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Complex networks are formal frameworks capturing the interdependencies between the elements of large
systems and databases. This formalism allows to use network navigation methods to rank the importance
that each constituent has on the global organization of the system. A key example is Pagerank navigation
which is at the core of the most used search engine of the World Wide Web. Inspired in this classical
algorithm, we define a quantum navigation method providing a unique ranking of the elements of a
network. We analyze the convergence of quantum navigation to the stationary rank of networks and show
that quantumness decreases the number of navigation steps before convergence. In addition, we show that
quantum navigation allows to solve degeneracies found in classical ranks. By implementing the quantum
algorithm in real networks, we confirm these improvements and show that quantum coherence unveils new
hierarchical features about the global organization of complex systems.

T
he search for information in the World Wide Web (WWW) through search engines has turned into a daily
habit and an essential tool to fulfill most of our work duties. An ideal search engine looks for the information
the user is querying amongst billions of webpages in real time, and produces a ranking of the results sorted

according the user expectations. Although not being among the first search engines available, the Google search
engine was the first to achieve these goals efficiently, establishing one of the milestones of the digital era. Its main
novelty was to classify and rank webpages based on the interrelations created between them through the hyper-
links1, rather than using only their intrinsic features (such as the page content). Google’s ranking algorithm,
known as Pagerank2 (PR), is rooted in a diffusion process that mimics the user’s navigation through webpages as
the motion of a random walker following hyperlink pathways.

After Google’s global success, multiple applications of PR navigation have blossomed whenever a large dataset
can be mapped into a complex network encoding the interdependencies between items. Some examples include
the classification of species within ecosystems3 or the evaluation of scientists’ impact in different research
disciplines4. In these examples PR has successfully produced a classification in which the importance of each
element accounts for its status within the whole system. Recent studies5 have shown that what underpins the
success of PR navigation in the classification of network elements according to their global role is the scale-free
nature of most real networks6–8, highlighting the influence that the structural properties of real networks have on
the collective outcome of the dynamical processes taking place on top of them9–15.

Very recently, the dynamical setting of network-based diffusion has been extended to the quantum domain16.
In this framework, quantum randomwalks have already shown their potential for practical purposes as they offer
a quadratic speed up with respect to the classical algorithms for searching in unsorted databasis17,18. Considering
these recent advances, it is tempting to explore the potential application of quantum random walks for ranking
elements in large complex networks, i.e., a quantum rank (QR) algorithm, that improves PR based on the benefits
that quatumness may introduce19. To achieve this challenge we need to solve two important issues, (i) how to
extend the quantum formulation of a walk in a similar way as PR did with classical walks so to find a reliable and
unique ranking reflecting the topology of the network and (ii) how to identify the role that quantum coherence
plays to capture new features about the organization of large complex networks.

In the present work we show how to design a QR navigation as an hybrid classical-quantum walk. Our
theoretical approach relies on a master equation for the walkers motion interpolating between purely quantum
coherent dynamics and the classical diffusion20. We explicitly show that a suitable choice of the master equation
for the walkers motion allows to find a stationary solution yielding a unique and reliable QR. We show that the
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interplay of quantum coherence with the classical hopping dynamics
yields an optimal operation point so that QR navigation becomes
remarkably faster than its classical counterpart. We will further ana-
lyze the effects that quantum coherence produces by comparing the
rankings produced by QR and PR navigations. As a result we show
that QR is able to split the degeneracies found in the ranking of PR
and, more importantly, to unveil hidden hierarchies in the rank of
lowly connected items that escape the resolution of PR.

Results
Quantum versus Classical Random Walks in complex networks.
The architecture of a complex network is described by means of a
collection of N nodes and L edges accounting for the elements of the
system and their pairwise interactions respectively. These latter
interactions are encoded into a N 3 N adjacency matrix A~ aij

� �

,
so that aij 5 1 when a link from i to j exists while aij 5 0 otherwise.
Given this simple formulation one can design a variety of ways for
exploring the network topology, being a random walk the most
simple way to navigate networks.
A random walk is usually described as a time-discrete process. At

each time step, a walker hops from a node i to another node j pro-
vided such connection exists, i.e., aij 5 1. The dynamics can be
formulated in terms of a transition matrixP5 {pij} being the entry
pij the probability that the walker jumps from i to j. For usual random
walks the transition matrix P is defined as Pij 5 aij/ki, where
ki~

PN
j~1 aij is the out-degree of the node i, i.e., the number of links

outgoing from node i. The dynamics of the random walk is mon-
itored by the time evolution of a vector pt~ pti

