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Quantum non-demolition (QND) measurement enhances the detection efficiency and measurement
fidelity, and is highly desired for its applications in precision measurements and quantum information
processing. We propose and demonstrate a QND measurement scheme for the spin states of laser-
trapped atoms. On 171Yb atoms held in an optical dipole trap, a transition that is simultaneously
cycling, spin-state selective, and spin-state preserving is created by introducing a circularly polarized
beam of control laser to optically dress the spin states in the excited level, while leaving the spin
states in the ground level unperturbed. We measure the phase of spin precession of 5 × 104 atoms
in a bias magnetic field of 20 mG. This QND approach reduces the optical absorption detection
noise by ∼19 dB, to a level of 2.3 dB below the atomic quantum projection noise. In addition to
providing a general approach for efficient spin-state readout, this all-optical technique allows quick
switching and real-time programming for quantum sensing and quantum information processing.

I. INTRODUCTION

The nuclear and electronic spin states of atoms, with
the advantage of having long coherence times, are of great
importance in precision measurement and quantum in-
formation experiments. Measurements on atomic spin
states are performed to realize magnetometers [1–3], op-
tical clocks [4–7], and in experiments that search for per-
manent electric dipole moment [8–15]. As an informa-
tion carrier, the spin state is also widely used in quan-
tum information processing [16–23] and quantum simu-
lation [24, 25]. For these applications, it is often crucial
to measure the population in each spin state with a high
efficiency in order to reduce the statistical errors in preci-
sion measurements and to enhance the readout fidelities
in quantum information experiments.
The populations in spin states can be determined ei-

ther dispersively by measuring the state-dependent phase
shift of an off-resonant laser beam, or dissipatively by
measuring the absorption of or the fluorescence induced
by near-resonant light. In the recent quantum comput-
ing experiments, it is challenging to achieve high fidelity
of spin selectivity in the qubit-state readout [20, 21, 23].
The detection efficiency is often limited by measurement-
induced spin flipping, upon which the quantum state is
demolished prematurely. For example, probing the states
of a spin-1/2 system on non-cycling transitions, as shown
in Figs. 1(a) and 1(b), induces a spin flip with just a
few excitation–emission cycles [10, 16]. Alternatively, in
a quantum non-demolition (QND) measurement [26–28],
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the state is preserved under repeated excitation–emission
cycles, thus the signal-to-noise ratio of state detection
can be greatly enhanced. For this reason, QND measure-
ments have attracted increasing interests and have been
successfully demonstrated on various systems achieving
improved measurement fidelity in quantum information
processing [29–31] and higher precision in quantum mea-
surements [32–34].

Several QND strategies for spin-state detection have
been demonstrated. For example, a magnetic field can be
applied to lift the degeneracy among transitions of dif-
ferent magnetic sublevels [35], under the condition that
the induced Zeeman splittings are much larger than the
transition linewidth. While this method works efficiently,
the required magnetic field and its on-and-off switching
can disturb the spin states, resulting in decoherence and
loss of sensitivity. Another strategy, more suitable for
solid-state systems, is to modify the density of states and
induce a state-dependent spontaneous relaxation rate via
the Purcell effect [36]. Recently, such a scheme is imple-
mented for single rare-earth ions embedded in a nano-
photonic cavity, boosting the transition cyclicity by sev-
eral orders of magnitude [37].

In this work, we present a theoretical analysis and an
experimental demonstration of a QND approach to probe
spin states and measure the phase of spin precession via
optical excitation. By applying an ancillary control laser
to shift the excited states via the ac-Stark effect, while
leaving the spin states in the ground level unperturbed,
the chosen optical transition can simultaneously become
cycling, spin-selective, and spin-preserving. AC Stark
shift has been successfully employed in many applica-
tions, including state-selective manipulation of atomic
internal states [38–40], site-selective addressing in atom
array [41–45], and narrow-line Sisyphus cooling [46–49].
Our approach is demonstrated on 171Yb atoms in an op-
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tical dipole trap (ODT) whose wavelength satisfies the
magic condition for the probe transition [50]. QND mea-
surements are performed on spin precession, demonstrat-
ing a reduction in optical noise by ∼19 dB. This all-
optical approach of QND measurement avoids the need
to switch and shield any control magnetic fields. Its prin-
ciple can be applied to many different atomic systems and
is compatible with general cold-atom experiments in pre-
cision measurements and quantum information science.
This novel method was introduced in Ref.[51], where it
was used in a measurement of the electric dipole moment
of 171Yb.

