −P12V . (C.1)

The antisymmetrizer in neutron matter only has momentum and spin parts P12 = Pmom
12

P
spin
12 =

Pmom
12

1+σ1·σ2

2
.

We only consider the spin part and find

1+σ1 ·σ2

2
V (r) =

1+σ1 ·σ2

2

�
VC(r) +σ1 ·σ2VS(r) + L · S VLS(r) + S12(r)VT (r)

�
(C.2)

=
1

2

�
VC(r) +σ1 ·σ2VS(r) + L · SVLS(r) + S12(r)VT (r)

+ σ1 ·σ2VC(r) + (3− 2σ1 ·σ2)VS(r) + L · SVLS(r) + S12(r)VT (r)
�

,

because σ1 ·σ2 L · S= L · S and σ1 ·σ2 S12(r)VT (r) = S12(r)VT (r).

Since σ1 ·σ2→−3, 1 for S = 0 and S = 1, respectively, we find

1+σ1 ·σ2

2
V (r) = (−1)S+1V (r) =

(
−V (r) if S = 0

V (r) if S = 1
, (C.3)

and

Vas = V −P12V = V −P
mom
12

1+σ1 ·σ2

2
V = V −P

mom
12

V (−1)S+1 . (C.4)

We need to calculate the matrix element



k′SmS′
��Vas

��kSmS

�
and make use the plane wave

expansion and the spherical harmonic addition theorem

〈 r | k 〉= eik·r =
∑

l

i l(2l + 1) jl(kr)Pl(k̂ · r̂) (C.5)

=
∑

l

i l(2l + 1) jl(kr)
4π

(2l + 1)

∑

ml

Y ∗
lml
(Ωk)Ylml

(Ωr)

= 4π
∑

l,ml

i l jl(kr)Y ∗
lml
(Ωk)Ylml

(Ωr) .
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The momentum exchange operator Pmom
12

acts on the momenta and leads to Pmom
12

k =

Pmom
12
(k1− k2) = k2− k1 = −k. For the matrix element we then find



k′SmS′

��Pmom
12

V
��kSmS

�
=


−k′SmS′

��V
��kSmS

�
(C.6)

=

∫
d3r



SmS′
�� 〈−k’ | r 〉V (r) 〈 r | k 〉

��SmS

�

=

∫
d3r



SmS′
�� (4π)

∑

l,ml

i−l jl(k
′r)Ylml

(Ω−k)Y
∗
lml
(Ωr)V (r) 〈 r | k 〉

��SmS

�

=

∫
d3r



SmS′
�� (4π)

∑

l,ml

i−l jl(k
′r)(−1)l Ylml

(Ωk)Y
∗
lml
(Ωr)V (r) 〈 r | k 〉

��SmS

�

= (−1)l



k′SmS′
��V
��kSmS

�
.

This leads to Vas = V−(−1)L+S+1V = 2V for antisymmetric states in pure neutron matter (T=1).

We then find for the matrix element



k′SmS′

��Vas

��kSmS

�
=



SmS′
�� 〈k’ |Vas |k 〉

��SmS

�
(C.7)

=

∫
d3r



SmS′
�� 〈k’ | r 〉Vas(r) 〈 r | k 〉

��SmS

�

= 2

∫
d3r



SmS′
�� (4π)2

∑

l′,m
l′

i−l′ jl′(k
′r)Yl′m

l′
(Ωk’)Y

∗
l′m

l′
(Ωr)V (r)

∑

l,ml

i l jl(kr)Y ∗
lml
(Ωk)Ylml

(Ωr)
��SmS

�

= 2
∑

lml l
′m

l′

(4π)2i l−l′Yl′m
l′
(Ωk’)Y

∗
lml
(Ωk)

∫
d3r



SmS′
�� jl′(k

′r) jl(kr)Y ∗
l′m

l′
(Ωr)V (r)Ylml

(Ωr)
��SmS

�

= 2
∑

lml l
′m

l′

(4π)2i l−l′Yl′m
l′
(Ωk’)Y

∗
lml
(Ωk)

∫
d3r



SmS′
�� jl′(k

′r) jl(kr)



l ′ml′
�� θφ

�
V (r)



θφ
�� lml

� ��SmS

�

= 2
∑

lml l
′m

l′

(4π)2i l−l′Yl′m
l′
(Ωk’)Y

∗
lml
(Ωk)

∫
d3r jl′(k

′r) jl(kr)



l ′ml′SmS′
�� θφ

�

×



∑

J ′m
J′

�� (l ′S)J ′mJ ′
�

(l ′S)J ′mJ ′

��

V (r)



∑

JmJ

�� (lS)JmJ

�

(lS)JmJ

��


θφ

�� lmlSmS

�

= 2
∑

lml l
′m

l′

∑

JmJ J ′m
J′

(4π)2i l−l′Yl′m
l′
(Ωk’)Y

∗
lml
(Ωk)