� �

whose i-th com-
ponent accounts for the probability that the walker is placed at node i
at time t. Then, starting from some initial occupation probability, p0,
the dynamics of the walker follows the time-discrete rate equation:

pti~
X

N

j~1

Pijp
t{1
j , with i~1, . . . ,N: ð1Þ

The time-continuum version of a classical random walk can be also
easily obtained from the above rate equation as:

Lt~p~ P{ð Þ~p, ð2Þ

where is the identity matrix. On both cases, the iteration of Eq. (1)
and Eq. (2) ends up in a stationary state p* 5 limtR‘ pt. This sta-
tionary solution p* is the cornerstone of any diffusionbased ranking
as each of its components p�i accounts for the importance of the
corresponding node.
The usual map between classical and quantum random walks

consists in identifying the jump probabilities (contained in P in
the classical formulation) with ladder operators of a tight-binding
Hamiltonian whereas walkers are described by two level systems, i.e.,
qubits16. Quantumwalks have been discussed in both continuum and
discrete versions ones. However, since they were originally conceived
as implementations of quantum algorithms, all of them share an
important problem regarding the design of a QR: as quantum walks
are reversible, they do not have a stationary solution for the occu-
pation probabilities, thus making the definition of QR in these
schemes quite challenging21 (see Methods for a deeper discussion).
Here we take a different route. In analogy to the classical

Markovian dynamics for the occupation probabilities defined in Eq.
(2), we write its quantum analogue considering the N3 N quantum
density matrix %. In this case, the map between quantum and classical
random walks lies on the fact that the diagonal elements of % account
for the occupation probabilities of each node: ih j% ij i~%ii~pi.
Following this prescription, it turns out that any Markovian quantum
evolution can be written in the form22 (see Methods):

d%

dt
~{i 1{að Þ H, %½ �za

X

i,jð Þ

c i,jð Þ L i,jð Þ%L
{

i,jð Þ{
1

2
L
{

i,jð ÞL i,jð Þ,%
n o

� �

, ð3Þ

where H is the Hamiltonian (H 5 H{) incorporating the (quantum)
coherent dynamics, whereas c(i,j) . 0 and the operators {L(i,j)} (the
so-called dissipators) are the ones responsible of irreversibility. The
parameter a [ ½0, 1� quantifies the interplay between unitary and
irreversible dynamics. The above formulation avoids the aforemen-
tioned problem associated to unitary evolution, i.e., the absence of a
stationary distribution for the quantum occupation probabilities.
Moreover, the irreversible part of Eq. (3) can accommodate any
classical random walk by choosing the definition of the dissipators.
For instance, the usual random walk can be incorporated by choos-
ing: L(i,j) 5 jiæÆjj and c(i,j) 5 Pij. In this case, in the limit a 5 1, the
equations for the diagonal elements, %jj~pj, meet those of the usual
classical walk, Eq. (2). Thus, Eq. (3) interpolates between classical (a
5 1) and purely quantum randomwalks (a5 0). Between both limits
the dynamics incorporates the interplay between classical hopping
and quantum coherence thus making navigation sensitive to non-
local correlations between the nodes and paving the way to a more
global ranking.

Quantum rank. As mentioned previously, once the network
navigation is defined the ranking of its nodes is done by evaluating
each of the components of the stationary distribution, p*. This
stationary distribution corresponds to the eigenvector of the
transition matrix P with (the largest) eigenvalue 1, Pp* 5 p*.
However, the existence and unicity of p* is only guaranteed
provided the transition matrix fulfills the Perron-Frobenius theo-
rem, i.e., it is irreducible and aperiodic23. In order to satisfy
this latter condition in any kind of network topology, the PR
navigation incorporates a long-distance hopping probability to the
usual classical walk. This ingredient transforms the usual transition
matrix, P, into the so-called Google matrix:

G~qPz 1{qð ÞF, ð4Þ

where qg [0, 1] is a parameter whose value is typically set to q5 0.9
and F is the long-distance hopping matrix, Fij 5 1/(N – 1) if i ? j
while Fii 5 0 otherwise. By doing so, the transition matrix G has a
unique eigenvector with maximum eigenvalue 1. Thus, the ranking
of websites is related to the components of the eigenvector
corresponding to the (unique) eigenvalue 1 of the Google matrix,
Eq. (4).
In the quantum case we face a similar problem. The definition of

the dissipators in Eq. (3) with the form of the classical operators, L(i,j)
5 jiæÆjj and c(i,j) 5 Pij, does not guarantee a unique stationary dis-
tribution for any network topology. However, we prove in the
Methods section (see Theorem) that, when dissipators are defined
as L(i,j)5 jiæÆjjwith c(i,j)5Gij (the Google matrix), Eq. (3) has always
a unique stationary solution. In a nutshell, the patching mechanism
used in theGooglematrix is generalized here to the quantum case in a
natural way. As a consequence, by incorporating the PRnavigation in
the irreversible part of Eq. (3) we can compute a reliable QR that
incorporates the effects of coherences in the navigation.

