
IEEE JOURNAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF QUANTUM ELECTRONICS, VOL. QE-23, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ,  MAY 1987 

Quantum  Noise  in  Heterodyne  Detection 
MICHAEL J. WENGLER, STUDENT MEMBER, IEEE, AND DAVID P. WOODY, MEMBER, IEEE 

613 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstract-A fully quantum mechanical theory of diode mixers which 

includes quantization of the external circuit is presented. We  find  that 

Tucker’s theory for SIS mixer conversion efficiencies is correct, but 

that his expression for the measurement noise must be augmented by 

an amount corresponding to half a photon at every frequency to which 

the mixer responds. Noise in high quality SIS mixers is shown to be 

accurately described by the conceptually simpler photodiode mixer 

noise theory. The radiation coupling efficiency term, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq ,  which appears 

in photodiode theory turns out to be the coupling efficiency between 

the signal source admittance and the admittance which the SIS pre- 

sents to the LO. Our theory reduces to Caves’ quantum linear ampli- 

fier formalism, and therefore predicts measurement noises bounded by 

the quantum lower limit of h v / k , .  Predictions of performance versus 

frequency for SIS’s are made. We predict that NbN SIS’s will behave 

as nearly ideal photodiodes for frequencies as high as 3000 GHz. 

S 
I. INTRODUCTION 

UPERCONDUCTING tunnel junctions (SIS’s) pro- 
vide nearly quantum limited sensitivity for  millimeter 

wavelengths zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11-[4] and  have served as practical radioas- 
tronomical receivers for many years in this range [2], [5], 
[6].  First results in  the  submillimeter suggest that they 
will be equally sensitive  in  this  range [6], [7]. An elegant 
quantum mechanical theory for  these  devices  as mixers 
was developed by John  Tucker [SI. The  power  conversion 
efficiency predictions of this theory have been verified 
quantitatively [9]-[  113. Its nonclassical prediction of con- 
version efficiencies greater than unity have been observed 
[ l ] ,  [2], [4]. The development of SIS mixers and mixer 
theory are reviewed by Tucker  and  Feldman [12] and by 
Phillips and Woody [ 131. 

General considerations of the quantum mechanics of 
heterodyne detection show that  for  a signal at frequency 
v ,  heterodyne measurement noise has a minimum corre- 
sponding to  an input noise power hvB where B is the 
bandwidth of the measuring circuit [ 141-[  181. In  contrast 
to Tucker’s  device  oriented  approach, general linear  am- 
plifier theories such  as  Caves’ [17] derive  the measure- 
ment quantum  noise  limit of hvB by quantizing  the  elec- 
tromagnetic fields in  the circuit external to the  detector 
without reference  to  the  details of the  detection  device. 

Tucker has developed a theory of mixing in tunnel junc- 
tions based upon the microscopic quantum physics of the 
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junction,  but he does not quantize  the  external  circuit. As 
a  result, his noise predictions approach  zero [ 121, and his 
theory is thus shown to be  incomplete.  A  complete quan- 
tum mechanical description of a  mixer must include quan- 
tum descriptions of both the  device and external  circuit to 
which the  device  is  connected. We fill the  theoretical  gap 
between Tucker’s  and  Caves’  theories by making a  quan- 
tum mixing theory in which both a quantized external  cir- 
cuit and the  detailed  physics of the  detector  are  included. 
Zorin [19] presents physical results for SIS mixers which 
agree with those we predict,  but he does not present an 
interpretation of those results in  terms of signal and noise. 
Devyatov zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet  al. [20] present a  complete  quantum noise 
theory for  the SIS mixer and other  devices with results 
which are  consistent with ours.  Feldman presents a num- 
ber of details of SIS mixer noise calculations which we 
leave  out; he also discusses noise in Schottky diode mix- 
ers [21]. 

Our theory looks very much like  Tucker’s,  except  volt- 
age and current  are represented by operators  over  states 
of the  device  and states of the  external  circuit. As a  result, 
a simple rescaling of some  equations  in  our theory makes 
it,look like  Caves’  general amplifier theory. The external 
circuit is quantized in a  similar way to  Yurke and Denk- 
er’s quantum network theory [22]. A mixer output voltage 
operator is calculated.  The  output  signal  corresponds to 
an expectation value of that operator, ( Do ) . For low out- 
put frequencies, noise in  that  measurement  is  directly  cal- 
culable as the expected mean square  deviation of that 
measurement from its average, ( ( fi0 - ( c0 ) l2 > . 

Quantization of the  external  circuit  does not result in 
different mixer conversion efficiencies from those Tucker 
predicts, his mixer Y and Z matrices are valid in  our fully 
quantum theory.  His noise results also  appear in our the- 
ory, but they are not complete.  We find an additional term 
which adds noise as though the  mixer had down-con- 
verted half a photon of power  from every sideband to 
which it responds.  This is not a surprising result, it has 
been recognized as an ad hoc quantum  correction to Tuck- 
er’s theory by others who have discussed mixer noise [ 121, 

What has not been recognized before  is that this addi- 
tional noise term brings SIS mixer theory for ideal SIS’s 

into  quantitative  agreement with the conceptually simpler 
theory for photodiode mixers [25], [26]. Photodiode mixer 
theory gives  a  quantum  noise  limit hvB, which is entirely 
attributable to the  statistics of the photon absorption pro- 
cess.  The  agreement of these  two  theories  suggests that 
photon absorption  is  the only noise source in an ideal SIS 

[211,[231, ~241. 
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mixer as well.  Algebraically, this noise appears  as  a con- 
spiracy of external circuit photon noise and device  elec- 
tron noise. When the  device is optimally coupled to the 
photon field, photon absorption noise  is algebraically ac- 
counted for by photon operators. When the  device is less 
well-coupled, electron operators  for states in the  device 
take up the  slack. We appear  to  be  calculating  the detailed 
workings of the  Callen and Welton fluctuation-dissipation 
theorem [27], the  quantum  limit is enforced by whatever 
dissipative elements  are coupled to the  device. 