∫
d3r jl′(k

′r) jl(kr)



l ′ml′SmS′
�� (l ′S)J ′mJ ′

� ��θφ
�

× VSll′J(r)δJJ ′δmJ m
J′


θφ
�� 
 (lS)JmJ

�� lmlSmS

�
,

because the chiral interaction at N2LO does not change total angular momentum or its projec-

tion.
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We finally get



k′SmS′

��Vas

��kSmS

�
(C.8)

= 2
∑

lml l
′m

l′

∑

JmJ

(4π)2i l−l′Yl′m
l′
(Ωk’)Y

∗
lml
(Ωk)

∫
d3r jl′(k

′r) jl(kr)



l ′ml′SmS′
�� (l ′S)JmJ

� ��θφ
�

θφ
��

× VSll′J(r)


(lS)JmJ

�� lmlSmS

�

= 2
∑

lml l
′m

l′

∑

JmJ

(4π)2i l−l′Yl′m
l′
(Ωk’)Y

∗
lml
(Ωk)

∫
drr2 jl′(k

′r) jl(kr)VSll′J(r)C
JmJ

l′m
l′Sm

S′
C

JmJ

lmlSmS

= 2
∑

lml l
′m

l′

∑

JmJ

(4π)2i l−l′Yl′m
l′
(Ωk’)Y

∗
lml
(Ωk)V0(k, k′, S, l, l ′, J)C

JmJ

l′m
l′Sm

S′
C

JmJ

lmlSmS
,

where V0(k, k′, S, l, l ′, J) encodes the potential in a certain partial wave channel with incom-

ing and outgoing momenta k and k’ and VSll′J(r) is the partial-wave decomposed potential in

coordinate space.
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D Fourier transformation of chiral
momentum-space 3N forces

In the following, we show how to do the Fourier transformation of the chiral 3N forces which

are naturally formulated in momentum space, see Sec. 2.2.5. We use some general functions in

coordinate space:

Y (r) =
exp(−mπ · r)

r
, (D.1)

U(r) = 1+
1

mπr
, (D.2)

T (r) = 1+
3

mπr
+

3

(mπr)2
, (D.3)

Si j(r) = 3σi · r̂σ j · r̂−σi ·σ j , (D.4)

X i j(r) =
�

Si j(r)T (r) +σi ·σ j

�
Y (r) . (D.5)

D.1 Two-pion-exchange interaction VC

D.1.1 V
c1

C

We begin with the part ∼ c1 from Eqs. (2.33) and (2.32):

V
c1

C (ri j, rk j) (D.6)

=

∫
d3qi

(2π)3
d3qk

(2π)3
exp (iqi · ri j)exp (iqk · rk j)V

c1
C (qi,qk)

= −
1

2

4c1m2
π

f 2
π

�
gA

2 fπ

�2

τi ·τk

∫
d3qi

(2π)3
σi · qi

q2
i
+m2

π

exp (iqi · ri j)

∫
d3qk

(2π)3
σk · qk

q2
k
+m2

π

exp (iqk · rk j) .
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The two integrals have an identical structure. Using greek letters for cartesian components and

implicitly sum over repeated greek indices, the integrals can be evaluated as follows:
∫

d3qi

(2π)3
σi · qi

q2
i
+m2

π

exp (iqi · ri j) (D.7)

=− iσα
i
∂ α
∫

d3qi

(2π)3
1

q2
i
+m2

π

exp (iqi · ri j)

=− iσα
i
∂ α
�

1

4πr12

exp
�
−mπr12

��

=
i

4π
σα

i

xα
i j

ri j

 
1

r2
i j

+
mπ

ri j

!
exp
�
−mπri j

�

=
i

4π
σi · r̂i jmπU(ri j)Y (ri j) .

Inserting the integrals into Eq. (D.7) we find for the c1 part

V
i jk

C ,c1
=
∑

π(i jk)

1

2

�
gA

2 fπ

�2�mπ

4π

�2
�

4c1m2
π

f 2
π

�
τi ·τk (σi · r̂i j) (σk · r̂k j)U(ri j)Y (ri j)U(rk j)Y (rk j) .

(D.8)

D.1.2 V
c3

C

We now turn to the more complicated c3 part of the 3N two-pion-exchange interaction. Its

Fourier transformation is given by

VC ,c3
(ri j, rk j) =

∫
d3qi

(2π)3
d3qk

(2π)3
exp (iqi · ri j)exp (iqk · rk j)V

c3
C (qi,qk) (D.9)

=
1

2

�
gA

2 fπ

�2
�

2c3

f 2
π

�
τi ·τk

∫
d3qi

(2π)3
σi · qi

q2
i
+m2

π

qα
i

exp (iqi · ri j)

×
∫

d3qk

(2π)3
σk · qk

q2
k
+m2

π

qα
k

exp (iqk · rk j) .

