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Distributed quantum information processing requires a reliable quantum memory and a faithful carrier of
quantum information. Atomic qubits have very long coherence times and are thus excellent candidates for
quantum information storage, whereas photons are ideal for the transport of quantum information as they can
travel long distances with a minimum of decoherence. We discuss the theoretical and experimental combina-
tion of these two systems and their use for not only quantum information transfer but also scalable quantum
computation architectures. © 2007 Optical Society of America
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1. INTRODUCTION
Trapped atoms are among the most attractive systems for
scalable quantum computation as they can be well iso-
lated from the environment and manipulated easily with
lasers.1–22 However, as one tries to scale these systems to
many hundreds or thousands of atomic quantum bits (qu-
bits), current experimental setups may be too limited to
deal with the complexity of these very large systems. One
approach to overcome this scaling problem in ion traps is
to shuttle the ions through multizone traps.23–26 In such a
system, quantum gates are performed in entangling zones
of the larger trap structure, and the atoms are shuttled to
other zones for storage or further operations as necessary.
Still, as the number of atoms grows and the dimensions of
the traps shrink, preserving coherence may become ex-
ceedingly difficult.27

Another approach to scaling up atomic quantum com-
putation systems is to use photon-mediated entangle-
ment. With this approach, atoms in many different trap-
ping zones can be entangled without the need for cooling
to the motional ground state or even localization within
the Lamb–Dicke regime. Even though this approach is
typically probabilistic, it has been shown to scale polyno-
mially with 1/Pa–a and n (Pa–a is the success probability
for atom–atom entanglement in a given trial, and n is the
number of qubits),28–30 thus eliminating the need for chal-
lenging cavity-QED techniques necessary for the genera-
tion of deterministic quantum information transfer be-
tween atomic and photonic sources.13,14,22,31 While QED
techniques are not strictly necessary, they can be incorpo-
rated into the protocols described in this paper and can
help to increase the probability of spontaneously emitting
a photon into the mode of interest.

Probabilistic atom entanglement leads to deterministic
quantum computation in a way similar to linear optical
quantum computing where quantum interference of two

photons is used to create quantum gates. By combining
atomic and photonic systems, the benefits of atomic quan-
tum memory32–34 and the quantum communication of
photons are combined. If two photons emitted by two
atomic sources interfere on a beam splitter (BS), then the
appropriate measurement of the photons from the two at-
oms can project the atoms into an entangled state that
can be used as a resource for further quantum informa-
tion processing.

Here, we present a theoretical and experimental over-
view of the entanglement between atomic and photonic
systems. We show the progress toward the generation of
probabilistic remote atom entanglement, and how this en-
tanglement provides a key component for scalable quan-
tum computation. Although work with trapped atomic
ions is highlighted in this paper, all the techniques dis-
cussed are also applicable to neutral atoms and perhaps
even isolated quantum dots.35–39

This paper starts with a general introduction to the en-
tanglement between a single atom and a single photon.
Next, we show how remote entanglement can be created
using atom–photon entangled pairs and is followed by ex-
perimental progress toward this end. The paper concludes
with a discussion on how this approach to remote-atom
entanglement, though probabilistic, can lead to scalable
quantum computation.

2. PROBABILISTIC ENTANGLEMENT
BETWEEN A SINGLE ATOM AND A SINGLE
PHOTON

Consider an atomic system possessing long-lived elec-
tronic states that can be used as a viable qubit and also
having a strong electric dipole coupling to an excited elec-
tronic state. For concreteness, the atomic qubit states are
assumed to be hyperfine levels in the 2S1/2 ground states
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of a single valence electron atom,40 although other atomic
level schemes can be used. We assume the atomic system
has short-lived 2P1/2 and 2P3/2 excited states that sponta-
neously decay exclusively to the 2S1/2 ground state. Simi-
lar systems with decay channels to other electronic states
(such as low-lying 2D states) may also apply but require
the application of radiation driving population from these
states back to the S–P levels.

When a single atom is prepared in one of the excited 2P

states, a single photon can be spontaneously emitted via
multiple decay channels after a mean time of � (the natu-
ral lifetime of the P state) typically in the nanosecond
range. Attributes of the emitted photon from the multiple
decay channels can become entangled with the resulting
2S1/2 ground states of the atom.

The simplest atomic level diagram for this system
(nuclear spin I=1/2) is shown in Fig. 1(a). The main re-
quirement for atom–photon entanglement is to drive the
atom to a state with multiple decay channels, which re-
sult in different levels of the atomic ground state �Si�. The
resulting (unnormalized) state of the photon and atom is

� = �
i,j,�m

Ci,j,�m�Si���j����m�, �1�

where Ci,j,�m are atomic Clebsch–Gordon (CG) coeffi-
cients, �j are the photon frequencies, and ��m are the
photon polarizations.

The photons are emitted in a specific radiation pattern
depending on the change in angular momentum of the
atom along the quantization axis, �m (defined by an ap-
plied magnetic field of typically a few Gauss [Fig. 1(g)]).
For �m=0, the (unnormalized) polarization state of a

spontaneously emitted photon is ��0�=−sin ���̂� and for

�m= ±1, the states are ��±1�=e±i��cos ���̂�±i��̂�� /�2,
where � and � are spherical polar and azimuthal angles of
the emitted photon’s wave vector with respect to the

quantization axis, and �̂ and �̂ are their associated
spherical coordinate unit vectors. Based on these formu-
las, there are a number of protocols, which are good can-
didates for atom–photon entanglement, five of which are
illustrated in Figs. 1(b)–1(f).

Ideally, the atom will decay to two different 2S1/2 levels
via two distinct decay channels of distinguishable photon
qubit states (either polarization or frequency states). Po-
larization qubits typically require the photon to be emit-
ted in a specific direction. One convenient choice is for a
photon emitted perpendicularly to the dipole axis ��
=� /2�. In this case, the �m= ±1 radiation is linearly po-
larized and orthogonal to the �m=0 radiation. Another
possibility is emission along the quantization axis ��=0�.
Here, no �m=0 photons are emitted due to the radiation
intensity pattern [Fig. 1(g)]; whereas the �m= ±1 photons
have opposite (orthogonal) helicity. With polarization qu-
bits, single-qubit rotations are easily accomplished via
quarter- and half-wave plates, and qubit state detection is
done with polarizing BSs and single-photon detectors.

One possible decay scheme is shown in Fig. 1(b), where
the 2P3/2 �2,1� state is prepared. From here, the atom
spontaneously decays back to either the 2S1/2 �1,0� (�↓�)
state while emitting a 	+-polarized photon or to the 2S1/2

�1,1� (�↑�) state while emitting a �-polarized photon (with

identical CG coefficients). With this decay scheme, the
photon polarizations are orthogonal when viewed perpen-
dicularly to the quantization axis, with the � decay pho-
ton polarized parallel to the quantization axis (defined as
�V�), and the 	+ decay photon polarized perpendicularly to
the quantization axis (defined as �H�). The resulting

atom–photon entangled state is �1/3�↓ ��H�+�2/3�↑ ��V�,
where the different prefactors come from the spatial ra-
diation intensity modes for �m=−1 and �m=0 transi-
tions. Although this state is not a maximally entangled
Bell state, it is still sufficient for multiatom entanglement
experiments as shown later.