We are mainly interested in SIS mixers for millimeter 
and submillimeter wavelengths.  Once  we have presented 
our  theory,  we combine it with Tucker’s theory to discuss 
SIS mixer performance.  This theory predicts quantum 
limited performance for good quality zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASIS mixers up to a 
limiting frequency which depends on the turn-on voltage 
of the SIS diode.  That upper frequency limit is about 1400 
GHz for lead alloy SIS’s, but it may reach 3000 GHz for 
niobium-nitride junctions which are now being developed 
for mixers [28].  Our noise results differ from those of 
Danchi and Sutton [24] because their calculations are done 
without optimizing the signal source  admittance presented 
to the SIS. 

11. THE  QUANTIZED  EXTERNAL  CIRCUIT 
We stay in the Heisenberg picture: quantum mechanical 

states are constant in  time, time-evolution of an  observ- 
able is completely determined by time-evolution of the 
corresponding operator.  This results in equations for volt- 
age  and current operators which are  quite  similar  to  their 
classical counterparts. Operators will often be  given in 
terms of their frequency components.  The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw frequency 
component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( t )  of an  operator @( t )  will be represented 
by a  time independent “phasor”  operator W, and its Her- 
mitian conjugate W:. These  operators  for  the  same ob- 
servable quantity are related through 

W u ( t )  = $ ( WweiWz + W:ePiw‘). (2.1) 

A  “hat”  above any operator means that we want the  time 
varying version of that  operator, we will sometimes write 
w ( t )  as W .  

Instead of being considered as  a continuous variable, 
angular frequency w is broken into discrete  intervals of 
width b and summed over.  The  time varying operators  are 
then given as  a sum of the individual frequency compo- 
nents 

m 

W ( t )  = c Wn,( t ) .  (2.2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n = O  

The results we  derive  are equivalent to those derived by 
letting b go to zero, and then integrating  over continuous 
operators  to reestablish a nonzero angular bandwidth b, 
so we skip these  algebraic  steps. Bandwidth is usually not 
quoted in angular  frequency, so we use 

B = b / 2 ~  (2.3) 

for  bandwidth.  For nonzero B, all  operators  are periodic 

(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
<-I, 

q vw;F$, 
--o 

(b) 
Fig. 1. (a) The  external  circuit of the  mixer is represented by a  semi-infi- 

nite  transmission  line.  Reactance  from  the  external  circuit  appears  as  a 
lumped  component  at  the  line  terminals.  The  direction of positive  current 
flow for  the - and + going  waves  are  shown.  (b) An equivalent  circuit 
which  is  usually  used  in  mixer  theories. A linear  admittance  shunted by 
a  perfect  current  source  models  the  circuit  at  each  frequency. 

in  time with period T = 1 /B.  Measurements separated 
by a  time interval T or longer can be looked at as inde- 
pendent experiments.  The  average  value of these mea- 
surements is the expectation value ( W ) and the mean 
square noise is ( W 2 )  - ( W )’. 

The external circuit carries photons toward the  device, 
and the device in interacting with these photons generates 
photons which travel away from the  device.  The circuit 
with which we model this process is shown in Fig. l(a). 
At every frequency w the circuit consists of a reactive 
lumped component with admittance iB, and a transmis- 
sion line of admittance G,. Yurke  and  Denker [22] dis- 
cuss the quantization of circuits such as those of Fig. 1. 
They note that the equations of motion for  the current and 
voltage operators  are Kirchhoffs circuit laws, the opera- 
tors evolve  in this circuit just  as classical voltage and  cur- 
rent would. 

The voltage and current  operators  are found following 
Louisell’s transmission line quantization [ 151. Quantiza- 
tion is accomplished by considering a length L of the line 
with periodic boundary conditions. Allowed frequencies 
are 

w = n2aB for n = 0,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, 2 * (2.4) 

with 

B = c/L (2.5) 

where c is the speed of light on this transmission line.  We 
choose L so that  this B is the  same  as  the bandwidth in 
(2.3).  We  quantize  the incoming ( - ) and outgoing ( + ) 
traveling modes. The Heisenberg photon creation opera- 
tors for  these modes are ii :, ( t )  where 01 takes on values 
+ or - . Letting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa:, represent the  time independent or 
Schrodinger  picture  operator 

&LCY(t) = a w t v  (2.6) 
t eiWt 

shows the explicit time dependence of the Heisenberg op- 
erators. 