II. PRINCIPLE

The principle of optical pumping and spin-state de-
tection is often explained with the simple case of F =
1/2 ↔ F = 1/2 [Fig. 1(a)]. Throughout this paper, the
quantization direction is chosen to be along the common

k̂ vector of the polarization beam, probe beam and con-
trol beam. A laser beam of resonant frequency and σ+

polarization excites the mF = −1/2 state in the ground
level, but not the mF = +1/2 “dark state”. In this case,
an atom in |g; 1/2,−1/2〉 absorbs and emits on average
only three photons before dropping into |g; 1/2,+1/2〉,
thus limiting the fidelity of state detection. For the case
of a different transition, F = 1/2 ↔ F = 3/2 [Fig. 1(b)],
even though an atom in |g; 1/2,+1/2〉 can be probed re-
peatedly on the |g; 1/2,+1/2〉 ↔ |e; 3/2,+3/2〉 cycling
transition, an atom in |g; 1/2,−1/2〉 absorbs and emits
on average only 1.5 photons before a spin flip occurs. For
a QND measurement, we need a transition that is simul-
taneously cycling, spin selective and spin preserving.
We propose a QND measurement scheme based on the

optical dressing effect. Consider a ladder-type atomic
system with three levels: the ground level |g〉, the ex-
cited level |e〉, and the excited level |c〉 [Fig. 1(c)] (|c〉
can be either higher or lower than |e〉 in energy). Their
angular momenta are 1/2, 3/2, and 3/2, and spontaneous
decay rates are 0, Γe, and Γc, respectively. The control
beam, on resonance with the |e〉 ↔ |c〉 transition, dresses
the |e〉 state with Rabi frequency Ωc. The optical dress-
ing is on all Zeeman states |e; 3/2,mF 〉, except for the
stretched state |e; 3/2,+3/2〉. The dressed Zeeman states
are shifted by ±Ωc/2 to form Aulter-Towns doublets [52]
and the stretched state is protected by the angular mo-
mentum selection rules. Such a difference among the
Zeeman states is essential for spin-selective detection of
the spin state.
To probe the nuclear spin state, the probe beam res-

onantly drives the |g〉 ↔ |e〉 transition with Rabi fre-
quency Ωp. In the condition where Ωp ≪ Ωc,Γe, the
optical transition strength to the dressed Zeeman states
is reduced by a factor of ∼ Ω2

c/(ΓeΓc). The |g; 1/2,−1/2〉
state then becomes a “dark state” and the rate of spin
flip is reduced by the same factor. With modest intensity
of the control beam, the reduction factor can be on the
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FIG. 1. (a) The F = 1/2 ↔ F = 1/2 case for detection of
nuclear spin states in a non-QND method. An atom in the
dark state |g; 1/2,+1/2〉 does not scatter photons; an atom
in |g; 1/2,−1/2〉 scatters on average 3 photons before a spin
flip occurs. (b) The F = 1/2 ↔ F = 3/2 case for detection
of nuclear spin states in a non-QND method. An atom in
|g; 1/2,+1/2〉 can be probed on a cycling transition; an atom
in |g; 1/2,−1/2〉 scatters on average 1.5 photons before a spin
flip occurs. (c) The proposed QND approach for detection
of nuclear spin states. The optical dressing of the |e〉 state
is by the control beam. In this condition, the |g; 1/2,−1/2〉
↔ |e; 3/2,+1/2〉 transition is optically shifted and suppressed,
while |g; 1/2,+1/2〉 ↔ |e; 3/2,+3/2〉 remains unaffected. The
spin state can be probed without risking spin flips. (d) Layout
of the setup. The atoms are trapped by an optical dipole trap
(ODT) in a vacuum chamber and µ-metal shields (dashed
rectangle). A cos θ coil is used to generate a uniform bias
magnetic field of 20 mG in the x direction. The ODT, polar-
ization beam, probe beam, and control beam are all combined
and directed in the z direction. ODT is linearly polarized in
the y direction; the polarization, probe, and control beams
have the same σ+ circular polarization. (e) Energy levels and
transitions of Yb. In the QND approach, the probe is on the
intercombination transition at 556 nm; the control transition
is at 423 nm. The fast singlet-to-singlet transition at 399 nm
is used for optical pumping to produce spin polarization, and
for detecting spin states in the non-QND method.

