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We develop a scheme of quantum reservoir state preparation, based on a quantum neural network
framework, which takes classical optical excitation as input and provides desired quantum states as output.
We theoretically demonstrate the broad potential of our scheme by explicitly preparing a range of intriguing
quantum states, including single-photon states, Schrödinger’s cat states, and two-mode entangled states.
This scheme can be used as a compact quantum state preparation device for emerging quantum
technologies.
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In quantum physics, the description of the physical
world is given in terms of quantum states that allow
nonclassical correlations between different objects and
measurement outcomes. Taking advantage of these quan-
tum properties, quantum technologies, e.g., quantum long
distance communication [1], information processing [2],
computation [3], and more recently quantum internet [4],
are rising. Whether operating with continuous or discrete
variables, quantum technologies require preparing suitable
quantum states, e.g., Schrödinger’s cat states, single-photon
states, and entangled states to name a few.
Even though typically restricted to the classical domain,

neural networks have become powerful machines for the
identification of correlations in input data. At the same
time, their massively parallel architectures with many
interconnections mapping to different outputs are natural
for generating outputs that are correlated. Neural networks
have formed efficient representations of quantum states
(e.g., with restricted Boltzmann machines [5–8]) and can
reconstruct highly correlated patterns given an imperfect
input (i.e., associative memories, which were also gener-
alized to the quantum regime [9]).
While most forms of neural networks are used as

software for preexisting hardware, reservoir computing,
which is a recurrent neural network, is particularly suitable
for neuromorphic implementation over a wide range of
physical systems [10–13]. In reservoir computing, an

interconnected network, known as the reservoir, is used
for mapping the input signal into its large nonlinear feature
space, where virtually any output function can be approxi-
mated as a linear cut. This large network (reservoir) is taken
as fixed and random, which is the main reason behind its
hardware success. Reservoir computing follows the pre-
scription of artificial neural networks that learn from
training to perform various tasks. However, the training
process in reservoir computing takes place only at the
output level. Consequently, training in reservoir computing
is a linear process and is easier to perform than in other
forms of recurrent neural networks [14,15].
While the applications of reservoir computing largely

focused on classical tasks (even with quantum reservoirs
[16]), the idea was recently brought fully into the quantum
world in the form of quantum reservoir processing [17]. It
was shown as an efficient platform for quantum entangle-
ment recognizing tasks and for performing complex quan-
tum measurements (e.g., entropy, purity, and negativity).
Although performing these tasks involves processing the
quantum nature of the input states, the output is still
classical data obtained through measurements on the
reservoir. Here we invert the paradigm of quantum reservoir
processing, replacing a quantum input with a classical one
and classical output with a quantum one, to arrive at a
neuromorphic platform for quantum reservoir state prepa-
ration (QRSP), as illustrated in Fig. 1. In this scheme, a
classical source excites a quantum reservoir where the
signal evolves and disperses into the large Hilbert space of
the quantum reservoir. Because of the quantum nonlinear
nature of the reservoir, the emission from the reservoir
constitutes a quantum field. To obtain the final output
quantum state, the emitted field is processed with a suitable
linear optical setup (corresponding to matrix multiplication
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of a vector of outputs) where the training takes place. This
platform can be used for preparation of different types of
quantum states.
Result.—In our consideration, the quantum reservoir is a

nonlinear 2D square lattice with the size N (total number of
lattice points) that is optically excited with a randomly
distributed classical field. This reservoir is represented by
the Hamiltonian:

Ĥ ¼
X

i

Eiâ
†
i âi þ

X

hiji
Jijðâ†i âj þ â†j âiÞ

þ
X

i

αiâ
†
i â

†
i âiâi þ

X

i

ðPiâ
†
i þ P�

i âiÞ: ð1Þ

Here, Jij, Ei, αi, and Pi are the randomly distributed and
site-dependent nearest-neighbor hopping amplitudes, on-
site energies, nonlinearity strengths, and classical optical
excitations, respectively. We consider that the excitation
field is coherent, which could be arranged by passing the
output from a single laser source through a spatial light
modulator (or amplitude mask). For the hopping ampli-
tudes, we consider that Jij are random parameters uni-
formly distributed in the interval ½−1;þ1� and then
normalized such that the spectral radius (largest magnitude
eigenvalue) of the hopping part of the Hamiltonian is J̃. The
spectral radius sets the energy scale for the Hamiltonian.
The quantum master equation for the density matrix of the
reservoir ρ is given by [18–20]