In terms of phasor  operators (2. l), voltage and current 
operators are 

v,, = Qwa:, 

I,, = GwQWa,, (2.7) t 
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where the “quantum of voltage” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

is calculated from  (2.5)  and Louisell’s equation (4.31) 
[15]. The  current  and voltage operators at the terminals 
including the effect of  a  lumped reactance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiB, are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

v, = vu- + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv,, 
I, = I,- - I,+ - iB,V,. (2.9) 

Fig.  l(b)  shows  an equivalent circuit to  Fig.  l(a) which 
is usually used in mixer  theory.  The  two circuits represent 
the same physical situation if the following relationships 
between  them exist: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(40- ) = %/2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
gw = G, + iB,. (2.10) 

Voltage  and current phasor operators are within a  con- 
stant of the photon  operators,  just  as electric and  magnetic 
field operators are for  free-space  modes.  Their  commu- 
tation relations are  all within a constant of the voltage 
operator commutators zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[K,, v,wI = 0 

We find the  power flux in each  mode in terms of the 
voltage operators.  The operator 

+ K d O L ~ L  + ~ ~ a ~ u O L 1  (2.12) 

could  be  used to define an instantaneous power flow op- 
erator.  This operator has  a  time  averaged expectation 
value 

(2.13) 

where the subscript t indicates that an  average  over  time 
1 /2aw  is taken to  remove  terms  at  frequency 2w.. Anti- 
commutator notation has been introduced for the last  two 
terms of (2.12): The  average  power flux in each  mode  is 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAwB( ( nwa) + i )  (2.14) 

where 

nu, = aLOLawOL (2.15) 

is  the  photon  number  operator for the  mode.  The  anticom- 
mutator was simplified using the voltage commutation re- 

lation (2.11) and the definition of the voltage phasor (2.7). 
The  quantum of radiation in traveling wave  modes is AwB 
~171. 

111. THE  QUANTIZED DEVICE 

A  heterodyne  mixer is made by connecting the termi- 
nals  of a  device to the external circuit of Fig. 1 which 
supplies signal, LO and  dc bias and to which the output 
signal of the mixer, traditionally called the intermediate 
frequency (IF),  is delivered. Each half of this circuit has 
a current through it which  depends  on the voltage wave- 
form across it. Classical mixer theory consists of a consis- 
tent solution for  both halves of the circuit of 

z$[ vc’(t)] = I; [ VC‘(t)] (3.1) 

where I$ and 1; give the current  through the device  and 
the external circuit respectively as functionals of the volt- 
age  waveform. The square brackets in (3.1)  are  used  to 
indicate that  the current at  any  time may depend  on  the 
voltage waveform at the  time  and  earlier. A quantum the- 
ory of the external circuit has been described in Section 
11. The  quantum generalization of I$ is  device  dependent, 
a theory based  on the physics of each  device  to  be eval- 
uated as  a  mixer  must  be  made.  We discuss the features 
this device theory must  have  for  use in this mixer theory. 

From (3. l ) ,  we see that the  device  and  the external cir- 
cuit can  be treated symmetrically in a  mixer  theory. A 

quantized device  has  a many body  electronic  state I D ), 
just  as  the electromagnetic field  of the  external circuit has 
a photonic state I E ).  Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApE and fE be  the voltage and 
current operators over  photon states defined in Section 11. 
A quantum  device theory would  include,  at least implic- 
itly, definitions of operators vD and fD constructed  from 
the electronic creation and destruction operators.  When 
the device  and external circuit are connected  at  their ter- 
minals, pE and pD are distinct operators over  disjoint sets 
of states, but for the same  observable  quantity. In fact, 
this applies to any  observable function of these  operators. 
For  example,  powers of these waveforms  are in principle 
observable, so 

( f m D  = ( p a ( N E  

( f ; ; ( t ) > .  = ( G ( t ) ) E  (3.2) 

for all integer n. The subscript E or D on  the expectation 
value are meant to indicate that it is  only necessary to 
evaluate this operator over  the external photonic or device 
electronic states, respectively. The relationship of I 0)  
and 1 E ), which  are by no  means  independent,  is implic- 
itly contained in (3.2).  These relationships show that it is 
not necessary in an operator expression to indicate whether 
a voltage or  current  operator is over  state 1 D ) or I E ) .. 
We will therefore  drop the subscripts E and D from the 
operators in all further expressions. 

To motivate our conditions on  the  quantum generali- 
zation of (3. l ) ,  we  discuss  the causal chain of events in 
the mixer  circuit. At some early time, radiation 1 E-  ) is 
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moving towards the  device which is in some state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD ). 
The radiation is absorbed by the  device changing its  state 
to I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD* ). The  device  emits radiation I E+ ) in returning 
to its state 1 D ) . All mixer equations are presented in the 
frequency domain, where a time invariant response I E+ ) 
is produced by a  time  invariant stimulus I E- ), so the 
causal chain is not obvious from the  algebra. 

To  generalize (3.1) we consider  currents in the  device 
to be driven by voltages from the  external  circuit, so all 
voltage operators below are  those found in Section 11. For 
a fully quantum theory of (3. l ) ,  we require a  device the- 
ory which allows  the calculation of the  state I D ) asso- 
ciated with every possible  state I E ) of the external cir- 
cuit. A unitary operator can be defined so that 

ID> = u [ W I  lDO> (3.3) 

where I DO ) is the state of the device with its leads shorted 
to each other.  The quantum analog of (3.1) is then 

fm(t) = L o [  PW] (3.4) 

where this operator acts on the equilibrium state I DO ), 
and is related to  the  current  operator on the left-hand side 
of (3.2) by 

iD0 = uTfu. (3.5) 

When this operator  is used instead of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, the short circuit 
device state I DO ) should be used instead of I D ). In this 
way a  current  operator which includes explicit response 
to voltage is  constructed. 

