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Quantum Monte Carlo study of the three-dimensional spin-polarized homogeneous electron gas
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We have studied the spin-polarized three-dimensional homogeneous electron gas using the diffusion quantum
Monte Carlo method, with trial wave functions including backflow and three-body correlations in the Jastrow
factor, and we have used twist averaging to reduce finite-size effects. Calculations of the pair-correlation function,
including the on-top pair density, as well as the structure factor and the total energy, are reported for systems of
118 electrons in the density range rs = 0.5–20 a.u., and for spin polarizations of 0, 0.34, 0.66, and 1. We consider
the spin resolution of the pair-correlation function and structure factor, and the energy of spin polarization. We
show that a control variate method can reduce the variance when twist averaging, and we have achieved higher
accuracy and lower noise than earlier quantum Monte Carlo studies.
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I. INTRODUCTION

The simplicity of the three-dimensional (3D) homogeneous
electron gas (HEG) model,1 consisting of electrons interacting
via the Coulomb potential in a uniform, positive background
for charge neutrality, allows the study of important features
of the many-electron problem without the complication of
a lattice potential. Early pioneers of quantum mechanics
discovered much of the phenomenology of the HEG, including
Wigner’s celebrated insight2,3 that the fluid will crystallize
at low density. More recently, the continuing research effort
to understand the behavior of the HEG is motivated by the
model’s application in density functional theory (DFT).

Quantum Monte Carlo (QMC) methods can provide accu-
rate estimates of the static properties of interacting many-body
systems such as the HEG. The ground state of the 3D HEG
for collinear spins is accepted to be an unpolarized Fermi fluid
at high densities. As the density decreases, QMC calculations
indicate an apparently continuous transition to a spin-polarized
fluid occurs, starting at a density of about rs = 50 ± 2 a.u.4 The
transition to a Wigner crystal is calculated to occur at about
rs = 106 ± 1 a.u.5 QMC calculations have furnished data used
within DFT, most notably the energies of the HEG calculated
by Ceperley and Alder,3 which are used to parametrize the
local-density-approximation exchange-correlation functional.
Semilocal6 and nonlocal7,8 exchange-correlation functionals
may use additional properties of the HEG such as the pair-
correlation function (PCF) and, especially, the on-top pair
density.9

The PCF is a measure of the spatial correlations of electron
positions that arise from the Coulomb repulsion and Pauli
exclusion. The spin-resolved PCF of the HEG, gαβ(r), is
defined such that nβgαβ(r)4πr2dr is the expected number of
spin-β electrons in an infinitesimal shell of radius r when a
spin-α electron is found at the origin and nβ is the number
density of spin-β electrons. Defining the spin polarization ζ

as the ratio ζ = (N↑ − N↓)/(N↑ + N↓), the total PCF g is a
weighted average of the spin-resolved components:

g =
(

1 + ζ

2

)2

g↑↑ +
(

1 − ζ

2

)2

g↓↓ +
(

1 − ζ 2

2

)
g↑↓. (1)

The on-top pair density g(0) is the value of the PCF at contact.
The region around r = 0 is, however, the most challenging to
sample in a stochastic simulation, particularly at low densities,
as the electrons are rarely found close to one another. Toulouse
et al.10 have developed a possible solution to this difficulty, ex-
tending the zero-variance zero-bias estimators of Assaraf and
Caffarel.11 It has recently been found by Fantoni,12 however,
that the zero-bias correction required in diffusion Monte Carlo
(DMC) calculations significantly increases the variance. We
therefore opted to use the traditional histogram estimator of
the PCF in this work; our simulations gathered enough data to
ensure good precision in the reported g(0) values.