The two integrals have a similar structure and are similar to the one-pion-exchange case. Thus,

we find for the integral
∫

d3q

(2π)3
σ · q

q2+m2
π

qα exp (iq · r) (D.10)

=−σβ∂ α∂ β
∫

d3q

(2π)3
1

q2+m2
π

exp (iq · r)

=−
1

4π
σβ∂ α∂ β

�
1

r
exp(−mπr)

�

=−
m2
π

4π
σβ
��

xα

r

xβ

r
−

1

3
δαβ
�

T (r)Y (r) +
1

3
δαβY (r)−

1

3

4π

m2
π

δαβδ(r)

�
.
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Inserting this integral into Eq. (D.10) we find

VC ,c3
(ri j, rk j) =

1

2

�
gA

2 fπ

�2
�

2c3

f 2
π

�
τi ·τk (D.11)

×


−

m2
π

4π
σ
β

i







xα
i j

ri j

x
β

i j

ri j

−
1

3
δαβ


 T (ri j)Y (ri j) +

1

3
δαβY (ri j)−

1

3

4π

m2
π

δαβδ(ri j)







×
 
−

m2
π

4π
σ
γ

k



 

xα
k j

rk j

x
γ

k j

rk j

−
1

3
δαγ

!
T (rk j)Y (rk j) +

1

3
δαγY (rk j)−

1

3

4π

m2
π

δαγδ(rk j)



!

=
1

2

�
gA

2 fπ

�2
�

2c3

f 2
π

�
τi ·τk

�
m2
π

4π

�2

σ
β

i
σ
γ

k

1

9



�

4π

m2
π

�2

δβγδ(ri j)δ(rk j)

−





3

xα
i j

ri j

x
β

i j

ri j

−δαβ

 T (ri j)Y (ri j) +δ

αβY (ri j)




4π

m2
π

δαγδ(rk j)

−


 

3
xα

k j

rk j

x
γ

k j

rk j

−δαγ
!

T (rk j)Y (rk j) +δ
αγY (rk j)


 4π

m2
π

δαβδ(ri j)

+





3

xα
i j

ri j

x
β

i j

ri j

−δαβ

 T (ri j)Y (ri j) +δ

αβY (ri j)




×


 

3
xα

k j

rk j

x
γ

k j

rk j

−δαγ
!

T (rk j)Y (rk j) +δ
αγY (rk j)




 .

The first term in the sum simply leads to

V 1
C ,c3
∼ σi ·σkδ(ri j)δ(rk j) , (D.12)

which is similar to a spin-dependent three-nucleon-contact part. Its origin is the short-range con-

tribution of the pion-exchange interaction. The second and third term have the same structure.

For the second term we find

V 2
C ,c3
∼ σβ

i
σ
γ

k





3

xα
i j

ri j

x
β

i j

ri j

−δαβ

 T (ri j)Y (ri j) +δ

αβY (ri j)


δαγδ(rk j) (D.13)

=
��

3σi · r̂i jσk · r̂i j −σi ·σk

�
T (ri j)Y (ri j) +σi ·σkY (ri j)

�
δ(rk j)

=
�

Sik(ri j)T (ri j)Y (ri j) +σi ·σkY (ri j)
�
δ(rk j)

= X ik(ri j)δ(rk j)
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The result for the third term is only different in the indices. For the last term we find

V 4
C ,c3
∼ σβ

i
σ
γ

k





3

xα
i j

ri j

x
β

i j

ri j

−δαβ

 T (ri j)Y (ri j) +δ

αβY (ri j)


 (D.14)

×


 

3
xα

k j

rk j

x
γ

k j

rk j

−δαγ
!

T (rk j)Y (rk j) +δ
αγY (rk j)




= σ
β

i
σ
γ

k


3

xα
i j

ri j

x
β

i j

ri j

−δαβ

 T (ri j)Y (ri j)

 
3

xα
k j

rk j

x
γ

k j

rk j

−δαγ
!

T (rk j)Y (rk j)

+σ
β

i
σ
γ

k
δαβY (ri j)δ

αγY (rk j) +σ
β

i
σ
γ

k


3

xα
i j

ri j

x
β

i j

ri j

−δαβ

 T (ri j)Y (ri j)δ

αγY (rk j)

+σ
β

i
σ
γ

k
δαβY (ri j)

 
3

xα
k j

rk j

x
γ

k j

rk j

−δαγ
!