Tucker's theory for tunnel junctions [8] very nearly fits 
the  outline  above.  His  current  operator corresponding to 
(3.4) appears  in his eq. (2.10).  The external circuit in 
Tucker's  mixer theory is not quantized, he therefore uses 
a classical voltage in place of the voltage operator in (3.4). 
As a  result, his current  operator  operates only on the  de- 
vice state l DO ) and does not operate on the photon states 
in I E ) . Fortunately,  quantization of the voltage for a lin- 
ear mixer theory changes nothing in the  device portion of 
Tucker's  device  theory,  as  we will now show. 

' A  tunnel junction  consists of a  LHS and a RHS elec- 
trode, separated by a thin potential barrier.  The  electronic 
states in each  electrode  are  assumed to be only mildly per- 
turbed by coupling to the  electronic states in  the  other 
electrode.  This coupling is described by a tunneling Ham- 
iltonian H T .  The distributions of electrons  in  the left and 
right electrodes  are assumed to be  thermal, so that  elec- 
tronic chemical potentials ,uL and pR are defined. The 
presence of a voltage waveform causes a difference in the 
chemical potential across  the  barrier, 

P L  = evd (l) + PR. (3.6) 

The unitary matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU described in (3.3) is not presented 
explicitly by Tucker, but it is discussed for  dc voltages 
by Rogovin and Scalapino [29].  It  is not solved for ex- 
actly, it is approximated to second order in HT using per- 
turbation theory.  Its voltage dependence,  however, is 

treated exactly through the  voltage  phasor term 

w(t> = W[VcV,,(t)] 

= exp [ - i  5 1' d t f V c , ( t f l ] .  (3.7) 

A heterodyne mixer has  large voltages on it due to the 
LO and dc  bias, which we call VLo ( t ) .  Any other voltages 
such as those due to signal or noise are assumed to be 
small enough to deal with only to first order. We define 
an operator, ir, for  these small voltages so that 

P(t) = VL0(t) + I q t ) .  (3.8) 

VLo ( t )  is not an  operator, it can be interpreted as the por- 
tion of ( P( t )  ) which originates in the LO source. Any 
fluctuations which originate in the LO source are included 
in 8 ( t ) .  

Tucker's  junction is now attached to the quantized ex- 
ternal circuit of Section I1  by putting P ( t )  in place of 
Vc, ( t )  in (3.6).  The new voltage phasor (3.7) can be fac- 
tored 

W )  = W [ V L O W ]  w [ w ]  = w B ( t )  w,(t> * (3.9) 

The small voltage  operator is a  sum of its frequency com- 
ponents as described in (2.1) through (2.3).  From  (2.1 l) ,  
it  is seen that different frequency components of 8 com- 
mute, so W, can be factored, 

W, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIT W[u^,(t)] = W,,(t). (3.10) 

Finally,  we find W,, to  linear  order in voltage phasor op- 
erators 

w w 

Wu, = 1 - - (uweiWt - uLe- iwf ) .  (3.11) 

An important feature of (3.11)  is that it has exactly the 
same form when a small classical voltage is used instead 
of a voltage operator.  The rest of Tucker's development 
of mixer theory is thus formally applicable to a mixer the- 
ory with quantized external circuit by simply interpreting 
all instances of small voltages in his equations as opera- 
tors on external photon states.  In  particular, his expres- 
sions for  the elements of  the mixer Y matrix are unaffected 
by this quantization.  Algebraically,  the nonzero commu- 
tation relation (2.11) is the only thing that distinguishes 
small voltage phasor operators from classical small volt- 
age  phasors. As a  result,  terms  like u, u i  and u: u, have 
different meaning in  a quantum theory, although they are 
the  same in a classical theory. But for  a  linear  theory, 
these product terms never appear, so linear classical 
expressions are algebraically equivalent to linear quantum 
expressions. 

e 
hfw 

IV. MIXER OUTPUT  OPERATOR 

In  a  mixer  circuit,  the  voltage across the device is given 
by (3.8).  The LO is from a coherent radiation source with 
fundamental angular frequency wLo, so VLo ( t )  has com- 
ponents at  frequencies maLO for  positive integers m. We 
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also include any dc  bias  voltage in VLo. Input voltages at 
the sideband frequencies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= muLO + wo for all integers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm (4.1 ) 

are mixed together to produce the mixer output at fre- 
quency ao. We require  that wo > 0 and  that wo # 1 w, 1 
for any integer m. 

Voltage and current operators  have been previously de- 
fined for  positive  frequencies  only, so 

are  the sideband components of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 in  (3.8) where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, are 
the external circuit  operators defined in (2.7). External 
circuit sideband current  operators zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAim are similarly defined, 
as are  device  current  operators ZDom for  the components of 
(3.4).  The external source admittances are 

for am 2 0; 

otherwise. 
(4.3) 

Determining the  mixer  response is a  matter of calculat- 
ing  the  current  operator in (3.4)  as  a function of the volt- 
age  operator  in  (3.8).  Treating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD as  a perturbation on  the 
device  in  the U [  VLo] I DO ) state,  the sideband current 
phasor operators  are  found as a first order perturbation 

- - ZLOm + c Ymm'Um'. (4.4) 
m' 

ILom and Ymm, are  operators  over I DO ) only, they do not 
operate  on I E ). Their  fundamental  dependence on VLo 
is shown explicitly in (4.4), but will not be shown through 
the rest of this  paper.  We need consider only the  expec- 
tation value of Y,,,,,, since  the fluctuating component of 
Ymmr corresponds to gain fluctuations which are explicitly 
ignored in  a  linear theory [17]. Without changing the 
symbol,.  we interpret Ymmr as  an expectation value from 
here  on. 