Figures 1(c) and 1(d) show similar decay schemes,
which give rise to entanglement between the atomic qubit

Fig. 1. Possible schemes for atom–photon entanglement. (a) En-
ergy level diagram for an atom with nuclear spin I=1/2 and
magnetic moment 
I�0. (b) Decay scheme unique to the 2P3/2
level with two possible decay channels. If the photon is emitted
perpendicularly to the quantization axis, the polarization modes
are linear and orthogonal. (c) Decay scheme consisting of three
decay channels where viewing along the quantization axis elimi-
nates the photon from the �m=0 decay channel due to the radia-
tion pattern, and the �m= ±1 photons have orthogonal circular
polarizations. (d) Same decay scheme as (c) but viewed perpen-
dicularly to the quantization axis. The �m=0 photon decay chan-
nel is linear and orthogonal to the �m= ±1 decay channels. After
decay, the �1,−1� and �1,1� can be coherently combined in the �0,0�
state establishing the atomic qubit. (e) Two ��m�=1 decay chan-
nels with the same polarization comprise a photonic frequency
qubit. The �m=0 photon can be eliminated by a polarizer or by
the radiation pattern if viewed along the quantization axis. (f)
Two �m=0 decay channels with the same polarization and dif-
ferent frequencies. Viewed perpendicularly to the quantization
axis, the �m= ±1 photons are eliminated via a polarizer. As de-
scribed in the text, this decay scheme can be used to perform
quantum gates between the atom and the photon. [Note that
cases (c)–(f) also apply to the 2P3/2 levels.] (g) Radiation emission
patterns for the �m=0 and �m= ±1 decay channels defined by a

magnetic field B� .
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and the photon polarization qubit. In both of these
schemes, the atom is prepared in the 2P1/2 �0,0� (or 2P3/2

�2, 0�) state with three decay channels. Along the quanti-
zation axis [Fig. 1(c)], no �m=0 photons are detected due
to the radiation pattern, and the �m= ±1 photons have
orthogonal circular polarizations. The resulting polariza-
tions can be converted into the �H�– �V� basis with a

quarter-wave plate creating the ��↓ ��H�+ �↑ ��V�� /�2 Bell
state. Similarly, if observed perpendicularly to the quan-
tization axis [Fig. 1(d)], the polarization of the �m=0 de-
cay channel is orthogonal to the �m= ±1 decay channels.
While this results in populating three atomic levels, �1,
−1� and �1,1� can be coherently combined in the �0,0� state
transferring the population to the clock qubit states.40

In addition to photon polarizations, two resolved fre-
quencies can also be used for the photonic qubit. As com-
pared with polarization qubits, frequency qubits can be
difficult to manipulate, as it is much more challenging to
separate and detect frequency components (typically
separated by a few gigahertz for atomic systems) than to
measure different polarization modes. However, direct
measurement of the photon frequency qubits is possible
by using a Mach–Zehnder interferometer with a path
length difference equal to c /2��, where �� is the fre-
quency splitting of the photonic qubit. Qubit rotations can
also be performed by changing the path length difference
of the interferometer. One technical challenge for further
atomic state rotations is synchronization of the photon ar-
rival time with the free evolution of the atomic hyperfine
qubit (1/��=100 ps for ��=10 GHz), which may be fea-
sible using very fast electronics and detectors. However,
direct diagnosis of the photonic qubit is not necessary
when performing remote-atom entanglement, as will be
shown later.

With remote entanglement, frequency qubits are ex-
pected to be more robust than polarization qubits. Closely
spaced frequency components of the same polarization
have essentially zero dispersion in typical optical paths
and thus are highly insensitive to phase jitter and bire-
fringence inherent in optical paths.41–47 Furthermore, be-
cause these frequency qubit states have the same spatial
emission patterns, efficient mode matching is possible
even with an increased collection solid angle.30

One scheme using frequency qubits is shown in Fig.
1(e), where an atom prepared in the 2P1/2 �1,1� state de-
cays to the 2S1/2 �1,0� and �0,0� states emitting a photon
with a single polarization but in a superposition of differ-
ent frequencies. Here, a �-polarized photon to the 2S1/2

�1,1� state can be eliminated via a polarizer or by detect-
ing along the quantization axis resulting in the atom–

photon entangled state ��↑ ���↑�+ �↓ ���↓�� /�2.
While either photonic qubit allows for the creation of

entanglement between atoms and photons, frequency qu-
bits further enable the possibility to propagate prior su-
perposition or entanglement of the atom to the photon,
which can be used for quantum gates.30 Consider the
setup illustrated in Fig. 1(f), where an atom (of half-
integer I) is initially prepared in a superposition of the
magnetic field insensitive clock qubit states �F ,mF=0�
��↑ �, and �F+1,mF=0���↓ �. Upon excitation with a
�-polarized laser pulse, the atom can be coherently driven

to the corresponding clock qubit states in the excited 2P1/2

levels,48,49 �F�+1,mF�
=0���↑��, and �F� ,mF�

=0���↓�� re-
spectively, where F�=F. Cross coupling between the levels
�↑ �↔ �↓�� and �↓ �↔ �↑�� is prohibited by selection rules. Af-
ter spontaneous emission of a �-polarized photon into the
appropriate mode (with �m= ±1 photons eliminated via a
polarizer), the atom and photon are entangled in the state
c↑�↑ ���↑�+c↓�↓ ���↓�, where c↑ and c↓ correspond to the ini-
tial superposition amplitudes of the atom before excita-
tion.

For any of the atom–photon entanglement schemes de-
scribed above, the probability of detecting the entangle-
ment in a given trial is less than unity, Pa–p�pep�1.
Here, pe is the probability of single photon emission
(atomic excitation), and p= f�T�� /4�� is the probability
of a photon being detected in the desired spatial mode,
where f=I� / �I� is of order unity and describes the inten-
sity of the atomic emission pattern into the light collec-
tion solid angle � compared to the average emission in-
tensity over all space, � is the quantum efficiency of the
single-photon detectors, and T is the optical transmission.
This results in an atom–photon entanglement success
rate of Ra–p=Pa–p /Trep, where the repetition time Trep can
be of the order of the excited state lifetime, �.

Ideally, Pa–p could approach unity. The excitation prob-
ability could be near unity by using an ultrafast laser
pulse �pe	1� as discussed in more detail later. One could
also increase the collection efficiency of scattered photons
by placing the atom within an optical cavity. This could
potentially allow for the collection of all scattered pho-
tons, effectively allowing � /4� to approach unity with-
out sacrificing fidelity.17,22,50,51 Photon detector efficien-
cies can also be near perfect.52–54 Nonetheless, the success
probability on a given trial is assumed in the following
discussions to be p�1.

3. ENTANGLING TWO ATOMIC QUBITS
THROUGH INTERFERENCE OF PHOTONS

Atoms separated by a distance too large for significant
atom–atom interactions may instead be entangled via
their emitted photons. Protocols that accomplish this re-
quire the ability to mode match photons produced by two
atoms such that, after a BS, the photons from each atom
are indistinguishable.55–57

In one such protocol, proposed by Cabrillo et al.,55 two
atoms are each prepared in a known ground state �↓� of a
three-level � system [Fig. 2(a)]. The two atoms are then
simultaneously weakly driven �pe=��1� to the excited
state �e� from where the atom will decay either to the
original state or to a second ground state �↑�. After the
weak excitation pulse, the two atoms are each in the (un-

normalized) state �↓ �+���e� or for atoms a and b: ��↓ �a

+���e�a� � ��↓ �b+���e�b�= �↓ �a�↓ �b+���↓ �a�e�b+���e�a�↓ �b

+��e�a�e�b. For successful atom–atom entanglement, a
single photon must be detected from one of the two atoms,
where the detector is only sensitive to the �e�→ �↑ � decay
channel. If the atomic excitation is sufficiently small such
that the probability of both atoms emitting a photon is
negligible, �2�2�, then by the projection postulate, after
detection of the single photon, the atoms are in the en-
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tangled state ��↓ �a�↑ �b+ei��↑ �a�↓ �b� /�2 where the phase
�=k�x comes from the optical path length difference be-
tween each atom and the detector.

One limitation to the entanglement fidelity achievable
with this protocol is the probability of multiple photon
emissions. By choosing ��1, this probability is lowered
but at the expense of lowering the entanglement success
probability. This protocol also requires that the atoms
must be well localized such that the path length the pho-
ton travels to the detector is known much better than the
wavelength of the emitted photon.58,59 Otherwise, the
phase in the final entangled state will be unknown and
will ruin entanglement. Similarly, if an atom experiences
a recoil upon emission, the evidence of which atom emit-
ted the photon will again ruin the entanglement fidelity.
These last two restrictions, however, may be overcome if
the atoms are localized to well within the Lamb–Dicke
limit.