In light of the above challenges, while QMC methods have
been very successful in calculating many quantities of interest
in the HEG, such as the energy and the PCF at intermediate
distances, the short-range behavior of the PCF has usually
been obtained by fitting QMC data to some analytical
function, which can be constrained to obey exact results such
as the electron-electron cusp conditions. Even then, however,
there is some disagreement between the PCFs obtained using
different approaches. Gori-Giorgi and Perdew developed an
analytical model based on exact constraints and QMC energy
data.13,14 The same authors15 extended an approach originally
due to Overhauser16 using a screened Coulomb potential and
two-electron wave functions. An alternative starting point is
afforded by ladder theory, which gave rise to an early and
widely used result for g(0) due to Yasuhara.17 Nagy et al.18

offer insight into the good agreement between these results.
More recently, Qian19 was able to relax an approximation
made in the earlier ladder theory calculations and obtained a
markedly different result. Although several QMC calculations
of PCFs for the unpolarized 3D HEG have been reported,
less attention has been paid to fully and, especially, partially
spin-polarized systems.12,20–25

In this paper we present extensive results for PCFs, static
structure factors (SSFs), and energies for HEGs containing
118 electrons over the density range relevant to DFT cal-
culations, rs = 0.5–20 a.u. We consider four values of the
spin polarization, ζ = 0, 40/118, 78/118, and 1, although
in the text we refer to the intermediate polarizations as 0.34
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(40/118) and 0.66 (78/118). We use Slater-Jastrow wave
functions incorporating backflow and three-body correlations,
we investigate twist-averaged boundary conditions and finite-
size effects, and we are able to gather sufficient data to
ensure that the statistical uncertainty is relatively modest. A
variance reduction method is found to improve significantly
the precision of twist-averaged data without introducing bias.
We show the spin resolution of the PCFs and the SSFs, and we
consider, in particular, the on-top pair density and the energy of
spin polarization as functions of rs and ζ . We have performed
spline fits to our PCF data, which appear to be more accurate
than polynomial fits. A short FORTRAN 90 program is available
to evaluate the spline fits to our PCF data.26

Our paper is organized as follows. In Sec. II we discuss the
QMC methods used in our calculations. Section III describes
our PCF, SSF, and energy data and shows comparisons to
results in the existing literature. We offer our conclusions in
Sec. IV. Hartree atomic units are used throughout this paper,
so that h̄ = |e| = me = 4πε0 = 1.

II. METHODS

We have used the CASINO27 code to perform variational and
diffusion Monte Carlo28 (VMC and DMC) calculations. In the
VMC method, the Metropolis algorithm is used to generate
a set of configurations distributed according to the square
modulus of a trial wave function over which the local energy
is averaged. In the DMC method, an initial wave function is
evolved in imaginary time, which in principle projects out
the ground state. For fermionic systems, the antisymmetry of
the wave function is, however, imposed via the fixed-node
approximation,29 in which the nodal surface is constrained to
remain unchanged during the evolution. Both the VMC and
DMC methods give an upper bound to the ground-state energy
of the system. The quality of the parametrization of the trial
wave function and the VMC optimization procedure influence
the accuracy of the results and the statistical noise.

Our wave functions consisted of Slater determinants of
plane waves multiplied by a Jastrow factor and included a back-
flow transformation. The Jastrow factor comprised polynomial
and plane-wave expansions in the electron-electron separation,
together with three-body terms.30,31 The electron coordinates
in the Slater determinant were replaced by quasiparticle
coordinates obtained by a backflow transformation represented
by a polynomial in the electron-electron separation.32,33 The
variable parameters in these wave functions were optimized
using variance minimization34,35 and then linear least-squares
energy minimization,36 as this was found to give the most
accurate trial wave functions.

The quality of our wave functions was such that, for
unpolarized and fully polarized systems, the VMC and
DMC methods produced essentially identical PCFs within
the statistical precision we were able to obtain. For these
systems we therefore report DMC expectation values rather
than the extrapolated estimators often used in QMC studies. In
partially polarized systems, however, our trial wave functions
led to small but statistically significant differences between the
VMC and DMC data for minority-spin electrons. In these cases
we have used extrapolated estimation,37 in which the PCF is
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FIG. 1. (Color online) Finite-size effects in the spin-resolved
PCF. The upper curves are for antiparallel spins and the lower-right
curves are for parallel spins. The data are from VMC twist-averaged
simulations at rs = 5 a.u. and ζ = 0, and at the various sizes shown.
The region around the first peak in the antiparallel-spin PCF is shown,
where the largest finite-size effects occur.

g = 2gDMC − gVMC, where gDMC and gVMC are the DMC and
VMC PCFs, respectively.

We studied 118-electron HEGs in face-centered-cubic
simulation cells and imposed twisted boundary conditions38

so that the wave function picks up a phase when an electron is
translated by a simulation-cell lattice vector Rs :

�(r1, . . . ,ri + Rs , . . . ,rN ) = exp(iks · Rs)�(r1, . . . ,rN ).

