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The superposition principle makes quantum networks behave very differently from their
classical counterparts: We discuss how local and non-local coherence are generated and
how these may affect the function of composite systems. Numerical examples concern
quantum trajectories, quantum noise and quantum parallelism.
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1. GENERAL BACKGROUND

Beyond some 15 years from now any realistic
roadmap for nanoelectronics [1] tends to become
rather vague: The present trend towards miniaturi-
zation is expected to continue till then, but as

physics is not scale-invariant, fundamental limita-
tions will be piling up, all of which are eventually
related to quantum features of some sort: there are
limits of manufacturing, limits of control, limits of
simulation capabilities, limits of classical system
theory, and limits of classical models of computa-
tion, to name but a few.
We will not be able to discuss these issues here at

any depth; instead, we intend to address some
pertinent questions based on "toy-models" rather
than sophisticated device simulations. Neverthe-
less, this approach should be able to demonstrate
in what sense quantum networks will differ from
classical ones.

1.1. How Can We Design Quantum Systems?

Stable structure, though eventually a quantum
phenomenon in its own right, enters nanophysics
as a "classical" design tool: Confinement of
electron-(or photon-) fields allows to discretize
the state space, at least in some energy range of
interest. This "quantum-size-effect" considerably
simplifies the specification and observation of the
non-classical features to be discussed below, as it
significantly reduces the number of "subsystems"
to be considered.

1.2. What is a Subsystem?

It turns out that the only viable definition of a
subsystem is operational: A subsystem has to be
separated out by the classical environment (experi-
mental set-up) in terms of measurement modes. A
quantum dot or an atom (within an array) will be a
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subsystem if and only if it is selectively "con-
tacted". Note that if this condition is not fulfilled,
the array has to be treated as a unit; though this
will not change the total state space, it will
certainly change the type of possible observations.

with N, complete state reconstruction [4] tends to
be severely limited. So, N needs to be small, as

incomplete measurements are likely to miss non-
classical features all together. (This is why our
world appears so classical).

1.3. How do we Describe Subsystems?

We restrict ourselves to subsystems # characteri-
zed by n different states IP,), each. The number of
independent observables (represented by a set of
orthonormalized operators ,j(#)) is then restricted
to n2, i.e., j--0 (denoting the unit-operator: "no
action"), 1,..., n2-1. Any operator can be written
as some linear combination of these. We may
choose the . such that the expectation-values (,)
form a vector [2], [3], for n 2 the so-called Bloch-
vector.

1.6. What is a "Classical" State?

Within an entirely quantum mechanical treatment
the notion of a "classical" state is somewhat
ambiguous. For a definition one usually refers to a
complete local basis as the eigenstates of a local
operator (or set of those): For the two-level system
studied here we use the local basis operators,
/3(). Products of their eigenstates, [PIP2 ,...,PN),
Pi 1,2 n, then define a complete basis set for
the whole network, taken as our "classical"
reference.

1.4. How do we Describe Networks?

Any operator (for a network composed of N
subsystems, say) can be written as a linear
combination of the rt

2N "cluster-operators"

jk...r j(1),k(2)... r(N) (1)

These ), in general, do not commute; they come
in different classes, specified by the number rn _< N
of subsystems which are actually affected (which
equals the number of indices unequal zero): )00...0
is the unit-operator, jOk...o an operator acting on

#- 1, 3 (compact notation .(1)(3)), etc. It is
important to realize that our definition of sub-
systems guarantees that expectation values ()) of
any such m-cluster-operator can be obtained from
a series of respective coincidence experiments
(ensemble- or time-averaged).

1.5. Can we Reconstruct any State?

The density matrix is uniquely specified once the
expectation values of this full hierarchy of cluster-
operators are given [3]. As the number of
independent state parameters grows exponentially

1.7. What are "Non-classical" States?

Superpositions of those classical states are now
non-classical by definition: There are superposi-
tions within a single subsystem only (local coher-
ence, described here by the expectation values of
/1 (#), ,2()) and superpositions involving more

than one subsystem (entanglement, described by
appropriate expectation values of m _> 2 cluster

operators). The fact that the subsystems are
separable does not imply that the state of the
network is separable into these constituents: The
implies a kind of "quantum fuzziness" of the
subsystems: Entangled states are states which,
allowing for any local [5] unitary transformation,
cannot be written as a simple product state. A
useful entanglement measure should thus be
invariant under such local transformations. (There
is a generalization for mixed states).