order of 103. The atoms in |g; 1/2,+1/2〉 can be excited
to the unaffected stretched state repeatedly, and optical
detection of the nuclear spin state with cycling transition
is realized. It is important to note that the control beam
can be switched on and off at a rate much faster than the
spin precession rate, and does not affect the spin states
in the ground level.
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III. EXPERIMENTAL SETUP

We have implemented the QND measurement on the
spin states of 171Yb (I = 1/2) atoms in the ground level.
The three levels 6s2 1S0 (F = 1/2), 6s6p 3P1 (F = 3/2)
and 6s8s 3S1 (F = 3/2) form a ladder system as shown
in Fig. 1(e). The QND measurement employs the fol-
lowing laser beams and transitions: The probe beam at
556 nm, tuned to the resonance of 6s2 1S0 ↔ 6s6p 3P1

(Γe/2π = 182 kHz), is supplied by a frequency-doubled
diode laser; the control beam at 423 nm, tuned to the
resonance of 6s6p 3P1 ↔ 6s8s 3S1(Γc = 2π × 1.7 MHz),
is supplied by a frequency-doubled Ti:Sapphire laser; the
polarization beam at 399 nm, tuned to the resonance
of 6s2 1S0 ↔ 6s6p 1P1(Γ399/2π = 28 MHz), is supplied
by a frequency-doubled diode laser. The probe beam,
the control beam, and the polarization beam all have
the same circular polarization (e.g., σ+), and all co-
propagate with the stationary ODT beam along the z
direction [Fig. 1(d)]. The absorption of the probe beam
by the trapped atoms is imaged onto a CMOS camera.

To prepare the atomic ensemble, 171Yb atoms are
loaded into a two-stage magneto-optical trap (MOT):
The first-stage MOT is operated on the strong transition
(same as the polarization transition) to efficiently cap-
ture the atoms from a Zeeman slower; the second-stage
MOT on the narrow-linewidth intercombination transi-
tion (same as the probe transition) cools the atoms to 20
µK. The cold atoms are then handed over to a movable
ODT. More details of the apparatus are given in Ref [50].
The atoms are carried into a neighboring science cham-
ber by translating the focal point of the movable ODT
along the y direction [Fig. 1(d)] and, finally, handed over
to a stationary ODT pointed in the z direction. The
two ODTs are provided by two separate fiber lasers. We
prepare 103 − 104 171Yb atoms in the ODT for measure-
ments. A cos θ coil [53] inside magnetic shields generates
a uniform B field (∼ 20 mG) in the x direction to drive
spin precession.

The stationary ODT in the science chamber has a waist
of 50 µm and a Rayleigh length of ∼ 4 mm, is linearly
polarized in the y direction, and has a power of 35 W
and a wavelength of 1035.84 nm. This wavelength meets
the magic condition for the probe transition so that the
probe remains effective despite of the deep trapping po-
tential of 200 µK [50]. The probe linewidth is measured
to be ∼ 400 kHz, reflecting Doppler broadening at 100
µK. The vector light shift of the spin states introduced
by the linearly polarized ODT beam is negligible (< 1
mHz). The control beam is focused on the atoms with
a beam waist of about 300 µm. The parameters for the
control beam is determined by measuring the induced
light shifts of the probe transition (Appendix B). At the
control beam power of 40 mW (Ωc ∼ 2π × 40 MHz), the
spin-flip rate in the ground level is reduced by a factor of
Ω2

c/(ΓeΓc) ∼ 103. Since the control beam is far detuned
from any transitions that connect to the ground level, its
effects on spin precession are negligible: the scalar light

shift of |g〉 induced by the control beam is at ∼ kHz,
much less than Γe; the vector light shift is at ∼ mHz,
much less than the precession frequency of 15 Hz.

