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We investigate a bunch of D0-branes to reveal their quantum nature from the gravity side. In
the classical limit, it is well described by a non-extremal black 0-brane in type IIA supergrav-
ity. The solution is uplifted to the eleven dimensions and expressed by a non-extremal M-wave
solution. After reviewing the effective action for the M-theory, we explicitly solve the equations
of motion for the near-horizon geometry of the M-wave. As a result, we derive a unique solution
that includes the effect of the quantum gravity. The thermodynamic properties of the quantum
near-horizon geometry of the black 0-brane are also studied by using Wald’s entropy formula.
Combining our result with that of the Monte Carlo simulation of the dual thermal gauge the-
ory, we find strong evidence for the gauge/gravity duality in the D0-brane system at the level of
quantum gravity.
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1. Introduction

Superstring theory is a promising candidate for the theory of quantum gravity, and it plays an impor-
tant role in revealing the quantum nature of black holes. The fundamental objects in superstring
theory are D-branes as well as strings [1], and in the low-energy limit their dynamics are gov-
erned by supergravity. D-branes are described by classical solutions in supergravity, called black
branes [2,3]. A special class of these has an event horizon like black holes and its entropy can be
evaluated by the area law. Interestingly, the entropy can be statistically explained by counting the
number of microstates in the gauge theory on the D-branes [4]. This motivates us to study the
black hole thermodynamics from the gauge theory. Furthermore, it is conjectured that the near-
horizon geometry of the black brane corresponds to the gauge theory on the D-branes [5]. If this
gauge/gravity duality is correct, the strong coupling limit of the gauge theory can be analyzed by
supergravity [6,7].

In this paper we consider a bunch of D0-branes in type IIA superstring theory. In the low-energy
limit, a bunch of D0-branes with additional internal energy are well described by a non-extremal
black 0-brane solution in type IIA supergravity [2,3]. After taking the near-horizon limit, the met-
ric achieves an anti-de Sitter (AdS) black hole-like geometry in 10D space-time [8]. From the
gauge/gravity duality, this geometry corresponds to the strong coupling limit of the gauge theory
on the D0-branes [8], which is described by (1 + 0)-dimensional U (N ) super Yang–Mills the-
ory [9]. This gauge theory has attracted a great deal of attention as a nonperturbative definition of
M-theory [10,11], which is the strong coupling description of the type IIA superstring theory [12,13].
Recently, the nonperturbative aspects of the gauge theory have studied by computer simulation
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[14–24] (see Refs. [25,26] for reviews including other topics). In particular, in Ref. [19], the phys-
ical quantities of the thermal gauge theory, such as the internal energy, are evaluated numerically,
and a direct test of the gauge/gravity duality is performed including the α′ correction to the type IIA
supergravity. Furthermore, if the internal energy of the black 0-brane can be evaluated precisely from
the gravity side including the gs correction, it is possible to give a direct test for the gauge/gravity
duality at the level of quantum gravity [24] (α′ = �2

s is the string length squared and gs is the string
coupling constant).

The purpose of this paper is to derive a quantum correction for the near-horizon geometry of the
non-extremal black 0-brane directly from the gravity side. In order to do this, we need to know an
effective action that includes a quantum correction to the type IIA supergravity. In principle the
effective action can be constructed so as to be consistent with the scattering amplitudes in the type
IIA superstring theory [27], and it is expressed by double expansion of α′ and gs . For example, since
the four-point amplitudes of gravitons at the tree and one-loop levels are nontrivial, there should
exist terms like α′3e−2φt8t8 R4 and α′3g2

s t8t8 R4 in the effective action, respectively [27–36]. These
are called higher derivative terms; t8 represents the products of four Kronecker’s deltas with eight
indices. In particular, we are interested in the latter terms, which give nontrivial gs corrections to
the geometry. These higher derivative terms often play important roles in counting the entropy of
extremal black holes [37,38].

It is necessary that the effective action of the type IIA superstring should possess local super-
symmetry in ten dimensions. Therefore, the supersymmetrization of α′3g2

s t8t8 R4 is very important
[28–30,33,35,36] to understand the structure of the effective action. Although the task is not yet com-
plete, since our interest is in the geometry of the black 0-brane, it is enough to know the terms that
contain the metric, dilaton field, and R–R 1-form field only. Notice that these fields are collected into
the metric in 11D supergravity [39], and the black 0-brane is expressed by an M-wave solution. Then
α′3g2

s t8t8 R4 and other terms, which include the dilaton and R–R 1-form field, are simply collected
into �6

pt8t8 R4 terms in eleven dimensions. Here �p = �s g1/3
s is the Planck length in eleven dimen-

sions. Thus we consider the effective action for the M-theory and investigate quantum corrections
to the near-horizon geometry of the non-extremal M-wave. We show equations of motion for the
effective action and explicitly solve them up to the order of g2

s . The M-wave geometry receives the
quantum corrections, and the thermodynamic quantities for the M-wave are modified. In particular,
the internal energy of the M-wave, including the quantum effect of gravity, is obtained quantitatively.

The organization of this paper is as follows. In Sect. 2, we review the classical near-horizon geom-
etry of the black 0-brane in ten dimensions, and uplift it to that of the M-wave in eleven dimensions.
In Sect. 3, we discuss the higher derivative corrections in the type IIA superstring theory and the
M-theory, and solve the equations of motion for the near-horizon geometry of the non-extremal M-
wave in Sect. 4. In Sect. 5, we evaluate the entropy and the energy of the M-wave up to 1/N 2. We
probe the quantum near-horizon geometry by the D0-brane in Sect. 6 and clarify the validity of our
analyses in Sect. 7. Section 8 is devoted to the conclusion and discussion. Detailed calculations and
discussions on the ambiguities of the higher derivative corrections are collected in the appendices.

2. Classical near-horizon geometry of the black 0-brane

In this section, we briefly review the non-extremal solution of the black 0-brane that carries mass
and R–R charge. In particular, we uplift the solution to eleven dimensions and show that the black
0-brane is described by the M-wave solution.
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In the low-energy limit, the dynamics of massless modes in type IIA superstring theory are
governed by type IIA supergravity. Since we are interested in the black 0-brane that couples to
the graviton gμν , the dilaton φ, and the R–R 1-form field Cμ, the relevant part of the type IIA
supergravity action is given by

S(0)10 = 1

2κ2
10

∫
d10x

√−g

{
e−2φ(R + 4∂μφ∂

μφ
)− 1

4
GμνGμν

}
, (1)

where 2κ2
10 = (2π)7�8

s g2
s and Gμν is the field strength of Cμ. gs and �s are the string coupling con-

stant and the string length, respectively. It is possible to solve the equations of motion by making the
ansatz that the metric is static and has SO(9) rotation symmetry. Then we obtain the non-extremal
solution of the black 0-brane (see, e.g., Ref. [40]):

ds2
10 = −H̃− 1

2 F̃dt2 + H̃
1
2 F̃−1dr2 + H̃

1
2 r2d	2

8,

eφ = H̃
3
4 , C =

(
r+
r−

) 7
2

H̃−1dt,

H̃ = 1 + r7−
r7 , F̃ = 1 − r7+ − r7−

r7 . (2)

The horizon is located at rH = (r7+ − r7−)
1
7 . The parameters r± are related to the mass M0 and the

R–R charge Q0 of the black 0-brane by

M0 = VS8

2κ2
10

(
8r7

+ − r7
−
)
, Q0 = N

�s gs
= 7VS8

2κ2
10

(
r+r−

) 7
2 , (3)

where N is the number of D0-branes and VS8 = 2π9/2


(9/2) = 2(2π)4

7·15 is the volume of S8. Now the
parameters r± are expressed as

r7
± = (1 + δ)±1(2π)215πgs N�7

s , (4)

where δ is a non-negative parameter. The extremal limit r+ = r− is saturated when δ = 0.
Let us rewrite the solution (2) in terms of U = r/�2

s and λ = gs N/(2π)2�3
s , which correspond to

the typical energy scale and ’t Hooft coupling in the dual gauge theory, respectively. The near-horizon
limit of the non-extremal black 0-brane is taken by �s → 0 while U , λ, and δ/�4

s are fixed. Then the
near-horizon limit of the solution (2) becomes [8]

ds2
10 = �2

s

(− H− 1
2 Fdt2 + H

1
2 F−1dU 2 + H

1
2 U 2d	2

8

)
,

eφ = �−3
s H

3
4 , C = �4

s H−1dt,

H = (2π)415πλ

U 7 , F = 1 − U 7
0

U 7 , (5)

where U 7
0 = 2δ

�4
s
(2π)415πλ.

The type IIA supergravity is related to 11D supergravity via circle compactification. In fact, the
11D metric is related to the 10D one as ds2

11 = e−2φ/3ds2
10 + e4φ/3(dz − Cμdxμ)2. The near-horizon

limit of the non-extremal solution of the black 0-brane (5) can be uplifted to eleven dimensions as

ds2
11 = �4

s

(− H−1 Fdt2 + F−1dU 2 + U 2d	2
8 + (�−4

s H
1
2 dz − H− 1

2 dt)2
)
. (6)
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This represents the near-horizon limit of the non-extremal M-wave solution in eleven dimensions.
The solution is purely geometrical and the expressions become simple. Furthermore, in the geomet-
rical part, the quantum corrections to 11D supergravity are under control. This is the reason why we
execute analyses of the solution in eleven dimensions.

3. Quantum correction to 11D supergravity

The 11D supergravity is realized as the low-energy limit of the M-theory. A fundamental object
in the M-theory is a membrane and, if we could take account of the interaction of membranes, the
effective action of the M-theory would become 11D supergravity with some higher derivative terms.
Unfortunately, quantization of the membrane has not yet been completed. It is, however, possible to
derive the relevant part of the quantum corrections in the M-theory by requiring local supersymmetry.
In this section we review the quantum corrections to the 11D supergravity.