1.8. How can we Quantify Entanglement?

Entanglement has been introduced as a property
of a wavefunction not to factor into a product.
This can be tested by means of appropriate
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expectation values. The matrix-elements [3]

are of the form of covariances known from
classical statistical physics; non-zero terms indicate
deviations from the product state form [6].
Convenient measures, which are much less detailed
but turn out to be invariant under any local
unitary transformations, are (for n 2)

(3)

1.10. What are Observable Effects
of Entanglement?

While coherence physics can do with appropriate
local measurements (m 1), entanglement shows
up not before m>2-luster-operators are in-
volved: Typically this applies to the total Hamil-
tonian itself; wall-known effects are energy shifts
and (exchange-) splittings for Fermi-systems.
More specifically, entanglement-physics relates

to the study of a single network through a number
of selective modes or contacts. We will discuss
three qualitatively different examples based on the
same type of model.

2. NUMERICAL SIMULATIONS

These measures have upper bounds; here they are

normalized to 1. For a network with N> 2
subsystems there is not just one but a whole
hierarchy of such entanglement measures. In
addition to these we also introduce a measure for
local coherence; with the eigenstates of 3 as the
local reference (n 2), a possible choice is

Oz# (/1(#)) 2 q-(/2(#)) 2 (4)

Of course, au cannot be invariant under local
unitary transformations.

1.9. What is the Origin of Entanglement?

Perhaps the best known source of entanglement is
the permutation symmetry requirement for indis-
tinguishable particles. However, such Fermi (Bose-)
states are not characterized by specific entangle-
ment types. Eigenstates of global operators like
total angular momentum, may also exhibit en-

tanglement. A dynamical source of entanglement,
finally, can be traced back to any two-subsystem
interaction (like Coulomb interaction): The corre-

sponding Hamiltonian generates a unitary time
evolution which is non-local and will thus, in
general, change the entanglement.

2.1. Outline of Model

The model we are considering could be an array of
N 3 quantum dots, here simplified as two-level
subsystems. In order these to represent real
subsystems, they need to be addressable sepa-
rately. We assume they are spectroscopically
different, i.e., they can be distinguished in
frequency space and thus be separately driven by
a classical external electromagnetic field (coupling
strength g, detuning 6). Their mutual coupling,

C", is of the Ising-spin type. This coupling
modifies the energy level spacing of one system
depending on the state of its neighbors. The
eigenstates of this interacting network are still
product states, though. Local coherence is intro-
duced by the external driving fields, which is then
transformed into entanglement by means of the
interaction. In this way there is an entanglement
source that can be switched on and off [3].

2.2. Quantum Trajectories

In the first two examples all three subsystems
"play the same role", i.e., all the parameters g, ,
CF are independent of #; they are chosen such that
only the transitions from the ground state I111 to

1112), 1121) and 1211) are in resonance. In addition
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there are 3 local damping channels, again all with
the same damping rate W. The dynamics is
described by the appropriate master equation.
As we are interested in the detailed simulation of

individual networks, the theoretical approach of
choice is stochastic unraveling (see [2] and ref-
erences therein): In this method the master
equation is interpreted as a rule for a modified
non-unitary continuous evolution of a pure state,
interrupted by stochastic jumps to another pure
state. Incoherent driving is described as a selective
rate-process (transition rates (g")27r/2) implying
c=/3 =/3.123 0 at all times ("classical case").
While the latter (Fig. a) is confined to the definite
alternatives of being in the lower or upper state
("telegraph signal"), the trajectories in the non-
classical domain (Fig. b) are strongly correlated
(they practically coincide here) and show a quite
different behavior: Between the jumps there is a
continuous motion, as coherence and entangle-
ment allow to explore additional regions of state
space: Figure 2 shows the time-averaged entangle-
ment measures as they depend on g/W.
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FIGURE Quantum trajectories of a driven and damped
N 3-network (g/W 2.5): (a) classical limit (incoherent
pumping rate =g r/2), (b) non-classical case (coherent driv-
ing).

0.20

0.15

0.10

0.05

0.00
0.0 0.5 1.0 1.5 2.0 2.5

g

FIGURE 2 Averaged coherence-, c, and entanglement-
measures, fl",/3123 as a function of the coherent driving field
strength, g, over the damping rate, W.

2.3. Quantum Noise

The quantum trajectories as such do not constitute
a measurement, let alone a complete one. How-
ever, assuming the damping of each subsystem to
be due to radiative decay only, the trajectories of
the above model directly connect to specific
luminescence signals: Each photon detection event
in one of the distinguishable frequency channels
(photon counts n" per sampling time T) is related
to a jump in the trajectory. The simulated
detection traces may then be statistically analyzed
in terms of the counting covariances [7].