Quantum convergence. We now study the performance of our QR
compared with that of PR. First we focus on one important aspect for
the computation of a rank in large networks: the convergence time, t,
to the stationary state of the navigation dynamics, %�, i.e., the rank.
Being linear, the time evolution for the master equation (3) can be
written in a compact form as _%~L %½ �. Consequently, the evolution is
determined by the spectrum of L and the convergence to the
stationary state is upper-bounded by t 5 jRe[l1] j

–1, with l1 being
the first non-zero eigenvalue of L.
To study the convergence time of QR we have considered two of

the most paradigmatic network topologies: Erdös-Rényi (ER) and
scale-free (SF) networks. These two networks differ in the distri-
bution P(k) of the number of contacts (degree), k, per node. In ER
graphs most of the nodes share the same degree and P(k) is shown to

ð3Þ
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be a Poisson distribution (see Fig. 1.a). However, real-world net-
works follow a SF pattern characterized by a power-law degree dis-
tribution: P(k) , k–c (see Fig. 1.b) where the exponent lies in the
interval 2, c, 3 so that the variability of the degrees found in the
network becomes extremely large.
In Figs. 1.b and 1.e we plot the evolution of t as a function of the

classical-quantum interplay included in the QR navigation [quan-
tified by a in Eq. (3)] for SF and ER networks respectively. We
observe that for a R 0 (approaching the fully-quantum limit) the
value of t diverges, as expected, since in this limit the dynamics
becomes fully-unitary. On the other hand, in the classical limit,
a R 1, the convergence time tQR tends to its classical counterpart,
reaching tPR at a 5 1. The striking result appears for intermediate
values of a: the curve t(a) shows a minimum for some 0, aopt , 1.
Thus, there exists an optimal value aopt pointing out that an hybrid
classical-quantum navigation outperforms significantly the time
needed for ranking with PR. In Figs. 1.c and 1.f we plot an histogram
showing the probability of finding a given value of aopt, obtained after
navigating an ensemble of 50 SF and ER networks of N 5 200,
respectively. This enhancement resembles the quantum stochastic

resonance-like phenomenon24 previously found in other contexts,
such as entanglement generation25 or efficient light-harvesting trans-
port26–28. In our case, it is the competition between the coherent and
the dissipator parts what accelerates the convergence to the station-
ary distribution of walkers, i.e., the ranking. Finally, in Fig. 1.g we
show the scaling of the ratio tQR/tPR as a function of the size N
pointing out that the optimal enhancement is not a matter of the
finiteness of the network, as the value tQR=tPR^0:9 remains roughly
unaltered with N. In addition, Fig. 1.g shows that classical and
quantumwalks belong to the same complexity class. This latter result
is quite expected as the hybrid walk can be continuously deformed
into the fully classical one, by doing a R 1. Since the convergence
time relies on the value of l1 (and it can be found as a perturbation
from the classical limit by making a~1{ with =1), by appealing
continuity, there is not a change in the N-dependence for tQR as
compared to tPR.

Solving PR degeneracies.After providing a reliable definition of QR
that provides a unique classification of nodes, the fast convergence
shown in the previous paragraph supports its feasibility as a
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Figure 1 | Convergence times: QR versus PR. In this figure we show the evolution of the convergence time to the stationary solution of QR, tQR,

as a function of the quantum-classical interplay, a, introduced in the QR navigation. In the top part of the figure we focus on ER graphs in which the

probability, P(k), that a node is connected to k other nodes (the degree distribution) follows a Poisson distribution as show in panel (a). Panel (b) shows

the averaged evolution tQR(a) compared to the convergence time of PR, tPR, in ER graphs ofN5 200 nodes whereas panel (c) shows the probability that a

value aopt is obtained for a single network. It is clear that QR reaches faster the stationary solution (the final rank) for a broad range of a values, obtaining

the maximum outperformance for aopt^0:65. The architecture of SF networks is rather different as shown in their power-law degree distribution, see

panel (d). In panels (e) and (f) we plot the evolution tQR(a)/tPR in SF networks with P(k), k23 andN5 200 nodes and the corresponding distribution of