The massless fields of 11D supergravity consist of a vielbein ea
μ, a Majorana gravitino ψμ, and a

3-form field Aμνρ . Since we are only interested in the M-wave solution, we only need to take account
of the action that only depends on the graviton:

2κ2
11S(0)11 =

∫
d11x eR, (7)

where 2κ2
11 = (2π)8�9

p = (2π)8�9
s g3

s . Notice that, after dimensional reduction, this becomes the
action (1), which contains the dilation and the R–R 1-form field as well as the graviton in ten
dimensions [39].

Of course there are other terms that depend on ψμ and Aμνρ , which are completely determined
by the local supersymmetry. For example, a variation of the vielbein under the local supersym-
metry is given by δ[e] = [εψ]. Here we use a symbol [X ] to abbreviate indices and gamma
matrices in X , and ε represents a parameter of the local supersymmetry. Then the variation of
the scalar curvature is written as δ[eR] = [eRεψ]. In order to cancel this, we see that a varia-
tion of the Majorana gravitino should include δ[ψ] = [Dε] + · · · and simultaneously there should
exist a term like [eψψ2] in the action. Here ψ2 represents the field strength of the Majorana grav-
itino. By continuing this process, it is possible to determine the structure of the 11D supergravity
completely [39].

Now let us discuss quantum corrections to the 11D supergravity. Since the M-theory is related
to the type IIA superstring theory by dimensional reduction, the effective action of the M-theory
should contain that of the type IIA superstring theory. The latter can be obtained so as to
be consistent with the scattering amplitudes of strings, and it is well known that leading cor-
rections to the type IIA supergravity include terms like [eR4]. This is directly uplifted to the
eleven dimensions and we see that the effective action of the M-theory should include terms
like B1 = [eR4]7. The subscript 7 indicates that there are potentially 7 independent terms if we
consider the possible contractions of 16 indices out of 4 Riemann tensors. (To be more precise,
we have excluded terms that contain Ricci tensor or scalar curvature, since these can be elimi-
nated by redefinition of the graviton. Discussions of these terms can be found in Appendix C.)
As in the case of 11D supergravity, it is possible to determine other corrections by requiring
the local supersymmetry. For example, variations of B1 under the local supersymmetry con-
tain terms like V1 = [eR4ε̄ψ]. In order to cancel these terms, B11 = [eε11 AR4]2 and F1 =
[eR3ψ̄ψ2]92 should exist in the action. The structures of B1, B11, and F1 are severely restricted
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by the local supersymmetry. By continuing this process, it is possible to show that a combina-
tion of terms in B1 is completely determined up to an overall factor [35,36]. The result is as
follows:

2κ2
11S(1)11 = π2�6

p

3 · 284!

∫
d11x e

(
t8t8 R4 − 1

4!
ε11ε11 R4

)

= π2�6
p

3 · 284!

∫
d11x e

{
24
(
Rabcd Rabcd Ref gh Ref gh − 64Rabcd Raef g Rbcdh Ref gh

+ 2Rabcd Rabe f Rcdgh Ref gh + 16Racbd Raebf Rcgdh Reg f h

− 16Rabcd Raef g Rbe f h Rcdgh − 16Rabcd Raef g Rbf eh Rcdgh
)
,
}
. (8)

Here t8 are the products of four Kronecker’s deltas with eight indices and ε11 is an antisymmetric
tensor with eleven indices. Local Lorentz indices are labeled by a, b, . . . = 0, 1, . . . , 10. Although
all indices are lowered, it is understood those are contracted by the flat metric ηab. The Riemann
tensor with local Lorentz indices is defined by Rabcd = eμceνd(∂μωνab − ∂νωμab + ωμa

eωνeb −
ωνa

eωμeb), where ωμab is a spin connection and μ, ν are space-time indices. The overall factor in
Eq. (8) is determined by employing the result of the 1-loop four-graviton amplitude in the type IIA
superstring theory.

Since the near-horizon limit of the M-wave solution (6) is purely geometrical, it is possible to
examine the leading quantum corrections to it from the action (8). Other terms that depend on the
3-form field are irrelevant to the analyses for the M-wave. In summary, the effective action of the
M-theory is described by

S11 = S(0)11 + S(1)11 = 1

2κ2
11

∫
d11x e

{
R + γ �12

s

(
t8t8 R4 − 1

4!
ε11ε11 R4

)}
, (9)

where γ = π2

3·284!
g2

s
�6

s
= π6

2732
λ2

N 2 . Notice that the parameter γ remains finite after the decoupling limit
is taken. After the dimensional reduction, the action (9) becomes the effective action of the type IIA
superstring theory, which includes the 1-loop effect of gravity.

Now we derive equations of motion for the action (9). Although the derivation is straightforward,
we need to labor at many calculations because of the higher derivative terms in the action. Therefore,
in practice, we use the Mathematica code for the calculations. Below we show the points of the
calculations to build the code.

First of all we list the variations of the fields with respect to the vielbein:

δe = −eei
μδe

μ
i = −eηi jδe

i j ,

δωcab = eρcδωρab = (δk
[aηb]iηcj + δk

[aηb] jηci + δk
cηi[aηb] j )Dkδe

i j ,

δRabcd = δeμc Rabμd + δeμd Rabcμ + eμceνdδRabμν = −2δei j Rabi[cηd] j + 2D[cδωd]ab, (10)

δRab = −δei j Rajib + δei j Raiηbj + Dbδω
c

ac − Dcδωba
c,
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where δei j ≡ ei
μδeμj . Then variations of the higher derivative terms are evaluated as

e δ

(
t8t8 R4 − 1

4!
ε11ε11 R4

)

= 24e
{
4(δRabcd)Rabcd Ref gh Ref gh − 64(δRabcd)Rabce Rd f gh Ref gh

+ 8(δRabcd)Rabef Rcdgh Ref gh + 64(δRabcd)Raecg Rbf dh Ref gh

− 64(δRabcd)Rabeg Rcf eh Rd f gh − 64(δRabcd)Ref ag Ref ch Rgbhd

+ 32(δRabcd)Rabef Rcegh Rd f gh
}

= e(δRabcd)Xabcd

= 2eδei j Rabci Xabc
j − 2eXabcd Ddδωcab

∼= 2eδei j Rabci Xabc
j − 2e(δk

aηbiηcj + δk
aηbjηci + δk

cηiaηbj )Dk Dd Xabcdδei j

= 2eRabci Xabc
jδe

i j − 2eDc Dd(Xci jd + Xcjid + Xi jcd)δe
i j

= e(3Rabci Xabc
j − Rabcj Xabc

i )δe
i j − 2eDc Dd(Xci jd + Xcjid)δe

i j

= e
(
3Rabci Xabc

j − Rabcj Xabc
i − 4D(a Db)X

a
i j

b)δei j , (11)

where we have defined

Xabcd = 1

2

(
X ′

[ab][cd] + X ′
[cd][ab]

)
, (12)

X ′
abcd = 96

(
Rabcd Ref gh Ref gh − 16Rabce Rd f gh Ref gh + 2Rabef Rcdgh Ref gh

+ 16Raecg Rbf dh Ref gh − 16Rabeg Rcf eh Rd f gh − 16Ref ag Ref ch Rgbhd

+ 8Rabef Rcegh Rd f gh
)
.

Finally we obtain the equations of motion for the effective action (9):

Ei j ≡ Ri j − 1

2
ηi j R + γ �12

s

{
− 1

2
ηi j

(
t8t8 R4 − 1

4!
ε11ε11 R4

)

+ 3

2
Rabci Xabc

j − 1

2
Rabcj Xabc

i − 2D(a Db)X
a

i j
b
}

= 0. (13)

As mentioned before, the action (9) is not unique due to the ambiguity of field redefinitions, such as
gμν → g′

μν = gμν + γ �12
s R2 Rμν . Therefore, the equations of motion are not unique either. We will

discuss, however, that the physical quantities of the M-wave do not depend on these ambiguities (see
Appendix D).

4. Quantum near-horizon geometry of the black 0-brane

In the previous section, we explained the effective action of the M-theory (9), and derived the
equations of motion (13). In this section we solve them up to the linear order of γ and obtain the
non-extremal solution of the M-wave with quantum gravity correction.

In order to obtain the solution of (13), we relax the ansatz for the M-wave as

ds2
11 = �4

s

(
− H−1

1 F1dt2 + F−1
1 U 2

0 dx2 + U 2
0 x2d	2

8 + (
�−4

s H
1
2

2 dz − H
− 1

2
3 dt

)2)
, (14)

Hi = (2π)415πλ

U 7
0

( 1

x7 + γ

U 6
0

hi

)
, F1 = 1 − 1

x7 + γ

U 6
0

f1,

where i = 1, 2, 3, and hi and f1 are functions of a dimensionless variable x = U
U0

. This ansatz is
static and possesses SO(9) rotation symmetry, and if we take N = ∞, the metric just becomes the
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classical solution (6). By solving the equations of motion (13), we determine the functions hi (x)
and f1(x).