The twist offset ks was allowed to vary with uniform
probability over the first Brillouin zone of the simulation cell
during our simulations. Averaging in this way has been shown
to reduce single-particle finite-size effects in the energy.39

We investigated the remaining variation with system size in
the PCF using twist-averaged VMC simulations at rs = 5 a.u.
and ζ = 0. We show the spin-resolved PCF in Fig. 1. This
figure, like all others in this paper except Fig. 12, shows our raw
QMC data, rather than a fit to the data. The region around the
first peak in the antiparallel-spin PCF best shows the variation
with system size. Both g↑↓(r) (upper curves) and g↑↑(r)
(lower-right curves) exhibit systematic finite-size errors for
small systems in this region, converging to the thermodynamic
limit on the scale of the graph at approximately N = 100 elec-
trons. (Results for 118- and 226-electron systems are almost
indistinguishable on the scale of the graph.) Some cancellation
of errors occurs when the spin-averaged PCF is calculated.

The variation with system size appears less pronounced
and less systematic at smaller r . The on-top pair density
was unaffected within statistical uncertainty. For systems with
N = 54, 118, and 226 electrons, there was good agreement
at small but nonzero distances: Typical differences were of
order 1%–5%. In contrast, the long-range PCF is affected
by unavoidable finite-size errors due to the finite size of the
simulation cell. Twist averaging cannot remove the spurious
correlation caused by the periodic boundary conditions. This
shows up as a small but statistically significant variation in the
long-range oscillations from about r/rs � 2 for 118 electrons
that decreases in magnitude as the system size increases.
Figure 1 is included as an XMGrace file in the Supplemental
Material26 accompanying this paper, so that other regions of
the graph may be inspected.
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The energy is known to converge much more slowly with
system size than the PCF.38,39 We have therefore applied
analytical corrections to our energy data following the pro-
cedure developed in Refs. 39 and 40. Residual single-particle
finite-size effects are removed by addition of the difference
between the infinite-system and twist-averaged, finite-system
Hartree-Fock kinetic energies. The leading-order correction
to the Ewald energy, and leading- and next-to-leading-order
corrections to the kinetic energy, are also included. In addition,
finite-size effects in the energy have previously25 been found
to be relatively insensitive to ζ , and so a cancellation of errors
renders finite-size effects in the energies of spin polarization
small even without any correction. The analytical arguments
of Holzmann et al.41 lend further support to this conclusion.

We also examined possible time-step and population-
control biases and found them to be very small—less than one
part in a thousand of the correlation energy in test cases—so
we neglect them in what follows. All DMC calculations were
performed using at least 1000 walkers and time steps for which
the acceptance probability was generally greater than 99.7%.

We accumulate the spin-resolved PCF as an average over
the set of configurations generated in the course of the
simulation:

gαβ(r) = �

4πr2NαNβ

〈∑
j∈α

∑
l∈β

l �=j

δ(|rj − rl| − r)

〉
,

where � is the simulation-cell volume and Nα is the number
of electrons of spin α. The SSF is simply related to the Fourier
transform of the PCF and is given by

Sαβ(k) = 1√
NαNβ

〈ρα(k)ρβ(−k)〉 − √
NαNβδk0,

where ρα(k) = ∑
j∈α exp(ik · rj ). Sαβ(k) is then spherically

averaged in k space, because the SSF only depends on the
magnitude of k in a homogeneous and isotropic system.

At high densities, the variation in the energy as the twist
offset is changed can be much greater than other sources
of noise in the simulation. Twist averaging can therefore be
computationally expensive for high-density HEGs, because a
large number of twist angles are required in order to obtain
a precise energy and the simulation must be reequilibrated
between twists, preventing rapid changes of twist offset in a
DMC calculation. To circumvent this difficulty, we have used
the Hartree-Fock energy (as a function of twist offset) as a
control variate.42

If EQMC denotes the QMC energy, EHFKE the Hartree-Fock
kinetic energy, and EHFEX the exchange energy as functions of
twist angle, the standard way of getting the twist-averaged
energy is 〈EQMC〉, where the angular brackets denote an
average over twists. Another estimator is

θ = EQMC + c1(EHFKE − 〈EHFKE〉) + c2(EHFEX − 〈EHFEX〉),
where the {ci} are coefficients that can be chosen to minimize
the variance of θ . In order to account for the remaining sources
of noise, we add the correction above to the energy data at
each time step and, at the end of the simulation, reblock43 the
corrected data to obtain much smaller error bars.