Relating Tucker's  junction  device theory with our  gen- 
eral  notation, we have 

ZLom = 47rBZT(-wm) for T = 1/B  (4.5) 

where ZT is the current operator in Tucker's equation (7.9). 
This operator  represents  the  sideband  current flowing due 
to the LO voltage waveform.  Its expectation value must 
be zero,  since the expected current waveform must,  like 
VLo, have components only at wLo and its  harmonics.  Its 
fluctuations, however,  have components at all frequen- 
cies. 

The output voltage wave  operator  is found by compar- 
ing current operators  in  (4.4)  and  (2.9). In matrix and 
vector notation,  (4.4) becomes 

- t - t  

i = ILo + YC. (4.6) 

The sideband current  and voltage operators can be broken 
down into  their + and - going components using (2.9) 

and (2.10).  Rearranging terms 

(y + Y )  I;+ = -zLo + ( y *  - Y )  I;- (4.7) 
-f 

where ymm, is the  diagonal matrix of ym values.  In  tra- 
ditional mixer  theory,  the matrix ( y + Y )  has  an  inverse 
matrix called 2, for  example see  Tucker's  equation  (6.8). 
We multiply both sides of (4.7) by this matrix 

-+ 
u +  = x-  - ZI,, (4.8) 

r = z(y* - Y )  

-+ 

where 

= 2ZG - I. (4.9) 

I is  the identity matrix and the  G matrix is  the real part of 
y. Abandoning matrix notation,  we  have  the  output  volt- 
age  operator 

uo+ = (ram U r n -  - Z o m I L o m )  
m 

= -uO- + C Z ~ , ( ~ G , U ~ -  - ILo,). (4.10) 
m 

The  output  photon  state 1 EO+ ) is implicitly determined 
by the states I E-  ) and I DO ) by this  equation,  as  one 
would expect from the  causal  chain described in Section 
111. Equation (4.8) defines the  output  voltage wave at all 
frequencies except harmonics of the LO. Of course,  the 
matrices and  operators with subscripts m must be reeval- 
uated for  each  choice of coo since m is a shorthand for 
wo + maLO. 

The  output  power  (2.14) of the  mixer  is 

(4.11) 

Using (4. lo), the  expectation  value of the  anticommutator 
can  be  evaluated  over  states 1 DO ) and 1 E-  ) 

(4.12) 

(4.13) 

because { Z l o m v  ) Do is zero. 
The first sum  term  in  (4.12)  accounts for output power 

which Tucker  associates with noise in his mixer theory. 
To  indicate that it accounts only for noise associated with 
the  device  operators,  we  label  the current correlation ma- 
trix that  Tucker  calls H in his equation  (7.14) ElD.  Using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(4.5) to calculate  this  in  terms of our  operators 
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The second sum in (4.12)  accounts  for output power  due 
to interaction with the incoming radiation. A current  cor- 
relation matrix for  the incoming radiation is 

(4.15 j 

The off-diagonal element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHE,,,,,, is nonzero only if the 
photon states zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEm- ) and I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEm ’- ) are  correlated.  This 
occurs when,  for  instance,  the radiation source is a para- 
metric amplifier pumped with radiation which is phase- 
locked to the mixer LO [17]. For most physical situations, 
HE is diagonal and the mixer  output  power is 

p0+ = G ~ B  C Z ~ ~ Z ~ ~ , H ~ , , , , , , ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
mm’ 

+ B Som( am- + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 )E-hwm. (4.16) 
m 

Gom is the  mixer  conversion efficiency, 

GO I zOm 1’ for m z o 
G m  1 - 2G0Z00~2 for m = 0. 

6 0 m  = - I r o m  I = 

(4.17) 

We have made no attempt  to  describe  the apparatus 
which measures Po+. A  photon counting power meter 
measures n,, and detects  hwoB / 2  less than (2.14) pre- 
dicts, while a classical power  meter following a high gain 
linear amplifier would detect  hwoB / 2  more than our 
power expression.  For the important special case that wo 
<< wLo, these differences are  negligible, and (2.14)  de- 
scribes the results of any type of power measurement ac- 
curately.  For  this  case, our theory is a  complete theory 
for heterodyne measurement.  For  larger  output frequen- 
cies,  the  details of the  output measuring system must be 
considered. 

If coo is small, we can also  set Po- to zero.  Then  the UO- 

term in  (4.10) does not contribute to the  mixer output 
power, so (4.11) becomes 

Po+ = GOB ZomZo*,,(HDmm, + HEmm,) for Po- = 0. 

(4.18 j 

Most of Tucker’s expressions are derived under  these  as- 
sumptions.  Tucker’s  mixer noise expressions involve 
sums like  (4.18)  over  an H matrix which is equivalent to 
HD. As we have defined HE in (4.15), it accounts for mixer 
response to signal power,  but as we show below, it also 
includes an  additional noise term which completes tunnel 
junction  mixer noise theory. 