aopt values obtained respectively.We observe again that for a range of a values QR converges faster than PR to a stationary ranking, reaching themaximum

outperformance at aopt^0:8. Finally, in panel (g) we show, for SF networks, the scaling of the ratio tQR/tPR at aopt with the size of the network, N. As

observed, the former ratio remains roughly constant, thus showing the robustness of the results shown in the previous panels.
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navigation-based ranking method. At this point the important issue
relies on the novel features introduced in the ranking itself by the
interplay of quantum and classical effects that QR incorporates. To
perform a comparison between QR and PR we first rely on a simple
network29 in which a qualitative rank can be made at first sight to
check the output of different rank algorithms. In particular, we will
test the rank provided by three navigation dynamics: (i) the usual
random walk, (ii) PR, and (iii) QR. The simple network is a directed
graph composed of eight nodes (see Fig. 2.a) that can be described as
the sum of a densely connected core (composed of nodes 1, 2, 3 and
4) plus a peripheral cyclic circuit (composed of nodes 5, 6 and 7).
Given the simple structure of this graph, it is easy to have some
insight about the expected ranking. The nodes belonging to the
densely connected core will accumulate most of the walkers’ flow
in the graph while, in the peripheral part, node 5 will receive all the
outgoing flow from the connected core. Therefore, these nodes
should occupy the top positions of a proper ranking algorithm.
In Fig. 2.b we show a table containing the ranks produced by the

aforementioned three navigation schemes. The three ranks show that
the four nodes belonging to the densely connected core obtain the

largest ranks, being node 2 the most central node as it is the unique
element receiving extra-flow from the peripheral part of the graph.
On the other hand, nodes 1 and 4 obtain a similar centrality score
highlighting their equal role within the graph. The differences
between the three navigation schemes show up in the classification
of the peripheral nodes. First, the classical random walk assigns
similar scores to the couples of nodes (5, 7) and (6, 8). This degen-
eracy is a product of some local similarities between the two nodes of
each couple. Nodes 8 and 6 allocate the same incoming flow of
walkers (that coming from node 7) while in the case of nodes 7
and 5 it is clear that all the flow reaching node 5 from the connected
core passes directly to node 7. However, at a global scale, the role of
these four peripheral nodes is not identical, thus challenging the
reliability of the classical walk as a method to capture the differences
between the global role of nodes.
The degenerate rank produced by the classical random walk

demands the use of navigation algorithms with a broader informa-
tion horizon so to unveil the differences in the role played by peri-
pheral nodes at a global scale. PR incorporates this non-local
ingredient by means of the long-range hops incorporated in the
Google matrix (4). From Fig.2.b we observe the former degeneracies
seems to be partially solved by PR since only nodes 6 and 8 remain
with the same scores. Amore reliable ranking is provided by the non-
local nature of QR. First, the two degeneracies are finally distorted
so that each of the 4 peripheral nodes have different scores.
Interestingly, the quantum hierarchy among the peripheral nodes
is headed by node 5 followed by node 7 (the most important node
as ranked by PR) whereas node 6 (a simple connector node between
nodes 7 and 5) remains as the less important node of the system.

QR in real networks. To test the robustness of our previous findings
it is convenient to implement the QR navigation in real-world
networks in which more complex connectivity patterns appear. In
particular, we have considered four real networks of different nature,
namely, the foodweb of the Florida bay ecosystem30 (N 5 128), the
neural network of C. Elegans10,31 (N 5 297), the network of direct
flights between themajor commercial airports in the US32 (N5 500),
and a network of scientific collaborations in the field of network
science33 (N 5 379).
First we revisit the effects that the quantum-classical interplay of

QR causes on the time of convergence to a stationary ranking. In the
top panels of Fig. 3 we have plotted the ratio tQR/tPR as a function of
the classical-quantum interplay a. The curves confirm the improve-
ment in the convergence times shown in Fig. 1 when a moderate
quantum interplay is present in theQRnavigation. In addition to this
enhancement, we observed in Fig. 2 that the introduction of quan-
tumness produces relevant changes between the classifications
obtained with PR and QR. For large networks, the comparison
between QR and PR is not as straightforward as for the simple graph
of Fig. 2. However, a coarse-grained evaluation of the difference
between QR and PR can be obtained by means of the Kendall coef-
ficient34, K, which takes a value K 5 1 for perfect concordance
between two rankings while K 5 0 for null agreement. The panels
in the middle if Fig. 3 show the value of the Kendall coefficient
between the classifications of QR and PR as a function of the
quantum-classical interplay of QR, K(a). We observe that, in all
the cases, the values of K remain large for the values of a in which
QR outperforms PR, but small differences appear as soon as
quantum effects enter into play.
Having quantified the differences that QR introduces in the final

ranking, we now explore in more detail the nature of the changes.
First we tackle the problem of degeneracies to test if, as shown in
Fig. 2, QR provides a classification without less degenerate positions
than classical rankings. In the bottom panels of Fig. 3 we show the
number of nodes occupying each of the positions contained in clas-
sical rankings (RW and PR) and QR. These comparisons reveal that,