TABLE I. Energies from VMC simulations in a HEG at rs =
0.5 a.u. containing two up-spin electrons and one down-spin electron.
The raw VMC energies are compared to the same data after a
correction has been applied using HF kinetic and exchange energies as
described in the text. The VMC twist-averaged energy obtained in the
standard way, using just over 21 × 106 twist angles, is 3.5484(3) a.u.
per electron.

VMC energy (a.u./elec.)

No. twists Raw Corr.

10 3.73(40) 3.5480(1)
20 3.57(39) 3.5480(1)
100 3.42(10) 3.5480(1)
441 3.51(6) 3.5480(1)

To illustrate the reduction in variance obtained, we apply
the method to VMC data for two systems in this section: first a
HEG with two up-spin electrons and one down-spin electron at
rs = 0.5 a.u.; then a 118-electron HEG at rs = 0.5 a.u. and ζ =
0. The VMC method allows one to simulate a large number of
twist angles in parallel, so we are able to compare the corrected
data to accurate twist averages performed the standard way.
It can be seen in Tables I and II that the method successfully
reduces the variance without introducing bias. Although we
chose twist offsets randomly throughout the first Brillouin
zone, the method might also improve convergence of twist
averages using Monkhorst-Pack44 grids.

III. RESULTS

A. Pair-correlation function

Spin-resolved PCFs are shown in Fig. 2 for the unpolarized
HEG at different densities using twist averaging. Antiparallel-
spin PCFs are translated upwards by 0.2 units for greater
visibility, and show much greater variation with density. For
ζ = 0 (and ζ = 1, not shown) the VMC and DMC results are
very similar, so in the plot we present only DMC data.

We show the variation of the PCFs with spin polarization at
rs = 3 a.u. in Fig. 3. In this figure, we translate the antiparallel-
spin PCFs upwards by 0.4 units and the parallel-majority-spin
PCFs upwards by 0.2 units. For ζ = 0 and ζ = 1, we have used
the DMC values. For ζ = 0.34 and ζ = 0.66, the extrapolated
estimate is shown, because small but statistically significant

TABLE II. Energies from VMC simulations in a 118-electron
HEG at rs = 0.5 a.u. and ζ = 0. The raw VMC energies are compared
to the same data after a correction has been applied using HF kinetic
and exchange energies as described in the text. The VMC twist-
averaged energy obtained in the standard way, using 4.8 × 106 twist
angles, is 3.41378(2) a.u. per electron.

VMC energy (a.u./elec.)

No. twists Raw Corr.

10 3.424(4) 3.41377(4)
20 3.424(4) 3.41375(4)
50 3.414(5) 3.41380(3)
156 3.416(2) 3.41377(2)
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FIG. 2. (Color online) Spin-resolved PCFs for unpolarized HEGs
calculated at the densities shown. The antiparallel-spin PCFs are
translated upwards by 0.2 units. The data were obtained using twist-
averaged DMC simulations.

differences emerged between the DMC and VMC data in the
parallel-minority-spin PCFs. Compared with the parallel-spin
PCFs, the antiparallel-spin PCF is relatively insensitive to the
degree of spin polarization.

The PCF data discussed above are twist averaged to
reduce single-particle finite-size effects. Twist averaging has
a significant effect on the energy data, but the effect on the
PCF data is much smaller. We show in Fig. 4 the difference
gTA − gPBC between imposing twist-averaged and periodic
boundary conditions for parallel spins. Noise obscures any
clear pattern for the antiparallel spins, although there is a
tendency for the equivalent figure to show a small dip before
rising to zero, so that g(0) appears to be largely unaffected.