_ρ ¼ −i½Ĥ; ρ� þ 1

2

X

j

ð2âjρâ†j − â†j âjρ − ρâ†j âjÞ; ð2Þ

where we expressed all energies and times in units of the
linewidth γ (assumed the same for all reservoir sites) and
ℏ=γ, respectively. The Lindblad dissipation term [last term
in Eq. (2)] represents coupling to a Markovian environment
with continuous energy spectrum, which often appears for
systems with optical losses. The quantum fields emitted (in
a transmission geometry as shown in Fig. 1) by each
reservoir site are given by âj [18]. We assume that the
standard toolbox of linear optical elements is available [2]
for combining the transmitted fields to generate M final
output modes of the form

Âi ¼
X

j

vijâj; ð3Þ

where vij are complex coefficients. The output quantum

modes Âi must satisfy the commutation relations ½Âi; Â
†
j � ¼

δij imposing the conditions
X

k

vikv
�
jk ¼ δij: ð4Þ

These coefficients form a vector space with the unit vectors
vi ¼ ðvi1; vi2;…; viNÞ and satisfy orthogonality:

vi · v�j ¼ δij: ð5Þ

The number of such unit vectors M can be less than or
equal to N, as one can construct at most as many
independent output modes as the number of reservoir sites.
In the following we will consider two situations, one with
M ¼ 1 and the other with M ¼ 2. The output weights Vout

with the elements vij and with the structure of an N ×M

matrix would be obtained by training. For training we
numerically optimize cost functions that are extremum
when the prepared states become the same as the desired
states. For optimization we use the Nelder-Mead simplex
algorithm [21]. More details on the numerical methods are
given in the Supplementary Material (SM) [22].
Single-photon states.—Single photons are important

resources for various quantum technologies. Unless post-
processing is used, their generation typically requires a
system with strong photon-photon interaction, such that
their sensitivity to occupation number and antibunching
can be engineered. However, in practice, achieving strong
photon-photon interaction is a challenging task. Here, we
show that a QRSP system can induce strong antibunching
even in the weakly interacting regime (where the photon-
photon interaction is much smaller than the linewidth, i.e.,
αi < γ). We consider single-mode antibunching by
assigning M ¼ 1. The corresponding output occupation
number hn̂i and the second order correlation function g2 are
defined by

FIG. 1. A scheme of quantum reservoir state preparation. We
considered a set of nonlinear bosonic sites arranged in a 2D
disordered square lattice (with coupling between nearest neigh-
bors) as the reservoir. This is excited with a classical randomly
distributed optical field (generated by a random mask). The
emission from the reservoir is then taken through a linear optical
setup represented by the output weight matrix Vout. The final
output state is given by a linear combination of the quantum fields
emitted from the reservoir.
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hn̂i ¼ hÂ†

1
Â1i; g2 ¼

hÂ†

1
Â†

1
Â1Â1i

hni2 : ð6Þ

We optimize V
out such that g2 (corresponding to the cost

function) is minimum. In Fig. 2, we show g2 in the steady
state as a function of the output occupation number hn̂i and
the uniform excitation strength P. We find that, in general,
the antibunching effect becomes weaker with increasing
occupation number. However, with increasing size of the
reservoir one can reach smaller g2 for a fixed hn̂i.
We find that QRSP applies a generalized form of

unconventional blockade [19] for inducing the antibunch-
ing effect. In the unconventional blockade, strong anti-
bunching forms due to the destructive interference of
pathways leading to two-photon occupation [in particular,
the pathways j10i → j20i and j10i → j01i → ðj11i ↔
j02iÞ → j20i, where jn1n2i is the Fock state with n1
particles in the first site and n2 particles in the second;
here the double arrow induces an extra phase in the second
pathway leading to the destructive interference] [20]. In
QRSP, the suppression of multiphoton emissions is gen-
eralized to higher orders.
To explicitly demonstrate, we consider reservoirs in

different configurations [Figs. 3(a)–3(e)] and show
the corresponding photon number distribution Pn ¼
hψnjρjψni (where Fock state jψni ¼ ðÂ†n

1
=

ffiffiffiffiffi

n!
p

Þjvaci and

jvaci is the vacuum state). We find among the two-site
reservoirs, the configuration [Fig. 3(c)] with unequal
excitation and complex output weights shows the strongest
antibunching. The unconventional blockade [Fig. 3(a), this
is the original configuration [19] ] induces reduction in the
two-photon emission probability P2 [24,25]. However, the
configuration shown in Fig. 3(c) shows reductions in higher
order photon emission probabilities Pn>2 with respect to
the same for other configurations. Because of this sup-
pression of higher order photon emission, the antibunching
effect becomes stronger. A similar conclusion had already
been reached in Ref. [26]; however, in considering the
system as a reservoir neural network it is instructive to
consider further increasing the system size. Indeed, we find
that larger reservoirs [e.g., Fig. 3(e)] result in overall
reduction of multiphoton occupation (left-hand panel
in Fig. 3) and further enhancement of antibunching
[Fig. 2(d)]. While the state-of-the-art experiment [23]
shows g2 ≈ 0.95, our scheme predicts g2 ≈ 0.1 for a similar
nonlinearity strength.
Schrödinger’s cat states.—Here we show how QRSP

can be used to prepare Schrödinger’s cat states, jCati≡
ðjþζ i þ j−ζ iÞ=

ffiffiffi

2
p

, which are an intriguing superposition
of two classically distinct coherent states, j�ζ i ¼
expð−jζj2=2� ζÂ†