T (rk j)Y (rk j)

=
�

9σi · r̂i jσk · r̂k j r̂i j · r̂k j − 3σi · r̂k jσk · r̂k j − 3σi · r̂i jσk · r̂i j +σi ·σk

�
T (ri j)Y (ri j)T (rk j)Y (rk j)

+σi ·σkY (ri j)Y (rk j) + Sik(ri j)T (ri j)Y (ri j)Y (rk j) + Sik(rk j)T (rk j)Y (ri j)Y (rk j)

= X i j(ri j)Xk j(rk j) ,

where we have used

X i j(ri j)Xk j(rk j) = Y (ri j)Y (rk j)
�

Si j(ri j)T (ri j) +σi ·σ j

��
Sk j(rk j)T (rk j) +σk ·σ j

�
(D.15)

= Y (ri j)Y (rk j)
�

Si j(ri j)T (ri j)σk ·σ j +σi ·σ jσk ·σ j

+ σi ·σ jSk j(rk j)T (rk j) + Si j(ri j)Sk j(rk j)T (ri j)T (rk j)
�

.

For the individual products involving the spin matrices we find

σi ·σ jσk ·σ j = σ
α
i
σ
β

k
σα

j
σ
β

j
= σα

i
σ
β

k
(δαβ + iεαβγσ

γ

j
) = σi ·σk + iσi · (σk ×σ j) (D.16)

Si j(ri j)σk ·σ j =
�

3σi · r̂i jσ j · r̂i j −σi ·σ j

�
σk ·σ j (D.17)

=
�

3σi · r̂i jσk · r̂i j + 3iσi · r̂i j r̂i j · (σk ×σ j)−σi ·σk − iσi · (σk ×σ j)
�

= Sik(ri j) + i
�

3σi · r̂i j r̂i j · (σk ×σ j)−σi · (σk ×σ j)
�

σi ·σ jSk j(rk j) = Sik(rk j) + i
�

3σk · r̂k j r̂k j · (σ j ×σi)−σi · (σk ×σ j)
�

(D.18)

Si j(ri j)Sik(ri j) =
�

3σi · r̂i jσ j · r̂i j −σi ·σ j

��
3σk · r̂k jσ j · r̂k j −σk ·σ j

�
(D.19)

=
�

9σi · r̂i jσk · r̂k j

�
r̂i j · r̂k j + iσ j · (r̂i j × r̂k j)

�
− 3σk · r̂k j

�
σi · r̂k j + ir̂k j · (σ j ×σi)

�

− 3σi · r̂i j

�
σk · r̂i j + ir̂i j · (σk ×σ j)

�
+σi ·σk + iσi · (σk ×σ j)

�
.

For the full three body force we have to sum over all permutations of the particle indices i, j

and k. This will also lead to a term in the sum with Xk j(rk j)X i j(ri j). The cross products in this
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term will have the opposite sign as the cross products in Eqs. (D.16)-(D.19), leading to the

cancellation of all appearing cross products, which, thus, can be neglected. This was used in the

last step of Eq. (D.14).

Putting everything together we find for the contribution ∼ c3

V
i jk

C ,c3
=
∑

π(i jk)

1

2

�
gA

2 fπ

�2
�

2c3

f 2
π

�
τi ·τk

�
m2
π

4π

�2
1

9



�

4π

m2
π

�2

σi ·σkδ(ri j)δ(rk j)

−
4π

m2
π

X ik(ri j)δ(rk j)−
4π

m2
π

X ik(rk j)δ(ri j) + X i j(ri j)Xk j(rk j)
�

.

D.1.3 V
c4

C

We now turn to the last part ∼ c4 of the 3N two-pion-exchange interaction. Its Fourier transfor-

mation is given by

VC ,c4
(ri j, rk j) =

∫
d3qi

(2π)3
d3qk

(2π)3
exp (iqi · ri j)exp (iqk · rk j)V

c4

C (qi,qk) (D.20)

=
1

2

�
gA

2 fπ

�2 c4

f 2
π

τi ·
�
τk ×τ j

�
εabcσa

2

∫
d3qi

(2π)3
σi · qi

q2
i
+m2

π

qb
i

exp (iqi · ri j)

×
∫

d3qk

(2π)3
σk · qk

q2
k
+m2

π

qc
k

exp (iqk · rk j)

=
1

9

1

2

�
gA

2 fπ

�2 c4

f 2
π

τi ·
�
τk ×τ j

��m2
π

4π

�2

εabcσα
i
σa

j
σ
β

k

×


�

4π

m2
π

�2

δαbδβ cδ(ri j)δ(rk j)

−


 

3
xα

i j

ri j

x b
i j

ri j

−δαb

!
T (ri j)Y (ri j) +δ

αbY (ri j)


 4π

m2
π

δβ cδ(rk j)

−





3

x
β

k j

rk j

x c
k j

rk j

−δβ c


 T (rk j)Y (rk j) +δ

β cY (rk j)




4π

m2
π

δαbδ(ri j)

+



 