We compare our results at rs = 5 a.u. and ζ = 0 with QMC
data from the literature in Fig. 5. We find good agreement
with the data of Gori-Giorgi et al.23 for intermediate r/rs. Our
on-top pair densities are closer to those of Ortiz and Ballone20

as shown in the inset, although at intermediate r/rs modest (of
order 5%) differences are obtained. The figure shows our raw
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FIG. 3. (Color online) Variation in the PCF with spin polarization
at rs = 3 a.u. Antiparallel-spin PCFs are translated upwards by
0.4 units, parallel-majority-spin PCFs are translated upwards by
0.2 units, and the lower curves give the parallel-minority-spin PCFs.
Note that the ζ = 0 parallel-spin PCF is shown twice (in black) for
comparison with both up-up and down-down spin PCFs in those
cases where they differ. The DMC data are shown for unpolarized
and fully polarized systems, while extrapolated estimates are used for
intermediate polarizations. All of the data are twist averaged.
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FIG. 4. (Color online) Changes in the PCF due to twist averaging.
We plot parallel-spin PCFs with twist averaging minus the same
quantity evaluated without twist averaging, for the densities shown
and ζ = 0. Only DMC results are shown, as the VMC results are very
similar.

QMC data, whereas the other curves are fits to the QMC data of
Ortiz, Harris, and Ballone,22 and Ortiz and Ballone20 respec-
tively. Both of these fits obey the Kimball cusp conditions and
we are confident our QMC data are also consistent with these
conditions. As mentioned below, our short-range PCFs are well
described by a quadratic of the form g↑↓(r) = a + ar + br2,
which satisfies the first Kimball condition.

We show in Fig. 6 our g(0) values for the unpolarized system
in comparison to those in the literature. We have averaged
our DMC and VMC data in this figure to reduce statistical
uncertainty, because the ζ = 0 PCFs produced by the two
methods are identical within the statistical precision we were
able to obtain. We used the above quadratic form to estimate
g(0) from our PCF data at finite distances, g(r), and obtained
good fits for all systems. Our results are in good agreement
with the recent QMC data of Holzmann et al.,24 and the results
of Gori-Giorgi and Perdew13 who used various data including
QMC results, and the results of Yasuhara.17 Our calculations
give significantly smaller values of g(0) than those of Gori-
Giorgi, Sacchetti, and Bachelet,23 and those of Qian.19 This
may suggest that Yasuhara’s scheme successfully incorporates
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FIG. 5. (Color online) Spin-resolved PCFs for unpolarized HEGs
at rs = 5 a.u. We show our raw twist-averaged DMC data, together
with the fit to DMC results from Ortiz and Ballone (Ref. 20) (labeled
OB) given in their paper, and a fit due to Gori-Giorgi, Sacchetti, and
Bachelet (Ref. 23) using the DMC data of Ortiz, Harris, and Ballone
(Ref. 22) (labeled GSB). The inset shows the low-r region, where the
differences are largest.
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FIG. 6. (Color online) The on-top pair density g(0) (multiplied
by rs) as a function of rs for unpolarized systems. The data shown are
those of our averaged DMC and VMC results, together with the fit
of Eq. (2) (solid line); Gori-Giorgi and Perdew (Ref. 13); Holzmann
et al. (Ref. 24); Yasuhara (Ref. 17); Qian (Ref. 19); Gori-Giorgi et al.
(Ref. 23); Ortiz and Ballone (Ref. 20); and Fantoni (Ref. 12). Error
bars are shown for our data, those of Holzmann et al. (Ref. 24), and
Fantoni (Ref. 12), but they are mostly smaller than the size of the
symbols. Our values are slightly smaller than those of Holzmann
et al. (Ref. 24).

screening effects into the ladder theory calculations. Nagy
et al.18 suggest that the description of screening used by Gori-
Giorgi and Perdew is also an important factor in explaining
the success of the latter authors’ model.

We have also obtained on-top pair densities for par-
tially polarized systems (see Fig. 7). In this case we used
extrapolated estimation due to the small but statistically
significant differences between our VMC and DMC results,
although these differences are much less pronounced in the
antiparallel-spin PCF than in the parallel-minority-spin PCF.
This increases the statistical uncertainty in our results, an
effect compounded by the increasing sparsity of sampling
antiparallel spin coalescences as the polarization increases.
Nevertheless, as expected from Fig. 3, the variation of g(0)
with ζ arises largely from changes in the weights in Eq. (1)
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rs (a.u.)