The calculations are straightforward but complicated, so we use the Mathematica code to explicitly
write down the equations of motion. Some of the results are listed in Appendices A and B. From the
output we find that there are five nontrivial equations, which are given by

E1 = −63x34 f1 − 9x35 f ′
1 − 49x41h1 + 49x34(1 − x7)h2 + 23x35(1 − x7)h′

2 + 2x36(1 − x7)h′′
2

+ 98x41h3 + 7x42h′
3 − 63 402 393 600x14 + 70 230 343 680x7 + 1062 512 640 = 0, (15)

E2 = 63x34 f1 + 9x35 f ′
1 + 7x34(9 − 2x7)h1 + 9x35(1 − x7)h′

1 − 112x34(1 − x7)h2

− 16x35(1 − x7)h′
2 − 98x41h3 − 7x42h′

3 − 2159 861 760x7 − 5730 600 960 = 0, (16)

E3 = 133x34 f1 + 35x35 f ′
1 + 2x36 f ′′

1 + 28x34(3 − 10x7)h1 + 7x35(4 − 7x7)h′
1

+ 2x36(1 − x7)h′′
1 − 7x34(5 − 26x7)h2 − 21x35(1 − 2x7)h′

2 − 2x36(1 − x7)h′′
2 (17)

+ 98x41h3 + 7x42h′
3 + 5669 637 120x7 − 8626 383 360 = 0,

E4 = 259x34 f1 + 53x35 f ′
1 + 2x36 f ′′

1 + 147x34(1 − 3x7)h1 + x35(37 − 58x7)h′
1

+ 2x36(1 − x7)h′′
1 + 147x41h2 + 21x42h′

2 + 294x41h3 + 21x42h′
3 (18)

− 63 402 393 600x14 + 133 632 737 280x7 − 71 292 856 320 = 0,

E5 = 49x34h1 + 7x35h′
1 + 49x34h2 − x35h′

2 − x36h′′
2 − 98x34h3 − 22x35h′

3 − x36h′′
3

− 63 402 393 600x7 + 70 230 343 680 = 0. (19)

Here we have defined E1 = 4U 8
0 �

4
s x36γ−1 E00, E2 = 4U 8

0 �
4
s x36γ−1 E11, E3 = 4U 8

0 �
4
s x36γ−1 E22,

E4 = 4U 8
0 �

4
s x36γ−1 E1010, and E5 = 4U 8

0 �
4
s x

65
2 (−1 + x7)−

1
2 γ−1 E010. Note that the above equations

are derived up to the order of γ , and part of γ 0 is zero since the ansatz (14) is a fluctuation around
the classical solution (6).

Now we solve these equations to obtain hi and f1. We will see that hi and f1 are uniquely deter-
mined as functions of x by imposing reasonable boundary conditions. Because the calculations below
are a bit tedious, the results are summarized at the end of this section.

First let us evaluate the sum of E1 and E2:

1

9x28(x7 − 1)
(E1 + E2) = −7x6h1 − x7h′

1 + 7x6h2 − 7

9
x7h′

2 − 2

9
x8h′′

2

+ 518 676 480

x28 − 7044 710 400

x21

=
(

−x7h1 + x7h2 − 2

9
x8h′

2 + 352 235 520

x20 − 19 210 240

x27

)′
= 0. (20)

From this equation h1 is expressed in terms of h2 as

h1 = h2 − 2

9
xh′

2 + c1

x7 + 352 235 520

x27 − 19 210 240

x34 , (21)
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where c1 is an integral constant. Next let us evaluate E5:

1

x28 E5 = 49x6h1 + 7x7h′
1 + 49x6h2 − x7h′

2 − x8h′′
2 − 98x6h3 − 22x7h′

3 − x8h′′
3

− 63 402 393 600

x21 + 70 230 343 680

x28

=
(

7x7h1 + 7x7h2 − x8h′
2 − 14x7h3 − x8h′

3 + 3170 119 680

x20 − 2601 123 840

x27

)′

=
(

14x7h2 − 23

9
x8h′

2 − 14x7h3 − x8h′
3 + 5635 768 320

x20 − 2735 595 520

x27

)′
= 0. (22)

In the last line, we have removed h1 by using Eq. (21). Thus a linear combination of h3 is expressed
in terms of h2 as

14x7h3 + x8h′
3 = 14x7h2 − 23

9
x8h′

2 + c2 + 5635 768 320

x20 − 2735 595 520

x27 , (23)

where c2 is an integral constant. From Eqs. (21) and (23), it is possible to remove h1 and h3 from
E1, E3, and E4. After some calculations, we obtain three equations remaining to be solved:

E1 = −63x34 f1 − 9x35 f ′
1 + 49x34h2 + x35(23 − 30x7)h′

2 + 2x36(1 − x7)h′′
2

− 49c1x34 + 7c2x34 − 41 211 555 840x14 + 52 022 476 800x7 + 1062 512 640 = 0, (24)

E3 = 133x34 f1 + 35x35 f ′
1 + 2x36 f ′′

1

+ 49x34h2 − 7

9
x35(23 − 62x7)h′

2 − 2

9
x36(32 − 53x7)h′′

2 − 4

9
x37(1 − x7)h′′′

2 (25)

− 49c1x34 + 7c2x34 − 125 748 080 640x14 + 301 493 283 840x7 − 37 672 266 240 = 0,

E4 = 259x34 f1 + 53x35 f ′
1 + 2x36 f ′′

1

+ 147x34h2 − 7

9
x35(5 − 26x7)h′

2 − 2

9
x36(32 − 53x7)h′′

2 − 4

9
x37(1 − x7)h′′′

2 (26)

− 147c1x34 + 21c2x34 − 81 366 405 120x14 + 324 970 168 320x7 − 95 670 650 880.

Notice, however, that three functions E1, E3, and E4 are not independent because of the identity

E4 = 2

7
x E ′

1 − 9E1 + 16

7
E3. (27)

This corresponds to the energy conservation, Da Eab = 0. Thus we only need to solve following two
equations:

−1

2
E1 + 1

4
(E3 − E4) = − 1

14
x E ′

1 + 7

4
E1 − 9

28
E3

= −49x34h2 − x35(15 − 22x7)h′
2 − x36(1 − x7)h′′

2 + 7(7c1 − c2)x
34

+ 9510 359 040x14 − 31 880 459 520x7 + 13 968 339 840 = 0, (28)

1

2
(E3 − E4) = −1

7
x E ′

1 + 9

2
E1 − 9

14
E3

= −63x34 f1 − 9x35 f ′
1 − 49x34h2 − 7x35(1 − 2x7)h′

2 + 7(7c1 − c2)x
34

− 22 190 837 760x14 − 11 738 442 240x7 + 28 999 192 320 = 0. (29)
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By solving Eq. (28), we finally obtain h2 as

h2 = 19 160 960

x34 − 58 528 288

x27 + 2213 568

13x20 − 1229 760

13x13

+ c1 − c2

7
+ 2459 520

x6 + c4

3136x7 + 1054 080

(
2 − 1

x7

)
I (x), (30)

I (x) = c3

944 455 680
+ log(x − 1)+ c4

6611 189 760
log(1 − x−7)

−
∑

n=1,3,5

cos nπ
7 log

(
x2 + 2x cos nπ

7 + 1
)

− 2
∑

n=1,3,5

sin nπ
7 tan−1

(
x + cos nπ

7

sin nπ
7

)
, (31)

where c3 and c4 are integral constants. Although the form of I (x) seems to be complicated, its
derivative becomes

I ′(x) = 7

x7 − 1

(
1 + c4 x−1

6611 189 760

)
. (32)

So far there are four integral constants, but these will be fixed by appropriate conditions. In fact it is
natural to require that hi (1) are finite and hi (x) ∼ O(x−8)when x goes to infinity. In order to satisfy
these conditions, it is necessary to choose c2 = 7c1, c3 = 944 455 680π(sin π

7 + sin 3π
7 + sin 5π

7 ),
and c4 = −6611 189 760. Inserting these values into Eqs. (30), (31), and (32), we obtain

h2 = 19 160 960

x34 − 58 528 288

x27 + 2213 568

13x20 − 1229 760

13x13

− 2108 160

x7 + 2459 520

x6 + 1054 080
(

2 − 1

x7

)
I (x), (33)

I (x) = log
x7(x − 1)

x7 − 1
−

∑
n=1,3,5

cos nπ
7 log

(
x2 + 2x cos nπ

7 + 1
)

− 2
∑

n=1,3,5

sin nπ
7

{
tan−1

(
x + cos nπ

7

sin nπ
7

)
− π

2

}
, (34)

and

I ′(x) = 7(1 − x−1)

x7 − 1
. (35)

Note that the function I (x) behaves as

I (x) ∼ − 7

6x6 + 1

x7 − 7

13x13 + 1

2x14 + O(x−15), (36)

when x goes to infinity.
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Now we remove h2 from Eq. (29), and obtain the differential equation only for f1:

1

18x28 (E3 − E4) = −x7 f ′
1 − 7x6 f1 + 819 840I ′ + 3279 360x7(x7 − 1)I ′

+ 3624 512 640

x28 − 3228 113 280

x21 − 5738 880

x14 − 5738 880

x7

+ 22 955 520x6 − 22 955 520x7

=
(

−x7 f1 + 819 840I − 1208 170 880

9x27

+161 405 664

x20 + 5738 880

13x13 + 956 480

x6

)′
= 0. (37)

Then f1 is solved as

f1 = −1208 170 880

9x34 + 161 405 664

x27 + 5738 880

13x20 + 956 480

x13 + 819 840

x7 I (x). (38)

Here the integral constant is set to zero, because we have imposed the boundary condition that
f1(x) ∼ O(x−8) when x goes to infinity. From Eq. (21), h1 is determined as

h1 = 1302 501 760

9x34 − 57 462 496

x27 + 12 051 648

13x20 − 4782 400

13x13

− 3747 840

x7 + 4099 200

x6 − 1639 680(x − 1)

(x7 − 1)
+ 117 120

(
18 − 23

x7

)
I (x). (39)

The integral constant c1 is chosen as zero so as to satisfy h1(x) ∼ O(x−8) when x goes to infinity.
Finally, from Eq. (23), we derive

0 = −x14h′
3 − 14x13h3 + (29 514 240x13 − 33 613 440x6)I (x)

+ (2693 760x7 − 5387 520x14)I ′(x)+ 72 145 920x7 − 67 226 880x6

− 7222 208 000

9x21 + 777 920 416

x14 + 144 127 872

13x7 − 58 072 000

13

=
(
−x14h3 + (2108 160x14 − 4801 920x7)I (x)+ 2459 520x8 − 2108 160x7

+ 361 110 400

9x20 − 59 840 032

x13 − 24 021 312

13x6 − 58 072 000

13
x

)′
. (40)

Thus h3 is expressed as

h3 = 361 110 400

9x34 − 59 840 032

x27 − 24 021 312

13x20 − 58 072 000

13x13

− 2108 160

x7 + 2459 520

x6 + 117 120

(
18 − 41

x7

)
I (x). (41)

The integral constant is set to zero, since this term can be removed by a general coordinate
transformation in the z direction. This corresponds to the gauge transformation on Cμ in ten
dimensions.