3
xα

i j

ri j

x b
i j

ri j

−δαb

!
T (ri j)Y (ri j) +δ

αbY (ri j)




×





3

x
β

k j

rk j

x c
k j

rk j

−δβ c


 T (rk j)Y (rk j) +δ

β cY (rk j)







We again look at the individual terms and find for the first term

εabcσα
i
σa

j
σ
β

k

�
4π

m2
π

�2

δαbδβ cδ(ri j)δ(rk j) = σi · (σk ×σ j)

�
4π

m2
π

�2

δ(ri j)δ(rk j) . (D.21)
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For the second and third term we find the expressions

− εabcσα
i
σa

j
σ
β

k



 

3
xα

i j

ri j

x b
i j

ri j

−δαb

!
T (ri j)Y (ri j) +δ

αbY (ri j)


 4π

m2
π

δβ cδ(rk j) (D.22)

= −

εabcσα

i
σa

j
σc

k
3

xα
i j

ri j

x b
i j

ri j

T (ri j)Y (ri j) +σi · (σk ×σ j)
�

1− T (ri j)
�

Y (ri j)


 4π

m2
π

δ(rk j)

= −
12π

m2
π

σi · r̂i j r̂i j · (σk ×σ j)T (ri j)Y (ri j)δ(rk j)−
4π

m2
π

σi · (σk ×σ j)
�

1− T (ri j)
�

Y (ri j)δ(rk j)

− εabcσα
i
σa

j
σ
β

k





3

x
β

k j

rk j

x c
k j

rk j

−δβ c


 T (rk j)Y (rk j) +δ

β cY (rk j)




4π

m2
π

δαbδ(ri j)

= −
12π

m2
π

σk · r̂k j r̂k j · (σ j ×σi)T (rk j)Y (rk j)δ(ri j)−
4π

m2
π

σi · (σk ×σ j)
�

1− T (rk j)
�

Y (rk j)δ(ri j) .

For the last term we obtain the following result:

εabcσα
i
σa

j
σ
β

k



 

3
xα

i j

ri j

x b
i j

ri j

−δαb

!
T (ri j)Y (ri j) +δ

αbY (ri j)


 (D.23)

×





3

x
β

k j

rk j

x c
k j

rk j

−δβ c


 T (rk j)Y (rk j) +δ

β cY (rk j)




= 9σi · r̂i jσi · r̂k jσ j ·
�

r̂i j × r̂k j

�
T (ri j)Y (ri j)T (rk j)Y (rk j)

+ 3σi · r̂i j r̂i j · (σk ×σ j)T (ri j)Y (ri j)
�

1− T (rk j)
�

Y (rk j)

+ 3σk · r̂k j r̂k j · (σ j ×σi)T (rk j)Y (rk j)
�

1− T (ri j)
�

Y (ri j)

+σ j · (σi ×σk)
�

1− T (ri j)
�

Y (ri j)
�

1− T (rk j)
�

Y (rk j)

The final contribution is, thus,

VC ,c4
=
∑

π(i jk)

1

9

1

2

�
gA

2 fπ

�2 c4

f 2
π

τi ·
�
τk ×τ j

��m2
π

4π

�2

(D.24)

×


�

4π

m2
π

�2

σi ·
�
σk ×σ j

�
δ(ri j)δ(rk j)

−
4π

m2
π

σi ·
�
σk ×σ j

��
1− T (ri j)

�
Y (ri j)δ(rk j)−

12π

m2
π

σi · r̂i j r̂i j ·
�
σk ×σ j

�
T (ri j)Y (ri j)δ(rk j)

−
4π

m2
π

σi ·
�
σk ×σ j

��
1− T (rk j)

�
Y (rk j)δ(ri j)−

12π

m2
π

σk · r̂k j r̂k j ·
�
σ j ×σi

�
T (rk j)Y (rk j)δ(ri j)

+ 9σi · r̂i jσk · r̂k jσ j ·
�

r̂i j × r̂k j

�
T (ri j)T (rk j)Y (ri j)Y (rk j)

+ 3σi · r̂i j r̂i j ·
�
σk ×σ j

�
T (ri j)

�
1− T (rk j)

�
Y (ri j)Y (rk j)

+ 3σk · r̂k j r̂k j ·
�
σ j ×σi

�
T (rk j)

�
1− T (ri j)

�
Y (ri j)Y (rk j)

+ σ j ·
�
σi ×σk

��
1− T (ri j)

��
1− T (rk j)

�
Y (ri j)Y (rk j)

�
.
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Making use of Eqs. (D.15)-(D.19) we calculate [X i j(ri j), Xk j(rk j)] and find

[X i j(ri j), Xk j(rk j)] (D.25)

= 2Y (ri j)Y (rk j)iσi · (σk ×σ j)

+ 2Y (ri j)Y (rk j)T (ri j)
�

3iσi · r̂i j r̂i j · (σk ×σ j)− iσi · (σk ×σ j)
�

+ 2Y (ri j)Y (rk j)T (rk j)
�

3iσk · r̂k j r̂k j · (σ j ×σi)− iσi · (σk ×σ j)
�

+ 2Y (ri j)Y (rk j)T (ri j)T (rk j)
�

9iσi · r̂i jσk · r̂k jσ j · (r̂i j × r̂k j)− 3iσi · r̂i j r̂i j · (σk ×σ j)

− 3iσk · r̂k j r̂k j · (σ j ×σi) + iσi · (σk ×σ j)
�

.