A more robust two-photon protocol for remote-atom en-
tanglement, not requiring localization within the Lamb–
Dicke limit and insensitive to the photonic phase, was
proposed independently by Duan and Kimble56 and Si-
mon and Irvine.57 The atomic energy levels for this ap-
proach are the same as the previous protocol, but the ex-
cited state is prepared with arbitrarily high probability

and requires the coincident detection of two photons, one
from each atom [Fig. 2(b)]. The excited state has two de-
cay channels with distinguishable photonic qubit modes—
either polarization or frequency modes. After simulta-
neous excitations, the atoms each emit a single photon
and are in the state:

1

2
��↓�a��↓�a + �↑�a��↑�a� � ��↓�b��↓�b + �↑�b��↑�b�

=
1

2
���+�atom��+�photon + ��−�atom��−�photon

+ ��+�atom��+�photon + ��−�atom��−�photon�, �2�

where ��↓� and ��↑� represent the photonic qubit, and

��±�atom= ��↑ �a�↓ �b± �↓ �a�↑ �b� /�2, and ��±�atom= ��↑ �a�↑ �b

± �↓ �a�↓ �b� /�2 are the maximally entangled Bell states for
the atoms (with similar definitions for the photons). If the
two photon modes are matched on a 50/50 BS, then they
will exit on different ports only if they are in the antisym-

metric state ��−�photon= ���↑�a��↓�b− ��↓�a��↑�b� /�2 respect-
ing the symmetry of the overall photonic wave function.60

Therefore, coincident photon detection in the two output
ports of this BS projects the atoms into ��−�atom [Fig. 2(c)].
Additionally, with a polarizing BS placed in either output
port, it is possible to detect the (polarization qubit) pho-
tons in the state ��+�photon thus projecting the atoms into
the state ��+�atom [Fig. 2(d)]. For the other two photonic
Bell states ��±�photon, both photons always go to one detec-
tor and thus cannot herald a unique entangled state of
the atoms.57

For high fidelity atom–atom entanglement, it is impor-
tant to emit only a single photon from each atom. With
atom–photon entanglement, good entanglement fidelities
can still be obtained using weak cw excitations, where the
probability of spontaneously emitting two photons is p2e

=pe
2 /2. Hence, when detecting a single photon, the prob-

ability of a second emitted photon, potentially affecting
the fidelity of the entanglement, is only pe /2. However, in
the two photon atom–atom entanglement protocol, the
probability of two photons being detected from one atom
is of the same order as detecting two photons from differ-
ent atoms (discussed in more detail in the next section).
Emitting only a single photon requires the excitation
pulse duration to be much shorter than the excited state
lifetime and allows for p2e→0. In addition to eliminating
multiple excitations, a fast excitation pulse can also allow
for near-unit-excitation probability �pe	1�, which can
lead to a significant increase in entanglement success
probability.

With the right parameters, one could allow for quan-
tum gates between the atoms using this protocol.30 For
this, the choice of pulse length (bandwidth) must allow for
unique simultaneous excitation of all hyperfine states.30

Therefore, the pulsed laser bandwidth needs to be larger
than the largest hyperfine splitting but smaller than the
fine structure splitting to eliminate coupling to the differ-
ent excited state levels (Fig. 3).

Since the probability of detecting a single emitted pho-
ton is typically low, the requirement to detect two such
photons can make this protocol significantly slower than
the single-photon protocol. However, with the possibility
to considerably increase the effective photon collection

Fig. 2. Entanglement schemes for two remotely located atomic
qubits. (a) In the single-photon protocol by Cabrillo et al. (Ref.
55), each atom is weakly excited with a probability � from the
ground state �↓� to the excited state �e�. The photon detectors are
only sensitive to the �e� to �↑� decay, and a detection of a single
photon projects the atoms into the entangled state ��↓ �a�↑ �b

+ei��↑ �a�↓ �b� /�2. (b) In the two-photon protocol, each atom is pre-
pared in the excited state with two decay channels giving rise to
two distinguishable photonic qubit states. (c) Detection setup
suitable for either entanglement protocol. With the protocol by
Cabrillo et al., only one of the two detectors detects a photon;
whereas the two-photon protocol requires coincident detection on
each detector projecting the atoms into the entangled Bell state

��−�atom= ��↑ �a�↓ �b− �↓ �a�↑ �b� /�2. (d) Alternative setup when using
polarization qubits in the two-photon protocol. Coincident detec-
tion between D1 and D3 or D2 and D4 projects the atoms into the
state ��−�atom, whereas coincident detection between D1 and D2

or D3 and D4 results in ��+�atom= ��↑ �a�↓ �b+ �↓ �a�↑ �b� /�2.
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solid angle via an optical cavity, the latter approach can
be comparable in success probability (or even greater if
the atoms are excited with unit probability) due to the in-
trinsic limitation of pe�1 in the single-photon protocol.

4. COUPLING PHOTON MODES WITH A
BEAM SPLITTER

The central component of the photonic coupling used to
entangle atomic qubits is the interference of photons on a
BS. This involves single photons entering the two input
ports of the BS as shown in Fig. 4. If the spatial and tem-
poral modes of the two photons coincide on the BS, there
are two indistinguishable ways for the photons to emerge
in separate output ports: both photons are transmitted
through the BS, and both photons are reflected from the
BS [Figs. 4(d) and 4(e)]. It is the destructive interference
of these two amplitudes60 that can project the atoms into
an entangled state.

We consider the general interference of two photonic
modes on a BS, which can be conveniently described by
effective angular momentum rotation operators.61 As
shown in Fig. 4(a), spatial modes a and b are depicted by
the two straight paths through the BS, and the BS trans-
fers photons between these two modes. Given n and m

photons in respective modes a and b before the BS, the
action of the BS is identical to rotations within an effec-
tive J=N /2 angular momentum system where N=n+m.
Formally, the two-mode input state �n�a�m�b evolves to

�n�a�m�b → e−i�Ĵy�n�a�m�b, �3�

where the rotation angle � is � times the reflectivity R of

the lossless BS, and Ĵy=−i�â†b̂− âb̂†� /2.61 The photon an-
nihilation and creation operators, â and â† for modes a

and b̂ and b̂† for mode b, follow the usual bosonic commu-

tation relations 
â , â†�= 
b̂ , b̂†�=1.
We write down the evolution of two-mode photonic

states for up to N=2 total photons using angular momen-
tum rotation matrices.62 Obviously, the trivial case of N

=0 photons does not evolve. For a total of N=1 photon in
the two input modes, we find that the equivalent spin-1/2
system evolves as

��0�a�1�b

�1�a�0�b
 → � cos

�

2
sin

�

2

− sin
�

2
cos

�

2
���0�a�1�b

�1�a�0�b
 . �4�

For N=2 photon input states, we similarly find

�
�0�a�2�b

�1�a�1�b

�2�a�0�b

� → �
1

2
�1 + cos ��

1

�2
sin �

1

2
�1 − cos ��

− 1

�2
sin � cos �

1

�2
sin �

1

2
�1 − cos ��

− 1

�2
sin �

1

2
�1 + cos ��

�
��

�0�a�2�b

�1�a�1�b

�2�a�0�b

� . �5�

As discussed previously, when an atom emits a photon,
attributes of the photon (e.g., polarization or frequency)
can become entangled with the atomic qubit, spanned by

Fig. 4. (a) Spatial modes a and b are straight paths through the
BS, and the BS interferes with these two modes. (b)–(e) Four pos-
sible output modes of two photons entering a BS from different
ports. A negative phase is acquired only upon reflection from low
to high index of refraction—mode a in (c) and (e).

Fig. 3. Energy levels (not to scale) and laser bandwidth require-
ments for the generation of a high efficiency single-photon source
(atomic values shown are for 111Cd+). For simultaneous excita-
tion of all hyperfine states, the bandwidth of the laser pulse must
be much larger than the largest hyperfine splitting but smaller
than the fine structure splitting to eliminate coupling to the dif-
ferent excited state levels. To eliminate multiple scatters, the
pulse duration must be much smaller than the excited state life-
time (have a bandwidth much larger than the linewidth of the
excited state).
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the atomic qubit states �↓� and �↑�. This internal degree of
freedom of the photon (photonic qubit) is represented by
the two states q=� ,� in a given spatial mode s=a ,b. We
begin with a description of the quantum state of a single
atomic qubit and the photonic mode into which the atom
emits, including various imperfections such as back-
ground light and multiple atomic excitations. We then ex-
tend this situation to the case of two atoms whose emitted
photons interact on a BS following the above transforma-
tions.