IV. PHASE MEASUREMENT OF SPIN

PRECESSION

We demonstrate the advantage of the QND approach
with phase measurements of the spin precession of 171Yb
atoms. The timing sequence for the QND measurement
is shown in Fig. 2(a). Initial spin polarization is pro-
duced by a 2 ms pulse of the polarization beam (“Pol.
1”, I/Is = 3 × 10−4). The spin polarized atoms precess
about the bias magnetic field (∼ 20 mG) at a Larmor
frequency of ∼ 15 Hz. After a given precession time,
chosen to be 1 s in this study, an overlapping pulse of
both the probe beam (0.4 ms, I/Is = 0.25) and con-
trol beam, named “Probe 1+”, is applied for a spin pro-
jection measurement. The population in |g; 1/2,+1/2〉
(ρ+) is measured, while the population in |g; 1/2,−1/2〉
(ρ−) remains unchanged because its excitation is sup-
pressed by the presence of the control beam. Half of a
period (Tp/2) later, the precession swaps the populations
of |g; 1/2,+1/2〉 and |g; 1/2,−1/2〉 states, and “Probe 1-
” is fired to measure the original ρ− prior to swapping.
The probe pulses are repeated, each with a Tp/2 delay
from the previous pulse [Fig. 2(a)]. The Bloch vector Sz

can be calculated as

Sz = ρ+ − ρ− =
N+ −N−

N+ +N−

, (1)

where ρ++ρ− = 1, N+ and N− are the number of atoms
in |g; 1/2, +1/2〉 and |g; 1/2, −1/2〉 derived from absorp-
tion images of the probe pulses. For each pulse, “Probe
1+” or “Probe 1-”, an absorption image taken by the
CMOS camera is compared to a background image taken
without atoms to derive an optical depth value at each
pixel. Both ρ+ and ρ− are measured under the same
set of probe conditions, with only Tp/2 apart in tim-
ing. In this way of calculating Sz, many common-mode
imperfections in the laser and detector parameters are
suppressed.
For comparison, we have also conducted phase mea-

surements based on the non-QND optical pumping
method. Here, the normalization, polarization and
probe all use the same laser tuned to the resonance of
6s2 1S0 (F = 1/2) ↔ 6s6p 1P1 (F = 1/2) at 399 nm, and
no control beam is needed. A different timing sequence is
used [Fig. 2(c)]. A 0.2 ms normalization pulse [“Norm.”
in Fig. 2(c)], fired at Tp/2 after the initial polarization
pulse (“Pol. 1”), measures the total populationN++N−.
Afterwards the atoms need to be repolarized with “Pol.
2”. Following the free precession time, a 0.2 ms “Probe”
pulse (I/Isat = 3 × 10−4) is applied to measures ρ−. In
this non-QND approach, the probe causes spin flips and
can only be applied briefly before the spin information is
lost.
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FIG. 2. (a) Timing sequence of the QND measurement. Atoms are initially polarized by a 399 nm pulse (“Pol. 1”, �). After
a given precession time, two 556 nm probe pulses (“Probe 1”, �), separated by Tp/2, measure the populations on mF = ±1/2
states successively. Each probe pulse is overlapped with a 423 nm control pulse (�). The probe pulses can be repeated multiple
times. (b) The evolution of the atomic spin Bloch vector under a QND measurement. (c) Timing sequence of a non-QND
optical pumping measurement. A normalization pulse (“Norm.”, �) is needed to measure the total population. The spin state
population can only be measured once with only a few excitation-emission cycles. (d) Spin precession in the QND measurement.
The initial spin polarization is about 90%. The precession time is chosen to be 1s. (e) Spin precession measured with the non-
QND method, with other parameters identical to those of (d). (f) Sz,1 is highly correlated with Sz,2. The reduced χ2 = 1.03
for the proportional fit (solid line).

The Bloch vector evolves as Sz = Pz cos(2πft + φ0),
where Pz is the degree of spin polarization, f is the
Larmor precession frequency and φ0 is the initial phase.
The sinusoidal precession signal, shown in Fig. 2(d) and
2(e) are obtained by measuring Sz at different precession
times around 1 s. The measurement uncertainties in the
QND approach are significantly reduced in comparison
with those in non-QND approach. A key requirement of
the QND approach is that the Bloch vector can be repeat-
edly measured. As shown in Fig. 2(f), Sz,1, measured by
“Probe 1”, is highly correlated with Sz,2, measured by
“Probe 2”.