1
Þjvaci. For preparing these states with

QRSP, we consider a single output mode with M ¼ 1.

(a) (b)

(c) (d)

FIG. 2. Color plots of g2 averaged over many reservoir
configurations as a function of occupation number hn̂i and the
coherent excitation strength P (Pi are taken random from the
interval ½0; 1� × P) for reservoir sizes 2, 3, and 5 shown in (a)–(c),
respectively. The dark blue areas indicate the strong antibunching
regime (low g2) where single-photon states form. In (d), we show
g2 as a function of occupation number with optimum values of P
for different reservoir size. Note that an ideal single-photon
source requires a low g2 with a large hn̂i. Here, we consider
uniform characteristics of the lattice sites, namely αi ¼ α and
Ei ¼ E, and we have chosen α=γ ¼ 0.15 (this value is close to the
value extracted from the experimental measurements in Ref. [23]),
E ¼ 0, and J̃=γ ¼ 0.5. (a) (b)

(d)(c)

(e)

FIG. 3. Photon number distributions for different configura-
tions. On the left, we plot the probability Pn of n-photon
emission with a fixed occupation number hn̂i ¼ 0.02 for the
considered five configurations (a)–(e) shown on the right (the
background distribution in gray shows Pn for coherent light with
the same occupation number). On the right, we show the
following two-site configurations: (a) one site is excited, and
emission from the same site is taken as the output; (b) one site is
excited, and all emissions with real weights are taken for output;
(c) one site is excited, and all emissions with complex weights are
taken for output; (d) all sites are excited with the same strength,
and all emissions with complex weights are taken for output.
Panel (e) shows a three-site reservoir with unequal excitation
strengths, and all emissions with complex weights are taken for
output.
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For our demonstration, we consider ζ ¼ 1.4 for numerical
calculation, which sets the expectation value of the occu-
pation number hÂ†

1
Â1i ≃ ζ2. We excite the reservoir with

continuous excitation for a time interval τ, and then use the
state of the reservoir sites for preparing the output cat state.
The Wigner function representing the cat state is shown in
Fig. 4(a). In Fig. 4(b), we show the Wigner function of a
state prepared with QRSP (see SM for details [22]). As a
measure of inaccuracy in the prepared state we define an
error:

F̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

ij½Wðxi; pjÞ −W0ðxi; pjÞ�2
P

ij½Wðxi; pjÞ þW0ðxi; pjÞ�2

s

; ð7Þ

where W and W0 are the Wigner functions of the ideal and
prepared state, respectively. For training, we consider F̃ as
the cost function and minimize it with an appropriate
choice of Vout. Equivalently, one can optimize the fidelity
of the output state for training (see SM [22]). The errors are
shown in Figs. 4(c)–4(e) considering different realizations
of the reservoir, i.e., Jij. We find that larger reservoirs allow
smaller errors, while there is always some spread in the
errors depending on the chosen Jij. Thus additional
optimization over the reservoir can give benefits in terms
of the system performance as well.
Entangled states.—We prepare two-mode entangled

states with the same scheme as followed for preparing
the Schrödinger’s cat states, but here with M ¼ 2. In the

two-mode output subspace, we calculate the negativity
[NeðρoutÞ] from the corresponding output density matrix
ρout. The negativity NeðρoutÞ is defined as the sum of the
negative eigenvalues of T1½ρout�, where T1½� � �� represents
the partial transpose with respect to the output mode Â1. We
then train the output weights Vout such that NeðρoutÞ is the
maximum possible. Given the Vout ¼ ðv1; v2Þ, we form the
output modes:

Â1 ¼ v1 · â;