A single atom is prepared in its excited state with exci-
tation probability pe, given one of the atomic level
schemes in Fig. 1, with a probability of double sequential
excitation p2e�pe. For a weak excitation pulse of duration
te��, pe�1, and p2e=pe

2 /2, while for an ultrafast excita-
tion where te��, we expect p2e	 te /��pe

2 /2. Given that
the atom is excited, the probability p that a single photon
is detected in mode s is determined by the overlap be-
tween the atomic emission mode and spatial mode s in ad-
dition to transmission losses and the detection efficiency
as discussed previously. (We assume that p�1, but this
analysis applies equally well to cases where p�1, appro-
priate for cavity-QED setups, where the atom preferen-
tially emits into mode s.) The desired (postselected) atom–
photon entangled state is of the form

��ent� = cos �s�↓�s�0�s
��1�s

� + sin �s�↑�s�1�s
��0�s

�, �6�

where �n�s
q is a state of n photons in spatial mode s and

internal photonic qubit state q. The parameter �s depends
on the particular excitation scheme (Fig. 1) and is usually
near � /4. For ultrafast excitation schemes, �s may de-
scribe the initial atomic qubit state that is mapped onto
the atom–photon entangled state.30,49 After a repetition
time Trep long enough for the spontaneous emission of a
photon, the complete quantum state of the atom–photon
system is a mixed state of several alternatives with re-
spective probabilities given in Table 1.

The first term in Table 1 corresponds to the typical case
of zero photons in either qubit state � or qubit state � re-
sulting in a random atomic qubit state �M�s= �↓ �s or �↑ �s,

while the second term corresponds to the desired creation
of entanglement between the atomic qubit and a single
photonic qubit. The remaining terms are errors occurring
from background events (background light entering the
photonic mode) with probability ppbg and multiple excita-
tion events with probability pp2e and p2p2e corresponding
to the detection of one or both emitted photons, respec-
tively. Here, pbg�1 is the ratio of background photons to
atomic fluorescence photons detected in time Trep. These
error events are assumed to have an effective 50% chance
of populating either photonic qubit state � or photonic qu-
bit state � of spatial mode s, and multiple excitations are
assumed to result in a random mixed state �M�s= �↓ �s or
�↑ �s. The error states listed are the lowest-order possibili-
ties in their respective probabilities �p ,pbg ,p2e�1�.

When each of two atom–photon systems is indepen-
dently and simultaneously prepared in the above form,
the photonic part of these states can be interfered on a
BS, and subsequent detection of the photons after the BS
can project entanglement between the atoms. We now de-
scribe the quantum state of the atoms and photons after
the BS under the assumption that only photons with
identical internal modes � or � (e.g., the two states of po-
larization or frequency) interfere on the BS according to
the transformations in Eqs. (4) and (5). In general, we as-
sume that the two atoms are prepared in unique en-
tangled superpositions with their photons represented by
the two angles �a and �b. Anticipating the postselection of
states that result in two photons leaving the BS in dis-
tinct modes (either in separate spatial modes or in the
same spatial mode but with distinct internal modes), we
write down only those states and their associated prob-
abilities after time Trep in Table 2.

In Table 2, the desired atom–atom entangled states are

�����ab = N1�cos �a sin �b cos2
�

2
�↓�a�↑�b

− sin �a cos �b sin2
�

2
�↑�a�↓�b , �7�

Table 1. Mixed Quantum State of a Single Atom and a Single Photon of Spatial Mode s after Time Trep

Longer than the Spontaneous Emission Lifetime of the Atom
a

Quantum State Probability Description

�M�s�0�s
��0�s

� 1−ppe−ppbg No photons

cos �s�↓ �s�0�s
��1�s

�+sin �s�↓ �s�1�s
��0�s

� ppe Good photon

�M�s�0�s
��1�s

� 1
2ppbg Background photon

�M�s�1�s
��0�s

� 1
2ppbg Background photon

�M�s�0�s
��2�s

� 1
4p2pbg

2 Background photons

�M�s�2�s
��0�s

� 1
4p2pbg

2 Background photons

�M�s�1�s
��1�s

� 1
2p2pbg

2 Background photons

cos �s�↓ �s�1�s
��1�s

�+sin �s�↓ �s�2�s
��0�s

� 1
2p2pepbg Background+good photons

cos �s�↓ �s�0�s
��2�s

�+sin �s�↓ �s�1�s
��1�s

� 1
2p2pepbg Background+good photons

�M�s�0�s
��1�s

� pp2e Double-excitation photon

�M�s�1�s
��0�s

� pp2e Double-excitation photon

�M�s�0�s
��2�s

� 1
4p2p2e Double-excitation photons

�M�s�2�s
��0�s

� 1
4p2p2e Double-excitation photons

�M�s�1�s
��1�s

� 1
2p2p2e Double-excitation photons

a
The atomic qubit is represented by states �↑ �s and �↓ �s ��M�s is an equal mixture of the two atomic qubit states�, and the photon mode can support photons of internal qubit

states � and �. The lowest-order possibilities are listed with their associated probabilities.
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�����ab = N2�cos �a sin �b sin2
�

2
�↓�a�↑�b

− sin �a cos �b cos2
�

2
�↑�a�↓�b , �8�

�����aa = N3
�cos �a sin �b�↓�a�↑�b

+ sin �a cos �b�↑�a�↓�b�sin ��, �9�

�����bb = �����aa, �10�

where Ni are normalization constants. The first two
states are correlated with single photons emerging in the
two different BS spatial modes a and b having opposite
photonic qubit states, and the last two states are corre-
lated with single photons emerging in the same output
port of the BS again with opposite photonic qubit states.
As shown in Fig. 2(d) for the case of polarization photonic
qubit states, these four outcomes can be uniquely deter-

Table 2. Mixed Quantum State of Two Photon Modes and Two Atomic Qubits Given that Two Atom–Photon

Systems are Prepared According to Table 1 and the Photon Modes are Coupled on a BS
a

Photonic State Atomic State Probability

��0�a
��1�a

�� ��1�b
��0�b

�� �����ab
p2pe

2�cos2 �a sin2 �b cos4
�

2
+sin2 �a cos2 �b sin4

�

2 �
�M�a�M�b

p2�1

4
pbg

2 �1+
sin2 �

2 �+
1

2
pbgpe
1+ �cos 2�a−cos 2�b�

cos �

2 ��
+p2epbg�1−

sin2 �

2 �+p2epe
1−
sin2 �

2
+ �cos 2�a−cos 2�b�

cos �

2 �
�+

1

4
p2e sin2 ��

��1�a
��0�a

�� ��0�b
��1�b

�� �����ab
p2pe

2�cos2 �a sin2 �b sin4
�

2
+sin2 �a cos2 �b cos4

�

2 �
�M�a�M�b

p2�1

4
pbg

2 �1+
sin2 �

2 �+
1

2
pbgpe
1− �cos 2�a−cos 2�b�

cos �

2 ��
+p2epbg�1−

sin2 �

2 �+p2epe
1−
sin2 �

2
− �cos 2�a−cos 2�b�

cos �

2 �
�+

1

4
p2e sin2 ��

��1�a
��1�a

�� ��0�b
��0�b

�� �����aa 1

4
p2pe

2�cos2 �a sin2 �b+sin2 �a cos2 �b�sin2 �

�M�a�M�b 1

2
p2
1

2
pbg

2 �2−
sin2 �

2 �+pbgpe+p2e�pbg+pe�sin2 �+p2e�1−
sin2 �

2 ��
��0�a

��0�a
�� ��1�b

��1�b
�� �����bb 1

4
p2pe

2�cos2 �a sin2 �b+sin2 �a cos2 �b�sin2 �

�M�a�M�b 1

2
p2
1

2
pbg

2 �2−
sin2 �

2 �+pbgpe+p2e�pbg+pe�sin2 �+p2e�1−
sin2 �

2 ��
��0�a

��1�a
�� ��0�b

��1�b
�� �↓ �a�↓ �b p2pe

2 cos2 �a cos2 �b cos2 �

�M�a�M�b
p2�1

4
pbg

2 +
1

4
pbgpe�cos2 �a+cos2 �b��1+cos2 ���

�+p2e
pbg+pe�cos2 �a+cos2 �b��cos2 �+
1

4
p2e sin2 ��

��1�a
��0�a

�� ��1�b
��0�b

�� �↑ �a�↑ �b p2pe
2 sin2 �a sin2 �b cos2 �

�M�a�M�b
p2�1

4
pbg

2 +
1

4
pbgpe�sin2 �a+sin2 �b��1+cos2 ���

�+p2e
pbg+pe�sin2 �a+sin2 �b��cos2 �+
1

4
p2e sin2 ��

a
The BS has reflectivity R=� /�, and only those states with two single photons emerging in distinct modes are written with their associated probabilities. Higher-order pro-

cesses in the probabilities p, pbg, and p2e are not listed.
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mined by separating the photonic qubit states at the out-
put of each BS output port and triggering on the relevant
two-photon coincidence event.