0

0.1

0.2

0.3

r s g
(0

) (
a.

u.
) ζ=0

ζ=0.34
ζ=0.66

FIG. 7. (Color online) The on-top pair density (multiplied by rs)
as a function of rs and ζ . Averaged DMC and VMC data are used for
the unpolarized systems, and extrapolated estimates for the polarized
systems. Twist averaging was used for all data shown. An error bar is
plotted for each data point, although some of them are smaller than
the size of the symbols. The partially polarized systems show a larger
statistical uncertainty. The lines are fits as discussed in the text.

TABLE III. Parameters (in a.u.) obtained from fits to the on-
top pair density as a function of rs using Eq. (2). The data for
the unpolarized systems are averaged DMC and VMC results;
extrapolated estimation is used for the others.

ζ a b c d

0 0.18315 −0.0784043 1.02232 0.0837741
0.34 0.284118 −0.110062 1.1618 0.0874753
0.66 0.0659538 −0.0590569 0.836458 0.0832258

rather than in the spin-resolved PCFs themselves. We fit our
g(0) data to the following parametrized form in the density
range 0.5 � rs � 20 a.u.:

g↑↓(0; rs) = 1 + a
√

rs + brs

1 + crs + dr3
s

, (2)

and we list the optimal fit parameters obtained in Table III.
This functional form obeys the exact high-density limit and
fits our data well up to rs = 20 a.u., although at rs = 10 a.u., it
tends to give slightly higher values than our QMC calculations
obtained, typically by about two standard deviations.

B. Static structure factor

SSFs with ζ = 0 at three representative densities are shown
in Fig. 8. The upper curves show S↑↑ − S↑↓ and the lower
curves, S↑↑ + S↑↓. The differences between the DMC and
VMC results are again smaller than the statistical noise, and so
we plot DMC values. The parallel-spin structure factors change
very slowly with density, and the rs dependence shown arises
almost entirely from the antiparallel-spin structure factor,
which is (mostly) negative and of increasing magnitude as
the density decreases.

Twist averaging was used to obtain the results shown
in Fig. 8, and its effect was more pronounced than in the
PCFs, as shown in Fig. 9, where we plot antiparallel-spin
SSFs at ζ = 0 with and without twist averaging for the same
three densities. Shell-filling effects are clearly visible in the
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FIG. 8. (Color online) Structure factors at ζ = 0 for three den-
sities. The upper curves show S↑↑ − S↑↓ and are translated upwards
by 0.2 units; the lower curves show S↑↑ + S↑↓. The lines are visual
guides only. The statistical uncertainty is smaller than the size of the
symbols. The DMC method with twist averaging was used, as the
VMC data are again very similar. Intermediate densities lie between
the curves shown.
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FIG. 9. (Color online) Effect of twist averaging on the
antiparallel-spin SSF. We plot SSFs at ζ = 0 for three densities,
with twist averaging (TA) and without (PBC). Higher densities are
towards the top of the graph; intermediate densities lie between the
data shown and similar effects are seen in parallel-spin SSFs. Only
DMC data are plotted as the VMC data are very similar.

non-twist-averaged data. The VMC and DMC results are very
similar and so we can be confident that the differences do not
arise from statistical noise. Small finite-size effects are visible
in the low-|k| structure factor data. These correspond to the
inevitable finite-size effects in the long-range part of the PCF
mentioned above.

C. Energies

Twist-averaged DMC energies are reported in Table IV for
rs = 0.5–20 a.u. and for ζ = 0, 0.34, 0.66, and 1. The data
are for finite (small) time steps such that the DMC acceptance
probability was almost always greater than 99.7%. We verified
in sample cases that the time-step and population-control
biases were small: typically less than one part in a thousand of
the correlation energy. The finite-size effects in the energy are
substantial for the 118-electron HEGs, so we have corrected for
these, as discussed in Sec. II. The data are further corrected
using the control variate method, also discussed in Sec. II,
because twist averaging would otherwise lead to large error
bars, especially at high densities.