Â2 ¼ v2 · â; ð8Þ

where v1 · v�2 ¼ 0 and â ¼ ðâ1; â2;…; âNÞ. From the full
density matrix ρ of the whole system, we form the output
two-mode density matrix ρout:

hnmjρoutjn0m0i ¼ C
hvacjÂn

1Â
m
2 ρÂ

†m0

2
Â†n0

1
jvaci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n!n0!m!m0!
p ; ð9Þ

where C is a normalization constant imposing Tr½ρout� ¼ 1.
For simplicity, here we consider that the reservoir is
operating in the strongly interacting regime where the field
âi is effectively fermionized [27].
In Figs. 5(a)–5(c), we show the distribution of negativity

for the prepared states for different reservoir sizes. We find
that as the number of reservoir lattice sites N increases, the
output quantum state shows stronger entanglement with
larger negativity NeðρoutÞ. Even for a given N, the neg-
ativity reaches up to its maximum value NeðρoutÞ ¼ N=2
with a significant probability [see Figs. 5(a)–5(c)]. Note
that the maximum negativity NeðρoutÞ ¼ ðDA − 1Þ=2,
whereDA ¼ N þ 1 is the effective Hilbert space dimension
of the individual output mode. With the increasing reservoir
size N, we obtain quantum states with stronger entangle-
ment [larger NeðρoutÞ]. However, the QRSP platform can
also be used for preparing quantum states with a fixed
negativity and other states (see SM [22]).

(a)

(c) (d) (e)

(b)

FIG. 4. An example of an ideal cat state (a) compared with the
prepared one (b). Here we used a quantum reservoir with only 5
sites. The error of the prepared state is 0.085. In (c)–(e), we show
histograms of errors of the prepared cat states with different
realizations of the reservoir for increasing reservoir sizes. As
the reservoir size N increases, the chance of preparing low
error states increases. For cat state preparation, we consider
the parameters ζ ¼ 1.4, propagation time τ ¼ 1.3 × 10−2ℏ=γ,
J̃=γ ¼ 5 × 102, and the random parameters Pi=γ, αi=γ, and Ei=γ

are uniformly distributed in ½−1; 1� × 103, ½0.5; 1.5� × 103 and
½−0.5; 0.5� × 103, respectively.

(a) (b) (c)

FIG. 5. Distribution of negativity of the output quantum states.
We show the distributions of the negativity of quantum states
NeðρoutÞ prepared with different reservoir realizations and sizes
N ¼ 2 (a), 3 (b), and 4 (c). The negativity of the prepared states
increases with the increasing reservoir size. Here, we consider the
parameters τ ¼ 1.2 × 10−2ℏ=γ, J̃=γ ¼ 103, Ei ¼ 0 (for all sites),
and Pi=γ is taken uniformly distributed in ½−2.2; 2.2� × 103.
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Discussion.—While preparing the considered states, we
find that more complex quantum reservoirs are required for
preparing the Schrödinger’s cat states than those of the
other two considered states. For instance, considering
uniform on-site energies Ei ¼ 0 is enough to prepare the
single-photon and entangled states; however, for preparing
the cat states we required random on-site energies for
achieving low preparation errors F̃. While we have con-
sidered small amplitudes for the cat states, this is only due
to our limited (classical) resources for numerically simu-
lating the quantum system. In principle, larger quantum
reservoirs could be physically constructed and it is implied
that in addition to increased performance they could access
larger quantum states.
For physical implementation of our scheme, exciton

polaritons in planar microcavities have shown to form
interconnected networks [28–31] and also to reach the
quantum nonlinear regime [23,32]. It can also be imple-
mented in other systems, like arrays of quantum dots,
trapped ions and atoms, nonlinear optical cavities, and
networks of superconducting qubits where classical optical
sources can interact with quantum nonlinear systems to
generate quantized output fields.
The optimization procedure can either be performed

numerically, simulating experimental results and providing
target parameters for a physical system, or by using an
experimentally measured cost function within the Nelder-
Mead procedure. We consider the effect of experimental
errors in the latter process in the SM [22].
Although machine learning methods have been consid-

ered for optimizing universal quantum logic gate sets
[33,34] to prepare quantum states, with nonclassical input
initial states [35], number resolved measurements [36], and
conditional measurements [37], we stress that here we do
not use such resources. Rather, we operate with only an
irregular network of driven-dissipative Kerr nonlinear
nodes, with classical coherent laser input.
Conclusion.—We have presented a quantum reservoir

state preparation platform and demonstrated how it pre-
pares various intriguing quantum states. This platform
takes advantage of the large Hilbert space of a complex
quantum reservoir. Taking weakly nonlinear bosonic latti-
ces as the reservoir allows the enhancement of the uncon-
ventional blockade giving rise to single photons, while in
strongly nonlinear lattices more exotic quantum super-
positions and entangled states become available. Even
considering disordered systems, site-to-site variations in
local properties are not only overcome by the developed
reservoir neural network framework but become a useful
resource for quantum state preparation.
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