For a 50/50 BS ��=� /2�, the above states simplify to
one of the following entangled states:

��ent�diff = N�cos �a sin �b�↓�a�↑�b − sin �a cos �b�↑�a�↓�b�,

�11�

��ent�same = N�cos �a sin �b�↓�a�↑�b + sin �a cos �b�↑�a�↓�b�,

�12�

where N is a normalization constant, and the subscripts
“diff” and “same” refer to cases where the two photons
emerged in different spatial modes or the same spatial
mode but separate photonic qubit states. This postselec-
tion process can amount to a measurement gate between
the two atoms originally prepared in arbitrary states
given by �a and �b.30 For �a=�b (identically prepared at-
oms), the above states simplify to the odd-parity Bell

states ��−�atom= ��↓ �a�↑ �b− �↑ �a�↓ �b� /�2 and ��+�atom

= ��↓ �a�↑ �b+ �↑ �a�↓ �b� /�2, respectively.
When the BS is not exactly 50/50 ���� /2�, the result-

ing errors can limit the fidelity of the gate or the en-
tangled state. By detecting all possibilities of photonic
output states, a biased BS can be diagnosed by the ap-
pearance of events with identical photonic qubit states
emerging in distinct BS output ports (last two rows of
Table 2) assuming that errors from background counts or
double-excitation events are rare. In the following, we
therefore assume that the BS is unbiased ��=� /2�.

Including noise from background counts and double ex-
citations, we find that when two photons are detected in
coincidence in the desired output ports of the BS (for ei-
ther the ��ent�diff or the ��ent�same state), the postselected
mixed state of the two atoms alone becomes

�post = Pgood��ent���ent� + Pbad�MaMb��MaMb�, �13�

where the probabilities of a desired entangled state Pgood

and the noisy mixed state Pbad are given by

Pgood =
1

4
p2pe

2�cos2 �a sin2 �b + sin2 �a cos2 �b�, �14�

Pbad =
p2

2
�pbg�3

4
pbg + pe + p2e�pbg + pe +

1

2
� .

�15�

The above probabilities do not add to one because they are
relative to the (most probable) null case of not detecting
photons in each of the output modes of the BS. Neverthe-
less, we can calculate a lower limit on the fidelity of the
heralded entangled atomic qubit state most importantly
for the maximally entangled Bell states ��−�atom and
��+�atom ��a=�b=� /4�. Noting that the fidelity of the ran-
dom mixed state �MaMb� is 1/4, we find that the fidelity of
the postselected state is

F =
Pgood +

1

4
Pbad

Pgood + Pbad

=
pe

2 + 
pbg� 3

4
pbg + pe� + p2e�pbg + pe +

1

2��
pe

2 + 4
pbg� 3

4
pbg + pe� + p2e�pbg + pe +

1

2��
. �16�

One criterion for the generation of entanglement is that
the fidelity be greater than 1/2, which leads to the condi-

tion that Pgood�Pbad /2, or pe
2�2pbg� 3

4pbg+pe�+2p2e�pbg

+pe+ 1
2

�. It is clear that when using a weak excitation
pulse of duration te��, the entanglement fidelity is se-
verely limited �Pbad�Pgood�, since p2e=pe

2 /2. However,
when using ultrafast excitation pulses such that pe→1
and p2e→0, only the background photons can affect the
resulting fidelity: F	1−3pbg.

5. EXPERIMENTS WITH PHOTON
POLARIZATION QUBITS

While matter–light entanglement has been implicit in
many experimental systems over the past few
decades,58,63–77 the first system with sufficient control for
direct measurement of entanglement between matter and
light was the trapped ion system.73,74 In this system, a
photon is spontaneously emitted from a single trapped
atomic ion, which is initially excited to a state with two
decay channels, resulting in photons of different polariza-
tions [Fig. 1(b)].

A diagram of the relevant energy levels and a descrip-
tion of the experiment with a single 111Cd+ ion is shown in
Fig. 5. First, the ion is optically pumped to the 2S1/2 �0,0�
state followed by a microwave pulse that drives the popu-
lation to �1,0�. From here, an approximately 50 ns pulse of
	+-polarized laser light resonant with the 2S1/2

F=1↔ 2P3/2 F=2 transition weakly excites the ion to the
2P3/2 �2,1� state, which has a radiative lifetime of
2.65 ns.78 As described earlier, the ion decays via two
channels to the ground state and if viewed perpendicu-
larly to the quantization axis creates the entangled state
�1/3�H��↓ �+�2/3�V��↑ �.

The collected light passes through a � /2 wave plate for
polarization rotation, and the resulting polarization state
is measured by a polarizing BS and two photomultiplier
tubes (PMTs). Upon the detection of a photon on either
PMT, manipulation of the ion is performed. First, the qu-
bit is transferred to the clock states via a microwave pulse

driving the �1,1� population to the �0,0���↑̃� state. A sec-

ond microwave pulse resonant with the �↓ �↔ �↑̃� transi-
tion with adjustable phase and pulse length subsequently
rotates the atomic qubit to any desired measurement ba-
sis, and the resulting state is measured with a
	+-polarized laser pulse via standard trapped ion reso-
nance fluorescence techniques.79,80 The resulting fidelity
is measured to be �87%. Factors contributing to the re-
sulting fidelity compared to the possible 97% include:
multiple excitations of the ion during the cw pump pulse
(2.5%), mixing of photon polarizations due to the nonzero
solid angle (0.5%), imperfect atomic and photonic qubit
rotations (1.5%), background PMT counts leading to false
positives (5%–10%), and imperfections in the polarization
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optics (3%). Since the qubit is transferred to the clock qu-
bit states right after photon emission, we estimate that
magnetic field fluctuations affect the atomic qubit fidelity
by �1%. When combined, these sources of error are con-
sistent with the observed fidelity.

As mentioned above, this entanglement generation is a
probabilistic process. With the cw excitation scheme, the
probability of emitting a single photon in each trial is re-
stricted to pe�0.1 to suppress multiple excitations. The
resulting success probability is Pa–p=pe�T�� /4��= �0.1�
��0.2��0.4��0.02��1.6�10−4. The experiment repetition
rate is R=1/Trep=104 s−1 resulting in an entanglement
generation rate Ra–p=Pa–pR�1.6 s−1, but improvements
such as higher excitation probability using an ultrafast
laser pulse and an increased repetition rate significantly
increase this yield.