V. MEASUREMENT UNCERTAINTY

The Larmor precession phase is determined in the Sz

measurements, with the highest sensitivity occurring at
the points of ρ+ = ρ−. In the QND approach, the vari-
ance of Sz can be expressed as (see Appendix A2),

σ2
Sz

= σ2
op

+
1

Na

≃
4p

(Nan̄)2ǫ
+

1

Na

, (2)

where the first term, denoted σ2
op

, describes the optical
noise arising from the fluctuations of both the incoming
and the absorbed photons. The second term is the atomic
quantum projection noise. All variables in Eq. (2) are de-
fined in Table I. Results of Eq. (2) are approximation for
weak absorption cases when Nan̄/p ≪ 1. The numerical

factor “4” is the total number of images used in the mea-
surement sequence combining “Probe 1+” and “Probe
1-”, with each containing both the absorption and back-
ground images. The atomic quantum projection noise is
induced by the detection pulse “Probe 1+”, after which
all other detection pulses do not contribute any more
quantum projection noise. Detailed derivation for both
QND and non-QND cases are given in Appendix A.
In principle, the excitation cycle in the QND measure-

ment can be repeated indefinitely until the optical noise
becomes negligible compared to 1/Na. In actual experi-
ments, however, the number of excitation cycles is limited
by atom losses due to either heating or imperfection in
the near-cycling transition. Consider a pulse of p̄ photons
shot on the atomic clouds through a region of interest of
area AROI, it induces an average number of excitation
cycles (n̄). The two quantities are related as

exp(−blp
Aabs

AROI

) + n̄bl = 1, (3)

where the first term characterizes the probability for the
atom to survive in the bright state, and the second term
for the atom to either escape the trap or decay into a dark
state. The variables in the equation above are defined in
Table I. The average number of excitation cycles (n̄) is
affected by the loss branching ratio (bl) that takes into
account both loss mechanisms. In the QNDmeasurement
of this study, the atoms are lost from the trap after an
average of 80 excitation cycles due to heating (bl = 1/80).
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FIG. 3. (a) Number of excitation cycles n̄ vs. photon number
p in the probe pulse. In the non-QND case, n̄ is limited by
spin flipping; In QND, n̄ is limited by atom loss from the trap
due to heating. (b)Optical noise σ2

op vs. p. Number of atoms
probed is Na = 5 × 104. The optimum conditions for QND
and non-QND cases occur at different p values.
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FIG. 4. The variance σ2
Sz

vs. the number of trapped atoms
Na. Blue data points are for non-QND cases, and the green
data points for QND cases. The red dashed line indicates
the 1/Na atomic quantum projection noise. For QND cases,
the green dashed line models the optical noise, and the green
solid line is combined variance of both the optical noise and
the atomic quantum projection noise. The blue dashed line
and blue solid line are overlapped.

For comparison, in the non-QND measurement, the spin
state is demolished after an average of 3 excitation cycles
due to optical pumping (bl = 1/3). This large difference
is indeed the essence of the QND advantage.

Fig. 3 shows the average number of excitation cycles
n̄ and the optical noise σ2

op
as a function of the photon

number (p) in the probe pulse. When p is small, n̄ is
proportional to p, while σ2

op
is inversely proportional to

p. As p increases, loss mechanisms come into effect, n̄
becomes saturated and σ2

Sz
increases due to the photon

shot noise. The optimum choice for p occurs at the point
when n̄ starts to saturate, and n̄ is different between
QND and non-QND cases.
Fig. 4 shows the variances of Sz for both the QND

and non-QND cases with the number of trapped atoms
varying in the range of 103 − 104. The measured results
agree well with calculated ones. From non-QND to QND
cases, the optical noise is reduced by 19 dB, independent
of the number of atoms. The QND optical noise goes
below the atomic quantum projection noise when Na >
3× 104, and is 2.3 dB below at Na = 5× 104.