Equation (4.10) is close to the formalism used by Caves 

mm’ 

[17] for consideration of lower  limits on noise in ampli- 
fiers. Caves’ equation (3.5) relates the  output signal pho- 
ton operator  to input signal photon operators  and  a noise 
operator 5o through 

ao+ = (MomqWmI- +Loma;&) + 5 0  (4.19) 
meS 

where S is the set of sidebands which carry signal.  This 
is equivalent to (4.10) if 

l o  otherwise 
r r  

10  otherwise 

+ L o r n q w m + ) .  
t (4.20 j 

The I’;,,, for positive 0, correspond to  Caves’ phase-pre- 
serving gain terms Mom, while negative w, produce phase- 
conjugated gain Lo,. Caves refers to the modes which are 
summed over to produce 5o as internal modes. As  he 
points out just before his conclusion, sideband modes 
which do not carry signal must be included with the noise- 
adding internal modes of the  device. 

Since our formalism is equivalent to Caves’, it is con- 
sistent with the quantum limits  Caves’ has derived for  lin- 
ear amplifiers. Although we  are not going to pursue  the 
interesting field  of quantum nondemolition measurements 
in this paper, it is clear  that  (4.10) can be used to handle 
correlated photon input states (squeezed states) to hetero- 
dyne mixers. 

V. MIXER GAIN AND NOISE 

In a classical theory, voltages can be measured instan- 
taneously and  exactly, so classical receiver theories use 
voltage and signal interchangeably. Quantum mechani- 
cally,  the measurement of voltage is distinguished from 
voltage itself, so signal must be identified with the expec- 
tation value of the voltage waveform.  The simplest use of 
a mixer is  to  determine  the input voltage phasor in one 
sideband by measuring the output voltage phasor.  For 
convenience we choose  the m = 1 sideband to carry the 
signal. The input and output  signals  are 

= ( u1- ) 

vOUT = ( uO+ ) = rO l  (5.1) 

where rol in (4.10) is now identified as the voltage gain 
of the mixer. It is common  to express mixer performance 
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in terms of powers. The signal powers are 

PIN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 G1 I 1’ 

POUT = 4 GO I vOUT l 2  (5.2) 

and they are  linearly related by the  conversion gain of the 
mixer  (4.17) 

POUT = SOIP IN*  (5.3) 

Noise in the voltage measurement is  characterized by 
the expected mean square  deviation of a set of voltage 
measurements from  the  true  expectation  value.  The volt- 
age phasor operator is not an observable operator, so noise 
is calculated in  the  time domain using (2.13) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

G = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( ( f i o + ( t )  - ( $ 0 + ( 4 ) )  ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

= ( (  [ U O + ,  d + l +  ) - v&JTvOUT) 

PN = GoVj$. (5.4) 

The minimum detectable  signal  power is defined to be  the 
signal power which results in an output signal to noise 
ratio (SNR) of unity 

Pdet = pN/601*  (5.5) 

The minimum detectable power is generally proportional 
to the bandwidth B, so the noise figure of merit for  a mixer 
is a  detectable noise power per bandwidth 

EM = Pdet/B- (5 .6 )  

Traditionally,  this  is presented in units of temperature 

TM = E M / k B  (5.7) 

but it can also  be expressed in units of photons 

NM = EM/hwl. (5.8) 

We now work out the noise for this measurement. As- 
sume that the  signal  state I E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 - ) is  an  eigenstate of 
u f -  with eigenvalue VIN. Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu?- is proportional to al -, 
this eigenstate  is  a  Glauber  coherent  state.  This  state  car- 
ries power (2.14) 

,-. 

where (2.1 1) was used to  expand  the  anticommutator. 
Comparison with (2.14)  shows that photons counted by 
the number  operator nl 1 account exactly for  signal  power 
in this  state, but power flux exceeds signal power by an 
unavoidable half photon which we attribute  to  the  vac- 

uum.  To  calculate minimum mixer  noise,  assume that all 
other incoming radiation states  are  in  their  vacuum  states. 
Subtracting output signal  power  (5.3) from the total out- 
put power (4.16),  we  have  the  output noise power 

Pry = GOB C ZomZZm,HDmm, + B C Som$hwm. 
mm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 

(5.10) 

The first term  above is the noise term which Tucker de- 
rives for  tunnel  diode  mixers.  The second term  is  due to 
quantization of the external circuit,  and it represents the 
minimum noise possible  for  the  signal in one  sideband 
only,  since ( nm- ) L 0. For  this  mixer,  the  vacuum half 
photon at every sideband appears  to  be frequency con- 
verted into noise power  at  the  mixer  output. 

The nonsignal sidebands may be in thermal equilibrium 
photon states.  The mth sideband photon state  in thermal 
equilibrium at  temperature Tm has 

( u r n ) ,  = 0 

(nm- + i ) T m  = icoth (hwm/2k,Tm) (5.11) 

[ 161, [27] which has limiting forms 

for T,,, = 0;  

(5.   i2)  

These  limits are the vacuum state  and  the Rayleigh-Jeans 
limit,  respectively. The noise in (5.10)  represents  the  case 
that  all unused sidebands  are terminated at 0 K. We can 
include the effect of finite temperature termination of non- 
signal sidebands by replacing the  1 / 2  in  the second term 
on the right of (5.10) with the second line  in  (5.11). 