Figure 2 | QR versus classical ranks in a small graph. In panel (a) we show
a simple directed graph composed of 8 nodes. This graph can be briefly

described as the sum of a densely connected (complete) subgraph

(composed of nodes 1, 2, 3 and 4) plus a 3-cycle (composed by the closed

circuit 5R 7R 6R 5). These two structures are joined together by means

of a link 3R 5 and a directed path 7R 8R 2. In panel (b) we show the

rankings obtained via two classical navigation schemes, the usual random

walk (RW) and PR with q 5 0.9, and our QR. For the three navigation-

based rankings the first 4 nodes (composing the densely connected subset)

are the most central ones, being headed by node 2 (as it is the only one

receiving extra flux from the peripheral part) and followed by node 3

(being the only one with one outgoing link to the periphery). Note that

nodes 1 and 2 play a similar role and thus they receive the same score

regardless of the navigation method at work. The difference between the

navigation schemes becomesmore evident for the 4 nodes in the periphery.

RW assigns a similar rank to nodes 8 and 6 and the couple 5 and 7, thus the

two last positions of the RW rank are degenerated. However, in these two

cases, these degeneracies are not rooted in any similarity between the roles

of the nodes. This problem is partially solved by PR which is able to unveil

differences in the role of nodes 5 and 7 remaining, again, nodes 8 and 6with

the same score. Finally, QR solves the problem and assigns a different score

to each of the 4 peripheral nodes. Importantly, QR considers node 5 as the

most central element of the periphery, at variance with PR for which this

position was occupied by node 7.
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again, QR splits some of the degeneracies found in the classifications
obtained by classical means. Thus, also in large networks, quantum-
ness produces a finer discrimination of nodes centralities.
Apart from solving degeneracies, the differences between QR and

PR unveiled by the Kendall coefficient of both rankings raise the
interesting question of which nodes are affected when introducing
quantum effects into the PRnavigation. In Figure 4.a we show, for the
case of the US air transportation network, the difference between the
position of a node in the QR and the one assigned by PR as a function
of the position in the first classification. The nodes ranked in the top
part are not affected while most of the rises and falls are concentrated
in the medium and lowest part of the ranking. This is, again, in
agreement with the results found in the small graph in Figure 2.
However, the case of the air transportation network is far more
complex than that of the simple toy graph and we can gain more
insight about the positive and negative effects that QR causes in the
classification of lowly connected nodes.
In Figures 4.b-d we plot the US air transportation network by

coloring each node according to the sign of the difference between
its QR and PR rankings. Those nodes in red have fallen in the QR
(with respect to their position in the PR) whereas, for those nodes in
green, QR has improved their PR score. Finally, those nodes being
roughly at the same position for both PR and QR are colored in
yellow. First we notice that the structure of the network is governed
by a set (central part of the plot) of highly connected nodes (the hubs)
whose degree is remarkably large. This is the set of large-score nodes
whose elements do not suffer any relevant change in their position.
Additionally, we have a set of lowly connected nodes whose connec-
tions are mainly directed to the largest hubs. Most of these nodes are
colored in red since they have been relegated to lower rank positions
by QR. The fall of these nodes is balanced by the raise in QR of
another set of lowly connected nodes (colored in green) located in
the periphery of the network. In Figure 4.e. we analyze this effect in
more detail. The nodes having the largest improvements in their

ranks are those connected to neighbors with large QR and moderate
degree, while the nodes that drop in the ranking are those that are
connected to hubs distributing their influence amongst a large num-
ber of connections. Thus, QR ranks low degree nodes as a product of
their global importance rather than to their local proximity to the
most important elements of the system.