VI. DISCUSSION AND OUTLOOK

In this work, we have demonstrated a QND phase mea-
surement of the spin precession of atoms in an optical
dipole trap. The 19 dB gain in the optical noise can be
further improved by reducing heating loss of the atoms
due to optical probing and scattering loss due to impure
laser polarization of the control beam. In the current
setup, the atoms are transferred into the ODT of 200 µK
depth at a temperature of 100 µK, and are heated out
of the ODT after an average of 80 excitation cycles. By
applying laser cooling in the ODT prior to the measure-
ment sequence, the atom temperature could be lowered
down toward the Doppler-cooling limit of 4.4 µK, thus in-
creasing the number of excitation cycles n̄. Laser cooling
would also reduce the Doppler-broadened width of 400
kHz, towards the natural linewidth of 182 kHz, and thus
increase the photon absorption cross-section. Further-
more, replacing the traveling wave ODT with an optical
lattice would increase the trap depth and reduce heating
losses due to the probe beam. The impure laser polar-
ization of control beam causes excitation to the |c〉 state,
followed by decay into the lower-lying P levels. This leak-
age in the cycling transition can be reduced with better
polarization control. All these steps would combine to
reduce the loss branching ratio bl, increase n̄ and further
suppress the optical noise.
The use of the QND method introduced in this work

can be expanded to a wide range of applications. For ex-
ample, QND measurements can help improve the search
sensitivity of a permanent electric dipole moment (EDM)
of atoms [10, 51, 54]. The recently demonstrated tweezer
array of Yb atoms, with their spin states acting as
qubits, is an emerging platform for quantum computa-
tion [16, 17, 20, 21, 23], on which the QND approach
would help improve readout fidelity. Suppression of spin-
flip shown in this work can also be used to decrease spin
noise and increase interrogation time in spin squeezing
experiments [32]. Moreover, the QND approach can be
employed to implement quantum error correction that re-
quires non-destructive detection of error syndromes [55],
as well as real-time feedback control on atomic spin
states [56, 57]. We emphasize that the all-optical control
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TABLE I.

Term Description
Value in the

QND approach
Value in the

non-QND approach
Aabs Absorption cross section of an atom a 0.074 µm2 0.076 µm2

AROI Area of region of interest(ROI) 8900 µm2 8900 µm2

p Average number of probe photons inside ROI 3.4× 106 0.57 × 106

n Average number of excitation cycles 23 2.5
bl Loss branching ratio 1/80 1/3
Na Number of atoms 5× 104 5× 104

ǫ Quantum efficiency of the camera 0.8 (at 556 nm) 0.4 (at 399 nm)

a The natural absorption cross section of the 556-nm probe transition on resonance is 0.147 µm2. However, the residual Doppler

broadening results in a reduced cross section.

allows quick switching and real-time programming [58].

While we have focused on the (F, F +1, F +1) ladder-
type system, the approach can be generalized to other
configurations, such as a Λ-type systems or (F, F +1, F )
systems. Moreover, instead of the dissipative readout
demonstrated in this work, the optical dressing effect
can also be applied to dispersive atom-photon interac-
tion [35], leading to applications such as measurement-
based spin squeezing, or generation of entanglement be-
tween distant atomic ensembles for distributed quantum
sensing [59].
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Appendix A: Measurement uncertainty

1. Optical noise in absorption imaging

Population is detected by measuring the optical depth
(OD) of the atomic ensemble. OD is derived from the
number of detected photons in the reference image with-
out atoms (p1) and that in the absorption image of the
atomic ensemble (p2),

OD = ln(p1/p2).

For the number of incident probe photons of p, and
take into account the quantum efficiency of the camera

ǫ, the reference image has

p1 =

p∑

i=1

di,

where di is a binary variable indexing whether the i-th
photon is detected: di ∼ B(1, ǫ). The number of photons
in the absorption image is

p2 =

p−
∑N±

j=1
nj∑

i=1

di,

where N± is the number of atoms in the probed state
and nj is the number of photons scattered (absorbed) by
the j-th atom.
The expectation values and variances for p1 and p2 can

be expressed as

E(p1) = σ2
p1

= pǫ,

E(p2) = pǫ−
Na

2
n̄ǫ,

σ2
p2

= E(p−

N±∑

j=1

nj)Var(di) + Var(p−

N±∑

j=1

nj)[E(di)]
2

= pǫ+Nan(2ǫ
2 − ǫ)/2 +Nan

2ǫ2/4.

When calculating σ2
p2
, it is assumed that nj follows the

Poisson distribution.
In our case, p ≫ Nan̄ ≫ 1. The expectation value and

variance for OD are

E(OD) ≃
Nan̄

2p
,

σ2
OD ≃

2

pǫ
+

Nan
2

4p2
.