Let us summarize the quantum correction to the near-horizon geometry of the non-extremal M-
wave and the black 0-brane. By solving Eqs. (15)–(19), we obtained the quantum near-horizon

10/27

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2014/3/033B04/1500680 by U

.S. D
epartm

ent of Justice user on 16 August 2022



PTEP 2014, 033B04 Y. Hyakutake

geometry of the non-extremal M-wave,

ds2
11 = �4

s

(
− H−1

1 F1dt2 + F−1
1 U 2

0 dx2 + U 2
0 x2d	2

8 + (
�−4

s H
1
2

2 dz − H
− 1

2
3 dt

)2)
, (42)

Hi = (2π)415πλ

U 7
0

(
1

x7 + ε
λ2

U 6
0

hi

)
, F1 = 1 − 1

x7 + ε
λ2

U 6
0

f1.

Instead of γ , we introduced the dimensionless parameter

ε = γ

λ2 = π6

2732 N 2 ∼ 0.835

N 2 , (43)

and the functions hi and f1 were uniquely determined as

h1 = 1302 501 760

9x34 − 57 462 496

x27 + 12 051 648

13x20 − 4782 400

13x13

− 3747 840

x7 + 4099 200

x6 − 1639 680(x − 1)

(x7 − 1)
+ 117 120

(
18 − 23

x7

)
I (x),

h2 = 19 160 960

x34 − 58 528 288

x27 + 2213 568

13x20 − 1229 760

13x13

− 2108 160

x7 + 2459 520

x6 + 1054 080
(

2 − 1

x7

)
I (x),

h3 = 361 110 400

9x34 − 59 840 032

x27 − 24 021 312

13x20 − 58 072 000

13x13 (44)

− 2108 160

x7 + 2459 520

x6 + 117 120
(

18 − 41

x7

)
I (x),

f1 = −1208 170 880

9x34 + 161 405 664

x27 + 5738 880

13x20 + 956 480

x13 + 819 840

x7 I (x).

The function I (x) is defined by Eq. (34). In order to fix the integral constants, we required that hi (1)
are finite and hi (x), f1(x) ∼ O(x−8) when x goes to infinity. After the dimensional reduction to ten
dimensions, we obtain

ds2
10 = �2

s

(
− H−1

1 H
1
2

2 F1dt2 + H
1
2

2 F−1
1 U 2

0 dx2 + H
1
2

2 U 2
0 x2d	2

8

)
, (45)

eφ = �−3
s H

3
4

2 , C = �4
s H

− 1
2

2 H
− 1

2
3 dt.

This represents the quantum near-horizon geometry of the non-extremal black 0-brane.

5. Thermodynamics of the quantum near-horizon geometry of the black 0-brane

Since the quantum near-horizon geometry of the non-extremal black 0-brane was derived in the
previous section, it is interesting to evaluate its thermodynamics. In this section, we estimate the
entropy and the internal energy of the quantum near-horizon geometry of the non-extremal black
0-brane by using Wald’s formula [41,42]. These quantities are quite important when we test the
gauge/gravity duality.

In the following, quantities are calculated up to O(ε2). First of all, let us examine the location of
the horizon xH. This is defined by F1(xH) = 0 and becomes

xH = 1 − ε
f1(1)

7
Ũ−6

0 , (46)

11/27

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2014/3/033B04/1500680 by U

.S. D
epartm

ent of Justice user on 16 August 2022



PTEP 2014, 033B04 Y. Hyakutake

where Ũ0 ≡ U0/λ
1
3 is a dimensionless parameter. The temperature of the black 0-brane is derived

by the usual prescription. We consider the Euclidean geometry by changing the time coordinate
as t = −iτ and require smoothness of the geometry at the horizon. This fixes the periodicity of
the τ direction and its inverse gives the temperature of the non-extremal black 0-brane. Then the
dimensionless temperature T̃ = T/λ

1
3 of the black 0-brane is evaluated as

T̃ = 1

4π
U−1

0 H
− 1

2
1 F ′

1

∣∣∣
xH

/
λ

1
3 = a1Ũ

5
2

0

(
1 + εa2Ũ−6

0

)
, (47)

where a1 and a2 are numerical constants given by

a1 = 7

16π3
√

15π
∼ 0.002 06,

a2 = 9

14
f1(1)+ 1

7
f ′
1(1)− 1

2
h1(1) ∼ 937 000. (48)

Inversely solving Eq. (47), the dimensionless parameter Ũ0 is written in terms of the temperature
T̃ as

Ũ0 = a
− 2

5
1 T̃

2
5

(
1 − ε

2

5
a

12
5

1 a2T̃ − 12
5

)
. (49)

By using this replacement, it is always possible to express physical quantities as functions of T̃ .
Next we derive the entropy of the quantum near-horizon geometry of the non-extremal black

0-brane. In practice, we consider the quantum near-horizon geometry of the non-extremal M-wave
because of its simple expression. Since the effective action (9) includes higher derivative terms, we
should employ Wald’s entropy formula, which ensures the first law of black hole thermodynamics.
Wald’s entropy formula is given by

S = −2π
∫

H
d	8dz

√
h
∂S11

∂Rμνρσ
NμνNρσ , (50)

where
√

h = (�2
s U0x)8�−2

s H1/2
2 is the volume factor at the horizon and Nμν is an antisymmetric

tensor binormal to the horizon. The binormal tensor satisfies NμνNμν = −2 and the nonzero com-
ponent is only Ntx = −�4

s U0 H−1/2
1 . The effective action is given by Eq. (9), and in the formula the

variation of the action is evaluated as if the Riemann tensor is an independent variable, i.e.,

∂S11

∂Rμνρσ
= 1

2κ2
11

(
gμ[ρgσ ]ν + γ �12

s Xμνρσ
)
. (51)

Now we are ready to evaluate the entropy of the quantum near-horizon geometry of the non-
extremal M-wave. Some useful results are collected in Appendix B. By using these, the entropy is
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evaluated as

S = 4π

2κ2
11

∫
H

d	8dz
√

h

(
1 − 1

2
γ �12

s Xμνρσ NμνNρσ

)

= 4π

2κ2
11

∫
H

d	8dz
√

h
(
1 − 2γ �20

s U 2
0 H−1

1 Xtxtx)

= 4π

2κ2
11

∫
H

d	8dz
√

h

(
1 + 40 642 560ε

1

Ũ 6
0 x20

H

)

= 4

49
a1 N 2Ũ

9
2

0

{
1 + ε

(
− 9

14
f1(1)+ 1

2
h2(1)+ 40 642 560

)
Ũ−6

0

}

= 4

49
a

− 4
5

1 N 2T̃
9
5

{
1 + εa

12
5

1

(
−9

5
f1(1)− 9

35
f ′
1(1)+ 9

10
h1(1)+ 1

2
h2(1)+ 40 642 560

)
T̃ − 12

5

}

= a3 N 2T̃
9
5
(
1 + ε a4T̃ − 12

5
)
, (52)

where the numerical constants a3 and a4 are defined as

a3 = 4

49
a

− 4
5

1 = 2
26
5 15

2
5 7− 14

5 π
14
5 ∼ 11.5,

a4 = a
12
5

1

(
− 9

5
f1(1)− 9

35
f ′
1(1)+ 9

10
h1(1)+ 1

2
h2(1)+ 40642560

)
∼ 0.400. (53)

So far we have obtained the entropy for the M-wave. Because of the duality between type IIA string
theory and M-theory, this is equivalent to that of the black 0-brane.

Finally let us derive the internal energy of the quantum near-horizon geometry of the non-extremal
black 0-brane. Wald’s entropy formula is constructed so as to satisfy the thermodynamic laws of
black holes. Then, by integrating d Ẽ = T̃ d S, it is possible to obtain the dimensionless energy Ẽ =
E/λ

1
3 as

Ẽ

N 2 = 9

14
a3T̃

14
5 − ε

3

2
a3a4T̃

2
5 ∼ 7.41T̃

14
5 − 5.77

N 2 T̃
2
5 . (54)

This result includes the quantum gravity effect, and it gives quite a nontrivial test of the gauge/gravity
duality if we can evaluate the internal energy from the dual gauge theory. In fact, this is possible by
employing the Monte Carlo simulation; the result strongly concludes that the duality holds at this
order [24].

The specific heat is evaluated as

1

N 2

d Ẽ

dT̃
= 9

5
a3T̃

9
5 − ε

3

5
a3a4T̃ − 3

5 . (55)

Notice that the specific heat becomes negative in the region where T̃ < (εa4/3)5/12 ∼ 0.4N−5/6.
In this region the non-extremal black 0-brane behaves like a Schwarzschild black hole and will be
unstable. When N = ∞ the instability will be suppressed. This result is also verified from the Monte
Carlo simulation of the dual gauge theory [24].