Discussion
In summary, we have proposed a new way to navigate complex net-
works via quantum walkers. Our idea extends classical navigation
processes to the quantum domain, incorporating coherences in the
navigation through an otherwise classical set of nodes. We have first
introduced a framework for the walkers motion that combines the
quantum unitary evolution with the irreversible character of the
classical walk. This hybrid navigation provides a unique stationary
distribution for the occupation probabilities that allow to compute a
reliable quantum rank.
We have shown that the interplay between quantum and classical

features in the random walk dynamics produces a decrease in the
number of navigation steps needed to converge to the stationary state
of the walkers motion, thus making feasible the computation of the
final rank by means of a physical navigation of a network. We
emphasize that QR can be readily implemented without the need
of any quantum hardware, which does not exist yet, going beyond
the current paradigm of quantum algorithms.
The introduction of quantum rules in the walkers also manifests

the effect of quantum coherences in the properties of the rank itself.
First we have shown that QR resolves undesired degeneracies found
in ranks obtained with classical meanings. These degeneracies
mainly affect those lowly connected nodes and it is within this subset
where QR reveals more differences with its classical counterparts.
Whereas those elements occupying the top part of the classical rank
remain as the most central ones for QR, the rest of elements are
subjected to important variations. In particular, we have observed

Figure 3 | Quantitative differences between the classifications ofQR and PR. In this figure we show the quantitative characterization of the performance

of QR in real networks, namely (from left to right): the foodweb of the Florida bay ecosystem, the neural network of C. Elegans, a scientific collaboration

network and the US air transportation system. In each of the top panels we show the evolution of the ratio between the convergence times of QR and PR,

tQR/tPR, as a function of the quantum-classical interplay, a. From these panels we observe, as in Fig. 1, that QR improves the convergence time of PR

reaching the maximum outperformance when aopt , 1. Those panels in the middle compare the rankings obtained by PR and QR by means of their

Kendall coefficient, K, which takes a value K5 1 for a perfect concordance between two classifications whereas K5 0 for null agreement. As the panels

show, K decreases monotonously with a pointing out that the classifications change as quantumness is introduced in the QR. Finally, the bottom panels

represent the degeneracy found in each of the positions of both QR and classical (RW and PR) classifications for the case a5 0.9. The fact that QR yields

rankings with more positions implies that its ranks are less degenerated than those obtained via classical navigation schemes.
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that those elements which are connected to moderately connected
nodes increase their popularity withQRwhile those nodes connected
to the hubs of the network decrease their importance. Thus, quan-
tumness seems to punish the fact of being connected to influential
nodes when this link becomes diluted by the large popularity of the
hub. This punishment is balanced with the increase of the status of
those nodes being connected to moderately central ones. Concisely,
this result unveils the quantum solution to a recommendation
dilemma: quantumness sets nodes recommended by locally import-
ant elements apart from those recommended by hubs which, in its
turn, endorse a huge amount of leaves.
As mentioned above, our algorithm does not rely on a quantum

implementation. Alternatively to the efforts for solving classical com-
plex problems bymeans quantum computers, e.g. finding the protein
native state bymeans of quantum annealing35, our interest here relies
on the new features that quantum rules bring out when solving
classical problems, e.g. exploring and ranking complex networks.
On the other hand, the possible implementation of a quantum nav-
igation method, such as ours, in a quantum machine will open the
path to a more efficient application of quantum rank techniques. To
this aim, and considering the recent advances in quantum annealing
protocols, one should address the optimal mapping of the network
nodes into the (minimal) number of qubits, considering the complex
network topology of the interactions between them.

In addition, our work is also complementary to recent studies on
quantum complex networks focusing on the development of a
quantum internet36. The backbone of these quantum networks is
composed of photon emitters and receivers with the aim of devel-
oping a new technology paradigm based on secure quantum cryp-
tography protocols37. Obviously, as the number of nodes and
connections increases, the quantum information community meets
complex networked structures. This synergy has lead to the emer-
gence of an exciting new field in which classical complex phenomena
such as percolation38,39 or the small-world effect40,41 are revisited and
addressed together with the new quantum machinery underlying
these networks. Here we have opened the door between quantum
and complexity sciences from the other side.We have considered the
actual network configurations and applied a quantum perspective to
the solution of a classical complex network problem, trying to under-
stand whether quantum mechanics may improve the solution to
open problems of inherent complex nature42.

Methods
Markovian quantum master equation and random walks in complex networks.
Here, we discuss the theoretical framework for our algorithm. We introduce the
Markovian quantum master equation (MQME) that generalizes its classical
counterpart into the quantum domain. We demonstrate that for Google type
transitionmatrices, theMQME is relaxing, i.e., it has always a unique stationary state.
Finally we tackle the convergence times for reaching such stationary solution.