Putting everything together, we find for the c4 part

V
i jk

C ,c4
=
∑

π(i jk)

1

9

1

2

�
gA

2 fπ

�2 c4

f 2
π

τi ·
�
τk ×τ j

��m2
π

4π

�2

×


�

4π

m2
π

�2

σi ·
�
σk ×σ j

�
δ(ri j)δ(rk j)

−
4π

m2
π

σi ·
�
σk ×σ j

��
1− T (ri j)

�
Y (ri j)δ(rk j)−

12π

m2
π

σi · r̂i j r̂i j ·
�
σk ×σ j

�
T (ri j)Y (ri j)δ(rk j)

−
4π

m2
π

σi ·
�
σk ×σ j

��
1− T (rk j)

�
Y (rk j)δ(ri j)−

12π

m2
π

σk · r̂k j r̂k j ·
�
σ j ×σi

�
T (rk j)Y (rk j)δ(ri j)

+
1

2i
[X i j(ri j), Xk j(rk j)]

�
.

D.2 One-pion-exchange–contact interaction VD

Next, we transform the one-pion-exchange–contact interaction VD:

VD(ri j, rk j) =

∫
d3qi

(2π)3
d3qk

(2π)3
exp (iqi · ri j)exp (iqk · rk j)VD(qi,qk) (D.26)

= −
gA

8 f 2
π

cD

f 2
πΛχ

τi ·τk

∫
d3qi

(2π)3
exp (iqi · ri j)

∫
d3qk

(2π)3
σk · qkσi · qk

q2
k
+m2

π

exp (iqk · rk j) .

The first integral will lead to a δ function, while for the second integral we find analogue to the

one-pion-exchange case:

∫
d3q

(2π)3
σk · qσi · q

q2+m2
π

exp (iq · r) (D.27)

=−
m2
π

12π
Y (r)T (r)Sik(r)−

m2
π

12π
Y (r)σi ·σk +

1

3
δ(r)σi ·σk

=−
m2
π

12π
X ik(r) +

1

3
δ(r)σi ·σk .
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Inserting the integrals, we find for VD

VD(ri j, rk j) = −
gA

8 f 2
π

cD

f 2
πΛχ

τi ·τk

∫
d3qi

(2π)3
exp (iqi · ri j)

∫
d3qk

(2π)3
σk · qkσi · qk

q2
k
+m2

π

exp (iqk · rk j)

(D.28)

= −
gA

8 f 2
π

cD

f 2
πΛχ

τi ·τk δ(ri j)

�
−

m2
π

12π
X ik(rk j) +

1

3
δ(rk j)σi ·σk

�
.
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E Fourier transformation of local
coordinate-space 3N forces to
momentum space

In the following Section we present the Fourier transformation of the regularized coordinate

expressions for the local 3N forces back to momentum space for neutron matter to use in our

MBPT machinery. We begin with the VE-like part of VC :

V
i jk

C ,c3,VE
=
∑

π(i jk)

1

2

�
gA

2 fπ

�2
�

2c3

f 2
π

�
1

9
σi ·σkδ(ri j)δ(rk j) . (E.1)

Fourier transformation to momentum space leads to

V
i jk

C ,c3,VE ,MS =
∑

π(i jk)

1

2

�
gA

2 fπ

�2
�

2c3

f 2
π

�
1

9
σi ·σk

∫
dri j

∫
drk je

iqi ·ri j eiqk·rk jδ(ri j)δ(rk j) (E.2)

=
∑

π(i jk)

g2
A

4 f 4
π

c3

9
σi ·σk

∫
dri je

iqi ·ri jδ(ri j)

∫
drk je

iqk·rk jδ(rk j) ,

where the integral

∫
dreiq·rδ(r) = 2π

1

πΓ(3/4)R3
0

∫
dr r2

2 sin(q r)

q r
e−r4/R4

0 = 4πFcont(q, R0) (E.3)

is the Fourier transformed regularized contact interaction and will be evaluated numerically.

Putting everything together, we get

V
i jk

C ,c3,VE ,MS =
∑

π(i jk)

(4π)2
g2

A

4 f 4
π

c3

9
σi ·σkFcont(qi, R0)Fcont(qk, R0) . (E.4)

The Fourier transformation of VE can be performed analogous.