We find that the ground state is unpolarized for all densities
studied here, in agreement with the most recent calculations.38

This is also clearly evident in our VMC results, despite the
VMC method suffering a bias towards polarized systems
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FIG. 10. (Color online) Correlation energy at ζ = 0 and 1 against
density parameter rs. The present work is simply labeled “ζ = 0” and
“ζ = 1.” Also shown are the Ceperley-Alder QMC data (Ref. 3);
the Perdew-Zunger fit to the latter data (Ref. 45); and the recent
high-density result of Loos and Gill (Ref. 46). Our data are corrected
for finite-size effects. Time-step extrapolation was not performed.
The statistical error bars are shown, but are usually smaller than the
symbols.

due to the relative ease with which correlation effects in the
wave function may be parametrized. This bias decreases with
increased variational freedom in the trial wave function.

Our energies for unpolarized and fully polarized HEGs
are shown in Fig. 10, where we also plot for comparison
the Ceperley-Alder data3 and the fit to the latter obtained by
Perdew and Zunger,45 as used in the LSDA. In addition, a
recent high-density (RPA) limit for the polarized system due
to Loos and Gill46 is shown. The present results follow the
Perdew-Zunger fit closely, except at high density, where we
find slightly smaller correlation energies, especially at full
polarization. The finite-size corrections we have applied are
significantly larger than the differences shown in Fig. 10,
and it is possible that higher order finite-size corrections
would account for the difference in energies obtained. It is
worth noting that Ceperley and Alder did not perform QMC
calculations at densities higher than rs = 2 a.u. for ζ = 1 and
that the Loos-Gill result also gives smaller correlation energies
in this region than the Perdew-Zunger fit.

To compare our intermediate-ζ energies with those in the
literature, we used the procedure developed by Perdew and
Zunger to interpolate between ζ = 0 and ζ = 1. We used our
QMC data for the unpolarized and fully polarized systems

TABLE IV. Energies as a function of density parameter and spin polarization. The DMC data are twist averaged
and include corrections for finite-size effects, as discussed in the text. Time-step extrapolation was not performed.
Data include a control variate correction.

Energy (a.u./elec.)

rs (a.u.) ζ = 0 ζ = 0.34 ζ = 0.66 ζ = 1

0.5 3.43011(4) 3.69287(6) 4.44164(6) 5.82498(2)
1 0.58780(1) 0.64919(2) 0.82394(4) 1.14634(2)
2 0.002380(5) 0.016027(6) 0.05475(2) 0.12629(3)
3 −0.067075(4) −0.061604(5) −0.04608(2) −0.017278(4)
5 −0.075881(1) −0.074208(4) −0.069548(4) −0.060717(5)
10 −0.0535116(5) −0.053214(2) −0.052375(2) −0.0507337(5)
20 −0.0317686(5) −0.0317156(7) −0.0315940(7) −0.0313160(4)
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FIG. 11. (Color online) Correlation energies obtained in DMC
calculations together with the fit of Eqs. (3), (4), and (5). Dashed lines
show the fit; square symbols the QMC data. Lower densities appear
towards the top of the graph; higher densities towards the bottom of
the figure. From top-to-bottom, therefore, the densities shown are:
rs = 20, 10, 5, 3, 2, 1, and 0.5 a.u. Error bars on the QMC data are
shown, but are smaller than the size of the symbols. Corrections have
been applied for finite-size effects. Time-step extrapolation was not
performed.

and interpolated using Eq. (C12) in their paper. These fits are
included as part of the Supplemental Material accompanying
this paper.26 The interpolation scheme is very successful at
low density, whereas our high-density data for intermediate
polarizations are not reproduced with such high accuracy.

In Fig. 11 we show our correlation energies together with a
quartic fit in ζ at each density:

Ec(rs,ζ ) = f0(rs) + �(rs)f (rs)ζ
2 + [1 − �(rs)] f (rs)ζ

4,

(3)

where f (rs) = f1(rs) − f0(rs) and fζ (rs) denotes the corre-
lation energy at spin polarization ζ . We fit fζ (rs) for ζ = 0 and
1 over the density range rs = 0.5–20 a.u. using the functional
form

fi(rs) = γi

1 + βi
1r

1
2

s + βi
2rs

(4)

suggested by Ceperley,47 and Perdew and Zunger.45 We find
the interpolation

�(rs) = a + brs + cr2
s (5)

gives a good fit to the intermediate-ζ QMC data. The energies
can be extrapolated to the high-density limit using the method
of Perdew and Zunger,45 by matching the correlation energy
and potential arising from fi to the high-density expansions
at rs = 0.5 a.u., although it is not clear if the interpolation
between unpolarized and polarized systems used here will be
reliable at higher densities.