Tucker suggests in his equation (7.8) that  the Planck 
formula 

be used to describe  thermal  noise.  This  is  the traditional 
formula for  the  available  photons, it does not include  the 
unavailable one-half photon in  (5.11)  that is attributed to 
the vacuum. This relation between the Planck formula and 
(5.11)  serves to emphasize  the identification of the second 
term on the right of (5.10)  as  the  quantum noise term. 
Amplifier gain and noise measurements are  often made 
using black bodies at  various known temperatures  as  cal- 
ibrated power  sources.  Since one-half photon of (5.11) 
must always be identified with unavoidable noise,  the 
Planck formula (5.13) should be used to describe thermal 
“signals,”  even  for high temperatures.  Use of the Ray- 
leigh-Jeans approximation (5.12)  to  describe hot black- 
bodies results in the underestimation of  mixer noise by 
about one-half photon. 
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Fig.  2.  Current-voltage  curves  for  four  different  tunnel  junctions.  The 
dotted  line is for  an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASIN at  1.6 K. The  dashed and dot-dash  lines  are  for 
lead  alloy SIS’s at 2.5 and 4.3 K ,  respectively.  The  solid  line  is  made 
by  scaling  voltage  and  current  from  the  dashed  line  to  represent a nio- 
bium-nitride SIS, which  are  currently  under  development  for  submilli- 
meter  receivers. 

VI. SIS MIXERS 
We have developed the theory above very generally so 

it can serve  as  a  framework  for  a quantum mixer theory 
of any device.  The inclusion of the external circuit noise 
from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHE is not device dependent at all,  nor is the  fact that 
the Y and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ matrices relate voltage and current operators 
in the external circuit.  However,  our formalism has been 
developed so that it will fit with the formalism developed 
by Tucker  for tunnel diodes, and complete the noise the- 
ory of these  devices. Having done  this, we  now discuss 
the performance of SIS mixers. 

A computer program has been written which calculates 
mixer performance based on  Tucker’s theory for  the  con- 
version efficiency and device noise and the  complete noise 
as given by (5.10) using measured dc current-voltage 
curves. In Fig.  2  are shown the current-voltage relation- 
ships for  four different tunnel junctions.  The dashed line 
is from a lead alloy junction  cooled to 2.5 K [30].  The 
dot-dash line is for  the lead alloy junction which was mea- 
sured from 115 to  466  GHz by Wengler et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd .  [7] cooled 
to 4.3 K. The dotted line zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis for  a superconductor-insula- 
tor-normal metal (SIN) junction cooled to 1.6 K [31]. For 
the sake of comparison,  the measured currents of these 
three junctions  have been scaled so that all three would 
appear to be 50 C! resistors above  their superconducting 
transitions. In  addition,  an artificial curve is drawn  for  the 
hoped for niobium nitride SIS, which has a significantly 
higher VG (“gap voltage” at which current starts flowing) 
than lead based junctions [28]. Predictions of single side- 
band mixer performance have been made  for  these  four 
junctions assuming that rn = 1 and -1 sidebands have 
the  same terminating admittance.  The assumptions made 
arc wo is small, nonsignal sidebands  are at 0 K, and  John- 
son noise from the SIS’s is not included.  The noise per- 
formance of these receivers is optimized against dc bias 
voltage, the LO drive voltage VLo, and the signal source 
admittance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. 

The results are shown in  Fig.  3.  The  warmer SIS and 
the SIN do no better than NM of a  few,  due  to  their non- 
zero  ‘‘dark  currents. ” It is interesting to note that the 
rather mediocre warm SIS is predicted to outperform  a 

0 103’3 2000 3330 

:req’Jency, G t r  

Fig. 3.  Mixer  noise  under  optimum  conditions  versus  frequency  predicted 
for  the  four  devices of Fig.  2. 

much colder SIN for 400-1000 GHz, because of its in- 
trinsically more nonlinear SIS current-voltage relation and 
its higher VG. Each device degrades above some high fre- 
quency f u  - 2VG/h. The  colder lead and the fictitious 
NbN SIS’s are  close to the quantum limit of one photon 
up tofu. We conclude that  SIS’s should provide quantum 
limited detection up to about 1400  GHz  for lead alloys, 
and to as high as  3000  GHz  for  NbN. 

In general the  calculation of mixer performance re- 
quires knowing all of the terminating admittances and 
Tucker’s full  formalism  in combination with (5.10) must 
be used. Fortunately the  performance is easy to charac- 
terize in the interesting situation where the noise ap- 
proaches the  quantum  limit. Quantum limited perfor- 
mance is achieved when and only when the leakage or 
“dark  current”  is small and the absorption of one photon 
produces one  electron in the  output current [21] , that is 
when the  device behaves like an ideal photodiode. This is 
the case  for  an ideal SIS tunnel junction  in  the  limit of 
low LO power. In this case,  the expressions that Tucker 
gives for  the Y and HD matrices can be simplified, see  for 
example, [12], [21],  [24], and the mixer noise given by 
(5.10) is simply the  inverse of the coupling efficiency as 
it is  for more traditional photodiodes, 

NM = l / v  (6.1) 

where 

and 

Y L O  = - 
]LO 

VLO 

GLO = Re Y LO. (6.3) 

VLo and ZLo are  the voltage and current phasors at the LO 
frequency, ZLo can be calculated from Tucker’s equation 
(5.2). 7 is the coupling efficiency between a source ad- 
mittance y1 and a  load  admittance yL0. 

Note that  the optimum source  admittance  is the admit- 
tance which the device presents to the LO and not the 
admittance it presents at  the  signal  frequency.  The load 
admittance which the SIS mixer presents to  the input ra- 
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diation at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1  can  be  calculated  from  the Y matrix and 
the terminating admittances ym. In general, that admit- 
tance  is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot equal to yL0,  which is completely indepen- 
dent of all y m .  McGrath  has  suggested to us  that  the m = 
1 mixer load  admittance can be  derived  from  an  active 
circuit with a  feedback  loop [32]. ?ILo is apparently the  pas- 
sive  admittance in this  circuit.  It is therefore  this  admit- 
tance to which Callen  and  Welton’s fluctuation-dissipa- 
tion theorem [27] applies, and this admittance which the 
external circuit  must match to minimize measurement 
noise. 