6. D0-brane probe

In this section, we probe the quantum near-horizon geometry of the non-extremal black 0-brane (45)
via a D0-brane. From the analysis it is possible to study how the test D0-brane is affected by the
background field.
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The bosonic part of the D0-brane action consists of the Born–Infeld action and the Chern–Simons
one. Here we neglect an excitation of the gauge field on the D0-brane, so the Born–Infeld action is
simply given by the pull-back of the metric. We also assume that the D0-brane moves only along the
radial direction. Then the probe D0-brane action in the background of (45) is written as

SD0 = −T0

∫
dte−φ

√
−gμν

dxμ

dt

dxν

dt
+ T0

∫
C

= −T0�
4
s

∫
dt H

− 1
2

2

√
H−1

1 F1 − F−1
1 U 2

0 ẋ2 + T0�
4
s

∫
dt H

− 1
2

2 H
− 1

2
3 . (56)

The momentum conjugate to x is evaluated as

p = T0�
4
s H

− 1
2

2

F−1
1 U 2

0 ẋ√
H−1

1 F1 − F−1
1 U 2

0 ẋ2
, (57)

and the energy of the probe D0-brane is given by

ED0 = pẋ + T0�
4
s H

− 1
2

2

√
H−1

1 F1 − F−1
1 U 2

0 ẋ2 − T0�
4
s H

− 1
2

2 H
− 1

2
3

= T0�
4
s H

− 1
2

2
H−1

1 F1√
H−1

1 F1 − F−1
1 U 2

0 ẋ2
− T0�

4
s H

− 1
2

2 H
− 1

2
3

= T0�
4
s H

− 1
2

1 H
− 1

2
2 F

1
2

1

√√√√
1 +

(
pF

1
2

1 H
1
2

2

T0�4
s U0

)2

− T0�
4
s H

− 1
2

2 H
− 1

2
3

∼ 1

2
H

− 1
2

1 H
1
2

2 F
3
2

1
p2

T0�4
s U 2

0

+ T0�
4
s

(
H

− 1
2

1 H
− 1

2
2 F

1
2

1 − H
− 1

2
2 H

− 1
2

3

)
. (58)

In the final line we have taken the non-relativistic limit. From this we see that the potential energy
for the probe D0-brane is expressed as

VD0 = T0�
4
s

(
H

− 1
2

1 H
− 1

2
2 F

1
2

1 − H
− 1

2
2 H

− 1
2

3

)
. (59)

The first term corresponds to the gravitational attractive force and the second one to the R − R
repulsive force.

When we take N = ∞, the potential energy becomes VD0 = T0�
4
s H−1(

√
F − 1). The part

(
√

F − 1) shows that the gravitational attractive force overcomes the R–R repulsive force. Simi-
larly, when N is finite, we regard

√
F1 as the gravitational attractive force to the probe D0-brane.

The function of
√

F1 is plotted in Fig. 1. From this we see that the gravitational force becomes
repulsive near the horizon xH.

7. Validity of the analyses on the quantum near-horizon geometry

Our analyses so far are based on the effective action (9), which becomes the 1-loop effective action
of the type IIA superstring theory after the dimensional reduction. Since the superstring theory is
defined by the perturbative expansions of α′ and gs , terms with higher powers of these parameters
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Fig. 1. The function
√

F1(x) with F1(x) = 1 − 1/x7 + 0.000 001 f1(x).

also contribute to the effective action. Then our results are valid when the 1-loop effect becomes
dominant compared to other stringy or loop effects. In this section we clarify the valid parameter
region of our analyses.

First let us consider the validity of the type IIA supergravity approximation. From Eq. (5), the
curvature radius ρ and the effective string coupling gseφ at the event horizon U = U0 are evaluated as

α′

ρ2 ∼ Ũ
3
2

0 ∼ T̃
3
5 , gseφ ∼ Ũ

− 21
4

0

N
∼ T̃ − 21

10

N
. (60)

Here we have used the relation Eq. (49) by setting ε = 0. Then the supergravity approximation is
valid when the string length

√
α′ is quite small compared to the curvature radius ρ and the effective

string coupling gseφ is also quite small, i.e., T̃ ∼ 0 and N ∼ ∞.
Now we consider the validity of our 1-loop analyses. From the effective action (9), we derived the

internal energy (54) of the black 0-brane. However, if we include other higher derivative terms in the
effective action, the Lagrangian is expected to be

L ∼ R + (
α′3 R4 + α′5∂4 R4 + · · · )+ g2

s

(
α′3 R4 + α′6∂6 R4 + · · · )

+ g4
s

(
α′5∂4 R4 + · · · )+ · · · + g2n

s

(
α′3+n∂2n R4 + · · · )+ · · · , (61)

where R is the abbreviation of the Riemann tensor. The existence of these terms can be found in
Ref. [43]. By following the calculation of Eq. (52) and using the dimensional analyses (60), the
internal energy will be modified as

Ẽ

N 2 ∼ 7.41T̃
14
5

{
1 +

(
T̃

9
5 + T̃ 3 + · · ·

)
+ 1

N 2

(
−0.779

T̃
12
5

+ 1

T̃
3
5

+ · · ·
)

+ 1

N 4

(
c2

T̃
27
5

+ · · ·
)

+ · · · + 1

N 2n

(
1

T̃
18
5 n− 9

5

+ · · ·
)

+ · · ·
}
. (62)

T̃
9
5 and T̃ 3 come from the α′3 and α′5 terms at tree level, and 1

N 2n correspond to n-loop amplitudes.
Numerical constants are assumed to be O(1) and this is at least true for the 1-loop result. The coef-
ficient c2 at 2-loop will be discussed later. From the above estimation, the 1-loop contribution of
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Fig. 2. Region of
√

10
T̃ 3/2 ≤ N ≤ 1√

10T̃ 21/10 .

−0.779/(N 2T̃
12
5 ) becomes subleading when the following conditions are satisfied:

T̃
9
5

1/N 2T̃ 12/5
= N 2T̃

21
5 ≤ s, T̃

9
5 ≤ s,

1/N 4T̃ 27/5

1/N 2T̃ 12/5
= 1

N 2T̃ 3
≤ s, (63)

where s < 1. Note that the terms at the n-loop (n > 2) are well suppressed from both the second and
third inequalities. The above inequalities are equivalent to

1
√

sT̃
3
2

≤ N ≤
√

s

T̃
21
10

. (64)

Thus our analyses are estimated to be valid in this parameter region.
The case of s = 0.1 is shown in Fig. 2 where, e.g., (T̃ , N ) = (0.02, 1140) is located inside the

region. Then from Eq. (49), we obtain U0 = 2.48 and F1(x) = 1 − 1/x7 + 0.003 57 f1(x). This
shows that the quantum effect becomes important near the event horizon (see Fig. 1).

Notice that the validity of the parameter region obtained in Eq. (64) is roughly estimated. In order
to identify a more precise one, we should determine the coefficient c2 at the 2-loop. Although this is
beyond the scope of this paper, if we suppose that c2 ∼ 0.005, the lower bound in Eq. (64) is enlarged
as 0.0801/

√
sT̃ 3/2 ≤ N . This overlaps with the region N < 0.334/T̃ 6/5 where the specific heat (55)

becomes negative. For example, (T̃ , N ) = (0.02, 30) is inside the overlap region when we choose
s ∼ 1. On the other hand, if we suppose that c2 ∼ 1, the parameter region (64) does not overlap with
that of the negative specific heat. However, as the temperature decreases from region (64) with fixed
N , the 2-loop term dominates the internal energy. Then, if c2 is negative, the internal energy takes a
large negative value because of the negative power in c2T̃ −13/5. Thus we expect c2 to be positive, and
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again the specific heat becomes negative. As a reference, we mention that the numerical simulation
suggests that the 2-loop coeficient becomes c2 = +0.004 59 [24].

8. Conclusion and discussion

In this paper we have studied the quantum nature of the bunch of D0-branes in the type IIA super-
string theory. In the classical limit, it is well described by the non-extremal black 0-brane in type IIA
supergravity. The quantum correction to the non-extremal black 0-brane is investigated after taking
the near-horizon limit.

In order to manage the quantum effect of the gravity, we uplifted the near-horizon geometry of
the non-extremal black 0-brane into that of the M-wave solution in 11D supergravity. These two are
equivalent via the duality between the type IIA superstring theory and the M-theory, but the latter is
purely geometrical and the calculations become rather simple. The geometrical part of the effective
action for the M-theory (9) is derived so as to be consistent with the 1-loop amplitudes in the type
IIA superstring theory, and the quantum correction to the M-wave solution is taken into account by
explicitly solving the equations of motion (13). The solution is uniquely determined and its explicit
form is given by Eq. (45). It is interesting to note that a probe D0-brane moving in this background
would feel a repulsive force near the horizon. This means that the solution includes the back-reaction
of the Hawking radiation.

We also investigated the thermodynamic property of the quantum near-horizon geometry of the
non-extremal black 0-brane. Since the effective action contains higher derivative terms, we examined
the thermodynamic property of the black 0-brane by employing Wald’s formula. The entropy and the
internal energy of the black 0-brane are evaluated up to 1/N 2. The quantum correction to the internal
energy becomes important when N is small. In Ref. [24], the internal energy is also calculated from
the dual thermal gauge theory by using the Monte Carlo simulation, and it agrees with Eq. (54) very
well. This gives strong evidence for the gauge/gravity duality at the level of quantum gravity.

Finally, we give an important remark on the effective action for the M-theory. It contains higher
derivative terms, but these cannot be determined uniquely because of the field redefinitions. In the
appendices we have considered all possible higher derivative terms and have shown that the ambigui-
ties of the effective action have nothing to do with the thermodynamic properties of the near-horizon
geometry of the non-extremal black 0-brane.