All data shown in Fig. 11 have been corrected for finite-size
effects, as discussed above. A control variate correction has
also been applied to reduce the statistical uncertainty arising
from the finite sample of twist angles, as discussed in Sec. II.
The optimum parameter values used in the fit of Eqs. (3), (4),
and (5) are given in Table V.

TABLE V. Parameters (in a.u.) obtained from the fit to the
correlation energy as a function of rs and ζ using Eq. (3).

Parameter Value

a 0.575073
b 0.0383567
c −0.00144917
γ0 −0.138971
γ1 −0.0633399
β0

1 1.04452
β0

2 0.311702
β1

1 0.872563
β1

2 0.225783

D. Fits to PCFs

We have performed cubic-spline fits to our PCF data.
The spin resolution across the density range rs = 0.5–20 a.u.
and spin polarizations ζ = 0, 0.34, 0.66, and 1 was well
represented by cubic-spline fits with ten knots for each
spin-resolved PCF. The boundary conditions used were those
of natural splines: second derivatives set to zero at the first
and last data points. An example of the fits obtained is given
in Fig. 12, where we plot raw QMC data together with fits
to the data. The splines reproduce our estimate for the on-top
pair density at r = 0, and are accurate for 0 � r/rs � 3. For
unpolarized and fully polarized systems, we fit the DMC data,
whereas for partially polarized systems, we provide fits to the
extrapolated estimates of the PCFs. Note that we used down
spins as the majority spins in our simulations. We did not
impose any exact results as constraints when performing the
spline fits, in order to give the most accurate fit possible to our
raw data. As discussed above, our QMC data are consistent
with the Kimball cusp conditions, and the spline fits follow the
data closely in all systems studied. On the other hand, our PCF
data inevitably suffer finite-size effects at large r , so various
sum rules requiring integration of the PCF over all space will
not be satisfied exactly.

0 1 2 3
r / rs

0

0.2

0.4

0.6

0.8

1.0

1.2

g αβ
(r

) g↑↑g↑↓g↓↓

FIG. 12. (Color online) Cubic-spline fits to our twist-averaged
extrapolated pair-correlation function data at rs = 20 a.u. and ζ =
0.66. Ten knots were used in the spline fits. Square symbols represent
the raw QMC data points and lines represent our spline fits to those
data. In all other figures, we have shown the raw QMC data rather
than the spline fits displayed here.
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These spline fits are available in the form of a small
FORTRAN 90 program that we have written and which is
included as part of the Supplemental Material accompanying
this article.26 Subroutines from the SLATEC Common Math-
ematical Library48 were used to write this program. SSFs can
be obtained from these data by Fourier transformation.

We also compared fitting schemes previously used to
represent PCF data for these systems, including those proposed
by Ortiz and Ballone,20 and Gori-Giorgi, Sacchetti, and
Bachelet.23 The former scheme struggled to describe the region
around the peak in the PCF with quantitative accuracy. The
latter scheme was successful at high density (for ζ = 0), but
less reliable otherwise.23

IV. CONCLUSIONS

We have investigated ground-state properties of the 3D
HEG using the VMC and DMC methods. Our simulations
cover the density range rs = 0.5–20 a.u. and spin polarizations
ζ = 0, 0.34, 0.66, and 1. We used highly accurate wave
functions incorporating backflow and three-body correlations.
Twist averaging was used to reduce finite-size effects, and we
show that this can be performed efficiently using a control
variate method.

The spin resolution of the PCF and SSF are reported at each
spin polarization studied. At ζ = 0, we obtain good agreement
with previous QMC studies, except for r/rs � 0.5, where
our data are significantly smaller than those of Gori-Giorgi
et al.23 The effects of twist averaging on these quantities are
shown. We report the rs and ζ dependence of the energies for
118-electron HEGs. It is hoped that the higher accuracy and
lower noise than earlier QMC studies that we have achieved,
particularly of the PCFs, will be valuable in, for example,
aiding the construction of nonlocal density functionals. A
small FORTRAN 90 program is available to reproduce spline
fits to our PCF and SSF data.

Note added in proof. Recently, we became aware of
complementary, finite-temperature results for the warm-dense
HEG in the paper by E. W. Brown et al.49
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