Figure 4 | Qualitative differences between the classifications of QR and PR. Panel (a) shows, for each node in the US air transportation network, the

difference between the position assigned by QR and that obtained via PR as a function of the first one. It is clear that for the most central nodes there are

few differences between the position assigned by both navigation schemes. However, for nodes with moderate and low centrality the differences between

QR and PR show up. In panel (b) we plot the US transportation network. The size of the nodes is proportional to their QR score whereas they are colored

in green, yellow and red when the difference between QR and PR positions is positive, zero or negative respectively. In panel (c) and (d) we plot again the

network but filtering those nodes with positive and negative values for the former difference respectively. To gainmore insight, in panel (e) we plot theQR

of each node as a function of the average QR of its nearest neighbors, QRnn, divided by their average degree, knn. The color of each point denotes the

difference in the positions assigned by QR and PR. From this panel we observe that those points in green spans along the horizontal axis denoting that the

nodes that are favored by QR are those connected to nodes with large QR but moderate connectivity [as it can be visualized from panels (b), (c) and (d)].

However, those points in red are localized in the bottom-left corner of the figure pointing out that those nodes punished byQR are connected to extremely

large degree nodes (hubs) as, again, can be easily visualized in panels (b), (c) and (d). Finally, those nodes that are unaffected by QR (yellow points)

correspond to large QR scores.
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To start with, we rewrite themaster equation (2), for a classical Markovian random
process:

d

dt
pi~

X

j

Mijpj ð5Þ

withM~G{ , beingG the Googlematrix. The usual way of quantizing such random
walk consists in introducing the Shrödinger equation dtjyæ 5 2i/ Hjyæ, where the
occupation probabilities pi are replaced by the components Æijyæ of the wave function,
such that,

d

dt
ijyh i~{

i X

j

i H jjjh i j yjh i: ð6Þ

To finish the identification with (5) one sets ÆijHjjæ5Mij. At this point, it is mandatory
to recall that H is an Hermitian operator, namely H5H{, implying that
ÆijHjjæ5ÆjjHjiæ(the matrix M is real). Therefore the above procedure is restricted to
undirected graphs,Mij5Mji. Similar problems arise with the discrete (coined) version
of random walks18. To solve the problem of directionality one can resort to the
Szegedy recipe43. However, in any of the above cases, the evolution is unitary. In other
words, classical-quantum identification is not a straightforward task since classical
Eq. (5) is irreversible while those quantum ones are reversible21.

There is a way of introducing both irreversibility and quantum coherences in a
close way as it was recently pointed20. The idea is to work with Markovian master
equations for the density matrix % rather than with the aforementioned Schrödinger
equation. Being definite, the general theoretical framework is based in a time local
master equation,

d%

dt
~L% ð7Þ

with L being a differential operator encapsulating the standard form in which any
Markovian master equation can be casted in22,

L%~{i 1{að Þ H,%½ �za
X

i,jð Þ

c i,jð Þ L i,jð Þ%L
{

i,jð Þ{
1

2
L
{

i,jð ÞL i,jð Þ,%
n o

� �

, ð8Þ

where c(i,j) . 0 and L(i,j) are linear operators, acting on a finite dimensional linear
(Banach) space: B Hð Þ. The two-index notation (i, j) will be clear now. Equations (7)
and (8) yield an irreversible dynamics where the directionality of links can be readily
implemented. In order to match classical and quantum random walks, we write the
set of equations for the diagonal elements of the density matrix, %. Let us consider a5
1 in (8) and L(i,j) 5 jiæÆjj. Then,

d

dt
%ii~

X

j

cij{dij

� �

rjj: ð9Þ

In this case the equations for the non-diagonal elements, %ij i=jð Þ become decoupled

from the diagonal ones. By simple inspection of (5) and recalling %ii~pi we identify cij
5 Gij so that both the classical equations (2) and the latter (9) match. It is worth
mentioning that, for a 5 1, the non-diagonal elements decay exponentially in time,
thus they do not contribute to the stationary state. Denoting %� the stationary state,
such that dt%

�
~0, it is easy to show (see below for a deeper discussion) that any initial

state will asymptotically approach to %�. Therefore in the discussed limit so far (a5 1)
the stationary state has the non-diagonal elements zero, %�ij~0 i=j, while the diag-

onal elements are equal to the stationary distribution of the classical random walk,
%�ii~p�i .

The latter case is a trivial extension of the classical navigation process, without any
quantum ingredient for the ranking. In general, wewill deal with a? 1.We choose for
the Hamiltonian, Hij 5 1 if the nodes i and j are connected and zero otherwise, in
complete analogy to the identification used in quantumwalks. It should be noted here
that the hamiltonian mixes both diagonal and non-diagonal elements making the
dynamics non-trivial and different from the classical one. Indeed, going to the
limiting case of a 5 0 one finds

d

dt
%ii~{i

X

j

2Hij %ji{%ij
� 	

ð10Þ

where the diagonal and non-diagonal elements are coupled.