For future work, it will be important to derive the quantum geometry of the non-extremal black
0-brane and obtain the solution (45) by taking the near-horizon limit. The result will be reported
elsewhere, but it is really possible. It will also be interesting to examine the quantum correction to
the black 6-brane, which is also described by a purely geometrical object, called the Kaluza–Klein
monopole, in 11D supergravity. To find connections between our results and other approaches to the
field theory on D0-branes is also important [44,45]. Other approaches to probe curvature corrections
by the black brane will also be related to our results in Sect. 6 [46,47]. Since now we can capture the
quantum nature of the near-horizon geometry of the black 0-brane, it would be interesting to consider
a recent proposal to resolve the information paradox on the black hole [48–50].
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Appendix A. Calculations of Ricci tensor and scalar curvature

By using the ansatz (14) for the metric, each component of the Ricci tensor up to the linear order of
γ is calculated as

R00 = γ

4U 8
0 x2�4

s

{
98 f1 + 30x f ′

1 + 2x2 f ′′
1 + 49(2 − 7x7)h1 + 3x(10 − 17x7)h′

1 + 2x2(1 − x7)h′′
1

+ 147x7h2 + 21x8h′
2 + 196x7h3 + 14x8h′

3

}
,

R11 = γ

4U 8
0 x2�4

s

{− 98 f1 − 30x f ′
1 − 2x2 f ′′

1 − 35(1 − 8x7)h1 − 21x(1 − 2x7)h′
1

− 2x2(1 − x7)h′′
1 − 7(9 + 12x7)h2 + 7x(1 − 4x7)h′

2 + 2x2(1 − x7)h′′
2

− 196x7h3 − 14x8h′
3

}
, (A.1)

Rāā = γ

2U 8
0 x2�4

s

{− 14 f1 − 2x f ′
1 − 7(1 − x7)h1 − x(1 − x7)h′

1 + 7(1 − x7)h2 + x(1 − x7)h′
2

}
,

R�� = γ

4U 8
0 x2�4

s

{
98 f1 + 14x f ′

1 + 49(1 − 3x7)h1 + 7x(1 − x7)h′
1

+ 49(1 − x7)h2 + 23x(1 − x7)h′
2 + 2x2(1 − x7)h′′

2 + 196x7h3 + 14x8h′
3

}
,

R0� = γ x3/2
√

x7 − 1

4U 8
0 �

4
s

{
49h1 + 7xh′

1 + 49h2 − xh′
2 − x2h′′

2 − 98h3 − 22xh′
3 − x2h′′

3

}
.

Here we have used � instead of 10 and ā = 2, . . . , 9. The Ricci scalar up to the linear order of γ
becomes:

R = γ

2U 8
0 x2�4

s

{− 161 f1 − 39x f ′
1 − 2x2 f ′′

1 − 98(1 − 3x7)h1 − 3x(10 − 17x7)h′
1

− 2x2(1 − x7)h′′
1 + 49(1 − 4x7)h2 + x(23 − 44x7)h′

2 + 2x2(1 − x7)h′′
2 − 98x7h3 − 7x8h′

3

}
.

(A.2)

Appendix B. Calculations of higher derivative terms

In this appendix we summarize the values of the higher derivative terms appearing in Eq. (13). Note
that we only need to evaluate these terms by using the ansatz (14) with γ = 0, because the equations
of motion are solved up to the linear order of γ . First of all, each component of Rabcd is calculated as

R0101 = − 28

U 2
0 x2�4

s

, R0ā0ā = 7

2U 2
0 x2�4

s

,

R011� = 28
√

x7 − 1

U 2
0 x

11
2 �4

s

, R0āā� = −7
√

x7 − 1

2U 2
0 x

11
2 �4

s

,

R1�1� = −28(x7 − 1)

U 2
0 x9�4

s

, R1ā1ā = − 7

2U 2
0 x9�4

s

, (B.1)

Rā�ā� = 7(x7 − 1)

2U 2
0 x9�4

s

, Rāb̄āb̄ = 1

U 2
0 x9�4

s

.
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We have used � instead of 10 and ā, b̄ = 2, . . . , 9. The scalar curvature and each component of the
Ricci tensor become zero, and each component of Xabcd in Eq. (12) is evaluated as

X0101 = −20 321 280

U 6
0 x20�12

s

, X0ā0ā = − 1270 080

U 6
0 x20�12

s

,

X011� = 20 321 280
√

x7 − 1

U 6
0 x

47
2 �12

s

, X0āā� = 1270 080
√

x7 − 1

U 6
0 x

47
2 �12

s

,

X1�1� = −20 321 280(x7 − 1)

U 6
0 x27�12

s

, X1ā1ā = 1270 080

U 6
0 x27�12

s

, (B.2)

Xā�ā� = −1270 080(x7 − 1)

U 6
0 x27�12

s

, Xāb̄āb̄ = 1192 320

U 6
0 x27�12

s

.

Using these results, we are ready to calculate the higher derivative terms in Eq. (13). The R4 terms
are calculated as

t8t8 R4 − 1

4!
ε11ε11 R4 = 531 256 320

U 8
0 x36�16

s

. (B.3)

The R X terms become

Rabc0 Xabc
0 = −1066 867 200

U 8
0 x29�16

s

, Rabc1 Xabc
1 = 1066 867 200

U 8
0 x36�16

s

,

Rabc�X
abc

� = −1066 867 200(x7 − 1)

U 8
0 x36�16

s

, Rabcā Xabc
b̄ = − 1088 640

U 8
0 x36�16

s

δāb̄, (B.4)

Rabc0 Xabc
� = Rabc�X

abc
0 = −1066 867 200

√
x7 − 1

U 8
0 x

65
2 �16

s

,

and the DDX terms are evaluated as

D(a Db)X
a

00
b = 198 132 480(−47 + 40x7)

U 8
0 x29�16

s

, D(a Db)X
a

11
b = 21 772 80(513 + 124x7)

U 8
0 x36�16

s

,

D(a Db)X
a
��

b = 198 132 480(47 − 87x7 + 40x14)

U 8
0 x36�16

s

, D(a Db)X
a

āb̄
b = 236 234 880(4 − 3x7)

U 8
0 x36�16

s

δāb̄,

D(a Db)X
a

0�
b = D(a Db)X

a
�0

b = 198 132 480(−47 + 40x7)
√

x7 − 1

U 8
0 x

65
2 �16

s

. (B.5)

By inserting these results into Eq. (13), we obtain Eqs. (15)–(19).

Appendix C. Generic R4 terms, equations of motion, and solution

In this appendix, we classify the independent R4 terms that consist of four products of the Riemann
tensor, the Ricci tensor, or the scalar curvature. The R4 terms that include the Ricci tensor or the
scalar curvature cannot be determined from the scattering amplitudes in the type IIA superstring
theory. So in general the effective action and equations of motion are affected by these ambiguities.

First let us review the R4 terms that only consist of the Riemann tensor. Since there are 16 indices,
we have 8 pairs to be contracted. Naively, it seems that there are so many possible patterns. However,

19/27

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2014/3/033B04/1500680 by U

.S. D
epartm

ent of Justice user on 16 August 2022



PTEP 2014, 033B04 Y. Hyakutake

carefully using the properties of the Riemann tensor, such as Rabcd = −Rbcad − Rcabd , it is possible
to show that there are only 7 independent terms:

B1 = Rabcd Rabcd Ref gh Ref gh, B2 = Rabcd Raef g Rbcdh Ref gh,

B3 = Rabcd Rabe f Rcdgh Ref gh, B4 = Racbd Raebf Rcgdh Reg f h,

B5 = Rabcd Raef g Rbef h Rcdgh, B6 = Rabcd Raef g Rbf eh Rcdgh, (C.1)

B7 = Racbd Raef g Rbef h Rcgdh .

In the main part of this paper we considered the R4 terms t8t8 R4 − 1
4!ε11ε11 R4 = 24(B1 − 64B2 +

2B3 + 16B4 − 16B5 − 16B6) that are explicitly written in Eq. (8). In order to derive the equations
of motion, we need to calculate variations of (C.1). These are evaluated as

δB1 = 4(δRabcd)Rabcd Ref gh Ref gh, δB2 = (δRabcd)Rabce Rd f gh Ref gh,

δB3 = 4(δRabcd)Rabef Rcdgh Ref gh, δB4 = 4(δRabcd)Raecg Rbf dh Ref gh,

δB5 = 2(δRabcd)Rabeg Rcf eh Rd f gh + 2(δRabcd)Ref ag Ref ch Rgbhd , (C.2)

δB6 = 2(δRabcd)Rabeg Rcf eh Rd f gh + 2(δRabcd)Ref ag Ref ch Rgbhd − 2(δRabcd)Rabef Rcegh Rd f gh,

δB7 = 4(δRabcd)Raef g Rce f h Rgbhd .

By using these results, we evaluated Eq. (11) and derived the equations of motion (13).
Next let us consider the R4 terms that necessarily depend on the Ricci tensor or the scalar curvature.