6. EXPERIMENTS WITH PHOTON
FREQUENCY QUBITS

In a recent experiment, indirect evidence of the entangle-
ment between an atomic qubit and a photon frequency qu-
bit was demonstrated in the cadmium ion system.49 A dia-
gram of the relevant energy levels and a description of the
experiment are given in Fig. 6. First, the ion is optically

pumped to �0,0���↑ �, and a microwave pulse prepares

the ion in the state ��↓ �+ �↑ �� /�2 [Fig. 6(a)].
Next, a single �-polarized ultrafast laser pulse coher-

ently drives the superposition to the clock states in the
2P3/2 manifold with near-unit probability—similar to the
scheme described in Section 2 [Fig. 1(f)]. The coherence

Fig. 6. Experimental procedure for atom–photon entanglement
with photon frequency qubits (Ref. 49). (a) The ion is initialized

in the state ��↓ �+ �↑ �� /�2 via optical pumping to the �0,0� state
and a microwave � /2 pulse. (b) Superposition of atomic qubit
states is coherently driven to the 2P3/2 excited state via a reso-
nantly tuned �-polarized ultrafast laser pulse. (c) Second pulse
drives the qubit back to the ground state a short time later. (d)
Second � /2 microwave pulse with variable phase completes the
Ramsey experiment, and the atomic state is measured using a
resonance fluorescence technique. (e) Results from the micro-
wave Ramsey experiment. Circles show the near perfect Ramsey
fringes for the case with no ultrafast laser pulse. With a single
ultrafast laser pulse, the coherence is lost due to the spontaneous
emission of a photon that is not measured in a controlled, pre-
cisely timed fashion (squares). The average population in the
bright state is above 0.5 due to the fluorescence branching ratios
[Fig. 10 (inset)]. Upon application of a second ultrafast laser
pulse, the coherence in the ion is maintained by driving the qubit
states back down to the ground states (triangles).

Fig. 5. Experimental procedure for atom–photon entanglement
with photon polarization qubits (Refs. 73 and 74). (a) The atom is
initialized to the �1,0� state via optical pumping to the �0,0� state
and a microwave transfer pulse. (b) The atom is driven to the
2P3/2 �2,1� excited state resulting in spontaneous emission via two
photon decay channels of orthogonal polarizations when viewed
perpendicularly to the quantization axis. The resulting en-

tangled state is �1/3�H��↓ �+�2/3�V��↑ �. (c) Microwave �
wave�
pulse resonant with the �1,1�↔ �0,0� transition coherently trans-
fers the population to the clock qubit states. (d) Second micro-
wave pulse prepares the atomic qubit for measurement in any
basis. (e) 	+-polarized laser pulse performs the state detection of
the atomic qubit using resonance fluorescence techniques.
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in this excitation scheme is demonstrated using a micro-
wave Ramsey experiment. In the absence of ultrafast la-
ser pulses, the Ramsey contrast is essentially perfect. Fol-
lowing the application of the ultrafast laser pulse, the
atom is driven to the excited state. The excited atom then
spontaneously decays, and without precise measurement
of the photon polarization, frequency, and emission time
(with respect to the 14 GHz frequency qubit separation)
the coherence is lost, as seen in Fig. 6(e). The uncon-
trolled measurement of the photon results in tracing over
the photon portion of the density matrix, and the result-
ing loss in contrast is consistent with prior ion–photon en-
tanglement.

To show that the excitation pulse is indeed coherently
driving the superposition to the excited state, the Ramsey
coherence is recovered by driving the ion back down to the
ground state before spontaneous emission occurs [Fig.
6(c)]. With a pair of picosecond laser pulses incident on
the ion between the microwave pulses, the contrast reap-
pears with a phase shift proportional to the time �t spent
in the excited state and the hyperfine frequency differ-
ence between the ground and excited state levels: �t��0

−�1�= �680 ps��13.9 GHz�=18.9� [Fig. 6(e)]. The observed
contrast is only 40% of the contrast without ultrafast la-
ser pulses due to limited laser power in the second pulse
and spontaneous decay �	23% � during the delay time be-
tween the ultrafast pulses.

7. REMOTE ATOM ENTANGLEMENT
EXPERIMENTAL PROGRESS

A. Two-Photon Interference
Once two atoms are entangled with their respective pho-
tons, the next step for remote atom entanglement is the
interference of the photon modes from each atom on a BS.
Progress toward this end has been recently
demonstrated.81,82 In the cadmium ion system, two ions
are placed in a trap and a BS setup is used to interfere
the emitted photons (Fig. 7). In this setup, light scattered
by the two ions is collected using an f /2.1 objective lens
with a working distance of 13 mm. A pinhole is placed at
the intermediate image for suppression of background
photons and the intermediate image is reimaged by a dou-
blet lens. The image is then broken up into two paths by a
BS, and the transmitted and reflected beam pairs are di-
rected to a second BS where the light from each ion is su-
perimposed. Irises are used to block the unwanted beams,

and the overlapping beams are directed to PMTs with a
time resolution of 	1 ns.78 The equal path lengths of the
transmitted and reflected beams ensure that the photons
emitted by two ions are mode matched in size and diver-
gence. Coarse alignment is performed by imaging the
light after the second BS on a single-photon sensitive
camera, where the overall magnification of the imaging
system is 	1000, and the diffraction-limited images of the
two ions are separated by 2 mm, each with a spot size of
0.5 mm.

To demonstrate two-photon interference, first, the pho-
ton statistics of a single ion excited by a 	+-polarized cw
laser is investigated (dashed curve in Fig. 8). In this case,
the g�2� autocorrelation function shows the expected
damped Rabi oscillations83,84 between the 2S1/2 �1,1� and
2S3/2 �2,2� levels. It is unlikely that two photons are emit-
ted from one ion in close proximity, since after emission of
a single photon, the ion is assured to be in the ground
state. The maximum observed antibunching for the single

ion is g1
�2��0�=0.18 as expected for the time resolution of

the PMTs.82

Next, two ions are equally illuminated and purpose-
fully not mode matched on the BS. In this case, half of the
signal results from two photons from the same ion, and
the other half results from one photon from each ion.
Since these photon modes are not matched on the BS, the
detected photons are uncorrelated. We therefore expect a

reduced antibunching, g2,um
�2� �0�= 1

2 
1+g1
�2��0���0.59, in

agreement with the measurement [dotted curve in Fig. 8].
If the photon modes from each ion are matched on the

BS, then the photons always leave on the same output
port, and thus no coincident detections are observed.85

The suppression of coincidence events is clearly visible in
the autocorrelation signal of the mode-matched ions (solid

curve in Fig. 8) and has a measured g2,m
�2� �0� of 0.31. This

corresponds to an interference signal of 	57% (amplitude

Fig. 8. Intensity autocorrelation for cw excitation. The dashed

curve shows strong antibunching for a single ion with g1
�2��0�

=0.18 limited by the resolution of the detection system. With this
value, the expected antibunching of light from two nonoverlap-

ping ions is expected to be g2,um
�2� �0�=0.59 in good agreement with

the experimental value (dotted curve). If the two-photon modes
are matched, the interference leads to a significant reduction of
coincidence detections (solid curve). The measured antibunching

was g2,m
�2� �0�=0.31 corresponding to a mode overlap of 	57%.

Fig. 7. Detection system for the two-photon interference experi-
ment. The light from the two ions is separated on a BS and mode
matched on the second BS. The photons are detected on single-
photon sensitive PMTs. A camera is used for coarse alignment,
and the nonoverlapping photon modes are blocked by irises.
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matching of 75%) and compares well to the results ob-
served in Ref. 81. This mode overlap is not ideal and is
likely due to phase front distortions from the two atomic
sources as they sample different parts of many optical
surfaces before finally interfering on the BS.

To entangle two remotely located atoms, it is likely nec-
essary to use single-mode optical fibers. This is because
interfering the two photon modes requires very high sta-
bility of the atom and collection optics with respect to the
BS, as well as good spatial mode matching from the two
imaging systems. With free-space mode matching, any
relative motion of the trapped atoms and the imaging op-
tics can ruin the entanglement fidelity by producing false
positive detection events, while in the fiber coupled case,
effects such as mechanical vibrations and thermal drifts
will simply lower the rate of coincidence counts (ignoring
dark counts). In the cadmium system, however, the spon-
taneously emitted photons are deep in the ultraviolet at
214.5 nm, where it is very difficult to use optical fibers.

B. Single-Photon Sources
It is important for the atoms to emit only a single photon
during an entanglement trial especially with remote-
atom entanglement. Such a single-photon source was re-
cently demonstrated in our laboratory by optically excit-
ing a single cadmium ion using a picosecond mode-locked
Ti:sapphire laser.82 This laser is tuned to 858 nm and is
sent through a pulse picker to reduce the repetition rate
from 81 to 27 MHz with an extinction ratio of better than
100:1 in the infrared. The pulses are frequency qua-
drupled through single-pass nonlinear crystals, and the
resulting 214.5 nm laser pulses have a pulse extinction
ratio near 10−8 and a transform-limited pulse width of
	1 ps. This allows for the excitation of the ion on a time
scale much faster than the 2.65 ns excited state lifetime.