These results follow the more detailed derivations found
in Ref. [60, 61]. It is worth noting that the optical noise
in absorption imaging originates from not only the in-
trinsic photon shot noise discussed above, but also tech-
nical noise. In order to reach the fundamental photon-
shot-noise level, a total of 30 images without atoms are
taken after the detection pulses for a fringe-removal al-
gorithm [62].
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FIG. 5. The measured light shift δp of the probe transition
against the control laser detuning. At a control laser beam
of 4 mW and 300 µm radius, the Rabi frequency Ωc/(2π) =
12.5(1)MHz is determined.

2. Variance of measured Sz

As the populations of |g; 1
2
,− 1

2
〉 and |g; 1

2
,+ 1

2
〉 states

are equal, the expectation value and variance for ρ+ are

E(ρ+) =
1

2
,

σ2
ρ+

≃
5p

2(Nan̄)2ǫ
+

1

4Na

.

For non-QND measurements, the variance of measured
Sz is

σ2
Sz

= Var(2ρ+ − 1)

≃
10p

(Nan̄)2ǫ
+

1

Na

.

For QND measurements, the variance of measured Sz is

σ2
Sz

= Var(ρ+ − ρ−)

≃
4p

(Nan̄)2ǫ
+

1

Na

.

The reduction in variances from non-QND to QND is
largely due to the difference in the n̄ values, and is inde-
pendent of Na.

Appendix B: Parameters for the control laser

The 423 nm control beam drives the 6s6p 3P1 ↔
6s8s 3S1 transition. The natural linewidth of this tran-
sition is estimated to be 2π × 1.7 MHz, based on the
known lifetime of the 6s8s 3S1 level[63] and the estimated
branching ratios. The detuning ∆c and the Rabi fre-
quency Ωc are experimentally determined by measuring
the light shift δp of the 556 nm probe transition (Fig. 5),

δp =
∆c

2
ln(1 +

2Ω2
c

Γ2
c + 4∆2

c

).
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V. Vuletić, Near-unitary spin squeezing in 171Yb,
Phys. Rev. Lett. 122, 223203 (2019).

[36] Anonymous, Proceedings of the american physical soci-
ety, Phys. Rev. 69, 674 (1946).

[37] S. Chen, M. Raha, C. M. Phenicie, S. Ourari, and J. D.
Thompson, Parallel single-shot measurement and coher-
ent control of solid-state spins below the diffraction limit,
Science 370, 592 (2020).

https://doi.org/10.1103/RevModPhys.90.025008
https://doi.org/10.1103/RevModPhys.91.015001
https://doi.org/10.1103/PhysRevLett.114.233002
https://doi.org/10.1103/PhysRevLett.119.153001
https://doi.org/10.1038/s41586-018-0599-8
https://doi.org/10.1103/PhysRevLett.120.123201
https://doi.org/10.1103/PhysRevLett.116.161601
https://doi.org/10.1103/PhysRevLett.123.143003
https://doi.org/10.1103/PhysRevLett.102.110503
https://doi.org/10.1103/PhysRevA.84.030301
https://doi.org/10.1103/PhysRevLett.117.060506
https://doi.org/10.1126/science.aaz6801
https://doi.org/10.1103/PhysRevX.12.021027
https://doi.org/10.1103/PhysRevX.12.021028
https://doi.org/10.1103/PhysRevA.105.052438
https://doi.org/10.1038/s41467-022-29977-z
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/nphys3705
https://doi.org/10.1103/RevModPhys.68.1
https://doi.org/10.1038/25059
https://doi.org/10.1038/22275
https://doi.org/10.1103/physrevx.10.021006
https://doi.org/10.1038/s41565-019-0426-x
https://doi.org/10.1038/nphys509
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1038/s41586-020-2243-7
https://doi.org/10.1103/PhysRevX.10.041052
https://doi.org/10.1103/PhysRevLett.122.223203
https://doi.org/10.1103/PhysRev.69.674
https://doi.org/10.1126/science.abc7821


9

[38] Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and
M. Kozuma, Projective measurement of a single nu-
clear spin qubit by using two-mode cavity qed,
Phys. Rev. Lett. 106, 160501 (2011).
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