Since the procedure for the classification is straightforward, we employ a Mathematica code. As a
result, these are classified into 19 terms:

B8 = Rabcd Rabcd Ref Ref , B9 = Rabcd Rabcd R2, B10 = Rabcd Rbcd f Ref Rae,

B11 = Rabcd Raef g Rbcdg Ref , B12 = Rabcd Rbcde Rae R, B13 = Racbd Rced f Ref Rab,

B14 = Rabcd Rabeg Rcd f g Ref , B15 = Racbd Raebg Rcf dg Ref , B16 = Rabcd Rabe f Rcde f R,

B17 = Racbd Raebf Rced f R, B18 = Racbd Rab Rcd R, B19 = Rabcd Rcde f Rae Rbf ,

B20 = Racbd Rced f Rae Rbf , B21 = Racbd Rae Rbe Rcd , B22 = Rab Rab Rcd Rcd ,

B23 = Rab Rab R2, B24 = Rab Rcd Rac Rbd , B25 = Rab Rac Rbc R,

B26 = R4. (C.3)

Then the effective action (9) is generalized into the form of

S11 = 1

2κ2
11

∫
d11x e

{
R + γ �12

s

(
t8t8 R4 − 1

4!
ε11ε11 R4 +

26∑
n=8

bn Bn

)}
. (C.4)

The coefficients bn(n = 8, . . . , 26) cannot be determined from the results of scattering amplitudes
in the type IIA superstring theory, since we can remove or add these terms by appropriate field redef-
initions of the metric. Therefore it is expected that these terms do not affect physical quantities such
as the internal energy of the black 0-brane. We will confirm this in Appendix D.
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Let us derive equations of motion for the effective action (C.4). The variations of the 19 terms in
(C.3) are evaluated as

δB8 = (δRabcd)
(
2Rabcd Ref Ref + 2Ref gh Ref gh Racηbd

)
,

δB9 = (δRabcd)
(
2Rabcd R2 + 2Ref gh Ref ghηacηbd R

)
,

δB10 = (δRabcd)
(
Rebcd Ra f Ref + Ra f gh Ref gh Rceηbd

)
,

δB11 = (δRabcd)
(− Rebcd Ra f eg R f g − 1

2 Raef g Rce f g Rbd − 1
2 Reghi R f ghi Rea f cηbd

)
,

δB12 = (δRabcd)
(
Rebcd Rae R + 1

2 Raef g Rce f gηbd R + 1
2 Reghi R f ghi Ref ηacηbd

)
,

δB13 = (δRabcd)
(
2Rebf d Rac Ref + Ragch Reg f h Ref ηbd

)
,

δB14 = (δRabcd)
(
Rabeg Rcd f g Ref + 2Rabef Ref gd Rcg + Ref gh Ref ai Rghciηbd

)
,

δB15 = (δRabcd)
(
Raecg Rbf dg Ref + 2Raec f Reg f d Rbg + Ref gh Reagi R f chiηbd

)
,

δB16 = (δRabcd)
(
3Rabef Rcde f R + Ref gh Ref i j Rghi jηacηbd

)
,

δB17 = (δRabcd)
(
3Raec f Rbed f R + Ref gh Reig j R f ih jηacηbd

)
, (C.5)

δB18 = (δRabcd)
(
Rac Rbd R + 2Raec f Ref ηbd R + Ref gh Reg R f hηacηbd

)
,

δB19 = (δRabcd)
(
2Rcde f Rae Rbf + 2Raegh Rcf gh Ref ηbd

)
,

δB20 = (δRabcd)
(
2Rebf d Rae Rcf + 2Rageh Rcg f h Ref ηbd

)
,

δB21 = (δRabcd)
(
Rae Rce Rbd + 2Ra f eg Rce R f gηbd + Rebf d Reg R f gηac

)
,

δB22 = 4(δRabcd)Rac Ref Ref ηbd ,

δB23 = (δRabcd)
(
2Racηbd R2 + 2Ref Ref ηacηbd R

)
,

δB24 = 4(δRabcd)Ref Rae Rcf ηbd ,

δB25 = (δRabcd)
(
3Rae Rceηbd R + R f g Ref Regηacηbd

)
,

δB26 = 4(δRabcd)ηacηbd R3.

Also, as in Eq. (12), we define the Y tensor as

Yabcd = 1

2

(
Y ′

[ab][cd] + Y ′
[cd][ab]

)
, (C.6)

Y ′
abcd = b8

(
2Rabcd Ref Ref + 2Ref gh Ref gh Racηbd

)+ b9
(
2Rabcd R2 + 2Ref gh Ref ghηacηbd R

)
+ b10

(
Rebcd Ra f Ref + Ra f gh Ref gh Rceηbd

)
+ b11

(− Rebcd Ra f eg R f g − 1
2 Raef g Rce f g Rbd − 1

2 Reghi R f ghi Rea f cηbd
)

+ b12
(
Rebcd Rae R + 1

2 Raef g Rce f gηbd R + 1
2 Reghi R f ghi Ref ηacηbd

)
+ b13

(
2Rebf d Rac Ref + Ragch Reg f h Ref ηbd

)
+ b14

(
Rabeg Rcd f g Ref + 2Rabef Ref gd Rcg + Ref gh Ref ai Rghciηbd

)
+ b15

(
Raecg Rbf dg Ref + 2Raec f Reg f d Rbg + Ref gh Reagi R f chiηbd

)
+ b16

(
3Rabef Rcde f R + Ref gh Ref i j Rghi jηacηbd

)
+ b17

(
3Raec f Rbed f R + Ref gh Reig j R f ih jηacηbd

)
+ b18

(
Rac Rbd R + 2Raec f Ref ηbd R + Ref gh Reg R f hηacηbd

)
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+ b19
(
2Rcde f Rae Rbf + 2Raegh Rcf gh Ref ηbd

)
+ b20

(
2Rebf d Rae Rcf + 2Rageh Rcg f h Ref ηbd

)
+ b21

(
Rae Rce Rbd + 2Ra f eg Rce R f gηbd + Rebf d Reg R f gηac

)
+ 4b22 Rac Ref Ref ηbd + b23

(
2Racηbd R2 + 2Ref Ref ηacηbd R

)
+ 4b24 Ref Rae Rcf ηbd + b25

(
3Rae Rceηbd R + R f g Ref Regηacηbd

)+ 4b26ηacηbd R3.

Following the similar calculations in Eq. (11), we finally obtain the generic equations of motion

Ei j ≡ Ri j − 1

2
ηi j R + γ �12

s

{
− 1

2
ηi j

(
t8t8 R4 − 1

4!
ε11ε11 R4 +

26∑
n=8

bn Bn

)

+ 3

2
Rabci Xabc

j − 1

2
Rabcj Xabc

i − 2D(a Db)X
a

i j
b

+ 3

2
Rabci Y

abc
j − 1

2
Rabcj Y

abc
i − 2D(a Db)Y

a
i j

b
}

= 0. (C.7)

In order to evaluate these equations, we need to insert the values of the Riemann tensor (B.1) into
the above. Since the Ricci tensor and the scalar curvature become zero, we obtain Bn = 0, and parts
of b11, b14, b15, b16, and b17 in the Y tensor only contribute to the above equations of motion.

Below we repeat the similar calculations found in Appendix B. Each component of Yabcd is
evaluated as

Y0101 = 1

U 6
0 x27�12

s

{
11 907

2
b11(1 + x7)− 21 609b14(1 + x7)

−3087

2
b15(1 + x7)− 85 176b16 − 10 458b17

}
,

Y0ā0ā = 1

U 6
0 x27�12

s

{
11 907

8
(−1 + 4x7)b11 + 63

4
(5 − 1372x7)b14

−63

4
(17 + 98x7)b15 − 85 176b16 − 10 458b17

}
,

Y011� =
√

x7 − 1

U 6
0 x

47
2 �12

s

{
−11 907

2
b11 + 21 609b14 + 3087

2
b15

}
,

Y0āā� =
√

x7 − 1

U 6
0 x

47
2 �12

s

{
−11 907

2
b11 + 21 609b14 + 3087

2
b15

}
,

Y0�0� = 1

U 6
0 x27�12

s

{
11 907

2
b11 − 21 609b14 − 3087

2
b15 − 85 176b16 − 10 458b17

}
(C.8)

Y1�1� = 1

U 6
0 x27�12

s

{
−11 907

2
b11(2 − x7)+ 21 609(2 − x7)b14

+3087

2
b15(2 − x7)+ 85 176b16 + 10 458b17

}
,

Y1ā1ā = 1

U 6
0 x27�12

s

{
−35 721

8
b11 + 86 121

4
b14 + 7245

4
b15 + 85 176b16 + 10 458b17

}
,
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Yā�ā� = 1

U 6
0 x27�12

s

{11 907

8
b11(−3 + 4x7)+ 63

4
b14(1367 − 1372x7)

+ 63

4
b15(115 − 98x7)+ 85 176b16 + 10 458b17,

Yāb̄āb̄ = 1

U 6
0 x27�12

s

{
11 907

4
b11 − 315

2
b14 + 1071

2
b15 + 85 176b16 + 10 458b17

}
,

where ā, b̄ = 2, . . . , 9. By using these results it is possible to evaluate the higher derivative terms
that depend on the Y tensor in Eq. (C.7). The RY terms are calculated as

Rabc0Y abc
0 = 1

U 8
0 x29�16

s

{
416 745b11 − 1214 514b14 − 71 442b15

}
,

Rabc1Y abc
1 = 1

U 8
0 x36�16

s

{
− 416 745b11 + 1214 514b14 + 71 442b15

}
,

Rabc�Y
abc

� = x7 − 1

U 8
0 x36�16

s

{
416 745b11 − 1214 514b14 − 71 442b15

}
, (C.9)

RabcāY abc
b̄ = 1

4U 8
0 x36�16

s

δāb̄

{
416 745b11 − 1214 514b14 − 71 442b15

}
,

Rabc0Y abc
� = Rabc�Y

abc
0 =

√
x7 − 1

U 8
0 x

65
2 �16

s

{
416 745b11 − 1214 514b14 − 71 442b15

}
,

and DDY terms become

D(a Db)Y
a

00
b = 1701

U 8
0 x36�16

s

{
−7

2
(−459 − 235x7 + 540x14)b11

+ (−6507 − 2397x7 + 6860x14)b14 + 1

2
(−999 − 282x7 + 980x14)b15

+ (−36 504 + 31 772x7)b16 + (−4482 + 3901x7)b17

}
,

D(a Db)Y
a

11
b = 1701

U 8
0 x36�16

s

{
−7(31 + 46x7)b11 + 4(6 + 505x7)b14

+ 1

2
(−75 + 376x7)b15 + 676(−9 + 16x7)b16 + 83(−9 + 16x7)b17

}
,

D(a Db)Y
a
��

b = 1701

U 8
0 x36�16

s

{
−7

2
(1034 − 1455x7 + 540x14)b11

+ (13 724 − 18 897x7 + 6860x14)b14 + 1

2
(2021 − 2742x7 + 980x14)b15

+ 676(47 − 33x7)b16 + 83(47 − 33x7)b17

}
, (C.10)
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D(a Db)Y
a

āb̄
b = −4 + 3x7

U 8
0 x36�16

s

δāb̄

{
1917 027

4
b11 − 6013 035

2
b14 − 559 629

2
b15

− 16 098 264b16 − 1976 562b17} ,
D(a Db)Y

a
0�

b = D(a Db)Y
a
�0

b

=
√

x7 − 1

U 8
0 x

65
2 �16

s

{
59 535

2
(115 − 108x7)b11 − 11 907(1031 − 980x7)b14

− 11 907(73 − 70x7)b15 + 8049 132b16 + 988 281b17

}
.