The single ion is repeatedly excited with the pulsed la-
ser resulting in a periodic emission of photons at the laser
pulse separation time of 37.5 ns, and the intensity auto-
correlation function of the photons is recorded using a
multichannel scaler (Fig. 9). The half-width of each peak
is given by the excited state lifetime, and the peak at zero

time delay corresponding to coincidentally detected pho-
tons is almost entirely suppressed. This near-perfect an-
tibunching is highly nonclassical and demonstrates that
at most one photon is emitted from the ion following an
excitation pulse (limited by the possibility of emitting and
detecting a photon during the excitation pulse �10−6).
The residual peak at zero time delay has a height of 	2%
of the other peaks, originating from diffuse scattered light
from the pulsed laser. With fast electronics, this residual
peak could be identically zero by vetoing photons emitted
during the picosecond laser pulse.

The use of ultrafast lasers also allows for unit-
probability excitation �pe	1� while maintaining a single-
photon source. This corresponds to performing a Rabi �

pulse on the optical S–P transition. We observe optical
Rabi flopping by measuring the Rabi angle as a function
of pulse energy.

In the experiment, the Rabi angle is measured by pre-
paring the ion in a known initial ground state and apply-
ing a single excitation pulse of known polarization.49 With
knowledge of the fluorescence branching ratios and the
ability to perform efficient state detection, Rabi flopping
with the pulsed laser can be detected using every laser
pulse with a high signal-to-noise ratio (Fig. 10). An alter-
native method would be to detect the photon scattering
rate from an ion as a function of the pulse energy, where
Rabi angles with an odd (even) multiple of � would have a
maximum (minimum) of scattered photons as the ion
would be left in the excited (ground) state at the end of
each pulse.86

Fig. 10. Ion bright state population as a function of pulse en-
ergy. Each point represents a collection of 60,000 runs. As the
population in the excited P state is driven to unity, the bright
state population approaches 1/3 (horizontal dashed line) deter-
mined by the spontaneous emission branching ratio. The data
are fit to a single parameter giving a value a=0.42 pJ−1/2. Inset:
Relevant energy levels for the S–P Rabi oscillation experiment.
A �-polarized ultrafast laser pulse excited the ion from the
ground state to the excited state with variable energy. The three
possible decay channels are shown with their respective fluores-
cence branching ratios. After a time �10 
s� following the excita-
tion pulse, the bright state population of the ion was measured
using resonance fluorescence detection.

Fig. 9. Intensity autocorrelation of the light emitted by a single
ion excited by an ultrafast laser. The near-perfect antibunching
at t=0 shows that at most one photon is emitted from an excita-
tion pulse.
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In the experiment, the ion is prepared in the �0,0�
ground state through optical pumping.87 A single linearly
polarized picosecond laser pulse excites the ion on the P3/2

�1,0� state. After a time �10 
s�, much longer than the ex-
cited state lifetime, the ion has decayed back to the S1/2

ground-state levels via spontaneous emission following
the fluorescence branching ratios. The atomic ground
states are then measured using resonance fluorescence
detection, where all three F=1 states are equally bright,
while the F=0 state is dark79,80,88 with the results shown
in Fig. 10. The available power from the pulsed laser lim-
its the Rabi rotation angle to roughly �, and the data
agree well with the estimates based on the beam waist,
pulse length, and pulse shape.49 The probability of mea-
suring the bright state is equal to 1/3 the probability of
excitation to the excited state as follows from the CG co-
efficients [Fig. 10 (inset)]. Hence, we have shown that
unit excitation and single-photon emission can be
achieved with ultrafast laser pulses.

8. SCALING TO COMPLEX QUANTUM
NETWORKS

A. Deterministic Quantum Computation and Quantum
Repeaters
As the number of atoms grows within a trap used for a
quantum register, so too does the complexity of the sys-
tem. While there is progress in constructing more elabo-
rate atom traps capable of deterministically separating
and shuttling atoms,23–26 an alternative approach is to
keep traps relatively simple and have the atoms remain
in a given trapping zone, where the necessary atomic mo-
tional control is relaxed. This approach requires the abil-
ity to interconnect different zones via photon-mediated
entanglement (Fig. 11).

Recent progress has shown that remote deterministic
quantum gates can be constructed for remotely located at- oms even with the use of probabilistic entanglement.90

Even though the entanglement is probabilistic, it is her-
alded, and one can simply repeat the procedure until the
detectors announce the creation of the entangled pair of
atoms. Once successful, the entanglement shared by the
two atoms can be further used with local deterministic
gates within each trapping zone.

One approach to scalable quantum computation based
on probabilistic entangling gates is to have an array of
trapping zones, each containing two atoms—a logic atom
and an ancilla atom denoted as i and i�, respectively [Fig.
12(a)].90 The purpose of the logic atoms is to encode all
quantum information, and the ancilla atoms, linked using
the probabilistic entangling protocol, are used as a quan-
tum bus. Once successful entanglement between the an-
cilla atoms is established, conventional local determinis-
tic gates allow for an effective quantum gate between the
two logic atoms. The resulting logic gate is deterministic,
because the quantum information stored within the logic
atoms is not affected by unsuccessful attempts to en-
tangle the ancilla atoms. This can be assured by either
spatial separation of the logic and ancilla atoms so that
laser operations on one atom do not affect the other or by
using different atomic species,91–93 where the two atoms
could be in very close proximity, since light resonant for
operations on one atom would not affect the other.

Fig. 11. Entanglement device capable of entangling multiple at-
oms simultaneously using micromirror arrays (Ref. 89). Any pair
of atoms can be entangled by routing the emitted photon from
each atom to a BS, where single-photon detections can project
the atoms into an entangled state. Parallelism is possible with
this setup for N atoms with 2N mirrors and N /2 BS pairs.

Fig. 12. (a) Schematic of the quantum computation model based
on probabilistic photon-mediated entanglement between atoms.
The ancilla atoms �i� , j�� are entangled through the probabilistic
protocols described in the text, and deterministic gates on the
logic atoms �i , j� are constructed from local motional gates and
probabilistic remote ancilla entanglement. (b) Schematic of quan-
tum repeaters with trapped atoms based on probabilistic remote
entanglement and local Coulomb interactions.
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There are four necessary steps to create deterministic
remote atom entanglements: (1) attempt entanglement of
the ancilla atoms until successful, (2) apply local deter-
ministic motional controlled-NOT (CNOT) gates on each
logic–ancilla pair, (3) measure the ancilla atoms in the ap-
propriate bases, and (4) apply single-qubit rotations to
the logic atoms based on the measurement results. The
speed of each four-step procedure is limited by the first
step. With a probability of successful entanglement Pa–a

(of order p2pe
2), the average time for completion of the re-

mote CNOT gate is Trep /Pa–a, where as before, Trep is the
time needed for an ancilla entanglement trial.

Efficient quantum repeaters can also be constructed us-
ing this setup allowing for the reliable quantum informa-
tion transfer over very long distances [Fig. 12(b)]. In ad-
dition to the entanglement probability mentioned
previously, one must also consider the probability of pho-
ton loss within the fiber connecting the atomic nodes. This
lowers the probability of successful ancilla atom entangle-
ment to Pa–a� =Pa–aPfiber, where Pfiber=e−�L0 is the photon
attenuation in the channel over the communication dis-
tance L0, and � is the fiber attenuation coefficient. The
time necessary to connect two nearest-neighbor segments
(distance of L0) would be T1=Trep /Pa–a� . This leads to a
next-nearest-neighbor communication time of T2=2T1

and hence over n segments (total distance D=nL0) of Tn

=nT1=De�L0�Trep /Pa–a� /L0. This linear scaling with dis-
tance compares favorably to the exponential scaling be-
havior if no repeater nodes are used: Tn=e�D�Trep /Pa–a�.