N" (n, h--g)(n" h-v)... (5)

As shown in Figure 3, the noise properties, indeed,
reflect the fact that the network state is (on
average) non-classical and follows non-classical
trajectories. The result for incoherent driving is

0.2
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g/W

FIGURE 3 Photon-counting covariance of the luminescence
123 123 11 22 33 1/2signals: Shown is R =N /(N N N with N as

defined in Eq. (5). The sampling time is T>> W
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included for comparison (broken line); there is
virtually no correlation N123 in this case.

2.4. Quantum Parallelsim

Contrary to the two preceding examples we turn
now to a closed system, with the sub-systems
playing different roles: These roles are implemen-
ted by means of pulsed changes of the parameters
controlling the Hamilton model: Well-known
examples are 7r-pulses to invert the occupation of
2-level systems. Interacting networks of the type
studied here allow to implement conditioned
pulses, i.e., the action of the light pulse on

subsystem # is a 7r-pulse only, if the neighbor
# 2 is in state 11), say; no action otherwise [8]. A
continuously driven system 2 in contact at time tl
with such a "memory-gate" (pulse duration is
assumed negligible), subsequently at t2 in contact
with a gate 3 will generate entanglement as
discussed before. However, the "logic" of these
gate operations make system 2 emulate an
ensemble that was actually measured at those

Object-
system:
#=2

It1Io

Memories:

FIGURE 4 Single closed network: Subsystem-Bloch-vectors
(in (2), (3)-plane) at 3 instatnts of time. Subsystem # 2 is
continuously driven (rotates counter-clockwise) and is brought
into contact with a "gate"-subsystem/z at time tl, and with
a "gate" # 3 at time t2 (broken lines: before gate operation).
Each gate is seen to "project" subsystem 2 on the (A3)-axis, as
in an ensemble measurement. Note that a single system
measurement would result in either up or down.

two times (Fig. 4): System 2 represents in parallel
all potential trajectories going through the two
measurement steps! This quantum parallelism
exploits entanglement in a surprising way. So-
called quantum-algorithms would make sure that
final measurements, which invariably pick an
actual trajectory and thus deviate from ensemble
behavior, indicate desired problem solutions [9].
Their reliance on large-N-quantum networks
makes them a challenging target indeed for future
developments.

Acknowledgement

Financial support by the Deutsche Forschungsge-
meinschaft and by the Oregon Center of Optics is
gratefully acknowledged. One of us (G.M.) thanks
Howard Carmichael and Michael Raymer for
valuable discussions.

References

[1] See, e.g., document from U.S. semiconductor industry,
http://www.sematech.org/public/roadmap/doc.

[2] Keller, M. and Mahler, G. (1994). "Nanostructures,
entanglement, and the physics of quantum control", J.
Mod. Optics, 41, 2537; Mahler, G. and Weberrul3, V. A.
(1995). "Quantum Networks: Dynamics of Open Nanos-
tructures", Springer, Berlin.

[3] Mahler, G., Keller, M. and Wawer, R. (1997). "Quantum
networks: master equation and local measurements", Z.
Phys. B, 104, 153.

[4] Leonhardt, U., Munroe, M., Kiss, T., Richter, Th. and
Raymer, M. G. (1996). "Sampling of photon statistics and
density matrix using homodyne detection", Optics Como
mun., 127, 144.

[5] A local unitary transformation can be written as a product
of transformations on individual subsystems.

[6] cf. also the so-called Bell-inequalities: Bell, J. S. (1964).
Physics (N. Y), 1, 195.

[7] Mahler, G. and Wawer, R. (1997). "Quantum dot arrays:
preparation and detection of non-classical states", Super-
lattics and Microstructures, 21, 7.

[8] See e.g., Barenco, A., Deutsch, D. and Ekert, A. (1995).
"Conditional quantum dynamics and logic gates", Phys.
Rev. Letters, 74, 4083.

[9] Ekert, A. and Jozsa, R. (1996). Rev. mod. Physics, 68, 733.

Authors’ Biography

Prof. Dr. Giinter Mahler studied physics at the
Universities of Frankfurt, Munich, and Regens-



196 G. MAHLER AND R. WAWER

burg (Germany). He received his Ph.D. in 1972
and was appointed Professor for Theoretical
Physics by the University of Stuttgart in 1978.
He has been visiting Professor with the University
of Strasbourg, France, the Arizona State Uni-
versity, the Santa Fe Institute, and the University
of Oregon, USA. His main fields of interest
concern semiconductor transport, molecular elec-

tronics, quantum stochastics, quantum informa-
tion, and quantum optics.

Rainer Wawer studied physics at the University
of Stuttgart, where he received his Diploma in
Theoretical Physics. He is presently working in the
field of quantum measurement models and quan-
tum trajectories in partial fulfillment of Ph.D.
requirements.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation 

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