This  equation  for mixer temperature is independent of 
yPl [21].  Consider  the  optimum mixer with NM = 1 at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
’yl = ’y $. If  the  image ( m  = - 1 ) is  also optimally 
coupled to  the  mixer, then yPl = ?ILo and all of NM = 
1 is algebraically due  to  the HE term in (5.10).  If, how- 
ever, y - 1  is purely reactive,  then half of N,,, comes from 
HE and half comes from Tucker’s term, HD. We  are seeing 
the  detailed workings of the fluctuation-dissipation theo- 
rem [27]. When the ’y - is well coupled to the  mixer, its 

. dissipation enforces  the  quantum  limit, but decoupling 
yVl from the  mixer does not lower  the quantum limit, 
instead dissipation in the  device provides the necessary 
noise. 

Equation (6.1) is the  same  as  that obtained for  a perfect 
photodiode. Their  properties  as heterodyne -mixers  are 
discussed in textbooks by Kingston zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[25] and Marcuse 
[26]. For  photodiode  theories,  the  external radiation 
source is not allowed to vary over  the RF frequency range 
including the signal, LO, and  image. A similar constraint 
on  the  external  circuit of an SIS mixer corresponds to 
holding y, in Fig.  2  constant  over  the range I w - ~  I < w 
< wl, In this  case, 17 defined in (6.2) is the fraction of 
incident LO radiation which is absorbed by the SIS diode. 
This is precisely the definition of in photodiode mixer 
theories. When (6.1) is derived for  a photodiode mixer, 
it is calculated  from the statistics  associated with LO pho- 
ton absorption.  The  fact  that  we  derive this same  amount 
of noise for  an ideal SIS mixer  leads us to conclude  that, 
as  in  a  photodiode  mixer, noise in  an ideal SIS mixer can 
ultimately be identified with the  statistics of the  photon 
absorption process. We conclude  that not only is an ideal 
SIS tunnel junction  like  a  perfect photodiode in  its  re- 
sponse, producing one  electron in its  output current for 
each photon absorbed as  Tucker  has  shown,  but  that  it is 
like  a perfect photodiode in its  noise properties as  well. 

Real SIS .mixers are not operated at low LO powers. 
One effect of a nonzero LO power is that sidebands 
1 m 1 > 1 may play a role in  mixer  performance,  but we 
will assume that these  sidebands  are  shorted  out by the 
circuit surrounding  the tunnel junction. An effect of the 
higher LO power that cannot be neglected is that  the SIS 
response to the LO saturates; not all absorbed photons 
result in the conduction of  electrons  across  the  device. 
While  (6.1) is no longer  exact  for  this  case, we show that 
it  is  still  a good approximation.  Computer  calculations of 
(5.10) have been done  for  a nearly ideal SIS with the re- 
alistic values eVLo = AuLo = eVG and  a variety of con- 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Mixer  noise NM versus  real  source  admittance for an SIS with  large 
LO power.  The  junction  used  is  the 2.5 K SIS of Fig. 2. The  dashed, 
dotted  and  dash-dot  lines  are for image  termination  equal to signal  ter- 
mination,  open  circuit,  and  short  circuit,  respectively. The solid  line  is 
a  plot of (6.1) for comparison.  The  x-axis is the  zero  reactance  slice 
through  a  standard  Smith  chart. 

ditions on the  image termination y- 1. This  value of LO 
voltage represents more absorbed LO power than we  typ- 
ically find necessary in  our actual mixers [ 5 ] ,  [7].  These 
results are shown in  Fig. 4, along with a calculation of 
(6.1) for  comparison.  The  image  termination - slightly 
effects mixer  noise  for this high LO power,  but  simple 
photodiode theory is still  a good approximation to (5.10). 
Of course,  for nonideal junctions,  the  full  expression 
(5.10) must be used,  and  (6.1) will not be very accurate. 

VII.  CONCLUSIONS 

We have produced a fully quantum  mixer theory which 
includes all noise effects in  a  heterodyne  measurement. 
For  the standard use of a  mixer, we present expressions 
for mixer gain  and  noise.  These  are derived from the  ex- 
pectation value of an  output voltage operator and its 
square. Photodiode mixer theory is shown to be sufficient 
for describing noise in high quality SIS mixers.  The op- 
erator formalism presented here  can  be easily extended to 
make predictions of SIS response to  correlated photon 
states, which are  the  subject of much current  research. 

Our  output  operator expressions are  similar  to  Caves’, 
so his limits on amplifier performance should apply to any 
mixer analyzed with our  theory. We have  shown  that SIS 
mixers can reach this limit when analyzed using Tucker’s 
and our theories together. In fact, we  have shown that 
ideal SIS mixer noise is predicted by the  simple expres- 
sions of photodiode mixer theory,  and  is simply related to 
how well radiation is  coupled to the  SIS.  We  have  cal- 
culated SIS and SIN mixer  performance versus frequency 
and these  calculations  suggest  that  quantum  limited  de- 
tection should be  possible  to  as high as  3000 GHz with 
niobium nitride SIS’s which are now being developed. 
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