B. Cluster-State Model
Even though the above model for quantum computation is
efficiently scalable with probabilistic entanglement be-
tween ancilla qubits, the robustness of the computation
relies on the ability to perform local deterministic gates.
Recent advances have shown that even if all entangling
gates are probabilistic with arbitrarily small probability,
one can still realize efficient quantum computation based
on the use of deterministic single-bit operations and
quantum memory.28,29 The proof of this result is most con-
venient with the cluster-state approach to quantum com-
puting. The cluster-state model is computationally
equivalent to the conventional circuit model, but in terms
of physical operations, it is quite different.94 In this
model, one first prepares a large-scale entangled state
called the cluster state. Together with single-bit opera-
tions, the cluster state with a 2D geometry becomes suf-
ficient for universal quantum computation.94 As deter-
ministic single-bit operations for trapped atoms has been
demonstrated, the task then reduces to how to realize
large-scale cluster states with only probabilistic entan-
gling gates.

A pictorial description of the generation of cluster
states with atomic qubits is shown in Fig. 13. The first
step in creating a 2D cluster state is to generate long 1D
cluster chains. One could start with entanglement of two
atoms and then get these atoms further entangled with
others one by one through the probabilistic gates. How-
ever, this direct approach leads to very inefficient (super-
exponential) scaling of the required resources due to the
probabilistic nature of the gate operation.29 For prepara-
tion of 1D cluster states, a way to overcome the inefficient

scaling is through the divide-and-conquer protocol28,29

(also known as the quantum repeater protocol in Ref. 95).
With this approach, short 1D clusters of length n are cre-
ated, and their end qubits are entangled through the
probabilistic gate [Fig. 13(a)]. If the entanglement at-
tempt between the end qubits is successful, then a 1D
cluster of 2n qubits is made. If the attempt is unsuccess-
ful, then only the end qubits and their nearest neighbors
need to be removed from the cluster rather than the en-
tire system losing its entanglement. The process is then
repeated with the two clusters now each of a different
length. Because this approach connects two cluster chains
of almost equal lengths with the probabilistic gates, the
number of connections grows logarithmically with the
size of the chain, which is critical for efficient scaling.

Since 1D cluster states are not sufficient for universal
computation, 2D clusters need to be built from the 1D
chains. A straightforward extension of the divide-and-
conquer method will not work as 2D and 1D geometries
have very different characters,28 in particular, for the
number of the boundary qubits. To create 2D cluster
states, these 1D clusters are first combined into a special
type of state, called the cross state, as shown in [Fig.
13(b)], where 1D chains are first linked in their middles
creating a cross-shaped cluster after a single-bit measure-
ment. These cross states with four sufficiently long tails
can be used as the basic building blocks for the 2D

Fig. 13. Illustration of the necessary steps for the construction
of cluster states. (a) Controlled phase flip (CPF) entangling gate
is used to extend the length of a 1D cluster. (b) Construction of a
cross-shaped cluster from two 1D cluster chains. A Hadamard
gate (H) is applied on the middle qubit of one chain, and a CPF
gate connects the two middle qubits. Finally, an X measurement
on one middle qubit removes the extra atom. (c), (d) Construction
of a square lattice cluster state from the cross-shaped cluster
states. CPF gates combine the shapes along ends of the crosses
and X measurements are used to remove the remaining redun-
dant qubits.
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geometry.28 Once a cross is created, two such crosses are
linked together via their long 1D tails. If the tail is suffi-
ciently long, the two clusters can be connected almost de-
terministically before running out of qubits along the tail.
Once connected, the remaining tail qubits separating the
cross sections can be removed via single-bit X measure-
ments finally creating the joined cluster [Fig. 13(c)].
These steps can be repeated to create a 2D cluster of any
size. The fidelity of the cluster-state approach is not af-
fected by the probabilistic nature of linking the atoms to-
gether, since the unsuccessful atoms are removed from
the system. The scaling of the computational resources
with this approach was demonstrated in Ref. 28. Suppos-
ing the success probability of the entangling gate is Pa–a,
it has been proven there that the computational overhead
to prepare a large-scale 2D cluster-state scales nearly
polynominally with 1/Pa–a and n, where n is the total
number of qubits in the cluster.

ACKNOWLEDGMENTS

This work is supported by the U.S. National Security
Agency and the Disruptive Technology Office under Army
Research Office contract W911NF-04-1-0234 and the Na-
tional Science Foundation Information Technology Re-
search Program.

D. L. Moehring’s e-mail address is dmoehrin
@umich.edu.

REFERENCES AND NOTES
1. C. Monroe, “Quantum information processing with atoms

and photons,” Nature 416, 238–246 (2002).
2. J. Cirac and P. Zoller, “New frontiers in quantum

information with atoms and ions,” Phys. Today 57, 38–45
(2004).

3. J. I. Cirac and P. Zoller, “Quantum computation with cold
trapped ions,” Phys. Rev. Lett. 74, 4091–4094 (1995).

4. C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D.
J. Wineland, “Demonstration of a fundamental quantum
logic gate,” Phys. Rev. Lett. 75, 4714–4717 (1995).

5. A. Sørensen and K. Mølmer, “Quantum computation with
ions in thermal motion,” Phys. Rev. Lett. 82, 1971–1975
(1999).

6. D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P.
Zoller, “Entanglement of atoms via cold controlled
collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).

7. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and
M. D. Lukin, “Fast quantum gates for neutral atoms,”
Phys. Rev. Lett. 85, 2208–2211 (2000).

8. C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V.
Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano,
D. J. Wineland, and C. Monroe, “Experimental
entanglement of four particles,” Nature 404, 256–259
(2000).

9. G. J. Milburn, S. Schneider, and D. F. V. James, “Ion trap
quantum computing with warm ions,” Fortschr. Phys. 48,
801–810 (2000).

10. A. Sørensen and K. Mølmer, “Entanglement and quantum
computation with ions in thermal motion,” Phys. Rev. A 62,
022311 (2000).

11. D. Jonathan, M. B. Plenio, and P. L. Knight, “Fast quantum
gates for cold trapped ions,” Phys. Rev. A 62, 042307 (2000).

12. J. L. Cirac and P. Zoller, “A scalable quantum computer
with ions in an array of microtraps,” Nature 404, 579–581
(2000).

13. C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H.
J. Kimble, “The atom-cavity microscope: single atoms

bound in orbit by single photons,” Science 287, 1447–1453
(2000).

14. P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe,
“Trapping an atom with single photons,” Nature 404,
365–368 (2000).

15. L.-M. Duan, J. I. Cirac, and P. Zoller, “Geometric
manipulation of trapped ions for quantum computation,”
Science 292, 1695–1697 (2000).

16. I. H. Deutsch, G. K. Brennen, and P. S. Jessen, “Quantum
computing with neutral atoms in an optical lattice,”
Fortschr. Phys. 48, 925–943 (2000).

17. G. R. Guthöhrlein, M. Keller, K. Hayasaka, W. Lange, and
H. Walther, “A single ion as a nanoscopic probe of an
optical field,” Nature 414, 49–51 (2001).

18. D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett,
J. Britton, W. M. Itano, B. Jelenkovi, C. Langer, T.
Rosenband, and D. J. Wineland, “Experimental
demonstration of a robust, high-fidelity geometric two ion-
qubit phase gate,” Nature 422, 412–415 (2003).

19. J. J. García-Ripoll, P. Zoller, and J. I. Cirac, “Speed
optimized two-qubit gates with laser coherent control
techniques for ion trap quantum computing,” Phys. Rev.
Lett. 91, 157901 (2003).

20. F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T.
Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner,
and R. Blatt, “Realization of the Cirac–Zoller controlled-
NOT quantum gate,” Nature 422, 408–411 (2003).

21. L.-M. Duan, “Scaling ion trap quantum computation
through fast quantum gates,” Phys. Rev. Lett. 93, 100502
(2004).

22. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck,
A. Kuzmich, and H. J. Kimble, “Deterministic generation of
single photons from one atom trapped in a cavity,” Science
303, 1992–1994 (2004).

23. D. Kielpinski, C. Monroe, and D. Wineland, “Architecture
for a large-scale ion-trap quantum computer,” Nature 417,
709–711 (2002).

24. M. A. Rowe, A. Ben-Kish, B. DeMarco, D. Leibfried, V.
Meyer, J. Beall, J. Britton, J. Hughes, W. M. Itano, B.
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