Existence and uniqueness of the stationary solution.We now prove a key result for
our purposes: the existence and uniqueness of the stationary solution in the quantum
random walk, %� . In order to do so, we start with the following definition:

Amaster equation (7) with L given in (8) is relaxing if there exists a unique (steady)
state %� such that any initial state %0 converges to %

� for sufficiently large times.

Besides, we recall a Theorem shown by Spohn44:

The master equation (7) with L given in (8) is relaxing if (i) the set {L(i,j)} is self-
adjoint (the adjoint of every L(i,j), namely L

{

i,jð Þ , is inside the set) and (ii) the only
operators commuting with all the L(i,j) are proportional to the identity.

By putting all together, we state:

Theorem. A quantum random walk with master equation (7) and L given in (8),
where L(i,j) 5 jiæÆjj and cij 5 Gij being G the Google matrix (4) is relaxing, i.e., it has
always a stationary state and it is unique.

Proof. We first show that the set is self-adjoint. Given L(i,j) 5 jiæÆjj, its self adjoint is
L
{

i,jð Þ~ jj i ih j~L j,ið Þ . We notice that the Google matrix links the nodes all-to-all.
ThereforeGij? 0;i, j providing that the adjoint operator is also in the set. Finally, be
A an operator on B Hð Þ, with decomposition: A~

P

akl kj i lh j. Make the commutator
with L(i,j):

A,Lij

 �

~

X

k,l

akl kj i lh j, ij i jh j½ �

~

X

l=i,j

ali lj i jh j{ajl ij i lh j
� 	

z aii{ajj
� 	

ij i jh jzaij jj i jh j{a�ij ij i ih j,

since this commutator should be zero for every L(i,j) the only possible solution is that
the non-diagonal elements of aij (i? j) vanish and its diagonal ones are equal, aii5 ajj.
Therefore, A is proportional to the identity and, consequently, we met the two con-
ditions in the Spohn theorem, proving our result.%

Approach to the stationary solution. BeingL time independent, the formal solution
of (8) is

% tð Þ~eLt% t0ð Þ, ð11Þ

given any initial state % t0ð Þ. It turns out thatL can always be decomposed into a direct

sum of Jordan forms22: S{1LS~L 0ð Þ
+L 1ð Þ

+ . . .+L Kð Þ , where,

L kð Þ
~

lk 1 0 . . . 0

0 lk 1 P 0

.

.

.
P P P 0

.

.

.
P P 1

0 . . . . . . 0 lk

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

ð12Þ

and L 0ð Þ
~ 1ð Þ, i.e. a 1 3 1 matrix with entrance 1, corresponding to the stationary

solution (L relaxing) . Written in this way, the exponential yields

eLt~S 1ð Þ+ el1 teN1 t
� 	

+ . . .+ elK teNK t
� 	

S{1 , withNk nilpotent matrices, so that the

convergence to the unique stationary solution is guaranteed since,

limt??~eLt~S 1+0+ . . .+0ð ÞS{1 , see22. The convergence ratio depends on how

fast the blocks elk teNkt approach to zero, so that it is bounded by the value of the
largest eigenvalue (different from zero) l1. This Jordan-Block evolution resembles the
classical case, where the power method is widely used. Similar procedure could be

used here by splitting the evolution in discrete time steps: eLt~P
M
m~1e

Ld withMd5

t. Alternatively, one could study the convergence by means of other methods, e.g. the
proposed quantum adiabatic algorithms45.

We choose to integrate numerically the differential form until the the stationary
solution is reached. We define the convergence time tQR such that for t . tQR then

% tð Þ{%�k kv , with the norm %k k~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i %ii tð Þ{%�iið Þ2
q

. To compare both PR and

QR we take the ratio tQR/tPR, where tPR is the convergence time, integrating the

classical random walk, or equivalently the quantum master equation when a5 1 see

(9). As initial condition we choose rij 5 dij/N.
As a final comment, we highlight that working with densitymatrices, %, involves, in

principle, the integration of N2
3 N2 elements. Thus, the computational cost per

integration step becomes large, as compared with the classical case where matrices
involved are N3N. However, it is possible to overcome this issue by working within
the framework of the quantum stochastic Schrödinger equation that, being equivalent
to our master equation, allows to recover matrices of size N 3 N as in the classical
case46.
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