As mentioned before, only b11, b14, b15, b16, and b17 appear in the calculations.
By using the ansatz (14) and inserting the values of the X and Y tensors into the equations of

motion (C.7), we obtain five independent equations with parameters b11, b14, b15, b16, and b17:

E1 = −63x34 f1 − 9x35 f ′
1 − 49x41h1 + 49x34(1 − x7)h2 + 23x35(1 − x7)h′

2 + 2x36(1 − x7)h′′
2

+ 98x41h3 + 7x42h′
3 − 63 402 393 600x14 + 70 230 343 680x7 + 1062 512 640

+ (25 719 120b11 − 93 350 880b14 − 6667 920b15)x
14 (C.11)

+ (−9525 600b11 + 27 760 320b14 + 1632 960b15 − 432 353 376b16 − 53 084 808b17)x
7

− 21 861 252b11 + 88 547 256b14 + 6797 196b15 + 496 746 432b16 + 60 991 056b17 = 0,

E2 = 63x34 f1 + 9x35 f ′
1 + 7x34(9 − 2x7)h1 + 9x35(1 − x7)h′

1 − 112x34(1 − x7)h2

− 16x35(1 − x7)h′
2 − 98x41h3 − 7x42h′

3 − 2159 861 760x7 − 5730 600 960 (C.12)

+ (4381 776b11 − 27 488 160b14 − 2558 304b15 − 147 184 128b16 − 18 071 424b17)x
7

+ 1285 956b11 + 4531 464b14 + 796 068b15 + 82 791 072b16 + 10 165 176b17 = 0,

E3 = 133x34 f1 + 35x35 f ′
1 + 2x36 f ′′

1 + 28x34(3 − 10x7)h1 + 7x35(4 − 7x7)h′
1

+ 2x36(1 − x7)h′′
1 − 7x34(5 − 26x7)h2 − 21x35(1 − 2x7)h′

2 − 2x36(1 − x7)h′′
2

+ 98x41h3 + 7x42h′
3 + 5669 637 120x7 − 8626 383 360 (C.13)

+ (−11 502 162b11 + 72 156 420b14 + 6715 548b15 + 386 358 336b16 + 47 437 488b17)x
7

+ 15 752 961b11 − 97 423 074b14 − 9025 506b15 − 515 144 448b16 − 63 249 984b17 = 0,

E4 = 259x34 f1 + 53x35 f ′
1 + 2x36 f ′′

1 + 147x34(1 − 3x7)h1 + x35(37 − 58x7)h′
1

+ 2x36(1 − x7)h′′
1 + 147x41h2 + 21x42h′

2 + 294x41h3 + 21x42h′
3

− 63 402 393 600x14 + 133 632 737 280x7 − 71 292 856 320 (C.14)

+ x14(25 719 120b11 − 93 350 880b14 − 6667 920b15)+ x7(−67 631 760b11

+ 252 292 320b14 + 18 370 800b15 + 303 567 264b16 + 37 272 312b17)

+ 47 580 372b11 − 181 898 136b14 − 13 465 116b15 − 432 353 376b16 − 53 084 808b17 = 0,

E5 = 49x34h1 + 7x35h′
1 + 49x34h2 − x35h′

2 − x36h′′
2 − 98x34h3 − 22x35h′

3 − x36h′′
3

− 63 402 393 600x7 + 70 230 343 680 (C.15)

+ x7(25 719 120b11 − 93 350 880b14 − 6667 920b15)

− 25 719 120b11 + 93 350 880b14 + 6667 920b15 − 64 393 056b16 − 7906 248b17 = 0.
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Here we have defined E1 = 4U 8
0 �

4
s x36γ−1 E00, E2 = 4U 8

0 �
4
s x36γ−1 E11, E3 = 4U 8

0 �
4
s x36γ−1 E22,

E4 = 4U 8
0 �

4
s x36γ−1 E��, and E5 = 4U 8

0 �
4
s x

65
2 (−1 + x7)−

1
2 γ−1 E0�.

Equations (C.11)–(C.15) can be solved by following the details in Sect. 4, and the final form of the
solution becomes

h1 =
(

−440 559

4
b11 + 768 775

2
b14 + 53 333

2
b15 + 927 472 b16 + 113 876b17

+1302 501 760

9

)
1

x34 + (
23 814 b11 − 86 436 b14 − 6174 b15 − 57 462 496

) 1

x27

+ 12 051 648

13x20 − 4782 400

13x13 − 3747 840

x7 + 4099 200

x6 − 1639 680(x − 1)

(x7 − 1)

+ 117 120
(

18 − 23

x7

)
I (x),

h2 =
(

−11 907

4
b11 + 315

2
b14 − 1071

2
b15 − 170 352 b16 − 20 916 b17 + 19 160 960

)
1

x34

+ (
23 814 b11 − 86 436 b14 − 6174 b15 − 58 528 288

) 1

x27 + 2213 568

13x20 − 1229 760

13x13

− 2108 160

x7 + 2459 520

x6 + 1054 080

(
2 − 1

x7

)
I (x), (C.16)

h3 =
(

− 11 907

4
b11 + 76 027

2
b14 + 8225

2
b15 − 94 640 b16 − 11 620 b17 + 361 110 400

9

) 1

x34

+ (
23 814 b11 − 86 436 b14 − 6174 b15 − 59 840 032

) 1

x27 − 24 021 312

13x20

− 58 072 000

13x13 − 2108 160

x7 + 2459 520

x6 + 117 120

(
18 − 41

x7

)
I (x),

f1 =
(

440 559

4
b11 − 730 919

2
b14 − 48 685

2
b15 − 889 616 b16 − 109 228 b17

−1208 170 880

9

)
1

x34 + (− 130 977 b11 + 432 810 b14 + 28 728 b15 + 1022 112 b16

+ 125 496 b17 + 161 405 664
) 1

x27 + 5738 880

13x20 + 956 480

x13 + 819 840

x7 I (x).

The function I (x) is given by Eq. (34) and integral constants are determined so as to satisfy that
hi (1) are finite and hi (x), f1(x) ∼ O(x−8) when x goes to infinity. Notice that b11, b14, b15, b16,
and b17 only appear in the coefficients of x−27 and x−34. The solution is reliable up to O(ε2).

Appendix D. Thermodynamics of the black 0-brane with generic R4 terms

In this appendix, we examine the thermodynamics of the quantum near-horizon geometry of the
black 0-brane (C.16) by following the arguments in Sect. 5. Although the solution is modified, the
results obtained up to Eq. (50) do not change. Since the effective action is modified as in Eq. (C.4),
Eq. (51) should be replaced with

∂S11

∂Rμνρσ
= 1

2κ2
11

{
gμ[ρgσ ]ν + γ �12

s (X
μνρσ + Yμνρσ )

}
. (D.1)

25/27

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2014/3/033B04/1500680 by U

.S. D
epartm

ent of Justice user on 16 August 2022



PTEP 2014, 033B04 Y. Hyakutake

The entropy of the quantum near-horizon geometry of the black 0-brane is evaluated as

S = 4π

2κ2
11

∫
H

d	8dz
√

h
(

1 − 1

2
γ �12

s (X
μνρσ + Yμνρσ )NμνNρσ

)

= 4π

2κ2
11

∫
H

d	8dz
√

h
(
1 − 2γ �20

s U 2
0 H−1

1 (Xtxtx + Y txtx )
)

= 4π

2κ2
11

∫
H

d	8dz
√

h
{

1 + εU−6
0

(
40 642 560

− 23 814b11 + 86 436b14 + 6174b15 + 170 352b16 + 20 916b17
)}

= 4

49
a1 N 2Ũ

9
2

0

{
1 + ε

(
− 9

14
f1(1)+ 1

2
h2(1)+ 40 642 560

−23 814b11 + 86 436b14 + 6174b15 + 170 352b16 + 20 916b17

)
Ũ−6

0

}

= 4

49
a

− 4
5

1 N 2T̃
9
5

{
1 + εa

12
5

1

(
−9

5
f1(1)− 9

35
f ′
1(1)+ 9

10
h1(1)+ 1

2
h2(1)+ 40 642 560

−23 814b11 + 86 436b14 + 6174b15 + 170 352b16 + 20 916b17

)
T̃ − 12

5

}

= a3 N 2T̃
9
5
(
1 + ε a5T̃ − 12

5
)
. (D.2)

Notice that f1(1), f ′
1(1), h1(1), and h2(1) depend on b11, b14, b15, b16, and b17. The value of a3 is

given in Sect. 5, and a5 is given by

a5 = a
12
5

1

(
−9

5
f1(1)− 9

35
f ′
1(1)+ 9

10
h1(1)+ 1

2
h1(1)+ 40 642 560

−23 814b11 + 86 436b14 + 6174b15 + 170 352b16 + 20 916b17

)
. (D.3)

It seems that a5 depends on b11, b14, b15, b16, and b17. The explicit calculation, however, shows that
a5 = a4 and the result does not depend on the ambiguities of the effective action. Thus the physical
quantities of the black 0-brane are free from the ambiguities and are uniquely determined.
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