We will now turn to the VD-like part of VC . In coordinate space, it is given by

V
i jk

C ,c3,VD
=−

∑

π(i jk)

g2
A

4 f 4
π

m2
π

4π

c3

9

�
X ik(ri j)δ(rk j) + X ik(rk j)δ(ri j)

�
, (E.5)
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when we use our convention for the spin-isospin structure. For the Fourier transformation we

find

V
i jk

C ,c3,VD,MS = −
∑

π(i jk)

g2
A

4 f 4
π

m2
π

4π

c3

9

∫
dri j

∫
drk je

iqi ·ri j eiqk·rk j
�

X ik(ri j)δ(rk j) + X ik(rk j)δ(ri j)
�

= −
∑

π(i jk)

g2
A

4 f 4
π

m2
π

4π

c3

9

�
4πFcont(qk, R0)

∫
dri je

iqi ·ri j X ik(ri j)

+4πFcont(qi, R0)

∫
drk je

iqk·rk j X ik(rk j)

�
. (E.6)

The appearing integral can be separated in two parts

∫
dri je

iqi ·ri j X ik(ri j) (E.7)

=

∫
dri je

iqi ·ri j
�

Sik(ri j)T (ri j) +σi ·σk

�
Y (ri j)

�
1− e

−
�

ri j
R0

�4
�

=

∫
dri je

iqi ·ri j Sik(ri j)T (ri j)Y (ri j)

�
1− e

−
�

ri j
R0

�4
�
+σi ·σk

∫
dri je

iqi ·ri j Y (ri j)

�
1− e

−
�

ri j
R0

�4
�

.

The first integral can be solved like

∫
dri je

iqi ·ri j Sik(ri j)T (ri j)Y (ri j)

�
1− e

−
�

ri j
R0

�4
�

(E.8)

=
∑

αβ

σα
i
σ
β

k

∫
dri je

iqi ·ri j

�
3r̂α

i j
r̂
β

i j
−δαβ

�
T (ri j)Y (ri j)

�
1− e

−
�

ri j
R0

�4
�

.

The part
�

3r̂α
i j

r̂
β

i j
−δαβ

�
can be expressed as a sum of spherical harmonics

∑
lm c

αβ

lm
Ylm where

contributions with l 6= 2 vanish. The function eiqi ·ri j can be rewritten using Eq. (C.5). We find

∑

αβ

σα
i
σ
β

k

∫
dri je

iqi ·ri j

�
3r̂α

i j
r̂
β

i j
−δαβ

�
T (ri j)Y (ri j)

�
1− e

−
�

ri j
R0

�4
�

(E.9)

= 4π
∑

αβ

∑

lm

∑

l′m′
i l′c

αβ

lm
Yl′m′(Ωqi

)σα
i
σ
β

k

∫
dri j r

2
i j

jl′(qi ri j)T (ri j)Y (ri j)

�
1− e

−
�

ri j
R0

�4
�

×
∫

dcos(θ ) dφY ∗
l′m′(Ωri j

)Ylm(Ωri j
) .
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Using the orthonormality of the spherical harmonics and l = 2, we finally get

∫
dri je

iqi ·ri j Sik(ri j)T (ri j)Y (ri j)

�
1− e

−
�

ri j
R0

�4
�

(E.10)

= 4π
∑

αβ

∑

lm

∑

l′m′
i l′c

αβ

lm
Yl′m′(Ωqi

)σα
i
σ
β

k

∫
dri j r

2
i j

jl′(qi ri j)T (ri j)Y (ri j)

�
1− e

−
�

ri j
R0

�4
�
δl l′δmm′

= −4π
∑

αβ

�
3q̂α

i
q̂
β

i
−δαβ

�
σα

i
σ
β

k

∫
dri j r

2
i j

j2(qi ri j)T (ri j)Y (ri j)

�
1− e

−
�

ri j
R0

�4
�

= −4π
�
3σi · q̂iσk · q̂i −σi ·σk

�
FS(q, R0) .

The second integral gives

σi ·σk

∫
dri je

iqi ·ri j Y (ri j)

�
1− e

−
�

ri j
R0

�4
�

(E.11)

= 4πσi ·σk

∫
dri j

sin (qi ri j)

qi

exp (−mπri j)

�
1− e

−
�

ri j
R0

�4
�

= 4πσi ·σkFY(qi, R0) .

Putting all pieces together we find for the integral

∫
dri je

iqi ·ri j X ik(ri j) (E.12)

= −4π
�
3σi · q̂iσk · q̂i −σi ·σk

�
FS(qi, R0) + 4πσi ·σkFY(qi, R0) .

and

V
i jk

C ,c3,VD,MS =
∑

π(i jk)

g2
A

4 f 4
π

c3m2
π

9

�
12πσi · q̂iσk · q̂i FS(qi, R0)Fcont(qk, R0) (E.13)

−4πσi ·σkFcont(qk, R0)
�

FY(qi, R0) + FS(qi, R0)
�

+ 12πσi · q̂kσk · q̂kFcont(qi, R0)FS(qk, R0)

−4πσi ·σkFcont(qi, R0)
�

FS(qk, R0) + FY(qk, R0)
��

= 2
∑

π(i jk)

g2
A

4 f 4
π

c3m2
π

9

�
12πσi · q̂iσk · q̂i FS(qi, R0)Fcont(qk, R0)

−4πσi ·σkFcont(qk, R0)
�

FY(qi, R0) + FS(qi, R0)
��

.

For VD the Fourier transformation is similar and only differs in the prefactor.

We will now transform the last part of VC proportional to c3. It is the long-range contribution,

which in coordinate space is given by

V
i jk

C ,c3,LR =
∑

π(i jk)

g2
A

4 f 4
π

m4
π

(4π)2
c3

9
X i j(ri j)Xk j(rk j) . (E.14)
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We again do the Fourier transformation:

V
i jk

C ,c3,LR,MS
=
∑

π(i jk)

g2
A

4 f 4
π

m4
π

(4π)2
c3

9

∫
dri je

iqi ·ri j X i j(ri j)

∫
drk je

iqk·rk j Xk j(rk j) (E.15)

=
∑

π(i jk)

g2
A

4 f 4
π

m4
π

(4π)2
c3

9
(4π)2

�
−
�

3σi · q̂iσ j · q̂i −σi ·σ j

�
FS(qi, R0) +σi ·σ j FY(qi, R0)

�

×
�
−
�

3σk · q̂kσ j · q̂k −σk ·σ j

�
FS(qk, R0) +σk ·σ j FY(qk, R0)

�

=
∑

π(i jk)

g2
A

4 f 4
π

m4
π

(4π)2
c3

9
(4π)2

�
9σi · q̂iσ j · q̂iσk · q̂kσ j · q̂kFS(qi, R0)FS(qk, R0)

− 3σi · q̂iσ j · q̂iσk ·σ j FS(qi, R0)
�

FY(qk, R0) + FS(qk, R0)
�

− 3σi ·σ jσk · q̂kσ j · q̂k

�
FY(qi, R0) + FS(qi, R0)

�
FS(qk, R0)

+σi ·σ jσk ·σ j

�
FY(qi, R0) + FS(qi, R0)

��
FY(qk, R0) + FS(qk, R0)

��
.

Using the relation σα
i
σ
β

i
= δαβ + iεαβγσ

γ

i
the individual terms can be simplified. Since the

terms involving vector products vanish when summing over all permutations, we arrive at

V
i jk

C ,c3,LR,MS
(E.16)

=
∑

π(i jk)

g2
A

4 f 4
π

m4
π

c3

9

�
9σi · q̂iσk · q̂k q̂i · q̂kFS(qi, R0)FS(qk, R0)

− 3σi · q̂iσk · q̂i FS(qi, R0)
�

FY(qk, R0) + FS(qk, R0)
�

− 3σi · q̂kσk · q̂k

�
FY(qi, R0) + FS(qi, R0)

�
FS(qk, R0)

+σi ·σk

�
FY(qi, R0) + FS(qi, R0)

��
FY(qk, R0) + FS(qk, R0)

��
.

Finally we transform the part proportional to c1 which is given in neutron matter as

V
i jk

C ,c1
=
∑

π(i jk)

1

2

�
gA

2 fπ

�2�mπ

4π

�2
�

4c1m2
π

f 2
π

�
(σi · r̂i j) (σk · r̂k j)U(ri j)Y (ri j)U(rk j)Y (rk j) . (E.17)

The Fourier transformation is given by

V
i jk

C ,c1,MS =
∑

π(i jk)

c1

g2
A

2 f 4
π

m4
π

(4π)2

∫
dri je

iqi ·ri j
σi · r̂i jU(ri j)Y (ri j)

∫
drk je

iqk·rk j
σk · r̂k jU(rk j)Y (rk j) .

(E.18)

For the integral, we can use a similar strategy as before and rewrite the r unit vector in spherical

harmonics with l = 1. We then find∫
dri je

iqi ·ri j
σi · r̂i jU(ri j)Y (ri j) = 4πiσi · q̂i

∫
dri j r

2
i j

j1(qi ri j)U(ri j)Y (ri j) = 4πiσi · q̂i Fc1
(qi) .

(E.19)

We, thus, find

V
i jk

C ,c1,MS = −
∑

π(i jk)

c1

g2
A

2 f 4
π

m4
πσi · q̂iσk · q̂kFc1

(qi)Fc1
(qk) . (E.20)
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